Photobiology pp 93-122 | Cite as

Light as a Tool for Biologists: Recent Developments

  • Lars Olof Björn


After a brief introduction this chapter covers optical tweezers and related techniques, uses of lasers for ablation, desorption, ionization, and dissection, fluorescent labeling, Abbe’s diffraction limit to spatial resolution in microscopy, two-photon excitation fluorescence microscopy, stimulated emission depletion (STED), near-field microscopy, quantum dots and their uses in biology, photochemical internalization and caged compounds, photogating of membrane channels, and photo-crosslinking and photolabeling.


Green Fluorescent Protein Optical Tweezer Unnatural Amino Acid Bessel Beam Cadmium Selenide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ando, R. (2002) An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc. Natl. Acad. Sci. USA 99, 12651–12656.Google Scholar
  2. Ashkin, A. (1970) Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159.CrossRefGoogle Scholar
  3. Bacchi, A., Carcelli, M., Pelizzi, C., Pelizzi, G., Pelagatti, P., Rogolino, D., Tegoni, M. and Viappiani, C. (2003) Synthesis and spectroscopic and structural characterization of two novel photoactivatable Ca2+ compounds. Inorg. Chem. 42, 5871–5879.PubMedCrossRefGoogle Scholar
  4. Bakalova, R., Zhelev, Z., Jose, R., Nagase, T., Ohba, H., Ishikawa, M. and Baba, Y. (2005) Role of free cadmium and selenium ions in the potential mechanism for the enhancement of photoluminescence of CdSe quantum dots under ultraviolet irradiation. J. Nanosci. Nanotechnol. 5, 887–894.PubMedCrossRefGoogle Scholar
  5. Bakalova, R. Zhelev, Z., Aoki, I., Ohba, H., Imai, Y. and Kanno, I. (2006) Silica-shelled single quantum dot micelles as imaging probes with dual or multimodality, Anal. Chem, 78, 5925–5932.PubMedCrossRefGoogle Scholar
  6. Bain, J.D., Glabe, C.G., Dix, T.A., Chamberlin, A.R. and Diala, E.S. (1989) Biosynthetic site-specific incorporation of a non-natural amino acid into a polypeptide. J. Am. Chem. Soc. 111, 8013–8014.CrossRefGoogle Scholar
  7. Banghart, M., Borges, K., Isacoff, E., Trauner, D. and Kramer, R.H. (2004) Light-activated ion channesl for remote control of neuronal firing. Nature Neurosci. 12, 1381–1386.CrossRefGoogle Scholar
  8. Bayley, H. (2006) Sequencing single molecules of DNA. Curr. Opinion Chem. Biol. 10, 628–637.CrossRefGoogle Scholar
  9. Beale, H., Hooley, R., Smith, S.J and Walker, R.P. (1992) Photoaffinity probes for gibberellin-binding proteins. Phytochemistry 31, 1459–1464.CrossRefGoogle Scholar
  10. Berg, K., Selbo, K., Prasmickaite, L., Tjelle, T.E., Sandvig, K., Moan, J., Gaudernack, G., Fodstad, Ø., Kjø lsrud, S., Anholt, H., Rodal, G.H., Rodal, S.K. and Hø gset, A. (1999) Photochemical internalization: A novel technology for delivery of macromolecules into cytosol. Cancer Res. 59, 1180–1183.PubMedGoogle Scholar
  11. Betzig, E., and R. J. Chichester. (1992) Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257:189–195.PubMedCrossRefGoogle Scholar
  12. Blanck, S.M. and Mehl, R.A. (2006) Systematic study of protein interfaces with genetically incorporated photocrosslinking amino acid, p-benzoylphenylalanine. Abstr. Papers Am. Chem. Soc. 231.Google Scholar
