Photobiology pp 155-196 | Cite as

Spectral Tuning in Biology

  • Lars Olof Björn
  • Helen Ghiradella


Spectral tuning is a diverse topic, both with regard to mechanism and with regard to biological significance. We have touched upon a related topic already when dealing with quantum dots in Chapter 5. In organisms, spectral tuning can be achieved both by chemical means (choice of pigment) and by physical means. The latter aspect is treated towards the end of the chapter in a section on structural color. As for the functional aspect, spectral tuning has significance for photosynthesis, vision, bioluminescence, and coloration both for protection and signalling in various contexts.


Color Vision Structural Color Visual Pigment Soap Film Chromatic Adaptation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bhoo, S.-H., Davis, S.D., Walker, J., Karniol, B. and Vierstra, R.D. (2001) Bacteriophytochromes are photochromic histidine kinasis using a biliverdin chromophore. Nature 414, 776–779.PubMedCrossRefGoogle Scholar
  2. Björn, G.S. (1979) Action spectra for conversions of phycochrome b, a reversibly photochromic pigment in a blue-green alga, and its separation from other pigments. Physiol. Plant. 46, 281–286.CrossRefGoogle Scholar
  3. Björn, G.S. (1980) Photoreversibly photochromic pigments from blue-green algae (cyanobacteria). Diss. Lund University, CODEN LUNBDS/(NBFB-1009)/1–28/(1980).Google Scholar
  4. Björn, L.O. (1976) Why are plants green? Relationships between pigment absorption and photosynthetic efficiency. Photosynthetica 19, 121–129.Google Scholar
  5. Björn, L.O. (1979) Photoreversibly photochromic pigments in organisms: properties and roles in biological light perception. Quart. Revs. Biophys. 12, 1–23.Google Scholar
  6. Björn, L.O. (1985a) Varför håller växterna inte färgen? Forskning Framsteg, 85 (6), 40–46.Google Scholar
  7. Björn, L.O. (1985b) Växternas ljusperception. Svensk Bot. Tidskr. 79, 249–264.Google Scholar
  8. Björn, L.O. and Björn, G.S. (1980) Yearly review: Photochromic pigments and photoregulation in blue-green algae. Photochem. Photobiol. 32, 849–852.Google Scholar
  9. Björn, G.S., Braune, W. and Björn, L.O. (1985) Light-induced, dark reversible colour shift in petals of Phlox. Physiol. Plant. 64, 445–448.CrossRefGoogle Scholar
  10. Bowmaker, J.K., Heath, L.A., Wilkie, S.E. and Hunt, D.M. (1997) Visual pigments and oil droplets from six classes of photoreceptor in the retinas of birds. Vision Res. 37, 2183–2194.PubMedCrossRefGoogle Scholar
  11. Britt, S.G., Feiler, R., Kirschfeld, K. and Zuker, C.S. (1993) Spectral tuning of rhodopsin and metarhodopsin in vivo. Neuron 11, 29–39.PubMedCrossRefGoogle Scholar
  12. Caveney, S. (1971) Cuticle reflectivity and optical activity in scarab beetles: The rôle of uric acid. Proc. R. Soc. London B 178, 205–225.Google Scholar
  13. Chittka, L. 1996. Does bee color vision predate the evolution of flower color? Naturwissenschaft 83, 136–138.CrossRefGoogle Scholar
  14. Chittka, L. and Menzel, R. (1992) The evolutionary adaptation of flower colors and the insect pollinators’s color vision. J. Comp. Physiol. A. 171, 171–181.CrossRefGoogle Scholar
  15. Chittka, L. and Dornhaus, A. (1999), Comparisons in physiology and evolution, and why bees can do the things they do. Scholar
  16. Chittka, L., Thomson, J.D. and Waser, N.M. (1999) Flower constancy, insect psychology, and plant evolution. Naturwiss. 86, 361–377.CrossRefGoogle Scholar
  17. Cinque, G, Croce, R. and Bassi, R. (2000) Absorption spectra of chlorophyll a and b in Lhcb protein environment. Photosynthesis Res. 64, 233–242.CrossRefGoogle Scholar
