Photobiology pp 617-645 | Cite as

Hints for Teaching Experiments and Demonstrations

  • Lars Olof Björn


Directions are given for demonstrating various topics from the other book chapters: the wave-nature of light, singlet oxygen, chromatic adaptation of cyanobacteria, the properties of the human visual system, photoconversion of rhodopsin, photosynthesis of previtamin D, spectral properties of chlorophyll, photoconversion of protochlorophyllide, separation of chloroplast pigments, photoadaptation of plant leaves, ultraviolet radiation damage, photoreactivation, phytochrome, plant photomorphogenesis, and bioluminescence. At the end a short list of further ideas is provided for the reader to work on. The references are listed separately for each topic.


Teaching Experiment Xanthophyll Cycle Fluence Rate Lower Energy Level Lower Excited State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anon. (1894) Artificial spectrum top. Nature 51, 113–114.Google Scholar
  2. Barton, C.V.M. and North, P.R.J. (2001) Remote sensing of canopy light use efficiency using the photochemical reflectance index: Model and sensitivity analysis. Remote Sensing Environ. 78, 264–273.CrossRefGoogle Scholar
  3. Björn, L.O. (1969a) Action spectra for transformation and fluorescence of protochlorophyll holochrome from bean leaves. Physiol. Plant. 22, 1–17.CrossRefGoogle Scholar
  4. Björn, L.O. (1969b) Photoinacivation of catalases from mammal liver, plant leaves and bacteria. Comparison of inactivation cross sections and quantum yields at 406 nm. Photochem. Photobiol. 10, 125–129.Google Scholar
  5. Björn, L.O. and Virgin, H.I. (1958) The influence of red light on the growth of pea seedlings. An attempt to localize the perception. Physiol. Plantarum 11, 363–373.CrossRefGoogle Scholar
  6. Boatman, E.M., Lisensky, G.C. and Nordell, K.J. (2005) A safer, easier, faster synthesis for CdSe quantum dot nanocrystals. J. Chem. Educ. 82, 1697–1699.Google Scholar
  7. Cone, J.E. and Kendrick, R.E. (1986) Photocontrol of seed germination. In: R.E. Kendrick and G.H.M. Kronenberg (Eds.), Photomorphogenesis in plants, pp. 443–463. Martinus Nijhoff/Junk Publishers, Dordrecht.Google Scholar
  8. Delpech, R. (2001) Using Vibrio natriegens for studying bacterial population growth, artificial selection, and the effects of UV radiation and photo-reactivation. J. Biol. Educ. 35, 93–97.Google Scholar
  9. Diakoff, S. and Scheibe, J. (1973) Action spectra for chromatic adaptation in Tolypothrix tenuis. Plant Physiol. 51, 382–385.PubMedCrossRefGoogle Scholar
  10. Etzold, H. (1965) Der Polarotropismus und Phototropismus der Chloronemen von Dryopteris filix-mas (L.). Schott. Planta 64, 254–280.CrossRefGoogle Scholar
  11. Filella, I., Amaro, T., Araus, J.L. and Penuelas, J. (1996) Relationship between photosynthetic radiation-use efficiency of barley canopies and the photochemical reflectance index (PRI). Physiol. Plant. 96, 211–216.CrossRefGoogle Scholar
  12. Frank, H.A., Cua, A., Chynwat, V., Young, A., Gosztola, D. and Wasielewski, M.R. (1994). Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis. Photosynthesis Res., 41, 389–395.CrossRefGoogle Scholar
  13. Frankland, B. and Taylorson, R.B. (1983) Light control of seed germination. In: W. Shropshire, Jr., and H. Mohr (Eds.), Encycl. Plant Physiol., New Series, 16A, pp. 428–456. Springer, Berlin.Google Scholar
  14. Fujita, Y. and Hattori, A. (1960a) Formation of phycoerythrin in preilluminated cells of Tolypothrix tenuis with special reference to nitrogen metabolism. Plant Cell Physiol. 1, 281–292.Google Scholar
  15. Fujita, Y. and Hattori, A. (1960b) Effect of chromatic lights on phycobilin formation in a blue-green alga, Tolypothrix tenuis. Plant Cell Physiol. 1, 293–220.Google Scholar
  16. Gamon, J.A., Field, C.B., Bilger, W., Bjorkman, O., Fredeen, A.L., and Peñuelas, J. (1990) Remote-sensing of the xanthophyll cycle and chlorophyll fluorescence in sunflower leaves and canopies. Oecologia 85, 1–7.CrossRefGoogle Scholar
  17. Gamon, J.A. and Surfus, J.S. (1999) Assessing leaf pigment content and activity with a reflectometer. New Phytol. 143, 105–117.CrossRefGoogle Scholar
  18. Gamon, J.A., Peñuelas, J. and Field, C.B. (1992) A narrow-waveband specral index tht tracks diurnal changes in photosynthetic efficiency. Remote Sensing Envir. 41, 35–44.CrossRefGoogle Scholar
