Biology of the Aging Process and Its Clinical Consequences

  • Juan-Florencio Macìas-Núñez
  • José-Manuel Ribera Casado
  • Mónica de la Fuente del Rey
  • Gustavo Barja Quiroga
  • Jesus A.F. Tresguerres
  • Carmen Ariznavarreta
  • José M. López-Novoa


Growth Hormone Aging Process Caloric Restriction Atrial Natriuretic Peptide Cellular Aging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arking, R. The Biology of Aging: Observations and Principles, 3rd ed. Oxford: Oxford University Press, 2006.Google Scholar
  2. Cournil, A., Kirkwood, T.B.L. If you would live long, choose your parents well. Trends Genet. 2001; 17:233–235.PubMedCrossRefGoogle Scholar
  3. Kirkwood, T.B.L. The origins of human ageing. Phil. Trans. Roy. Soc. Lond. Ser. B, Biol. Sci. 1997; 352:1765–1772.CrossRefGoogle Scholar
  4. Medawar, P.B. An Unsolved Problem of Biology. London: Lewis, 1952.Google Scholar
  5. Williams, G.C. Pleiotropy, natural selection and the evolution of senescence. Evolution 1957; 11:398–411.CrossRefGoogle Scholar
  6. Hayflick, L., Moorhead, P.S. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 1961; 25:585–621.CrossRefGoogle Scholar
  7. Peinado, M.A., del Moral, M.L., Esteban, F.J., Martínez-Lara, E., Siles, E., Jimenez, A., Hernández-Cobo, R., Blanco, S., Rodrigo, J., Pedrosa, A. Aging and neurodegeneration: Molecular and cellular bases. Rev. Neurol. 2000; 31:1054–1065.PubMedGoogle Scholar
  8. Campisi, D., Dimri, G., Hara, E. Control of replicative senescence. In Handbook of the Biology of Aging, Schneider, E.L. and Rowe, J.W. eds.. San Diego: Academic Press. 1996, pp. 121–149.Google Scholar
  9. Flurkey, K., Papaconstantinou, J., Miller, R.A., Harrison, D.E. Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc. Natl. Acad. Sci. USA. 2001; 98:6736–6741.PubMedCrossRefGoogle Scholar
  10. Harley, C.B., Futcher, A.B., Greider, C.W. Telomeres shorten during aging of human fibroblasts. Nature 1990; 345:458–460.PubMedCrossRefGoogle Scholar
  11. Barja, G. Aging in vertebrates and the effect of caloric restriction: A mitochondrial free radical production-DNA damage mechanism? Biol. Rev. 2004; 79: 235–251.PubMedCrossRefGoogle Scholar
  12. Barja, G., Herrero, A. Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals. FASEB J. 2000; 14:312–318.PubMedGoogle Scholar
  13. Gredilla, R., Sanz, A., López-Torres, M., Barja, G. Caloric restriction decreases mitochondrial free radical generation at complex I and lowers oxidative damage to mitochondrial DNA in the rat heart. FASEB J. 2001; 15:1589–1591.PubMedGoogle Scholar
  14. Gredilla, R., Barja, G. Caloric restriction, aging and oxidative stress. Endocrinology 2005; 146:3713–3717.PubMedCrossRefGoogle Scholar
  15. Sanz, A., Caro, P., Barja, G. Protein restriction without strong caloric restriction decreases mitochondrial oxygen radical production and oxidative DNA damage in rat liver. J. Bioenerg. Biomembr. 2004; 36:545–552.PubMedCrossRefGoogle Scholar
  16. Sohal, R.S., Ku, H.H., Agarwal, S., Forster, M.J., Lal, H. Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction. Mech. Ageing Dev. 1994; 74:121–133.PubMedCrossRefGoogle Scholar
  17. Weindruch, R., Kayo, T., Lee, C.L., Prolla, T.A. Microfile profiling of gene expression in aging and its alteration by caloric restriction in mice. J. Nutr. 2001; 131:918S–923S.PubMedGoogle Scholar