  18. Cronin, T.W., Caldwell, R.L. and Marshall, J. (2001) Sensory adaptation—tunable colour vision in a mantis shrimp. Nature 411, 547–548.PubMedCrossRefGoogle Scholar
  19. Denton, E.J. and Land, M.F. (1971) Mechanism of reflection in silvery layers of fish and cephalopods. Proc. Roy. Soc. Lond. A 178, 43–61.Google Scholar
  20. Diakoff, S. and Scheibe, J. (1973) Action spectra for chromatic adaptation in Tolypothrix tenuis. Plant Physiol. 51, 382–385.PubMedGoogle Scholar
  21. Dominy, N.J. and Lucas, P.W. (2001) Ecological importance of trichromatic vision to primates. Nature 410, 363–367.PubMedCrossRefGoogle Scholar
  22. Douglas, R.H., Partridge, J.C., Dulai, K., Hunt, D., Mullineaux, C.W., Tauber, A.Y. and Hynninen, P.H. (1998) Science 393, 423–424.Google Scholar
  23. Douglas, R.H., Partridge, J.C., Dulai, K.S., Hunt, D.M, Mullineaux, C.W. and Hynninen, P.H. (1999) Enhanced retinal longwave sensitivity using a chlorophyll-derived photosensitiser in Malacoseus niger, a deep-sea dragon fish with far red bioluminescence. Vision Res. 39, 2817–2832.PubMedCrossRefGoogle Scholar
  24. Fasick, J.I. and Robinson, P.R. (1998) Mechanism of spectral tuning in the dolphin visual pigments. Biochemistry 37, 433–438.PubMedCrossRefGoogle Scholar
  25. Fasick, J.I. and Robinson, P.R. (2000) Spectral-tuning mechanisms of marine mammal rhodopsins and correlations with foraging depth. Visual Neurosci. 17, 781–788.CrossRefGoogle Scholar
  26. Fasick, J.I., Cronin, T.W., Hunt, D.M. and Robinson, P.R. (1998) The visual pigments of the bottlenose dolphin (Tursiops truncatus). Visual Neurosci. 15,643–651.CrossRefGoogle Scholar
  27. Fernandez, H.R.C. (1978) Visual pigments of bioluminescent and nonbioluminescent deep-sea fishes. Vision Sci. 19,589–592.CrossRefGoogle Scholar
  28. Figueiredo, P., Lima, J.C., Santos, H., Wigand, M.-C., Brouillard, M., Macanita, A.L and Pina, F. (1994) Photochromism of the synthetic 4’,7-dihydroxyflavylium chloride. J. Am. Chem. Soc. 116, 1249–1254.CrossRefGoogle Scholar
  29. Fox, D.L. (1976) Animal biochromes and structural colors. University of California Press, Berkeley.Google Scholar
  30. Frank, H.A., Bautista, J.A,, Josue, J.S. and Young, A.J. (2000) Mechanism of nonphotochemical quenching in green plants: Energies of the lowest excited singlet states of violaxanthin and zeaxanthin. Biochemistry 39, 2831–2837.PubMedCrossRefGoogle Scholar
  31. Fuad, N., Day, D.A., Ryrie, I.J. and Thorne, S.W. (1983) Photobiochem. Photobiophys. 5, 255–262.Google Scholar
  32. Fujimoto, K., Hasegawa, J., Hayashi, S., Kato, S. and Nakatsuji, H. (2005) Mechanism of color tuning in retinal protein: SAC-CI and QM/MM study. Chem. Phys. Lett. 414, 239–242.CrossRefGoogle Scholar
  33. Fujita, Y. and Hattori, A. (1962) Photochemical interconversion between precursors of phycobilin chromoprotein in Tolypothrix tenuis. Plant Cell Physiol. 3, 209–220.Google Scholar
  34. Ghiradella, H. (1984) Structure of iridescent lepidopteran scales: Variations on several themes. Ann. Entomol. Soc. Am. 77,637–645.Google Scholar
  35. Ghiradella, H. (1985) Structure and development of iridescent lepidopteeran scales: The Papilionidae as a showcase family. Ann. Entomol. Soc. Am. 78, 252–264.Google Scholar
  36. Ghiradella, H. (1989) Structure and development of iridescent butterfly scales: Lattices and laminae. J. Morph. 202, 69–88.CrossRefGoogle Scholar
  37. Ghiradella, H. (1991) Light and color on the wing: Structural colors in butterflies and moths. Appl. Optics 30, 3492–3500.Google Scholar
  38. Ghiradella, H. (1994) Structure of butterfly scales: Patterning in an insect cuticle. Micr. Res. Tech. 27, 429–438.CrossRefGoogle Scholar