  13. Boatman, E.M., Lisensky, G.C. and Nordell, K.J. (2005) A safer, easier, faster synthesis for CdSe quantum dot nanocrystals. J. Chem. Educ. 82, 1697–1699.Google Scholar
  14. Bouldin, K.K., Menzel, E.R., Takatsu, M. and Murdock, R.H. (2000) Diimide-enhanced fingerprint detection with photoluminescent CdS/dendrimer nanocomposites. J. Forensic Sci. 45, 1239–1242.PubMedGoogle Scholar
  15. Boyden, E.S., Zhang, F., Bamberg, E. Nagel, G. and Deisseroth, K. (2005) Millisecond time-scale, genetically targeted optical control of neural activity. Nature Neurosci. 8, 1263–1268.PubMedCrossRefGoogle Scholar
  16. Brunner, J. (1993) New photolabeling and crosslinking methods. Annu. Rev. Biochem. 62, 483–514.PubMedCrossRefGoogle Scholar
  17. Brus, L.E. (1984) Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403–4409.CrossRefGoogle Scholar
  18. Cademartiri, L., Montanari, E., Calestani, G., Migliori, A., Guagliardi, A. and Ozin, G.A. (2006) Size-dependent extinction coefficients of PbS quantum dots. J. Am. Chem.Soc. 128, 10337–10346.PubMedCrossRefGoogle Scholar
  19. Callaway, E.M. and Katz, L.C. (1993) Photostimulation using caged glutamate reveals functional circuitry in living brain cells. Proc. Natl. Acad. Sci. USA 90, 7661–7665.PubMedCrossRefGoogle Scholar
  20. Chalfie, M. (1994) Green fluorescent protein as a marker for gene-expression. Science 263, 802–805.PubMedCrossRefGoogle Scholar
  21. Chambers, J.J., Banghart, M.R., Trauner, D. and Kramer, R.H. (2006) Light-induced depolarization of neurons using a modified shaker K+ channel and a molecular photoswitch. J. Neurophysiol. 96, 2792–2796.PubMedCrossRefGoogle Scholar
  22. Chan, P.M., Yuen, T., Ruf, F., Gonzalez-Maeso, J. and Sealfon, S.C. (2005) Method for multiplex cellular detection of mRNAs using quantum dot fluorescent in situ hybridization. Nucleic Acids Res. 33, E161.PubMedCrossRefGoogle Scholar
  23. Chandra, B., Subramaniam, R., Mallik, S. and Srivastava, D.K. (2006) Formulation of photocleavable liposomes and the mechanism of their content release. Org. Biomol. Chem. 4, 1730–1740.PubMedCrossRefGoogle Scholar
  24. Chin, J.W., Martin, A.B., King, D.S., Wang, L. and Schultz, P.G. (2002) Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli . Proc. Natl Acad. Sci. USA 99, 11020–11024.PubMedCrossRefGoogle Scholar
  25. Chu, M.Q., Song, X., Cheng, D., Liu, S.P. and Zhu, J. (2006) Preparation of quantum dot-coated magnetic polystyrene nanospheres for cancer cell labelling and separation. Nanotechnology 17, 3268–3273.CrossRefGoogle Scholar
  26. Cotlet, M., Goodwin, P.M., Waldo, G.S. and Werner, J.H. (2006) A comparison of the fluorescence dynamics of single molecules of a green fluorescent protein: One- versus two-photon excitation. Chem. Phys. Chem. 7, 250–260.PubMedGoogle Scholar
  27. Crut, A., Gèron-Landre, B., Bonnet, I., Bonneau, S., Desbiolles, P. and Escude, C. (2005) Detection of single DNA molecules by multicolor quantum-dot end-labeling. Nucleic Acids Res. 33, e98.PubMedCrossRefGoogle Scholar