  18. Barja, G. The flux of free radical attack through mitochondrial DNA is related to aging rate. Aging Clin. Exper. Res. 2000; 12:342–355.Google Scholar
  19. Petrini, J.H. The mammalian Mre11-Rad50-nbs1 protein complex: Integration of functions in the cellular damage response. Am. J. Hum. Genet. 1999; 64:1264–1269.PubMedCrossRefGoogle Scholar
  20. Gredilla, R., Barja, G., López-Torres, M. Effect of short-term caloric restriction on H2O2 production and oxidative DNA damage in rat liver mitochondria, and location of the free radical source. J. Bioenerg. Biomembr. 2001; 33:279–287.PubMedCrossRefGoogle Scholar
  21. Pamplona, R., Portero-Otín, M., Bellmunt, M.J., Gredilla, R., Barja, G. Aging increases Nepsilon-(Carboxymethyl)lysine and caloric restriction decreases Nepsilon-(Carboxyethyl)lysine and Nepsilon-(Malondialdehyde)lysine in rat heart mitochondrial proteins. Free Rad. Res. 2002; 36:47–54.CrossRefGoogle Scholar
  22. Grimley Evans, J., Bond, J. The challenges of age research. Age and Ageing 1997; 26–54.Google Scholar
  23. Kirkwood, T.B. p53 and ageing: Too much as a good thing. Bioassays 2002; 24:577–579.CrossRefGoogle Scholar
  24. Orgel, L.E. The maintenance of the accuracy of protein synthesis and its relevance to aging. Proc. Natl. Acad. Sci. USA, 1963; 49:5117–5521.CrossRefGoogle Scholar
  25. Wayne, S.J., Rhyne, R.L., Garry, P.J., Goodwin, J.S. Cell-mediated immunity as a predictor of morbidity and mortality in subjects over 60. J. Gerontol. 1990; 45: M45–48.PubMedGoogle Scholar
  26. De la Fuente, M. Effects of antioxidants on immune system ageing. Eur. J. Clin. Nutr. 2002; 56:51–54CrossRefGoogle Scholar
  27. De la Fuente, M. The immune system as a marker of health and longevity. Antiaging Med. 2004; 1:31–41.Google Scholar
  28. Guayerbas, N., Catalán, M., Victor, V.M., Miquel, J., De la Fuente, M. Relation of behaviour and macrophage function to life span in a murine model of premature immunosenescence. Brain Behav. Res. 2002; 134:41–48.CrossRefGoogle Scholar
  29. Guayerbas, N., De la Fuente, M. An impairment of phagocytic function is linked to a shorter life span in two strains of prematurely-ageing mice. Develop. Comp. Immunol, 2003; 27:339–350.CrossRefGoogle Scholar
  30. De la Fuente, M., Hernanz, A., Vallejo, M.C. The immune system in the oxidation stress conditions of ageing and hypertension. Favorable effects of antioxidants and physical exercise. Antioxid. Redox Sign. 2005; 7:1356–1366.CrossRefGoogle Scholar
  31. Victor, V.M., Rocha, M., Esplugues, J.V., De la Fuente, M. Role of free radicals in sepsis: Antioxidant therapy. Curr. Pharm. Des. 2005; 11:3141–3158.PubMedCrossRefGoogle Scholar
  32. De la Fuente, M., Baeza, I., Guayerbas, N., Puerto, M., Castillo, C., Salazar, V., Ariznavarreta, C., Tresguerres, J.A.F. Changes with ageing in several leukocyte functions of male and female rats. Biogerontology 2004; 5:389–400.PubMedCrossRefGoogle Scholar
  33. De la Fuente, M., Hernanz, A., Guayerbas, N., Puerto, M., Alvarez, P., Alvarado, C. Changes with age in peritoneal macrophage functions. Implication of leukocytes in the oxidative stress of senescence. Cell. Mol. Biol. 2004; 50:OL683–OL690.PubMedGoogle Scholar