  39. Ghiradella, H. (1998) Hairs, bristles and scales. In: Harrison, F.W. and Locke, M. (eds) Microscopic anatomy of invertebrates, Vol. 11A Insecta. Wiley-Liss, New York, pp. 257–287.Google Scholar
  40. Gill, E.M. and Wittmershaus, B.P. (1999) Spectral resolution of low-energy chlorophylls in Photosystem I of Synechocystis sp. PCC 6803 through direct excitation. Photosynthesis Res. 61, 53–64.CrossRefGoogle Scholar
  41. Glazer, A.N. and Wedemayer, G.J. 1995. Cryptomonad biliproteins—an evolutionary perspective. Photosynthesis Res. 46, 93–105.CrossRefGoogle Scholar
  42. Goto, T. and Kondo, T. (1991) Structure and molecular stacking of anthocyanins—flower color variation. Angew. Chem. Int. Engl. 30, 17–33.CrossRefGoogle Scholar
  43. Gralak, B., Tayeb, G. and Enoch, S. (2001) Morpho butterfly wings color modelled with lamellar grating theory. Optics Express 9, 567–578.PubMedCrossRefGoogle Scholar
  44. Grossman, A.R., Bhaya, D. and He, Q. (2001) Tracking the ligh environment by cyanobacteria and the dynamic nature of light harvesting. J. Biol. Chem. 276, 11449–11452.PubMedCrossRefGoogle Scholar
  45. Halldal. P. (1968) Photosyntheic capacities and photosynthetic action spectra of endozoic algae of the massive coral. Favia. Biol. Bull. 134, 411–424.Google Scholar
  46. Hart, N.S., Partridge, J.C., Bennett, A.T.D. and Cuthill, I.C. (2000) Visual pigments, cone oil droplets and ocular media in four species of estrildid finch. J. Comp. Physiol. A, 186, 681–694.PubMedCrossRefGoogle Scholar
  47. Herring (1994) Reflective systems in aquatic animals. Comp. Biochem. Physiol. 109A, 513–546.Google Scholar
  48. Herring, P. (2002) The biology of the deep ocean. Oxford University Press, Oxford.Google Scholar
  49. Hinton, H.E. and Jarman, G.M. (1972) Physiological color change in the Hercules beetle. Nature 238, 160–161.CrossRefGoogle Scholar
  50. Hinton, H.E. and Jarman, G.M. (1973) Physilogical color change in the elytra of the Hercules beetle, Dynastes hercules.J. Insect Physiol. 19, 533–549.CrossRefGoogle Scholar
  51. Holzwarth, A.R. (1991) Structure-function relationships and energy transfer in phycobiliprotein antennae. Physiol. Plant. 83, 518–528.CrossRefGoogle Scholar
  52. Huxley (1968) A theoretical treatment of the reflexion of light by multilayer structures. J. Exp. Biol., 48, 227–245.Google Scholar
  53. Isayama, T., Alexeev, D., Makino, C.L., Washington, I., Nakanishi, K., and Turro, N.J. (2006) An accessory chromophore in red vision. Nature 443, 649.PubMedCrossRefGoogle Scholar
  54. Jacobs, G.H. 1992. Ultraviolet vision in vertebrates. Am. Zool., 32,544–554.Google Scholar
  55. Jensen, P. and Bunker, P.R. (2000) Computational molecular spectroscopy. John Wiley and Sons, Hoboken, NJ.Google Scholar
  56. Jordan, P., Fromme, P., Witt, H.T., Klukas, O., Saenger, W. and Krauβ, N. (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 nm resolution. Nature 411, 909–917.PubMedCrossRefGoogle Scholar
  57. Karapetyan, N.V., Dorra, D., Schweitzer, G., Beszmertnaya, I.N. and Holzwarth, A.R. (1997) Fluorescence spectroscopy of the longwave chlorophylls in trimeric and monomeric photosystem I core complexes from the cyanobacterium Spirulina platensis. Biochemistry 36, 13830–13837.PubMedCrossRefGoogle Scholar
  58. Kehoe, D.M. and Grossman, A.R. (1996) Similarity of a chromatic adaptation sensor to phytochrome and to ethylene receptors. Science 273, 1409–1412.PubMedCrossRefGoogle Scholar
  59. Kehoe, D.M. and Grossman, A.R. (1997) New classes of mutants in complementary chromatic adaptation provide evidence for a novel four-step phosphorelay system. J. Bacteriol. 179, 3914–3921.PubMedGoogle Scholar