  28. Danuser, G. and Waterman-Storer, C.M. (2006) Quantitative fluorescent speckle microscopy of cytoskeleton dynamics. Annu. Rev. Biophys. Biomol. Struct. 35, 361–387.PubMedCrossRefGoogle Scholar
  29. Demeshkina, N.A., Laletina, E.S., Meschaninova, M.I., Repkova, M.N., Ven’yaminova, A.G., Graifer, D.M. and Karpova, G.G. (2003) The mRNA codon environment at the P and E Sites of human ribosomes deduced from photocrosslinking with pUUUGUU Derivatives. Mol. Biol. 37, 132-139. [Transl. from Molekulyarnaya Biologiya, Vol. 37, 147–155.]Google Scholar
  30. Deng, D.-W., Yu, J.-S., and Pan, Y. (2006) Water-soluble CdSe and CdSe/CdS nanocrystals: A greener synthetic route. J. Colloid Interface Sci. 299, 225–232.PubMedCrossRefGoogle Scholar
  31. Derfus, A.M., Chan, W. C.W. and Bhatia, S.N. (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett., 4, 11–18.CrossRefGoogle Scholar
  32. Donega, C. D., Hickey, S. G., Wuister, S. F., Vanmaekelbergh, D. and Meijerink, A. J. (2003) Single-step synthesis to control the photoluminescence quantum yield and size dispersion of CdSe nanocrystals. Phys. Chem. B, 2003, 107, 489–496.CrossRefGoogle Scholar
  33. Donnert, G., Keller, K., Medda, R., Andrei, M.A., Rizzoli, S.O., Lührmann, R., Jahn, R., Eggeling, C. and Hell, S.W. (2006) Macromolecular-scale resolution in biological fluorescence microscopy. Proc. Natl Acad. Sci. USA 103, 11440–11445.PubMedCrossRefGoogle Scholar
  34. Dorman, C.J. (2007) Probing bacterial nucleoid structure with optical tweezers. BioEssays 29, 212–216.PubMedCrossRefGoogle Scholar
  35. Dormàn, G. and Prestwich, G.D. (1994) Benzophenone photophores in biochemistry. Biochemistry 33, 5561–5673.CrossRefGoogle Scholar
  36. Du, W., Wang, Y., Qingming Luo, Q. and Liu, B.-F. (2006) Optical molecular imaging for systems biology: from molecule to organism. Anal. Bioanal. Chem. 386, 444–457.PubMedCrossRefGoogle Scholar
  37. Eisenman, L.N., Shu, H.-J., Akk, G., Wang, C., Manion, B.D., Kress, G.J., Evers, A.S., Steinbach, J.H., Covey, D.F., Zorumski, C.F. and Mennerick, S. (2007) Anticonvulsant and anaesthetic effects of a fluorescent neurosteroid analog activated by visible light. Nature Neurosci. 10, 523–530.PubMedGoogle Scholar
  38. Elowitz, M.B., Surette, M.G., Wolf, P.E., Stock, J. and Leibler, S. (1997) Photoactivation turns green fluorescent protein red. Curr. Biol. 7, 809–812.PubMedCrossRefGoogle Scholar
  39. Folgering, J.H.A., Kuiper, J.M., de Vries, A.H., Engberts, J.B.F.N. and Poolman, B. (2004) Lipid-mediated light activation of a mechanosensitive channel of large conductance. Langmuir 20, 6985–6987.PubMedCrossRefGoogle Scholar
  40. Fricker, M., Runions, J. and Moore, I. (2006) Quantitative fluorescence microscopy: From art to science. Annu. Rev. Plant Biol. 57, 79–107.PubMedCrossRefGoogle Scholar
  41. Ghosn, B., Haselton, F.R., Gee, K.R. and Monroe, W.T. (2005) Control of DNA hybridization with photocleavable adducts. Photochem. Photobiol. 81, 953–959.PubMedCrossRefGoogle Scholar
  42. Geyer, H., Geyer, R. and Pingoud, V. (2004) A novel strategy for the identification of protein–DNA contacts by photocrosslinking and mass spectrometry. Nucleic Acids Res. 32, e132.PubMedCrossRefGoogle Scholar