  34. De la Fuente, M., Medina, S. NPY and phagocytic cell functions. In The NPY Family of Peptides in Immune Disorders, Inflammation, Angiogenesis and Cancer, Z. Zukowska and G.Z. Feuerstein, eds. Basel/Switzerland: Birkhaüser Verlag. 2005, pp. 107–122.Google Scholar
  35. Blalock, J.E. The immune system as the sixth sense. J. Intern. Med. 2005; 257:126–138.PubMedCrossRefGoogle Scholar
  36. Fabris, N. A neuroendocrine-immune theory of ageing. Int. J. Neurosci. 1990; 51:373–375.PubMedCrossRefGoogle Scholar
  37. ‘Puerto, M., Guayerbas, N., Alvarez, P., De la Fuente, M. Modulation of neuropeptide Y and norepinephrine on several leucocyte functions in adult, old and very old mice. J. Neuroimmunol. 2005; 165:33–40.CrossRefGoogle Scholar
  38. Guayerbas, N., Puerto, M., Hernanz, A., Miquel, J., De la Fuente, M. Thiolic antioxidant supplementation of the diet reverses age-related behavioral dysfunction in prematurely ageing mice. Pharmacol. Biochem. Behav. 2005; 80:45–51.PubMedCrossRefGoogle Scholar
  39. Arce, V., Devesa, J. Hormona de crecimiento. In Tratado de Endocrinología Básica y Clínica. J.A.F. Tresguerres, ed. Madrid: Síntesis. 2000, pp. 337–378.Google Scholar
  40. Rosen, T., Bengtsson, B.A. Premature mortality due to cardiovascular disease in hypopituitarism. Lancet 1990; 336:285–288.PubMedCrossRefGoogle Scholar
  41. Toogood, A.A., Shalet, S.M. Ageing and growth hormone status. In Growth Hormone in Adults. Bailliere’s Clinical Endocrinology and Metabolism, S.M. Shalet, ed. 1998; 12(2): 281–296.Google Scholar
  42. Cuttica, C.M., Castoldi, L., Gorrini, G.P., et al. Effects of six-month administration of rhGH to healthy elderly subjects. Ageing 1997; 9:193–197.Google Scholar
  43. Nyberg, F. GH in the brain: Characteristics of specific brain targets for the hormone and their functional significance. Front. Neuroendocrinol. 2000; 21:330–348.PubMedCrossRefGoogle Scholar
  44. Vermeulen, A., Deslypere, J.P., De Merleir, K. A new look to the andropause: Altered function of the gonadotrops. J. Steroid Biochem. 1989; 32:163–165.PubMedCrossRefGoogle Scholar
  45. Schiavi, R.S., Schreiner-Engel, P., Mandeli, J., et al. Healthy aging and male sexual function. Am. J. Psychiatry 1990; 147:766–771.PubMedGoogle Scholar
  46. Adams, M.M., Morrison, J.H. Estrogen and the ageing hippocampal synapse. Cereb Cortex. 2003; 13:1271–1275.PubMedCrossRefGoogle Scholar
  47. Groner, B. Transcription factor regulation in mammary epithelial cells. Domest. Anim. Endocrinol. 2002; 23:25–32.PubMedCrossRefGoogle Scholar
  48. Blackman, M.R. Pituitary hormones and ageing. Endocrinol, Metab, Clin, 1987; 16:981–994.Google Scholar
  49. Frago, L.M., Paneda, C., Dickson, S.L., et al. Growth hormone (GH) and GH-releasing peptide-6 increase brain insulin-like growth factor-I expression and activate intracellular signaling pathways involved in neuroprotection. Endocrinology 2002; 143:4113–4122.PubMedCrossRefGoogle Scholar
  50. Donda, A., Lemarchand-Beraud, T. Aging alters the activity of 5’-deiodinase in the adenohypophysis, thyroid gland, and liver of the male rat. Endocrinology 1989; 124(3):1305–1309.PubMedCrossRefGoogle Scholar
  51. Montanini, V., Simoni, M., Chiossi, G., et al. Age-related changes in plasma dehydroepiandrosterone sulphate, cortisol, testosterone and free testosterone circulant rhythms in adult men. Horm. Res. 1988; 29:1–6.PubMedGoogle Scholar