  60. Kehoe, D.M. and Grossman, A.R. (1998) Use of molecular genetics to investigate complementary chromatic adaptation: advances in transformation and complementation. Meth. Enzymol. 297, 279–290.Google Scholar
  61. Kehoe, D.M. and Gutu, A. (2006) Responding to color: the regulation of complementary chromatic adaptation. Annu. Rev. Plant Biol. 57, 127–150.PubMedCrossRefGoogle Scholar
  62. Kelber, A. (1999) Ovipositing butterflies use a red receptor to see green. J. Exp. Biol. 202, 2619–2630.PubMedGoogle Scholar
  63. Kiang, N.Y., Siefert, J., Govindjee and Blankenship, R.E. (2007) Spectral signatures of photosynthesis. I. Review of Earth organisms. Astrobiology 7, 252–274.PubMedCrossRefGoogle Scholar
  64. Kinoshita, S, Yoshioka, S, Fujii, Y, and Okamoto, N. (2002) Photophysics of structural color in the Morpho butterflies. Forma 17, 103–121.Google Scholar
  65. Kinoshita, S., and Yoshioka, S. (Eds.) (2005) Structural colors in biological systems. Osaka University Press, Osaka.Google Scholar
  66. Kleinschmidt, J. and Harosi, F. (1992) Proc. Natl. Acad. Sci USA, 89, 9181–9185.PubMedCrossRefGoogle Scholar
  67. Knipp, B., Müller, M., Metzler-Nolte, N., Balaban, T.S., Braslavsky, S.E. and Schaffner, K. (1998) NMR verification of helical conformations of phycocyanobilin in organic solvents. Helv. Chim. Acta 81, 881–888.CrossRefGoogle Scholar
  68. Knuttel, H. and Fiedler, K. (2001) Host-plant derived variation in ultraviolet wing-patterns influences mate selection by male butterflies. J. Exp. Biol. 204, 2447–2459.PubMedGoogle Scholar
  69. Kochendoerfer, G.G., Lin, S.W., Sakmar, T.P. and Mathies, R.A. (1999) How color visual pigments are tuned. Trends Biochem. Sci. 24, 300–305.PubMedCrossRefGoogle Scholar
  70. Kochubey, S.M. and Samokhval, E.G. (2000) Long-wavelength chlorophyll forms in Photosystem I from pea thylakoids. Photosynthesis Res. 63, 281–290.CrossRefGoogle Scholar
  71. Koehne, B., and Trissl, H.W. (1998) The cyanobacterium Spirulina platensis contains a long wavelength-absorbing pigment C-738 (F-760(77K)) at room temperature. Biochemistry 37, 5494–5500.PubMedCrossRefGoogle Scholar
  72. Koehne, B., Elli, G., Jennings, R.C., Wilhelm, C. and Trissl, H.-W. (1999) Spectroscopic and molecular characterization of a long wavelength absorbing antenna of Ostreobium sp. Biochim.Biophys. Acta 1412, 94–107.Google Scholar
  73. Land, E. (1964) The retinex theory of color vision. Sci. Am. 108–128.Google Scholar
  74. Land, M.F. (1966) A multilayer interference reflector in the eye of the scallop, Pecten maximus. J. Exp. Biol. 45, 433–447.Google Scholar
  75. Land, M.F. and Nilsson D.-E. (2002) Animal eyes. Oxford University Press, Oxford.Google Scholar
  76. Large, M.C.J., McKenzie, D.R., Parker, A.R., Steel, B.C., Ho, K., Bosi, S.G., Nicorovici, N. and McPhedran, R.C. (2001) The mechanism of light reflectance in silverfish. Proc. R. Soc. Lond. A 457, 511–518.Google Scholar
  77. Lazaroff, N. and Schiff (1962) Action spectrum for developmental photoinduction of the blue-green alga Nostoc muscorum. Science 137, 603–604.PubMedCrossRefGoogle Scholar
  78. Linanto, J. and Korppi-Tommola, J. (2000) Spectroscopic properties of Mg-chlorin, Mg-porphin and chlorophylls a,b,c(1), c(2), c(3) and d studied by semi-empirical and ab initio MO/CI methods. Phys. Chem. Chemical Phys. 2, 4962–4970.Google Scholar
  79. Lucas, P.W., Darvell, B., Lee. P.K.D., Yuen, T.D.B. and Choong, M.F. (1998) Colour cues for leaf food selection by long-tailed macaques (Macaca fascicularis) with a new suggestion for the evolution of trichomatic colour vision. Folia Primatol. 69, 139–152.PubMedCrossRefGoogle Scholar