  43. Grier, D.G. and Roichman, Y. (2006) Holographic optical trapping. Appl. Optics 45, 880–887.CrossRefGoogle Scholar
  44. Gronemeyer, H. and Pongs, O. (1980) Localization of ecdysterone on polytene chromosomes of Drosophila melanogaster. Proc. Natl Acad. Sci. USA 77, 2108–2112.PubMedCrossRefGoogle Scholar
  45. Habuchi, S., Cotlet, M., Gensch, T., Bednarz, T., Haber-Pohlmeier, S., Rozenski, J., Dirix, G., Michiels, J., Vanderleyden, J., Heberle, J., De Schryver, F.C. and Hofkens, J. (2005) Evidence for the isomerization and decarboxylation in the photoconversion of the red fluorescent protein DsRed. J. Am Chem. Soc. 127, 8977–8984.PubMedCrossRefGoogle Scholar
  46. Hammer, N.I., Early, K.T., Sill, K., Odoi, M.Y., Emrick, T. and Barnes, M.D. (2006) Coverage-mediated suppression of blinking in solid state quantum dot conjugated organic composite nanostructures. J. Phys. Chem. B 2006, 110, 14167–14171.CrossRefGoogle Scholar
  47. Hardman R (2006) A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environ. Health Perspect. 114, 165–172.PubMedCrossRefGoogle Scholar
  48. Heim, R. (1994) Wavelength mutations and posttranslational autooxidation of green fluorescent protein. Proc. Natl Acad. Sci. USA 91, 12501–12504.PubMedCrossRefGoogle Scholar
  49. Hino, M., Okazaki, Y., Kobayashi, T., Hayashi, A., Sakamoto, K. and Yokoyama, S. (2005) Protein photo-crosslinking in mammalian cells by site-specific incorporation of a photo-active amino acid. Nature Methods 2, 201–206.PubMedCrossRefGoogle Scholar
  50. Hø gset, A., Prasmickaite, L., Selbob, P-K., Hellumb, M., Engesæter, B.Ø., Bonsted, A, and Berg, K. (2004) Photochemical internalisation in drug and gene delivery. Adv. Drug Deliv. Rev. 56, 95–115.CrossRefGoogle Scholar
  51. Hornberg, C. and Weiler, E. W. (1984) High-affinity binding-sites for abscisic acid on the plasmalemma of Vicia faba guard cells. Nature 310, 321–324.CrossRefGoogle Scholar
  52. Hoshino, A., Fujioka, K., Oku, T., Nakamura, S., Suga, M., Yamaguchi, Y., Suzuki, K., Yashara, M. and Yamamoto, K. (2004) Quantum dots targeted to the assigned organelle in living cells. Micobiol. Immunol. 48, 985–994.Google Scholar
  53. Hu, F.Q., Ran, Y.L., Zhou, Z.A., and Gao, M.Y. (2006) Preparation of bioconjugates of CdTe nanocrystals for cancer marker detection. Nanotechnology 17, 2972–2977.CrossRefGoogle Scholar
  54. Huang, J., Xudong Wang, X. and Wang, Z.L. (2006) Controlled replication of butterfly wings for achieving tunable photonic properties. Nano Lett. 6, 2325–2331.PubMedCrossRefGoogle Scholar
  55. Jiang, J. and Gill, B.S. (2006) Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49, 1057–1068.PubMedCrossRefGoogle Scholar
  56. Jiang, P., Yamauchi, K., Yang, M., Tsuji, K., Xu, M.X., Maitra, A., Bouvet, M. and Hoffman, R.M. (2006) Tumor cells genetically labeled with GFP in the nucleus and RFP in the cytoplasm for imaging cellular dynamics. Cell Cycle 5, 1198–1201.PubMedGoogle Scholar
  57. Jorgenson, J.W. and Lukacs, K.D. (1981) Zone electrophoresis in open-tubular glass capillaries. Anal. Chem. 53, 1298–1302.CrossRefGoogle Scholar
