Photobiology pp 591-615 | Cite as


  • Lars Olof Björn
  • Helen Ghiradella


Three kinds of light emission from organisms take place: bioluminescence in a narrow sense from some animals, dinoflagellates, fungi, and bacteria; delayed light emission from photosynthetic cells; and ultraweak light emission from all kinds of cells. All these phenomena are treated in this chapter.


Light Emission Visual Pigment Flavin Mononucleotide Luminescent Bacterium Nitrogen Monoxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barros, M.P. and Bechara, E.J.H. (2000) Luciferase and urate may act as antioxidant defeneses in larval Pyrearinus termitilluminans (Elateridae: Coleoptera) during natural development and upon 20-hydroxyecdysone treatment. Photochem. Photobiol. 71, 648–654.CrossRefGoogle Scholar
  2. Bassot, J.M. and Nicolas, M.T. (1995) Bioluminescence in scale-worm photosomes: the photoprotein polyoidin is specific for the detection of superoxide radicals. Histochem. Cell Biol. 104, 199–210.PubMedCrossRefGoogle Scholar
  3. Bermudes, D., Petersen, R.H. and Nealson, K.H. (1992) Low-level bioluminescence detected in Mycena haematopus basidiocarps. Mycologia 84, 799–802.CrossRefGoogle Scholar
  4. Björn, L.O. (1971) Far-red induced, long-lived afterglow from photosynthetic cells. Size of afterglow unit and paths of energy accumulation and dissipation. Photochem. Photobiol. 13, 5–20.Google Scholar
  5. Björn, L.O. and Forsberg, A.S. (1979) Imaging by delayed light emission (phytoluminography) as a method for detecting damage to the photosynthetic system. Physiol. Plant. 47, 215–222.CrossRefGoogle Scholar
  6. Blinks, J.R. (1989) Use of calcium-regulated photoproteins as intracellular Ca2+ indicators. Meth. Enzymol. 172, 164–203.PubMedCrossRefGoogle Scholar
  7. Bowmaker, J.K., Dartnall, H.J.A. and Herring, P.J. (1988) Longwave-sensitive visual pigments in some deep-sea fishes: Segregation of paired rhodopsins and porphyropsins. J. Comp. Physiol. A163, 685–698.CrossRefGoogle Scholar
  8. Branham, M.A. and Greenfield, M.D. (1996) Flashing males win mate success. Nature 381, 745–746.CrossRefGoogle Scholar
  9. Buck, J. and Buck, E. (1976) Synchronous fireflies. Sci. Am. 234, 74–85.PubMedGoogle Scholar
  10. Buck, J. (1988) Synchronous rhythmic flashing of fireflies. II. Quart. Rev. Biol. 63, 265–289.PubMedCrossRefGoogle Scholar
  11. Buskey, E.J. and Swift, E. (1983) Behavioural responses of the coastal copepod Acartia hudsonica to simulated dinoflagellate bioluminescence. J. Exp. Biol. Ecol. 72, 43–58.CrossRefGoogle Scholar
  12. Campbell, A.K. (1988) Chemiluminescence: Principles and applications in biology and medicine, pp. 608. Ellis Horwood, Chichester. ISBN 3-527-26342-XGoogle Scholar
  13. Cen, Y.-P. and Björn, L.O. (1994) Action spectra for enhancement of ultraweak luminescence by ultraviolet radiation (270-340 nm) in leaves of Brassica napus. J. Photochem. Photobiol. B: Biol. 22, 125–129.CrossRefGoogle Scholar
  14. Cody, C.W., Prasher, D.C.. Westler, W.M., Prendergast, F.G. and Ward, W.W. (1993) Chemical structure of the hexapeptide chromophore of the Aequorea gfreen-fluorescent protein. Biochemistry 32, 1212–1218.PubMedCrossRefGoogle Scholar
  15. Cubitt, A.B., Heim, R., Adams, S.R., Boyd, A.E., Gross, L.A. and Tsien, R.Y. (1995a) Understanding, improving and using green fluorescent proteins. Trends Biochem. Sci. 20, 448–455.CrossRefGoogle Scholar
  16. Cubitt, A.B., Firtel, R.A., Fischer, G., Jaffe, L.F. and Miller, A.L. (1995b) Patterns of free calcium in multicellular stages of Dictyostelium expressing jellyfish apoaqueorin. Development 121, 2291–2301.Google Scholar