  80. Lunau, K. (1996) Unidirectionality of floral colour changes. Plant Systematics Evol. 200, 125–140.CrossRefGoogle Scholar
  81. Lunau, K. (2004) Adaptive radiation and coevolution - pollination biology case studies. Organisms Diversity Evol. 4, 207–224.CrossRefGoogle Scholar
  82. Lythgoe, J.N. (1984) Visual pigments and environmental light. Vision Sci. 24, 1539–1550.CrossRefGoogle Scholar
  83. MacColl, R. (1998) Cyanobacterial phycobilisomes. J. Struct. Biol. 124,311–334.Google Scholar
  84. Maier, EJ. and Bowmaker, J.K. (1993) Color-vision in the passeriform bird, Leiothrix lutea—correlation of visual pigment absorbancy and oil droplet transmission with spectral sensitivity.J. Comp. Physiol. A 172, 295–301.CrossRefGoogle Scholar
  85. Makino, C.L., Groesbeek, M., Lugtenburg, J. and Baylor, D.A. (1999) Spectral tuning in salamander visual pigments studied with dehydroretinal chromophores. Biophys. J. 77,1024–1035.PubMedGoogle Scholar
  86. Marshall, J. and Oberwinkler, J. (1999) The colourful world of the mantis shrimp. Nature 401, 873–874.PubMedCrossRefGoogle Scholar
  87. Mason, CW (1926) Structural colors in insects. I. J. Phys. Chem. 30, 383–395.CrossRefGoogle Scholar
  88. Mason, CW (1927a) Structural colors in insects. II. J. Phys. Chem. 31, 321–354.CrossRefGoogle Scholar
  89. Mason, CW (1927b) Structural colors in insects. III. J. Phys. Chem. 31, 1856–1872.CrossRefGoogle Scholar
  90. Matsui, S., Seidou, M., Uchiyama, I., Sekiya, N., Hiraki, K., Yoshihara, K. and Kito, Y. (1988) 4-hydroxyretinal, a new visual pigment chromophore found in the bioluminescent squid, Watasenia scintillans. Biochim. Biophys. Acta, 966, 370–374.PubMedGoogle Scholar
  91. Mauzerall, D. (1976) Chlorophyll and photosynthesis. Pil. Trans. Roy. Soc. Lond. B 273, 287–294.CrossRefGoogle Scholar
  92. Miller, W.H., Mø ller, A.R. and Bernhard, C.G. (1966) The corneal nipple array. In: C.G. Bernhard (Ed.), The functional organgization of the compound eye. Pergamon Press, Oxford, pp. 21–33.Google Scholar
  93. Morehouse, N.I., Vukusic, P, and Rutkowski, R. (2007) Pterin pigment granules are responsible for both broadband light scattering and wavelength selective absorption in the wing scales of pierid butterflies. Proc. Roy. Soc. London B 274, 359–366.CrossRefGoogle Scholar
  94. Morris, R.B. (1975) Iridescence from diffraction structures in the wing scales of Callophrys rubi, the Green Hairstreak. Proc. R. Soc. Entomology A 48, 149–154.Google Scholar
  95. Murrell, J.N. (1963) The theory of the electronic spectra of organic molecules. Methuen, London. (German edition Elektronenspektren organischer Moleküle, Bibliographisches Institut Mannheim 1967).Google Scholar
  96. Nathans, J. (1990) Determinants of visual pigment absorbance: Identification of the retinylidene Schiff’s base counterion in bovine rhodopsin. Biochemistry 29, 9746–9752.PubMedCrossRefGoogle Scholar
  97. Nathans, J. (1992) Rhodopsin: Structure, function, and genetics. Biochemistry 31, 4923–4931.PubMedCrossRefGoogle Scholar
  98. Neitz, M., Neitz, J. and Jacobs, G.H. (1991) Spectral tuning of pigments underlying red-green color vision. Science 252, 971–974.PubMedCrossRefGoogle Scholar
  99. Neitz. J., Neitz, M. and Jacobs, G.H. (1993) More than three different cone pigments among people with normal color vision. Vision Res. 33, 117–122.PubMedCrossRefGoogle Scholar
  100. Neville, A.C. (1993) Biology of the Fibrous Composites. Cambridge University Press, Cambridge.Google Scholar
  101. Ohad, I., Clayton, R.K. and Bogorad, L. (1979) Photoreversible absorption changes in solutions of allophycocyanin purified from Fremyella diplosiphon: Temperature dependence and quantum efficiency. Proc. Natl. Acad. Sci. USA 76, 5655–5659.PubMedCrossRefGoogle Scholar