  52. Wilkinson, C.W., Peskind, E.R., Raskind, M.A. Decreased hipothalamic-pituitary-adrenal axis sensitivity to cortisol feedback inhibition in human ageing. Neuroendocrinology 1997; 65:79–90.PubMedGoogle Scholar
  53. Vaag, A., Henriksen, J.E., Madsbad, S., et al. Insulin secretion, insulin action and hepatic glucose production in identical twins for non-insulin-dependent diabetes mellitus. J. Clin. Invest. 1995; 95:690–698.PubMedGoogle Scholar
  54. Smith, H.L. The relation of the weight of the heart to the weight of the body and the weight of the heart to age. Am. Heart J. 1928; 4:79–93.CrossRefGoogle Scholar
  55. Marcomichelakis, R., Withers, R., Newman, G.B., et al. Age related changes in the thickness of the interventricular septum, the posterior left ventricular wall, and their ratio. Int. J. Cardiol. 1983; 4:405–415.PubMedCrossRefGoogle Scholar
  56. Olivetti, G., Melissari, M., Capasso, J.M., Anversa, P. Cardiomyopathy of the aging human heart. Myocite loss and reactive cellular hypertrophy. Circ. Res. 1991; 68:1560–1568.PubMedGoogle Scholar
  57. Lakatta, E.G. Cardiovascular aging research: The next horizons. J. Am. Geriatr. Soc. 1999; 47:613–625.PubMedGoogle Scholar
  58. Wei, J.Y., Spurgeon, H.A., Lakatta, E.G. Excitation-contraction in rat myocardium: Alterations with adult aging. Am. J. Physiol. 1984; 246:H784.PubMedGoogle Scholar
  59. Benson, M.D. Aging, amyloid and cardiomyopathy. N. Engl. J. Med. 1997; 336:502–504.PubMedCrossRefGoogle Scholar
  60. Henry, W.L., Gardin, J.M., Ware, J.H. Echocardiographic measurements in normal subjects from infancy to old age. Circulation 1980; 62:1054–1061.PubMedGoogle Scholar
  61. Lev, M. Aging changes in the human sinoatrial node. J. Gerontol. 1984; 39:1–9.Google Scholar
  62. Lakatta, E.G. Diminished beta-adrenergic modulation of cardiovascular function in advanced age. Cardiol. Clin. 1986; 4:185–200.PubMedGoogle Scholar
  63. Kitzman, D.W., Edwards, W.D. Age-related changes in the anatomy of the normal human heart. J. Gerontol. 1990; 45(2) :M33–M39.PubMedGoogle Scholar
  64. Gaballa, M.A., Jacob, C.T., Raya, T.E., Liu, J., Simon, B., Goldman, S. Large artery remodeling during aging: Biaxial passive and active stiffness. Hypertension 1998; 32:437–443.PubMedGoogle Scholar
  65. Clark, B.A., Elahi, D., Shannon, R.P., Wei, J.Y., Epstein, F.H. Influence of age and dose on the end-organ responses to atrial natriuretic peptide in humans. Am. J. Hypertens. 1991; 4:500–507.PubMedGoogle Scholar
  66. Bristow, M.R., Minobe, W., Rasmussen, R. et al. Beta-adrenergic neuroeffector abnormalities in the failing human heart are produced by local, rather than systemic mechanisms. J. Clin. Invest. 1992; 89:803–815.PubMedGoogle Scholar
  67. Knight, E.L., Kiely, D.K., Fish, L.C., Marcantonio, E.R., Minaker, K.L. Atrial natriuretic peptide level contributes to a model of future mortality in the oldest old. J. Am. Geriatr. Soc. 1998; 46:453–457.PubMedGoogle Scholar
  68. Kaufman, T.M., Horton, J.W., White, J., Larson, E.B., Bruce, R.A. Health benefits of exercise in an aging society. Arch. Intern. Med. 1987; 147:353–356.CrossRefGoogle Scholar
  69. Lakatta, E.G. Changes in cardiovascular function in aging. Eur. Heart J. 1990; 11(Suppl C):22–29.PubMedGoogle Scholar
  70. Krumpe, P.E., Knudson, R.J., Parsons, G. The aging respiratory system. Clin. Geriatr. Med. 1986; 1:143–176.Google Scholar
