Skip to main content

Terrestrial Daylight

  • Chapter
Photobiology

Abstract

Practically all natural daytime light at the earth’s surface originates in the sun. The fluence rate, as well as spectral and directional distributions, is modified by the gases, clouds, and aerosols in the atmosphere in a way that depends on time and place, as well as by vegetation, snow, and other ground cover. A special section in this chapter is devoted to ultraviolet radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aben, I., Helderman, F., Stam, D.M. and Stamnes, P. (1999) Spectral fine-structure in the polarisation of skylight. Geophys. Res. Lett. 26, 591–594.

    Article  CAS  Google Scholar 

  • Bird, R.E. and Riordan, C. (1986) Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the earth’s surface for cloudless atmospheres. J. Climate Appl. Meteorol. 25, 87–97.

    Article  Google Scholar 

  • Björn, L.O. (1989) Computer programs for estimating ultraviolet radiation in daylight. In: B.L. Diffey (Ed.). Radiation measurement in photobiology, pp. 161–169. Academic Press, London.

    Google Scholar 

  • Björn, L.O. and Murphy T.M. (1985) Computer calculation of solar ultraviolet radiation at ground level. Physiol. Vég. 23, 555–561.

    Google Scholar 

  • Björn. L.O. and Teramura, A.H. (1993) Simulation of daylight ultraviolet radiation and effects of ozone depletion. In A.R. Young, L.O. Björn, J. Moan, and W. Nultsch, (Eds) UV Photobiology, pp. 41–71, Plenum Press, New York.

    Google Scholar 

  • Bohren, C.F. (1995) Optics, atmospheric. In: G.L. Trigg (Ed.) Encyclopedia of applied physics, vol. 12, pp. 405–434.VCH Publishers, New York.

    Google Scholar 

  • Bohren, C.F. (2004) Atmospheric optics. In: T.G. Brown et al. (Eds) The optics encyclopedia: Basic foundations and practical applications, vol. 1, pp. 53–91. Wiley, Hoboken, N.J.

    Google Scholar 

  • Chandrasekhar, S. (1950) Radiative transfer theory. Oxford University Press. Reprinted (1960) by Dover Publications, New York.

    Google Scholar 

  • Grant. R.H. and Heisler, G.M. (1997) Obscured overcast sky radiance distributions for UV and PAR wavebands. J. Appl. Meteor. 36, 1336–1345.

    Article  Google Scholar 

  • Grant, R.H., Gao, W. and Heisler, G.M. (1996a) Photosynthetically active radiation: sky radiance distributions under clear and overcast conditions. Agric. Forest Meteorol. 82, 267–292.

    Article  Google Scholar 

  • Grant, R.H., Heisler, G.M. and Gao, W. (1996b) Clear sky radiance distributions in ultraviolet wavelength bands. Theor. Appl. Climatol. 56, 123–135.

    Article  Google Scholar 

  • Grant, R.H., Gao, W. and Heisler, G.M. (1997) Ultraviolet sky radiance distributions of translucent overcast skies. Theor. Appl. Climatol 3–4, 129–139.

    Article  Google Scholar 

  • Green, A.E.S. (1983) The penetration of ultraviolet radiation to the ground. Physiol. Plant. 58, 351–359.

    Article  Google Scholar 

  • Green, A.E.S. and Chai, S.-T. (1988) Solar spectral irradiance in the visible and infrared regions. Photochem. Photobiol. 48, 477–486.

    PubMed  CAS  Google Scholar 

  • Green, A.S. and Chai, S.-T. (1988) Solar spectral irradiance in the visible and infrared regions. Photochem. Photobiol. 48, 477–486.

    PubMed  CAS  Google Scholar 

  • Holmes, M.G. and Smith, H. (1977) Spectral distribution of light within plant canopies. In: H. Smith (Ed.). Plants and the daylight spectrum, pp. 147–158. Academic Press, New York.

    Google Scholar 

  • Hunt, P.G., Kasperbauer, M.J. and Matheny, T.A. (1985) Effect of soil surface color and Rhizobium japonicum strain on soybeen seeling growth and nodulation. Agronomy Abstr. 85, 157.

    Google Scholar 

  • Kasperbauer, M.J. (1971) Spectral distribution of light in a tobacco canopy and effects of end-of-day light quality on growth and development. Plant Physiol. 47, 775–778.

    Article  PubMed  Google Scholar 

  • Kasperbauer, M.J. (1987) Far red light reflection from green leaves and effects on phytochrome-mediated assimilate partitioning under field conditions. Plant Physiol. 85, 350–354.

    PubMed  Google Scholar 

  • Kasperbauer, M.J. and Hunt, P.G. (1987) Soil color and surface residue effects on seedling light environment. Plant Soil 97, 295–298.

    Article  Google Scholar 

  • Kasperbauer, M.J. and Hunt, P.G. (1988) Biological and photometric measurement of light transmission through soils of various colors. Bot. Gaz. 149, 361–364.

    Article  Google Scholar 

  • Labhart, T. (1999) How polarization-sensitive interneurones of crickets see the polarization pattern of the sky: A field study with an optoelectronic model neurone. J. Exp. biol. 202, 757–770.

    PubMed  Google Scholar 

  • Liang, S.L. and Lewis, P. (1996) A parametric radiative transfer model for sky radiance distribution. J. Quant. Spectroscopy Radiative Transfer 55, 181–189.

    Article  CAS  Google Scholar 

  • Marijnissen, J.P.A. and Star, W.M. (1987) Quantitative light dosimetry in vitro and in vivo. Lasers Med. Sci. 2, 235–242.

    Article  Google Scholar 

  • Schwind, R. and Horváth, G. (1993) Reflection-polarization pattern at water surfaces and correction of a common representation of the polarization pattern of the sky. Naturwissenschaft 80, 82–83.

    Article  Google Scholar 

  • Smith, H. (1986) The perception of light quality. In: R.E. Kendrick and G.M.H. Kronenberg (Eds.). Photomorphogenesis in plants , pp. 187–217. Martinus Nijhoff Publishers, Dordrecht, the Netherlands.

    Google Scholar 

  • Star, W.M., Marijnissen, H.P.A., Jansen, H., Keijzer, M and van Gemert, M.J.C. (1987) Light dosimetry for photodynamic therapy by whole bladder wall irradiation. Photochem. Photobiol. 46, 619–624.

    PubMed  CAS  Google Scholar 

  • Stomp, M., Huisman, J., Stal, L.J., and Matthijs, H.C.P. (2007) Colorful niches of phototrophic microorganisms shaped by vibrations in the water molecule. ISME J. 1, 271–282.

    PubMed  CAS  Google Scholar 

  • Vogelmann, T.C. (1986) Light within the plant. In: R.E. Kendrick and G.M.H. Kronenberg (Eds.). Photomorphogenesis in plants, pp. 307–337. Martinus Nijhoff Publishers, Dordrecht, the Netherlands.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Björn, L.O. (2008). Terrestrial Daylight. In: Björn, L.O. (eds) Photobiology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72655-7_6

Download citation

Publish with us

Policies and ethics