  102. Ohki, K. and Fujita, Y. (1978) Photocontrol of phycoerythrin formation in the blue-green alga Tolypothrix tenuis growing in the dark. Plant Cell Physiol. 19, 7–15.Google Scholar
  103. Öquist, G. (1969) Adaptations in pigment composition and photosynthesis by far red radiation in Chlorella pyrenoidosa. Physiol. Plant. 22, 516–528.CrossRefGoogle Scholar
  104. Osorio, D. and Vorobyev, M. (1996) Colour vision as an adaptation to frugivory in primates. Proc. R. Soc. Lond. B 263, 593–599.CrossRefGoogle Scholar
  105. Osorio, D., Marshall, N.J. and Cronine, T.W. (1997) Stomatopod photoreceptor spectral tuning as an adaptation for colour constancy in water. Vision Res. 37, 3299–3309.PubMedCrossRefGoogle Scholar
  106. PÅlsson, L.O., Flemming, C., Gobels, B., van Grondelle, R., Dekker, J.P. and Schlodder, E. (1998) Energy transfer and charge separation in photosystem I: P700 oxidation upon selective excitation of the long-wavelength antenna chlorophylls of Synechococcus elongatus. Biophys. J. 74, 2611-2622.PubMedCrossRefGoogle Scholar
  107. Parker, A.R. (1998) The diversity and implications of animal structural colours. J. Exp. Biol. 201, 2343–2347.PubMedGoogle Scholar
  108. Parker, A.R. (1999) Light-reflection strategies. Am. Sci. 87, 248–255.CrossRefGoogle Scholar
  109. Parker, A.R. (2000) 515 million years of structural color. J. Opt. A: Pure Appl. Opt. 2, R15-R28.CrossRefGoogle Scholar
  110. Parker, A.R., McPhedran, R.C., McKenzie, D.R., Botten, L.C., and Nicorovici, N.-A. P. (2001) Aphrodite’s iridescence. Nature 409, 36–37.PubMedCrossRefGoogle Scholar
  111. Parker, A.R., Welch, V.L., Driver, D., and Martini, N. (2003) An opal analogue discovered in a weevil. Nature 426, 786–787.PubMedCrossRefGoogle Scholar
  112. Peichl. L., Behrmann, G. and Kröger, H.H. (2001) For whales and seals the ocean is not blue: a visual pigment loss in marine mammals. Eur. J. Neurosci. 13, 1520–1528.PubMedCrossRefGoogle Scholar
  113. Peitsch, D., Fietz, A., Hertel, H., Desouza, J., Ventura, D.F. and Menzel, R. (1992) The spectral input systems of hymenopteran insects and their receptor-based color-vision. J. Comp. Physiol. A Sensory Neural Behav. Physiol. 170, 23–40.Google Scholar
  114. Pfaff, G. and Reynders, P. (1999) Angle-dependent optical effects from submicron structures of films and pigments. Chem. Rev. 99, 1963–1981.PubMedCrossRefGoogle Scholar
  115. Polívka, T., Herek, J.L., Zigmantas, D., Åkerlund, H.E. and Sundström, V. (1999) Direct observation of the (forbidden) S-1 state in carotenoids. Proc. Natl Acad. Sci. USA 96, 4914–4917.PubMedCrossRefGoogle Scholar
  116. Prum, R.O. (2006) Anatomy, physics and evolution of structural colors In: G.E. Hill and K.J. McGraw (Eds.), Bird coloration, Vol. 1, Mechanisms and measurements. Harvard University Press, Cambridge, MA, pp. 295–353.Google Scholar
  117. Regan, B.C., Julliot, C., Simmen, B., Viénot, F., Charles-Dominique, P. and Mollon, P. (1998) Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrrhine monkey. Vision Res. 38, 3321–3327.PubMedCrossRefGoogle Scholar
  118. Ritz, T., Damjanovic’, A., Schulten, K, Zhang, J.P. and Koyama, Y. (2000) Efficient light harvesting through carotenoids. Photosynthesis Res. 66, 125–144.CrossRefGoogle Scholar
  119. Robinson, B.L. and Miller, J.N. (1970) Photomorphogenesis in the blue-green alga Nostoc commune. Physiol. Plantarum 23, 461–472.CrossRefGoogle Scholar
  120. Rutkowski, R.L., Macedonia, J.M., Morehouse, N., and Taylor-Taft, L. (2005) Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme. Proc. R. Soc. London B 272, 2329–2335.CrossRefGoogle Scholar