  17. Czyz, A., Wrobel, B. and Wegrzyn, G. (2000) Vibrio harveyi bioluminescence plays a role in stimulation of DNA repair. Microbiology 146, 283–288.PubMedGoogle Scholar
  18. Denton, E.J. Gilpin-Brown, J.B. and Wright, P.G. (1972) The angular distribution of the light produced by some mesopelagic fish in relation to their camouflage. Proc. R. Soc. Lond. B 182, 145–158.CrossRefGoogle Scholar
  19. Denton, E.J., Herring, P.J., Widder, E.A., Latz, M.F. and Case, J.F. (1985) The roles of filters in the photophores of oceanic animals and their relation to vision in the oceanic environment. Proc. R. Soc. Lond. B 225, 63–97.Google Scholar
  20. Deo, S.K. and Daunert, S. (2001) Luminescent proteins from Aequorea victoria: applications in drug discovery and in hight throughput analysis. Fresenius J. Anal. Chem. 369, 258–266.PubMedCrossRefGoogle Scholar
  21. DeVault, D., Govindjee and Arnold, D. (1983) Energetics of photosynthetic glow peaks. Proc. Natl Acad. Sci. USA 80, 983–987.PubMedCrossRefGoogle Scholar
  22. Douglas, R.H., Partridge, J.C., Dulai, K.S., Hunt, D.M., Mullineaux, C.W Tauber, P.H. and Hynninen, P.H. (1998) Dragon fish see using chlorophyll. Nature 393, 425.CrossRefGoogle Scholar
  23. Douglas, R.H., Partridge, J.C., Dulai, K.S., Hunt, D.M., Mullineaux, C.W and Hynninen, P.H. (1999) Enhanced retinal longwave sensitivity using a chlorophyll-derived photosensitiser in Malacosteus niger, a deep-sea dragon fish with far red bioluminiscence. Vision Res. 39, 2817–2832.PubMedCrossRefGoogle Scholar
  24. Douglas, R.H., Mullineaux, C.W. and Partridge, J.C. 2000. Long-wave sensitivity in deep-sea stomiid dragonfish with far-red bioluminescence: evidence for a dietary origin of the chlorophyll-derived retinal photosensitizer of Malacosteus niger. Phil. Trans. R. Soc. Lond. B 355, 1269–1272.CrossRefGoogle Scholar
  25. Eckstein, J., Cho, K.W., Colepicolo, P., Ghisla, S., Hastings, J.W. and Wilson, T. 1990. A time-dependent bacterial luminescence emission spectrum in an in vitro singel turnover system: energy transfer alone cannot account for the yellow emission of Vibrio fischeri Y-1. Proc. Natl. Acad. Sci. USA 87, 1466–1470.PubMedCrossRefGoogle Scholar
  26. Esaias, W.E. and Curl, H.C. (1972) Effect of dinoflagellate bioluminescence on copepod ingestion rates. Limnol. Oceanogr. 17, 901–906.CrossRefGoogle Scholar
  27. Esaias, W.E., Curl, H.C., Jr and Seliger, H.H. (1973) Action spectrum for a low intensity rapid photoinhibition of mechanically stimulable bioluminescence in the marine dinoflagellates Gonyaulax catenella, Gonyaulax acatenella and Gonyaulax tamarensis. J. Cell Physiol. 82, 363–372.PubMedCrossRefGoogle Scholar
  28. Fleisher, K.J. and Case, J.F. (1995) Cephalopod predation facilitated by dinoflagellate luminescence. Biol. Bull. 189, 263–271.CrossRefGoogle Scholar
  29. Ghiradella, H. (1998) The anatomy of light production: The fine structure of the firefly lantern. In: F.W. Harrison and M. Locke (Eds.), Microscopic anatomy of invertebrates, vol. 5 Insecta, pp. 363–381. Wiley-Liss, New York.Google Scholar
  30. Ghiradella, H. and Schmidt, J.T. (2004) Fireflies at one hundred plus: a new look at flash control. Integr. Comp. Biol. 44, 203–212.CrossRefGoogle Scholar
  31. Gonzales-Flecha, B. and Demple, B. (1994) Intracellular generation of superoxide as a by-product of Vibrio harveyi luciferase expressed in Escherichia coli. J. Bact. 176, 2293–2299.Google Scholar
  32. Harvey, E.N. (1952) Bioluminescence. Academic Press, New York.Google Scholar
  33. Hastings, J.W. (1978) Bacterial and dinoflagellate luminescent systems. In: P.J. Herring (Ed.), Bioluminescence in Action, pp. 129–170. Academic Press, London.Google Scholar
