Skip to main content

Action Spectroscopy in Biology

  • Chapter
Photobiology

Abstract

Action spectroscopy is a method for identifying the light-absorbing chromophore in a photobiological or biochemical process by comparing the efficiency of radiation of different wavelengths in driving the process. This chapter explains the principle and gives several examples from the history of biology of what has been achieved using this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Avery, O.T., MacLeod, C.M. and McCarty, M. (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types. J. Exp. Med. 79, 137–157.

    Article  CAS  Google Scholar 

  • Björn, L.O. (1969a) Action spectra for transformation and fluorescence of protochlorophyll holochrome from bean leaves. Physiol. Plant. 22, 1–17.

    Article  Google Scholar 

  • Björn, L.O. (1969b) Studies on the phototransformation and fluorescence of protochlorophyll holochrome in vitro. In H. Metzner (Ed.), Progress in photosynthesis research, Vol. II, pp. 618–629. H. Laupp Jr., Tübingen, Germany.

    Google Scholar 

  • Björn, L.O., Sundqvist, C., and Öquist, G. (2007) A tribute to Per Halldal (1922–1986), a Norwegian photobiologist in Sweden. Photosynthesis Res. 92, 7–11.

    Article  CAS  Google Scholar 

  • Diakoff, S. and Scheibe, J. (1973) Action spectra for chromatic adaptation in Tolypothrix tenuis. Plant Physiol. 51, 382–385.

    PubMed  CAS  Google Scholar 

  • Engelmann, Th. W. (1882a) Ueber Sauerstoffausscheidung von Pflanzenzellen im Mikrospektrum. Bot. Ztg. 40, 419–426.

    Google Scholar 

  • Engelmann, Th. W. (1882b) Ueber Assimilation von Haematococcus. Bot. Ztg. 40, 663–669.

    Google Scholar 

  • Engelmann, Th. W. (1884) Untersuchungen über die quantitativen Beziehungen zwischen Absorption des Lichtes und Assimilation in Pflanzenzellen. Bot. Ztg. 42, 81–94, 97–106 and Tafel II.

    Google Scholar 

  • Fujita, Y. and Hattori, A. (1962) Photochemical interconversion between precursors of phycobilin chromoproteids in Tolypothrix tenuis. Plant Cell Physiol. 3, 209–220.

    CAS  Google Scholar 

  • Gates, F.L. (1928) On nuclear derivatives and the lethal action of ultra-violet light. Science 68, 479–480.

    Article  PubMed  CAS  Google Scholar 

  • Gates, F.L. (1929) A study of the bactericidal action of ultra violet light. I. The reaction to monochromatic radiations. J. Gen. Physiol. 14, 31–42.

    Article  Google Scholar 

  • Gates, F.L. (1930). A study of the action of ultra violet light III. The absorption of ultra violet light by bacteria. J. Gen. Physiol. 14, 31–42.

    Article  CAS  Google Scholar 

  • Giese, A.C. and Leighton, P.A. (1935) Quantitative studies on the photolethal effects of quartz ultra-violet radiation upon Paramecium. J. Gen. Physiol. 18, 557–571.

    Article  CAS  Google Scholar 

  • Griffith, F. (1928) The significance of pneumococcal types. J. Hygiene 27, 113–159.

    Article  Google Scholar 

  • Hartmann, K.M. (1967) Ein Wirkungsspektrum der Photomorphogenese unter Hochenergiebedingungen und seine Interpretation auf der Basis des Phytochroms (Hypokotylwachstumshemmung bei Lactuca sativa L.). Z. Naturforsch. 22b, 266–275.

    Google Scholar 

  • Haxo, F.T. (1960) The wavelength dependence of photosynthesis and the role of accessory pigments. In: M.B. Allen (Ed.), Comparative biochemistry of photoreactive systems, pp. 339–376. Academic Press, New York.

    Google Scholar 

  • Haxo, F.T. and Blinks, L.R. (1950) Photosynthetic action spectra of marine algae. J. Gen. Physiol. 33, 389–422.

    Article  PubMed  CAS  Google Scholar 

  • Hertel, E. (1905) Ueber physiologische Wirkung von Strahlen verschiedener Wellenlänge. Zschr. Allgem. Physiol. 5, 95–122.

    Google Scholar 

  • Hollaender, A. and Claus, W.D. (1936) The bactericidal effect of ultraviolet radiation on Escherichia coli in liquid suspensions. J. Gen. Physiol. 19, 753–765.

    Article  CAS  Google Scholar 

  • Levring, T. (1947) Submarine daylight and the photosynthesis of marine algae. Göteborgs Kgl. Vetenskaps- och Vitterhets-samhälles Handl., 6:e följden, ser. B, band 5, nr 6. 90 s.

    Google Scholar 

  • Pringsheim, N. (1886) Zur Beurtheilung der Engelmann’schen Bakterienmethode in ihrer Brauchbarkeit zur quantitativen Bestimmung der Sauerstoffabgabe im Spektrum. Berl. Deutsch. Bot. Ges. 4, 40–46.

    Google Scholar 

  • Schopfer, P. and Siegelman, H.W. (1969) Purification of protochlorophyllide holochrome. In H. Metzner (Ed.), Progress in photosynthesis research, vol. II, pp. 612–618. H. Laupp Jr., Tübingen.

    Google Scholar 

  • Sundqvist, C. and Björn, L.O. (2007) A tribute to Hemming Virgin, a Swedish pioneer in plant photobiology. Photosynth. Res. 92, 13–16.

    Article  PubMed  CAS  Google Scholar 

  • Timiriazeff, C. (1885) Ètat actuel de nos conaissances sur la fonction chlorophyllienne. Ann. des Sc. Nat. Botanique (3) Tome II.

    Google Scholar 

  • Vierstra, R.D. and Quail, P.H. (1983a) Purification and initial characterization of 124-kilodalton phytochrome from Avena. Biochemistry 22, 2498–2505.

    Article  CAS  Google Scholar 

  • Vierstra, R.D. and Quail, P.H. (1983b) Photochemistry of 124-kilodalton Avena phytochrome in vitro. Plant Physiol. 72, 264–267.

    CAS  Google Scholar 

  • Vogelmann, T.C. and Scheibe, J. (1978) Action spectra for chromatic adaptation in the blue-green alga Fremyella diplosiphon. Planta 143, 233–239.

    Article  CAS  Google Scholar 

  • Warburg, O. (1926) Über die Wirkung des Kohlenoxyds auf den Stoffwechsel der Hefe. Biochem. Z. 177, 471–486.

    CAS  Google Scholar 

  • Warburg, O. and Negelein, E. (1929a) bÜber die photochemische Dissoziation bei intermittierender Belichtung und das absolute Absorptionsspektrum des Atmungsferments. Biochem. Z. 202, 202–228.

    Google Scholar 

  • Warburg, O. and Negelein, E. (1929b) Absolutes Absorptionsspektrum des Atmungsferments. Biochem. Z. 204, 495–499.

    CAS  Google Scholar 

  • Withrow, R.B., Klein, W.H. and Elstad, V. (1957) Action spectra of photomorphogenetic induction and its inactivation. Plant Physiol. 32, 453–462.

    PubMed  CAS  Google Scholar 

  • Ziv, L., Tovin, A., Strasser, D. and Gothilf, Y. (2007) Spectral sensitivity of melatonin suppression in the zebrafish pineal gland. Exp. Eye Res. 84, 92–99.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Björn, L.O. (2008). Action Spectroscopy in Biology. In: Björn, L.O. (eds) Photobiology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72655-7_8

Download citation

Publish with us

Policies and ethics