  71. Campbell, W.J. Physiologic changes in respiratory function. In Principles and Practice of Geriatric Surgery, R.A. Roshenthal, W.E. Zenilmen, and M.R. Katlic, eds. New York: Springer-Verlag. 2001, pp. 396–405.Google Scholar
  72. Age associated changes in pulmonary reserve. In Oxford Textbook of Geriatric Medicine, 2nd ed., J. Grimley-Evans, J. Franklin Williams, B. Lynn Beattie, J.P. Michael, and G.K. Wilcock, eds. London: Oxford University Press. 2003, pp. 483–497.Google Scholar
  73. Renal hemodynamics in physiological states. In Physiology of the Human Kidney, L.G. Wesson, ed. New York: Grune and Stratton. 1969, p. 96.Google Scholar
  74. Macías-Núñez, J.F., Cameron, J.S. The ageing kidney. In Oxford Textbook of Clinical Nephrology, 3rd ed., A.L. Davison, J.S. Cameron, J.P. Grünfeld, et al., eds. Oxford: Oxford University Press. 2005, pp. 73–85.Google Scholar
  75. Lindeman, R.D. Overview: Renal physiology and pathophysiology of aging. Am. J. Kidney Dis. 1990; 16:275–282.PubMedGoogle Scholar
  76. Rowe, J., Shock, N.W., De Fronzo, R.A. The influence of age on the water deprivation in man. Nephron 1976; 17:270–278.PubMedGoogle Scholar
  77. Haug, H., Eggers, R. Morphometry of the human cortex cerebri and corpus striatum during aging. Neurobiol. Aging 1991; 12:336–338.PubMedCrossRefGoogle Scholar
  78. Snowden, D.A. Healthy aging and dementia: Findings from the Nun Study. Ann. Inter. Med. 2003, 139:450–454.Google Scholar
  79. Snowden, D.A., Dane, L., Besson, G.L., et al. Is early natural menopause a biologic marker of health and aging? Am. J. Public Health 1989; 79:709–714.CrossRefGoogle Scholar
  80. Pedigo, N.W. Jr. Neurotransmitter receptor plasticity in aging. Life Sci. 1994; 55:1985–1991.PubMedCrossRefGoogle Scholar
  81. Grady, C.L. Age-related changes in cortical blood flow activation during perception and memory. Ann. NY Acad. Sci. 1996; 777:14–21.PubMedCrossRefGoogle Scholar
  82. Cannon, J.G. Intrinsic and extrinsic factors in muscle aging. Ann. NY Acad. Sci. 1998; 854:72–77.PubMedCrossRefGoogle Scholar
  83. Welle, S. Growth hormone and insulin like growth factor I as anabolic agents. Curr. Opin. Clin. Nutr. Metab. Care 1998; 1:257–262.PubMedCrossRefGoogle Scholar
  84. Sonntag, W.E. Hormone secretion and action in aging animals. Rev. Biol. Res. Aging 1987; 3:299–335.Google Scholar
  85. Frontera, W.R., Hughes, V.A., Fielding, R.A., et al. Aging of skeletal muscle: A 12-year longitudinal study. J. Appl. Physiol. 200; 88:1321–1326.Google Scholar
  86. Fiatarone, M.A., O’Neill, E.F., Ryan, N.D., et al. Exercise training and nutritional supplementation for physical frailty in very elderly people. N. Engl. J. Med. 1994; 330:1769–1775.PubMedCrossRefGoogle Scholar
  87. Kevorkian, R. Physiology of aging. In Principles and Practice of Geriatric Medicine, 4th ed., M.S.J. Pathy, A.J. Sinclair, and J.E. Morley, eds. Chichester, UK: John Wiley and Sons. 2006, pp. 37–46.Google Scholar
  88. Ryan, A.S., Ivey, F.M., Hurlbut, D.E., et al. Regional bone mineral density after resistive training in young and older men and women. Scand. J. Med. Sci. Sports 2004; 14:16–23.PubMedCrossRefGoogle Scholar