  19. Gamon, J.A., Serrano, L. and Surfus, J.S. (1997) The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 12, 492–501.CrossRefGoogle Scholar
  20. Haupt, W. and Björn, L.O. (1987) No action dichroism for light-controlled fern-spore germination. J. Plant Physiol. 129, 119–128.Google Scholar
  21. Hausser, K.E. and v. Ohmcke, H.V. Lichtbräunung an Fruchtschalen. Strahlentherapie 48, 223–229.Google Scholar
  22. Hertel, E. (1905) Ueber physiologische Wirkung von Strahlen verschiedener Wellenlänge. Zschr. Allgem. Physiologie 5, 95–122.Google Scholar
  23. Johnson, R.H. and Williams, Th.P. (1970) Action of light upon the visual pigment rhodopsin. J. Chem. Edu. 47, 736–739.Google Scholar
  24. Kippeny, T., Swafford, L.A., and Rosenthal, S.J. (2002) Semiconductor nanocrystals: A powerful visual aid for introducing the particle in a box. J. Chem. Edu. 79, 1094–1100.CrossRefGoogle Scholar
  25. Knotts, M.E. (1996) Optics fun with gelatin. Optics and Photonics News, April 1996, 50-51. Available from Scholar
  26. Knotts, M.E. (1998) Books for optics experimenters. Optics and Photonics News, January 1998, 50–51.Google Scholar
  27. Lee, J. (1977) Bioluminescence. In: K.C. Smith (Ed.), The science of photobiology, Chapter 14. [Reprinted in D.P. Valenzeno et al. (Eds.) (1991) Photobiological techniques, pp. 359–360. Plenum, New York.]Google Scholar
  28. Lee, J. (1991). Experiment 33: Bacterial bioluminescence. In: D.P. Valenzeno et al. (Eds.), Photobiological Techniques, pp. 317–320. Plenum, New York.Google Scholar
  29. Le Rohellec, J. and Vienot, F. (2001) Interaction of luminance and spectral adaptation upon Benham subjective colors. Color Res. Appl. S174–S179.Google Scholar
  30. Nichol, C.J., Hümmrich, K.F., Black, T.A., Jarvis, P.G., Walthall, C.L., Grace, J. and Hall, F.G. (2000) Remote sensing of photosynthetic light-use efficiency of boreal forest. Agric. Forest Meteorol. 101, 131–142.CrossRefGoogle Scholar
  31. Peñuelas, J., Filella, I. and Gamon, J.A. (1995) Assessment of photosynthetic radiation-use efficiency with spectral reflectance. New Phytol. 131, 291–296.CrossRefGoogle Scholar
  32. Peñuelas, J., Llusia, J., Pinol, J. and Finella, I. (1997) Photochemical reflectance index and leaf photosynthetic radiation-use efficiency assessments in Mediterranean trees. Int. J. Remote Sensing 18, 2863–2868.CrossRefGoogle Scholar
  33. Pottier, R.H. and Russell, D.A. (1991) Quantum yield of a photochemical reaction. In: D.P. Valenzeno, R.H. Pottier, P. Mathis, and R.H. Douglas (Eds.), Photobiological techniques, pp. 45–52. Plenum Publishing Corp., New York.Google Scholar
  34. Scheibe, J. (1972) Photoreversible pigment in a blue-green alga. Science 176, 1037–1039.PubMedCrossRefGoogle Scholar
  35. Schopfer, P. (1970) Experimente zur Pflanzenphysiologie. Rombach Verlag, Freiburg.Google Scholar
  36. Smith, K.C. (Ed.) (1977) The science of photobiology. Plenum, New York.Google Scholar
  37. Smith, S.P., Bhalotra, S.R., Brody, A.L., Brown, B.L., Boyda, E.K. and Prentiss, M. (1999) Inexpensive optical tweezers for undergraduate laboratories. Am. J. Phys. 67, 26–35.CrossRefGoogle Scholar
  38. Trimmer, B.A., Aprille, J.R., Dudzinski, D.M., Lagace, C.J., Lewis, S.M., Michel. T., Qazi, S. and Zayas, R.M. (2001). Nitric oxide and the control of firefly flashing. Science 291, 2486–2488.CrossRefGoogle Scholar
  39. Valenzeno, D.P., Pottier, R.H., Mathis, P. and Douglas, R.H. (Eds.) (1991) Photobiological techniques. Plenum Publishing Corp., New York.Google Scholar
  40. Vogelmann, T.C. and Björn, L.O. (1983) Response to directional light by leaves of a sun-tracking lupine (Lupinus succulentus). Physiol. Plant. 59, 533–538.CrossRefGoogle Scholar
  41. von Campenhausen, C. and Schramme, J. (1995) 100 years of Benham top in color science. Perception, 24, 695–717.CrossRefGoogle Scholar
  42. Winkler, L.D., Arceo, J.F., Hughes, W.C., DeGraff, B.A. and Augustine, B.H. (2005) Quantum dots: An experiment for physical or materials chemistry. J. Chem. Educ. 82, 1700–1702.Google Scholar
  43. Withrow, R.B., Klein, W.H. and Elstad, V.B. (1957) Action spectra of photomorphogenetic induction and its inactivation. Plant Physiol. 32, 453–462.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Lars Olof Björn

There are no affiliations available

Personalised recommendations