  58. Kippeny, T., Swafford, L.A., and Rosenthal, S.J. (2002) Semiconductor nanocrystals: A powerful visual aid for introducing the particle in a box. J. Chem. Edu. 79, 1094–1100.Google Scholar
  59. Kim, M.S. and Diamond, S.L. (2006) Photocleavage of o-nitrobenzyl ether derivatives for rapid biomedical release applications. Bioorg. Medicinal Chem. Lett. 16, 4007–4010.CrossRefGoogle Scholar
  60. Klostranec, J.M. and Chan, C.W. (2006) Quantum dots in biological and biomedical research: recent progress and present challenges. Adv. Mater. 2006, 18, 1953–1964.CrossRefGoogle Scholar
  61. Koçer, A., Walko, M., Meijberg, W. and Feringa, B.L. (2005) A light-actuated nanovalve derived from a channel protein. Science 309, 755–758.PubMedCrossRefGoogle Scholar
  62. Krieg, A., Ruckstuhl, T. and Seeger, S. (2006) Towards single-molecule DNA sequencing: Assays with low nonspecific adsorption. Anal. Biochem. 349, 181–185.PubMedCrossRefGoogle Scholar
  63. Krüger, R., Kübler, D., Pallissé, R. , Burkovski, A.and Lehmann, W.D. (2006) Protein and proteome phosphorylation stoichiometry analysis by element mass spectrometry. Anal. Chem. 78, 1987–1994.PubMedCrossRefGoogle Scholar
  64. Lagerholm, B.C., Averett, L., Weinreb, G.E., Jacobson, K. and Thompson, N.L. (2006) Analysis method for measuring submicroscopic distances with blinking quantum dots. Biophys. J. 91, 3050–3060.PubMedCrossRefGoogle Scholar
  65. Lester, H.A., Krouse, M.E., Nass, M.M., Wassermann, N.H. and Erlanger, B.F. (1980) A covalently bound photoisomerizable agonist. Comparison with reversibly bound agonists at electrophorus electroplaques. J. Gen. Physiol. 75, 207–232.PubMedCrossRefGoogle Scholar
  66. Lewis, E.K., Haaland, W.C., Nguyen, F., Heller, D.A., Allen, M.J., MacGregor, R.R., C. Berger, S., Willingham, B., Burns, L.A., Scott, G.B.I., Kittrell, C., Johnson, B.R., Curl, R.F. and Metzker, M.L. (2005) Color-blind fluorescence detection for four-color DNA sequencing. Proc. Natl Acad. Sci. USA 102, 5346–5351.PubMedCrossRefGoogle Scholar
  67. Li, X., Gutierrez, D.V., Hanson, M.G., Han, J., Mark, M.D., Chiel, H., Hegemann, P., Landmesser, L.T. and Herlitze, S. (2005) Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc. Natl Acad. Sci. USA 102, 17816–17821.PubMedCrossRefGoogle Scholar
  68. Li, Z.H., Wang, K.M., Tan, W.H., Li, J., Fu, Z.Y., Ma, C.B., Li, H.M., He, X.X. and Liu, J.B. (2006) Immunofluorescent labeling of cancer cells with quantum dots synthesized in aqueous solution. Anal. Biochem. 354, 169–174.PubMedCrossRefGoogle Scholar
  69. Loudon, R. and Barnett, S.M. (2006) Theory of the radiation pressure on dielectric slabs, prisms and single surfaces. Optics Express 14, 11855–11869.CrossRefPubMedGoogle Scholar
  70. Lukyanov KA, Chudakov DM, Lukyanov S. and Verkhusha, V.V. (2005) Photoactivable fluorescent proteins. Nat. Rev. Mol. Cell Biol. 6, 885–891.PubMedCrossRefGoogle Scholar
  71. Marriott, G., Roy, P. and Jacobson, K. (2003) Preparation and light-directed activation of caged proteins. Meth. Enzymol. 360, 274–288.PubMedGoogle Scholar
  72. McBride, J., Treadway, J., Feldman, L.C., Pennycook, S.J. and Rosenthal, S.J. (2006) Structural basis for near unity quantum yield core/shell nanostructures. Nano Lett. 6, 1496–1501.1PubMedCrossRefGoogle Scholar