  121. Scharnagl, C. and Fischer, S.F. (1993) Reversible photochemistry in the a-subunit of phycoerythrocyanin: Characterisation of chromophore and protein by molecular dynamics and quantum chemical calculations. Photochem. Photobiol. 57, 63–70.Google Scholar
  122. Scheer, H. and Kufer, W. (1977) Studies on plant bile pigments, IV: Conformational studies on C-phycocyanin from Spirulina platensis. Z. Naturforsch. 32c,513–519.Google Scholar
  123. Scheibe, J. (1972) Photoreversible pigment: occurrence in a blue-green alga. Science 1976, 1037–1039.CrossRefGoogle Scholar
  124. Schelvis, J.P.M, van Noort, P.I., Aartsma, P.I. and van Gorkom, H.J. (1994) Energy transfer, charge separation and pigment arrangement in the reaction center of photosystem II. Biochim. Biophys. Acta 1184, 242–250.CrossRefGoogle Scholar
  125. Schneeweis, D.M. and Green, D.G. (1995) Spectral properties of turtle cones. Visual Neurosci. 12, 333–344.Google Scholar
  126. Schulten, K. and Karplus, M. (1972) On the origin of a low-lying forbidden transition in polyenes and related molecules. Chem. Phys. Lett. 14, 305–309.CrossRefGoogle Scholar
  127. Seki, T. and Vogt, K. (1998) Evolutionary aspects of the diversity of visual pigment chromophores in the class Insecta. Comp. Biochem. Physiol. B 119, 53–64.Google Scholar
  128. Sharpe, L.T., Stockman, A., Jägle, H. and Nathans, J. (1999) Opsin genes, cone photopigments, color vision, and color blindness. In: K.Gegenfurtner, and L.T. Sharpe (Eds.), Color vision: from genes to perception. Cambridge University Press, New York.Google Scholar
  129. Shubin, V.V., Murthy, S.D.S, Karapetyan, N.V. and Mohanty, P.S. (1991) Origin of the 77-K variable fluorescence at 758 nm in the cyanobacterium Spirulina platensis. Biochim. Biophys. Acta, 1060, 28–36.CrossRefGoogle Scholar
  130. Siitari, H., Honkavaara, J. and Viitala, J. (1999) Ultraviolet reflection of berries attracts foraging birds. A laboratory study with redwings (Turdus iliacus) and bilberries (Vaccinium myrtillus). Proc. R. Soc. Lond. B 266, 2125–2129.CrossRefGoogle Scholar
  131. Srinivasarao, M. (1999) Nano-optics in the biological world: Beetles, butterflies, birds, and moths. Chem. Rev. 99, 1935–1961.PubMedCrossRefGoogle Scholar
  132. Stavenga, D.G., Foletti, S., Palasantzas, G., and Arikawa, K. (2006) Light on the moth-eye corneal nipple array of butterflies. Proc. R. Soc. London B 273, 661–667.CrossRefGoogle Scholar
  133. Stavenga, D.G., Giraldo, M.A. and Hoenders, B.J. (2006) Reflectance and transmittance of light scattering scales stacked on the wings of pierid butterflies. Opt. Expr. 14, 4880–4890.CrossRefGoogle Scholar
  134. Stomp, M., Huisman, J., Stal, L.J., and Matthijs, H.C.P. (2007) Colorful niches of phototrophic microorganisms shaped by vibrations of the water molecule. ISME J. 1, 271–282.PubMedGoogle Scholar
  135. Tanimura, T., Isono, K. and Tsukahara, Y. (1986) 3-hydroxyretinal as a chromophore of Drosophila melanogaster visual pigment analyzed by high-pressure liquid-chromatography. Photochem. Photobiol. 43, 225–228.Google Scholar
  136. Thrash, R.J., Fang, H.L.-B. and Leroi, G.E. (1979) On the role of forbidden low-lying excited states of light-harvesting carotenoids in energy transfer in photosynthesis. Photochem. Photobiol. 29, 1049–1050.Google Scholar
  137. Vogelmann, T.C. and Scheibe, J. 1978. Action spectra for chromatic adaptation in the blue-green alga Fremyella diplosiphon. Planta 143, 233–239.CrossRefGoogle Scholar
  138. Vogt, K. (1983) Is the fly visual pigment a rhodopsin? Zschr Naturforsch. C, 38, 329–333.Google Scholar