  34. Hastings, J.W. (1983) Biological diversity, chemical mechanisms, and the evolutionary origins of bioluminescent systems. J. Mol. Evol. 19, 309–321.PubMedCrossRefGoogle Scholar
  35. Hastings, J.W. (1996) Chemistries and colors of bioluminescent reactions: a review. Gene, 173, 5–11.PubMedCrossRefGoogle Scholar
  36. Hastings, J.W. and Tu, D. (eds) (1995) Symposium-in-print: Molecular mechanisms in bioluminescence. Photochem. Photobiol. 62, 597–673.Google Scholar
  37. Heath, M.C. (2000) Advances in imaging the cell biology of plant-microbe interactions. Annu. Rev. Phytopath. 443–459.Google Scholar
  38. Heim, R., Cubitt, A.B. and Tsien, R.Y. (1995) Improved green fluorescence. Nature 373, 663–664.PubMedCrossRefGoogle Scholar
  39. Herrera, A.A., Hastings, J.W. and Morin, J.G. (1974) Bioluminescence in cell-free extracts of scale-worm Hamrmothoe (Annelida: Polynoidae). Biol. Bull. 147, 480–481.Google Scholar
  40. Herring, P.J. (1982) Aspects of the bioluminescence of fishes. Oceanogr. Mar. Biol. Ann. Rev. 20, 415–470.Google Scholar
  41. Herring, P. (2002) The biology of the deep ocean. Oxford University Press, Oxford, UK.Google Scholar
  42. Hosseini, P. and Nealson, K.H. (1995) Symbiotic luminous soil bacteria: Unusual regulations for an unusual niche. Photochem. Photobiol. 62, 633–640.Google Scholar
  43. Inouye, S., Watanabe, K, Nakamura, H. and Shimomura, O. (2000) Secretional luciferase of the luminour shrimp Opiophorus gracilirostris: cDNA cloning of a novel imidazopyrazinone luciferase. FEBS Lett. 481, 19–25.PubMedCrossRefGoogle Scholar
  44. Isobe, M., Uyakul, D. and Goto. T. (1987) Lampteromyces bioluminescence—1. Identification of riboflavin as the light emitter in the mushroom L. japonicus. J. Biolum. Chemilum. 1, 181–188.CrossRefGoogle Scholar
  45. Jezowska-Trzebiatowska, B., Kochel, B., Slawinski, J. and Strek, W. (Eds.) (1990) Biological luminescence. World Scientific, Singapore.Google Scholar
  46. Katsev, A.M., Wegrzyn, G. and Sziplewska, H. (2004) Effects of hydrogen peroxide on light emission by various strains of marine luminescent bacteria. J. Basic Microbiol. 44, 178–184.PubMedCrossRefGoogle Scholar
  47. Knight, M.R., Campbell, A.K., Smith, S.M. and Trewavas, A.J. (1991) Transgenic plant aequorin reports the effects of touch and cold-schock and elicitors on cytoplasmic calcium. Nature 352, 524–526.PubMedCrossRefGoogle Scholar
  48. Knight, M.R., Read, N.D., Campbell, A.K. and Trewavas, A.J. (1993) Imaging dynamics in living plants using semisynthetic recombinandt aequorins. J. Cell Biol. 121, 83-90.PubMedCrossRefGoogle Scholar
  49. Kozakiewicz, J., Gajewska, M., Lyzen, R., Czyz A. and Wegrzyn, G. (2005) Bioluminescence-mediated stimulation of photoreactivation in bacteria. FEMS Microbiol. Lett. 250, 105–110PubMedCrossRefGoogle Scholar
  50. Lavorel, J. (1975) Luminescence. In: Govindjee (Ed.), Bioenergetics of photosynthesis, pp. 223–317. Academic Press, New York.Google Scholar
  51. Lee, J., Matheson, I.B.C., Müller, F., O’Cane, D.J., Vervoort, J. and Visser, A.J.W.G. (1991) The mechanism of bacterial bioluminescence. In: F.Muller (Ed.), Chemistry and biochemistry of rlavins and flavoenzymes, pp. 109–151. CRC Press, Orlando, FL.Google Scholar
  52. Li, Y., Swift, E. and Buskey, E.J. (1996) Photoinhibition of mechanically stimulable bioluminescence in the heterotrophic dinoflagellate Protoperidinium depressum (Pyrrophyta). J. Phycol. 32, 974–982.CrossRefGoogle Scholar
  53. Lloyd, J.E. (1980) Male Photuris mimic sexual signals of their females’ prey. Science 210, 669–671.PubMedCrossRefGoogle Scholar