  73. Medintz, I.L., Uyeda, H.T., Goldman, E.R. and Mattoussi, H. (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nature Materials 4, 435–446.PubMedCrossRefGoogle Scholar
  74. Menzel ER, Savoy SM, Ulvick SJ, Cheng KH, Murdock RH, Sudduth MR (2000) Photoluminescent semiconductor nanocrystals for fingerprint detection. J. Forens. Sci. 45, 545–551.Google Scholar
  75. Metzker, M.L. (2005) Emerging technologies in DNA sequencing. Genome Res. 15, 1767–1776.PubMedCrossRefGoogle Scholar
  76. Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Sundaresan, G., Wu, A.M., Gambhir, S.S. and Weiss, S. (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544.PubMedCrossRefGoogle Scholar
  77. Moan, J. and Berg, K. (1991) The photodegradation of porphrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem. Photobiol. 53, 549–553.PubMedGoogle Scholar
  78. Moon Suk Kim, M.S. and Diamond, S.L. (2006) Photocleavage of o-nitrobenzyl ether derivatives for rapid biomedical release applications. Bioorg. Med. Chem. Lett. 16, 4007–4010PubMedCrossRefGoogle Scholar
  79. Mori, H. and Ito, K. (2006) Different modes of SecY–SecA interactions revealed by site-directed photo-crosslinking in vivo. Proc. Natl. Acad. Sci. USA 103, 16159–16164.PubMedCrossRefGoogle Scholar
  80. Ndoye, A. Dolivet, G., Hø gset, A., Leroux, A., Fifre, A., Erbacher, P., Berg, K., Behró, J.-P., Guillemin, F. and Merlin, J.-L. (2006) Eradication of p53-mutated head and neck squamous cell carcinoma xenografts using nonviral p53 gene therapy and photochemical internalization. Mol. Ther 13, 1156–1162.PubMedCrossRefGoogle Scholar
  81. Nechyporuk-Zloy, V., Stock, C., Schillers, H., Oberleithner, H. and Schwab, A. (2006) Single plasma membrane K+channel detection by using dual-color quantum dot labeling. Am. J. Physiol. Cell Physiol. 291, 266–269.CrossRefGoogle Scholar
  82. Nelson, T., Tausta, S.L., Gandotra, N. and Liu, T. (2006) Laser dissection of plant tissue: What you see is what you get. Annu. Rev. Plant Biol. 57, 181–201.PubMedCrossRefGoogle Scholar
  83. Nida, D.L., Rahman, M.S., Carlson, K.D., Richards-Kortum, R. and Follen, M. (2005) Fluorescent nanocrystals for use in early cervical cancer detection. Gynecol. Oncol. 99(Suppl. 1), S89–S94.PubMedCrossRefGoogle Scholar
  84. O’Connell, K.M.S., Rolig, A.S., Whitesell, J.D. and Tamkun, M.M. (2006) Kv2.1 Potassium channels are retained within dynamic cell surface microdomains that are defined by a perimeter fence. J. Neurosci. 26, 9609–9618.PubMedCrossRefGoogle Scholar
  85. Park, T.J., Park, J.P., Seo, G.M., Chai, Y.G. and Lee, S.Y. (2006) Rapid and accurate detection of Bacillus anthracis spores using peptide-quantum dot conjugates. J. Microbiol. Biotechnol. 16, 1713–1719.Google Scholar
  86. Paterson, L., Papagiakoumou, E., Milne, G., Garcés-Chávez, V., Tatarkova, S.A., Sibbett, W., Gunn-Moore, F.J., Bryant, P.E., Riches, A.C. and Dholakia, K. (2005) Light-induced cell separation in a tailored optical landscape. Appl. Phys. Lett. 87, 123901.CrossRefGoogle Scholar