  89. Raner, C.K., Horowitz, M. Changes in gastrointestinal motor and sensory function associated with aging. In Principles and Practice of Geriatric Medicine, 4th ed., M.S.J. Pathy, A.J. Sinclair, and J.E. Morley, eds. Chichester, UK: John Wiley and Sons. 2006, pp. 357–369.Google Scholar
  90. Orr, W.C., Chen, C.L. Aging and neural control of the GI tract: IV. Clinical and physiological aspects of gastrointestinal motility and aging. Am. J. Physiol. Gastrointest. Liver Physiol. 2002; 283:GI226–231.Google Scholar
  91. Madsen, J.L., Graff, J. Effects of ageing on gastrointestinal motor function. Age and Ageing 2004; 33:154–159.PubMedCrossRefGoogle Scholar
  92. Thomas, R.P., Slogoff, M., Smith, F.W., et al. Effect of aging on the adaptive and proliferative capacity of the small bowel. J. Gastrointest. Surg. 2003; 7:88–95.PubMedCrossRefGoogle Scholar
  93. Liu, Y., Guyton, K.Z., Gorospe, M., et al. Age related decline in mitogen activated protein kinase activity in epidermal growth factor stimulated rat hepatocytes. J. Biochem. 1996; 271:3604–3607.Google Scholar
  94. Afronti, J. Biliary disease in the elderly patient. Clin. Geriatr. Med. 1999; 15:571–579.Google Scholar
  95. Tran, K.H., Udden, M.M., Taffer, G.E., et al. Erythropoietin regulation of hematopoiesis is preserved in healthy elderly people. Clin. Res. 1993; 41:116A.Google Scholar
  96. Izaks, G.J., Westendorp, R.G.J., Knook, D.L. The definition of anemia in older persons. JAMA 1999; 281:1714–1717.PubMedCrossRefGoogle Scholar
  97. Mari, D., Manucci, P.M., Coppola, R., et al. Hypercoagulability in centenarians: The paradox of successful aging. Blood 1995; 85:3144.PubMedGoogle Scholar
  98. Tataru, M.C., Heinrich, J., Junker, S., et al. D-dimers in relation to the severity of arteriosclerosis in patients with stable angina pectoris after myocardial infarction. Eur. Heart J. 1999; 20:1493–1502.PubMedCrossRefGoogle Scholar
  99. Clarke, R., Evans, G., Schneede, J., et al. Vitamin B12 and folate deficiency in later life. Age and Ageing 2004; 33:34–41.PubMedCrossRefGoogle Scholar
  100. Gilchrest, B.A. Skin aging and photoaging: An overview. J. Am. Acad. Derm. 1989; 21:610–613.PubMedGoogle Scholar
  101. Davis, A.C. The prevalence of hearing impairment and reported hearing disability among adults in Great Britain. Int. J. Epid. 1989; 18:911–917.CrossRefGoogle Scholar
  102. Tumosa, N. Disorders of the eye. In Principles and Practice of Geriatric Medicine, 4th ed., M.S.J. Pathy, A.J. Sinclair, and J.E. Morley, eds. Chichester, UK: John Wiley and Sons. 2006, pp. 1205–1210.Google Scholar
  103. Buch, E.R., Young, S., Contreras-Vidal, J.L. Visuomotor adaptation in normal aging. Learning and Memory 2003; 55–63.Google Scholar
  104. Ship, J.A., Weiffenbach, J.M. Age, gender, medical treatment and medication effects on smell identification. J. Gerontol. 1993; 48:M26–M32.PubMedGoogle Scholar
  105. Deems, D.A., Doty, R.L., Settle, R.G., et al. Smell and taste disorders. A study of 750 patients from the University of Pennsylvania Smell and Taste Center. Arch. Otolaryngology-Head and Neck Surg. 1991; 117:519–528.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Juan-Florencio Macìas-Núñez
  • José-Manuel Ribera Casado
  • Mónica de la Fuente del Rey
  • Gustavo Barja Quiroga
  • Jesus A.F. Tresguerres
  • Carmen Ariznavarreta
  • José M. López-Novoa

There are no affiliations available

Personalised recommendations