  139. Vogt, K. and Kirschfeld, K. (1984) Chemical identity of the chromophores of fly visual pigment. Naturwiss. 71, 211–213.CrossRefGoogle Scholar
  140. Vorobyev, M., Osorio, D., Bennet, A.T.D., Marshall, N.J. and Cuthill, I.C. (1998) Tetrachromacy, oil droplets and bird plumage colours. J. Comp. Physiol. A Sensory Neural Behav. Physiol. 183, 621–633.CrossRefGoogle Scholar
  141. Vukusic, P., Sambles, J.R., Lawrence, C.R. and Wootton, R.J. (1999) Quantified interference and diffraction in single Morpho butterfly scales. Proc. R. Soc. Lond. B 266,1403–1411.CrossRefGoogle Scholar
  142. Vukusic, P., Sambles, J.R., and Ghiradella, H. (2000a) Optical classification of microstructure in butterfly wing scales. Photonics Sci. News 6, 61–66.Google Scholar
  143. Vukusic, P., Sambles, J.R. and Lawrence, C.R. (2000b) Colour mixing in wing scales of a butterfly. Nature 404, 457.Google Scholar
  144. Vukusic, P., and Hooper, I. (2005) Directionally controlled fluorescence emission in butterflies. Science 310, 1151.PubMedCrossRefGoogle Scholar
  145. Vukusic, P., Hallam, B., and Noyes, J. (2007) Brilliant whiteness in ultrathin beetle scales, Science 315, 348.PubMedCrossRefGoogle Scholar
  146. Wald, G. and Brown, P.K. (1958) Human rhodopsin. Science 127, 222–226.PubMedCrossRefGoogle Scholar
  147. Warrant, E. (2000) The eyes of deep-sea fishes and the changing nature of visual scenes with depth. Phil. Trans. R. Soc. Lond. 355, 1155–1159.CrossRefGoogle Scholar
  148. Weiss, C., Jr. (1972) The pi electron structure and absorption spectra of chlorophylls in solution. J. Mol. Spectrosc. 44, 37–80.CrossRefGoogle Scholar
  149. Welch, V.L., Vigneron, J.P. and Parker, A.R. (2005) The cause of colouration in the ctenophore, Beroë cucumis. Curr. Biol. 15, R985-R986.PubMedCrossRefGoogle Scholar
  150. Yokoyama, S. (1997) Molecular genetic basis of adaptive selection: Examples from color vision in vertebrates. Annu. Rev. Genet. 31, 315-336.PubMedCrossRefGoogle Scholar
  151. Yokoyama, S., Radlwimmer, F.B. and Blow, N.S. (2000) Ultraviolet pigments in birds evolved from violet pigments by a single amino acid change. Proc. Natl Acad. Sci. USA 97, 7366-7371.PubMedCrossRefGoogle Scholar
  152. Yoshida, A. (2002) Antireflection of butterfly and moth wings through microstructure. Forma, 17,75–89.Google Scholar
  153. Yoshioka, S., Nakamura, E, and Kinoshita, S. (2007) Origin of two-color iridescence in rock dove’s feather. J. Phys. Soc. Japan 76, 013801-1–013801-4.CrossRefGoogle Scholar
  154. Zhao, K.H. and Scheer, H. (1995) Type-I and Type-II reversible photochemistry of phycoerythrocyanobilin alpha-subunit from Mastigocladus laminosus both involve Z-isomerisation, E-isomerisation of phycoviolobilin chromophore and are controlled by sulphydryls in apoprotein. Biochim. Biophys. Acta 1228, 244–253.CrossRefGoogle Scholar
  155. Zhao, K.H., Haessner, R., Cmiel, E. and Scheer, H. (1995) Type I reversible photochemistry of phycoerythrocyanin involves Z/E-isomerisation of a-84 phycoviolobilin chromophore. Biochim. Biophys. Acta 1228, 235–243.CrossRefGoogle Scholar
  156. Zouni, A., Witt, H.T., Kern, J, Fromme, P, Krauβ, N., Saenger, W. and Orth, P. (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409, 739–743.PubMedCrossRefGoogle Scholar
  157. Zucchelli, G., Jennings, R.C. and Garlaschi, F.M. (1990) The presence of long-wavelength chlorophyll a spectral forms in the light-harvesting chlorophyll a/b protein complex II. J. Photochem. Photobiol. B, Biol. 6, 381–394.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Lars Olof Björn
  • Helen Ghiradella

There are no affiliations available

Personalised recommendations