  87. Peterman, E.J.G., Brasselet, S. and Moerner, W.E. (1999) The fluorescence dynamics of single molecules of green fluorescent protein. J. Phys. Chem. A 103, 10553–10560.CrossRefGoogle Scholar
  88. Peterson, D.S. (2007) Matrix-free methods for laser desorption/ionization mass spectrometry. Mass Spectrom. Rev. 26, 19–34.PubMedCrossRefGoogle Scholar
  89. Petersson, E.J., Brandt, G.S., Zacharias, N.M., Dougherty, D.A., and Lester, H.A. (2003) Caging proteins through unnatural amino acid mutagenesis. Meth. Enzymol. 360, 258–273.PubMedCrossRefGoogle Scholar
  90. Ramanathan, A., Huff, E.J., Lamers, C.C., Potamousis, K.D., Forrest, D.K. and Schwartz, D.C. (2004) An integrative approach for the optical sequencing of single DNA molecules. Anal. Biochem. 330, 227–241.PubMedCrossRefGoogle Scholar
  91. Raymond, F.R., Ho, H.A., Peytavi, R., Bissonnette, L., Boissinot, M., Picard, F.J., Leclerc, M. and Bergeron, M.G. (2005) Detection of target DNA using fluorescent cationic polymer and peptide nucleic acid probes on solid support. BMC Biotechn. 5, Art. No. 10.CrossRefGoogle Scholar
  92. Rosetti, R., Nakahara, S. and Brus, L.E. (1982) Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. J. Chem. Phys. 79, 1086–1088.CrossRefGoogle Scholar
  93. Schaltmann, K. and Pongs, O. (1982) Identification and characterization of the ecdysterone receptor in Drosophila melanogaster by photoaffinity labeling. Proc. Natl Acad. Sci. USA 79, 6–10.PubMedCrossRefGoogle Scholar
  94. Schroll, C., Riemensperger, T., Bucher, D., Ehmer, J., Völler, T., Erbguth, K., Berber, G., Hendel, T., Nagel, G., Buchner, E. and Fiala, A. (2006) Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae. Curr. Biol. 16, 1741–1747.PubMedCrossRefGoogle Scholar
  95. Seo, T.S., Bai, X., Kim, D.H., Meng, Q., Shi, S., Ruparel, H., Li, Z., Turro, N.J. and Ju, J. (2005) Four-color DNA sequencing by synthesis on a chip using photocleavable fluorescent nucleotides. Proc. Natl. Acad. Sci. USA 102, 5926–5931.PubMedCrossRefGoogle Scholar
  96. Shkrob, M.A., Yanushevich, Y.G., Chudakov, D.M., Gurskaya, N.G., Labas, Y.A., Poponov, S.Y., Mudrik, N.N., Lukyanov, S. and Lukyanov, K.A. (2005) Far-red fluorescent proteins evolved from a blue chromoprotein from Actinia equina. Biochem. J. 392, 649–654.PubMedCrossRefGoogle Scholar
  97. So, M.-K., Xu, C., Loening, A.M., Gambhir, S.S. and Rao, J. (2006) Self-illuminating quantum dot conjugates for in vivo imaging. Nature Biotechnol. 24, 339–343.CrossRefGoogle Scholar
  98. Stiller, B., Karageirgiev, P., Geue, T., Morawetz, K., Saphiannikova, M., Mechau, N., Neher, D. (2004) Optically induced mass transport studied by scanning near-field optical- and atomic force microscopy. Physics Low-Dimensional Struct. 1–2, 129–137.Google Scholar
  99. Swamy, N., Addo, J.K. and Ray, R. (2000) Development of an affininity-driven crosslinker: Isolation of a vitamin D receptor associated factor. Bioorg. Med. Chem. Lett. 10, 361–364.PubMedCrossRefGoogle Scholar
  100. Synge, E.H. (1928) A suggested method for extending microscopic resolution into the ultra-microscopic region. Phil. Mag. 6, 356–362.Google Scholar