  54. Lloyd, J.E. (1984a) On deception, a way of all flesh, and firefly signaling and systematics. Oxford Surveys Evol. Biol. 1, 49–84.Google Scholar
  55. Lloyd, J.E. (1984b) Evolution of a firefly flash code. Florida Entomologist 67, 368–376.CrossRefGoogle Scholar
  56. Lloyd, J.E. and Wing, S.R. (1993) Nocturnal aerial predation of fireflies by light-seeking firefles. Science 222, 634–635.CrossRefGoogle Scholar
  57. Lyzen, R. and Wegrzyn, G. (2005) Sensitivity of dark mutants of various strains of luminescent bacteria to reactive oxygen species. Arch. Microbiol. 183, 203–208.PubMedCrossRefGoogle Scholar
  58. McFall-Ngai, M. and Morin, J.G. (1991) Camouflage by disruptive illumination in leiognathids, a family of shallow-water, bioluminescent fishes. J. Exp. Biol. 158, 119–137.Google Scholar
  59. McElroy, W.D. and Seliger, H.H. (1962) Origin and evolution of bioluminescence. In: M. Kasha and B. Pullman (Eds.), Horizons in biochemistry, pp. 91–101. Academic Press, New York.Google Scholar
  60. Mensinger, A.F. and Case, J.F. (1992) Dinoflagellate luminescence increases the susceptibility of zooplankton to teleost predation. Mar. Biol. 112, 207–210.CrossRefGoogle Scholar
  61. Moiseff, A. and Copeland, J. (2000) A new type of synchronied flashing in a North American firefly. J. Insect Behav. 13, 597–612.CrossRefGoogle Scholar
  62. Nakamura, H., Kishi, Y., Shimomura, O., Morse, D. and Hastings, J.W. (1989) Structure of dinoflagellate luciferin and its enzymatic and non-enzymatic air-oxidation products. J. Am. Chem. Soc. 111, 7607–7611.CrossRefGoogle Scholar
  63. O’Kane, D.J., Lingle, W.L., Porter, D. and Wambler, J.E. (1990a) Localization of bioluminescent tissues during basidiocarp development in Panellus stypticus. Mycologia 82, 595–606Google Scholar
  64. O’Kane, D.J., Lingle, W.L., Porter, D. and Wambler, J.E. (1990b) Spectral analysis of bioluminescence of Panellus stypticus. Mycologia 82, 607–616.Google Scholar
  65. Partridge, J.C. and Douglas, R.H. (1995) Far-red sensitivity of dragon fish. Nature 375, 21–22.CrossRefGoogle Scholar
  66. Pèrez-Bueno, M.L., Ciscato, M., vandeVen, M., Garcìa-Luque, I., Valcke, R. and Baròn, M. (2006) Imaging viral infection: studies on Nicotiana benthamiana plants infected with the pepper mild mottle tobamovirus. Photosynthesis Res. 90, 111–123.CrossRefGoogle Scholar
  67. Rees, J.-F., De Wergifosse, B., Noiset, O., Dubuisson, M., Janssens, B. and Thompson, E.M. (1998) The origins of marine bioluminescence: Turning oxygen defence mechanisms into deep-sea communication tools. J. Exp. Biol. 201, 1211–1221.PubMedGoogle Scholar
  68. Seliger, H.H. and McElroy, W.D. (1965) Light: Physical and biological action. Academic Press, New York.Google Scholar
  69. Shimomura, O. (1979) Structure of the chromophore of Aequorea green fluorescent protein. FEBS Lett. 1054, 220–222.CrossRefGoogle Scholar
  70. Shimomura, O. (1980) Chlorophyll-derived bile pigment in bioluminescent euphausiids. FEBS Lett. 116, 203–206.CrossRefGoogle Scholar
  71. Shimomura, O. (1989) Chemiluminescence of panal (a sesquiterpene) isolated from the luminous fungus Panellus stipticus. Photochem. Photobiol. 49, 355–360.Google Scholar
  72. Shimomura, O. (1992) The role of superoxide dismutase in regulating the light emission of luminescent fungi. J. Exp. Bot. 43, 1519–1525.CrossRefGoogle Scholar
  73. Strehler, B. and Arnold, W. (1951) Light production in green plants. J. Gen. Physiol. 34, 809–820.PubMedCrossRefGoogle Scholar
  74. Sundbom, E. and Björn, L.O. (1977) Phytoluminography: Imaging plants by delayed light emission. Physiol. Plant. 40, 39–41.CrossRefGoogle Scholar
