Skip to main content

Light Treatment in Medicine

  • Chapter
Photobiology

Abstract

The beneficial uses of light have been noted and observed since ancient times; it is only since the last century that these beneficial effects have also been studied and explored from a scientific point of view leading to more specific applications as well as a better understanding of the mechanisms of action, both chemical and biological, responsible for the observed effects. Among the fields of medicine that have taken it upon themselves to deal with the therapeutic effects of light, dermatology is considered to be a major representative. As examples for the medical uses of light we concentrate on the following: phototherapy (use of UV-A and UV-B radiation without added photosensitizer), photochemotherapy, extracorporeal photochemotherapy (both of which combine photosensitizers and ultraviolet radiation), and photodynamic therapy (using photosensitizers activated by light in the red or blue range). Some other very widespread medicinal uses of light are briefly covered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackroyd, A., Kelty, C., Brown, N. and Reed, M. (2001) The history of photodetection and photodynamic therapy. Photochem. Photobiol. 74, 656–669.

    Article  PubMed  CAS  Google Scholar 

  • Allison, R.R., Sibata, C., Downiea, G.H. and Cuenca, R.E. (2006) Photodynamic therapy of the intact breast. Photodiagn. Photodynamic Ther. 3, 139–146.

    Article  Google Scholar 

  • Ayaru, L., Stephen G. Bown, S. and Pereira, S.P. (2004) Photodynamic therapy for pancreatic carcinoma: experimental and clinical studies. Photodiagn. Photodynamic Ther. 1, 145–155.

    CAS  Google Scholar 

  • Averbeck, D. (1999) Recent advances in psoralen phototoxicity mechanism. Photochem, Photobiol. 50, 859–882.

    Google Scholar 

  • Barber, P. Deiraniya, A.K. and Allen, E. (2004) Photodynamic therapy for tracheal thyroid metastasis. Photodiagn. Photodynamic Ther. 1, 99–102.

    Article  Google Scholar 

  • Bisland, S.K. and Burch, S. (2006) Photodynamic therapy of diseased bone. Photodiagn. Photodynamic Ther. 3, 147–155.

    Article  CAS  Google Scholar 

  • Bladon J., and Taylor P.C. (2006) Extracorporeal photopheresis: a focus on apoptosis and cytokines. J. Dermatol. Sci. 43, 85–94.

    Article  PubMed  CAS  Google Scholar 

  • Blum, H.F. (1941) Photodynamic action and diseases caused by light. Reinhold, New York.

    Google Scholar 

  • Bublik, M., Head, C., Benharash, P., Paiva, M., Eshraghi, A., Kim, T. and Saxton, R. (2006) Hypericin and pulsed laser therapy of squamous cell cancer in vitro. Photomed. Laser Surgery 24, 341–347.

    Article  CAS  Google Scholar 

  • Castano, A.P., Demidova, T.N. and Hamblin, M.R. (2005) Mechanisms in photodynamic therapy: part two—cellular signaling, cell metabolism and modes of cell death. Photodiagn. Photodynamic Ther. 2, 1–23.

    Article  CAS  Google Scholar 

  • Chang, Y.S., Hwang, J.H., Kwon, H. N., Choi, C.W., Ko, S.Y., Park, W.S., Shin., S.M and Lee, M. (2005) In vitro and in vivo efficacy of new blue light emitting diode phototherapy compared to conventional halogen quartz phototherapy for neonatal jaundice. J. Korean Med. Sci. 20, 61–64.

    Article  PubMed  Google Scholar 

  • Cohanoschi, I., Lorenzo Echeverrì, L., Florencio E. and Hernàndez, F.E. (2006) Three-photon absorption measurements in hematoporphyrin IX: Ground-breaking opportunities in deep photodynamic therapy. Chem. Phys. Lett. 419, 33–36.

    Article  CAS  Google Scholar 

  • Dall’Acqua, F. and Martelli, P. (1991) Photosensitizing action of furocoumarins on membrane components and consequent intracellular events. J. Photochem. Photobiol. B: Biol. 8, 235–254.

    Article  CAS  Google Scholar 

  • Dela Cruz, J.M., Pastirk, I., Matthew Comstock, M. and Dantus, M. (2004) Multiphoton intrapulse interference 8. Coherent control through scattering tissue. Optics Express 12, 4144–4149.