  101. Todoroki, Y., Tanaka, T., Kisamori, M. and Hirai, N. (2001) 3-Azidoabscissic acid as a photoaffinity reagent for abscisic acid binding proteins. Bioorg. Med. Chem. Lett. 11, 2381–2384.PubMedCrossRefGoogle Scholar
  102. Torimoto, T., Murakami, S., Sakuraoka, M., Iwasaki, K., Okazaki. K., Shibayama, T. and Ohtani, B. (2006) Photochemical fine-tuning of luminescent color of cadmium selenide nanoparticles: Fabricating a single-source mulitcolor luminiphore. J. Phys. Chem. 110, 13314–13318.Google Scholar
  103. Tsien, R.Y. (1998) The green fluorescent protein. Annu. Rev. Biochem. 67: 509–544.PubMedCrossRefGoogle Scholar
  104. Verkhusha, V. V. and Lukyanov, K. A. (2004) The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins. Nature Biotechnol. 22, 289–296.CrossRefGoogle Scholar
  105. Viviani, V.R. (1999) Cloning, sequence analysis, and expression of active Phrixothrix railroad-worms luciferases: Relationship between bioluminescence spectra and primary structures. Biochemistry 38, 8271–8279.PubMedCrossRefGoogle Scholar
  106. Wang, L., Brock, A., Herberich, B. and Schultz, P.G. (2001) Expanding the genetic code of Escherichia coli. Science 292, 498–500.PubMedCrossRefGoogle Scholar
  107. Wang, Q.B. and Seo, D.K. (2006) Synthesis of deep-red-emitting CdSe quantum dots and general non-inverse-square behavior of quantum confinement in CdSe quantum dots. Chem. Mater. 18, 5764–5767.CrossRefGoogle Scholar
  108. Werner, J.H., Cai, H., Jett, J.H., Reha-Krantz, L., R.A. Keller, R.A. and Goodwin, P.M. (2003) Progress towards single-molecule DNA sequencing: a one color demonstration. J. Biotechnol. 102, 1–14.PubMedCrossRefGoogle Scholar
  109. Winkler, L.D., Arceo, J.F., Hughes, W.C., DeGraff, B.A. and Augustine, B.H. (2005) Quantum dots: An experiment for physical or materials chemistry. J. Chem. Educ. 82, 1700–1702.CrossRefGoogle Scholar
  110. Wittelsberger, A., Thomas, B.E., Mierke, D.F. and Rosenblatt, M. (2006) Methionine acts as a “magnet” in photoaffinity crosslinking experiments. FEBS Lett. 580, 1872–1876.PubMedCrossRefGoogle Scholar
  111. Xie, J. and Schultz. P.G. (2005) Adding amino acids to the genetic repertoire. Curr. Opin. Chem. Biol. 9, 548–554.PubMedCrossRefGoogle Scholar
  112. Xie, J. and Schultz. P.G. (2006) A chemical toolkit for proteins an expanded genetic code. Nature Rev. Mol. Cell Biol. 7, 775–782.CrossRefGoogle Scholar
  113. Xu, W.B., Wang, Y.X., Xu, R.H. and Yin, D.Z. (2006) Synthesis, modification and application in biology of quantum dots (in Chinese). J. Inorg. Mater. 21, 1031–1037.Google Scholar
  114. Yeh, H.-C., Ho, Y.-P., Shih, I.-M. and Wang, T.-H. (2006) Homogeneous point mutation detection by quantum dot-mediated two-color fluorescence coincidence analysis. Nucleic Acids Res. 34, e35.PubMedCrossRefGoogle Scholar
  115. Zhang, F., Wang, L.P, Boyden, E.S. and Deisseroth, K. (2006) Channelrhodopsin-2 and optical control of excitable cells. Nature Methods 3, 785–792.PubMedCrossRefGoogle Scholar
  116. Zheng, J., Nicovich, P.R. and Dickson, R.M. (2007) Highly fluorescent noble-metal quantum dots. Annu. Rev. Phys. Chem. 58, 409–31.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Lars Olof Björn

There are no affiliations available

Personalised recommendations