  75. Swift, S., Throup, J., Bycroft, B., Williams, P. and Stewart, G. (1998) Quorum sensing: bacterial cell-cell signaling from bioluminescence to pathogenicity. In: S.J.W. Busby, C.M. Thomas, and N.L. Brown (Eds.), Molecular microbiology, pp. 185–207. Springer, Berlin.Google Scholar
  76. Szpilewska, H., Czyz, A. and Wegrzyn, G. (2003) experimental evidence for the physiological role of bacterial luciferase in the protection of cells against oxidative stress. Curr. Microbiol. 47, 379–382.PubMedCrossRefGoogle Scholar
  77. Tett, P.B. and Kelly, M.G. (1973) Marine bioluminescence. Oceanogr. Mar. Ann. Rev. 11, 89–173.Google Scholar
  78. Trimmer, B.A., Aprille, J.R., Dudzinski, D.M., Lagace, C.J., Lewis, S.M., Michel. T., Qazi, S. and Zayas, R.M. (2001) Nitric oxide and the control of firefly flashing. Science 292, 2486–2488.PubMedCrossRefGoogle Scholar
  79. Tyystjärvi, E. and Vass, I. (2004) Light emission as a probe of charge separation and recombination in the photosynthetic apparatus: relation of prompt fluorescence to delayed light emission and thermoluminescence. In: G.C. Papageorgiou and Govindjee (Eds.), Chlorophyll a fluorescence: A signature of photosynthesis. Advances in photosynthesis and respiration (Govindjee, series and vol. Ed.), vol. 19, pp. 363–388. Springer, Dordrecht.Google Scholar
  80. Ulitzur, S. and Dunlap, P.V. (1995) Regulatory circuitry controlling luminescence autoinduction in Vibrio fischeri. Photochem. Photobiol. 62, 625–632.Google Scholar
  81. Underwood, T.J., Tallamy, D.W., and Pesek, J.D. (1997) Bioluminescence in firefly larvae: A test of the aposematic display hypothesis (Coleoptera:Lampyridae). J. Insect Behavior 10, 365–370.CrossRefGoogle Scholar
  82. Vencl, F.V., Blasko, B.J. and Carlson, A.D. (1994) Flash behavior of female Photuris versicolor fireflies (Coleoptera: Lampyridae) in simulated courtship and preadatory dialogs. J. Insect Behav. 7, 843–858.CrossRefGoogle Scholar
  83. Vencl, F.V. and Carlson, A.D. (1998) Proximate mechanisms of sexual selection in the firefly Photinus pyralis (Coleoptera: Lampyridae). J. Insect Behav. 11, 191–207.CrossRefGoogle Scholar
  84. Viviani, V.R. and Bechara, E.J.H. (1997) Bioluminescence and biological aspects of Brazilian railroad worms (Coleoptera: Phengodidae). Ann. Entomol. Soc. Am. 90, 389–398.Google Scholar
  85. Viviani, V.R. and Ohmiya, Y. (2000) Bioluminescence and color determinants of Phrixothrix railroad worm luciferases: Chimeric luciferases, site-directed mutagenesis of Arg 215 and guanidine effect. Photochem. Photobiol. 72, 267–271.PubMedCrossRefGoogle Scholar
  86. Walker, E., Bose, J.L. and Stabb, E.V. (2006) Photolyase confers resistance to UV light but does not contribute to the symbiotic benefit of bioluminescence in Vibrio fischeri ES114. Appl. Environm. Microbiol. 72, 6600–6606.CrossRefGoogle Scholar
  87. Widder, E.A., Latz, M.I., Herring, P.J. and Case, J.F. (1984) Far red bioluminescence from two deep-sea fishes. Science 225, 512–513.PubMedCrossRefGoogle Scholar
  88. Wilson, T. and Hastings, J.W. (1998) Bioluminescence. Annu. Rev. Cell Dev. Biol. 14, 197–230.PubMedCrossRefGoogle Scholar
  89. Wood, N.T., Allan, A.C., Haley, A., Viri-Moussaid, M. and Trewavas, A.J. (2000) The characteristics of differential calcium signalling in tobacco guard cells. Plant J. 24, 335–344.PubMedCrossRefGoogle Scholar
  90. Wood, N.T. Haley, A., Viri-Moussaid, M., Johnson, C.H., van der Luit, A.H. and Trewavas, A.J. (2001) The calcium rhythms of different cell types oscillate with different circadian phases. Plant Physiol. 125, 787–796PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Lars Olof Björn
  • Helen Ghiradella

There are no affiliations available

Personalised recommendations