Photobiology pp 139-154 | Cite as

Action Spectroscopy in Biology

  • Lars Olof Björn


Action spectroscopy is a method for identifying the light-absorbing chromophore in a photobiological or biochemical process by comparing the efficiency of radiation of different wavelengths in driving the process. This chapter explains the principle and gives several examples from the history of biology of what has been achieved using this technique.


Ultraviolet Radiation Action Spectrum Bean Plant Ultra Violet Light Chromatic Adaptation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avery, O.T., MacLeod, C.M. and McCarty, M. (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types. J. Exp. Med. 79, 137–157.CrossRefGoogle Scholar
  2. Björn, L.O. (1969a) Action spectra for transformation and fluorescence of protochlorophyll holochrome from bean leaves. Physiol. Plant. 22, 1–17.CrossRefGoogle Scholar
  3. Björn, L.O. (1969b) Studies on the phototransformation and fluorescence of protochlorophyll holochrome in vitro. In H. Metzner (Ed.), Progress in photosynthesis research, Vol. II, pp. 618–629. H. Laupp Jr., Tübingen, Germany.Google Scholar
  4. Björn, L.O., Sundqvist, C., and Öquist, G. (2007) A tribute to Per Halldal (1922–1986), a Norwegian photobiologist in Sweden. Photosynthesis Res. 92, 7–11.CrossRefGoogle Scholar
  5. Diakoff, S. and Scheibe, J. (1973) Action spectra for chromatic adaptation in Tolypothrix tenuis. Plant Physiol. 51, 382–385.PubMedGoogle Scholar
  6. Engelmann, Th. W. (1882a) Ueber Sauerstoffausscheidung von Pflanzenzellen im Mikrospektrum. Bot. Ztg. 40, 419–426.Google Scholar
  7. Engelmann, Th. W. (1882b) Ueber Assimilation von Haematococcus. Bot. Ztg. 40, 663–669.Google Scholar
  8. Engelmann, Th. W. (1884) Untersuchungen über die quantitativen Beziehungen zwischen Absorption des Lichtes und Assimilation in Pflanzenzellen. Bot. Ztg. 42, 81–94, 97–106 and Tafel II.Google Scholar
  9. Fujita, Y. and Hattori, A. (1962) Photochemical interconversion between precursors of phycobilin chromoproteids in Tolypothrix tenuis. Plant Cell Physiol. 3, 209–220.Google Scholar
  10. Gates, F.L. (1928) On nuclear derivatives and the lethal action of ultra-violet light. Science 68, 479–480.PubMedCrossRefGoogle Scholar
  11. Gates, F.L. (1929) A study of the bactericidal action of ultra violet light. I. The reaction to monochromatic radiations. J. Gen. Physiol. 14, 31–42.CrossRefGoogle Scholar
  12. Gates, F.L. (1930). A study of the action of ultra violet light III. The absorption of ultra violet light by bacteria. J. Gen. Physiol. 14, 31–42.CrossRefGoogle Scholar
  13. Giese, A.C. and Leighton, P.A. (1935) Quantitative studies on the photolethal effects of quartz ultra-violet radiation upon Paramecium. J. Gen. Physiol. 18, 557–571.CrossRefGoogle Scholar
  14. Griffith, F. (1928) The significance of pneumococcal types. J. Hygiene 27, 113–159.CrossRefGoogle Scholar
  15. Hartmann, K.M. (1967) Ein Wirkungsspektrum der Photomorphogenese unter Hochenergiebedingungen und seine Interpretation auf der Basis des Phytochroms (Hypokotylwachstumshemmung bei Lactuca sativa L.). Z. Naturforsch. 22b, 266–275.Google Scholar
  16. Haxo, F.T. (1960) The wavelength dependence of photosynthesis and the role of accessory pigments. In: M.B. Allen (Ed.), Comparative biochemistry of photoreactive systems, pp. 339–376. Academic Press, New York.Google Scholar
  17. Haxo, F.T. and Blinks, L.R. (1950) Photosynthetic action spectra of marine algae. J. Gen. Physiol. 33, 389–422.PubMedCrossRefGoogle Scholar
  18. Hertel, E. (1905) Ueber physiologische Wirkung von Strahlen verschiedener Wellenlänge. Zschr. Allgem. Physiol. 5, 95–122.Google Scholar
  19. Hollaender, A. and Claus, W.D. (1936) The bactericidal effect of ultraviolet radiation on Escherichia coli in liquid suspensions. J. Gen. Physiol. 19, 753–765.CrossRefGoogle Scholar
  20. Levring, T. (1947) Submarine daylight and the photosynthesis of marine algae. Göteborgs Kgl. Vetenskaps- och Vitterhets-samhälles Handl., 6:e följden, ser. B, band 5, nr 6. 90 s.Google Scholar
  21. Pringsheim, N. (1886) Zur Beurtheilung der Engelmann’schen Bakterienmethode in ihrer Brauchbarkeit zur quantitativen Bestimmung der Sauerstoffabgabe im Spektrum. Berl. Deutsch. Bot. Ges. 4, 40–46.Google Scholar
  22. Schopfer, P. and Siegelman, H.W. (1969) Purification of protochlorophyllide holochrome. In H. Metzner (Ed.), Progress in photosynthesis research, vol. II, pp. 612–618. H. Laupp Jr., Tübingen.Google Scholar
  23. Sundqvist, C. and Björn, L.O. (2007) A tribute to Hemming Virgin, a Swedish pioneer in plant photobiology. Photosynth. Res. 92, 13–16.PubMedCrossRefGoogle Scholar
  24. Timiriazeff, C. (1885) Ètat actuel de nos conaissances sur la fonction chlorophyllienne. Ann. des Sc. Nat. Botanique (3) Tome II.Google Scholar
  25. Vierstra, R.D. and Quail, P.H. (1983a) Purification and initial characterization of 124-kilodalton phytochrome from Avena. Biochemistry 22, 2498–2505.CrossRefGoogle Scholar
  26. Vierstra, R.D. and Quail, P.H. (1983b) Photochemistry of 124-kilodalton Avena phytochrome in vitro. Plant Physiol. 72, 264–267.Google Scholar
  27. Vogelmann, T.C. and Scheibe, J. (1978) Action spectra for chromatic adaptation in the blue-green alga Fremyella diplosiphon. Planta 143, 233–239.CrossRefGoogle Scholar
  28. Warburg, O. (1926) Über die Wirkung des Kohlenoxyds auf den Stoffwechsel der Hefe. Biochem. Z. 177, 471–486.Google Scholar
  29. Warburg, O. and Negelein, E. (1929a) bÜber die photochemische Dissoziation bei intermittierender Belichtung und das absolute Absorptionsspektrum des Atmungsferments. Biochem. Z. 202, 202–228.Google Scholar
  30. Warburg, O. and Negelein, E. (1929b) Absolutes Absorptionsspektrum des Atmungsferments. Biochem. Z. 204, 495–499.Google Scholar
  31. Withrow, R.B., Klein, W.H. and Elstad, V. (1957) Action spectra of photomorphogenetic induction and its inactivation. Plant Physiol. 32, 453–462.PubMedGoogle Scholar
  32. Ziv, L., Tovin, A., Strasser, D. and Gothilf, Y. (2007) Spectral sensitivity of melatonin suppression in the zebrafish pineal gland. Exp. Eye Res. 84, 92–99.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Lars Olof Björn

There are no affiliations available

Personalised recommendations