    Article  PubMed  Google Scholar 

  • Dhallevin, M.A. (1995) Long-term results of whole bladder wall photodynamic therapy for carcinoma in-situ of the bladder. Urology 45, 763.

    Article  Google Scholar 

  • Dougherty, T.J., Gomer, C.J., Henderson, B.W., Jori, G., Kessel, D., Korbelik, M., Moan, J., and Peng, Q. (1998) Photodynamic therapy. J. Natl Cancer Inst. 90, 889–905.

    Article  PubMed  CAS  Google Scholar 

  • Downes, A. and Blunt, J.P. (1877) Researches on the effect of light on bacteria and other organisms. Proc. R. Soc. Lond. 26, 488–500.

    Article  Google Scholar 

  • Downes, A. and Blunt, T.P. (1878) On the influence of light upon protoplasm. Proc. Roy. Soc. Lond. 28, 199–212.

    Article  Google Scholar 

  • Duvic M., Hester J.P. and Lemark N.A. (1996) Photopheresis therapy for cutaneous T-cell lymphoma. J. Am. Acad. Dermatol. 35, 573–579.

    Article  PubMed  CAS  Google Scholar 

  • Eljamel, S.J. (2004) Photodynamic assisted surgical resection and treatment of malignant brain tumours: technique, technology and clinical application. Photodiagn. Photodynamic Ther. 1, 93–98.

    Article  Google Scholar 

  • Eljamel, M.S. (2004) Brain PDD and PDT unlocking the mystery of malignant gliomas. Photodiagn. Photodynamic Ther. 1, 303–310.

    Article  Google Scholar 

  • Farr, P.M. and Diffey, B.L. (2006) Action spectrum for healing of psoriasis. Photodermatol. Photoimmunol. Photomed. 22, 52–52.

    Article  CAS  Google Scholar 

  • Fitzpatrick, T.B. and Pathak, M.A. (1959) Historical aspects of methoxsalen and other furocoumarins. J. Invest. Dermatol. 31, 229–231.

    Article  Google Scholar 

  • Goldinger, S.M., Dummer, R., Schmid, P., Prinz Vavricka, M., Burg, G. and Läuchli, S. (2005) Excimer laser versus narrow-band UVB (311 nm) in the treatment of psoriasis vulgaris. Dermatology 213, 134–139.

    Article  Google Scholar 

  • Grabbe J.,Welker P., Humke S., Grewe M., Schopf, E., Henz, B.M. and Krutmann, J. (1996) High-dose UVA-1 therapy, but not UVA/UVB therapy, decreases Ig E binding cells in lesional skin of patients with atopic eczema. J. Invest. Dermatol. 107, 419–423.

    Article  PubMed  CAS  Google Scholar 

  • Granick, S. and Mauzerall, D. (1957) Porphyrin biosynthesis in erythrocytes ii: enzymes converting 5-aminolevulinic acid to coproporphyrinogen. J. Biol. Chem. 232, 1119–1140.

    Google Scholar 

  • Grewe M., Gyufko K., and Krutmann J. (1995) Interleukin-10 production by cultured human keratinocytes: regulation by ultraviolet B and ultraviolet A1 radiation. J. Invest. Dermatol. 104, 3–6.

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb, S.L., Wolfe J.T., Fox, F.E.. DeNardo, B.J., Macey, W.H., Bromley, P.G., Stuart R. Lessin, S.R. and Rook, A.H. (1996) Treatment of cutaneous T-cell lymphoma with extracorporal photopheresis monotherapy and in combination with recombinant interferon alfa: A10-year experience at a single institution. J. Am. Acad. Dermatol. 35, 946–957.

    Article  PubMed  CAS  Google Scholar 

  • Hobday, R.A. (1997) Sunlight therapy and solar architecture. Medical History 42, 455–472.

    Google Scholar 

  • Juzeniene, A., Juzenas, P., Ma, L.W., Iani, V. and Moan, J. (2004) Effectiveness of different light sources for 5-aminolevulinic acid photodynamic therapy. Lasers Med. Sci. 19, 139–149.

    Article  PubMed  Google Scholar 

  • Juzeniene, A., Nielsen, K.P. and Moan, J. (2006) Biophysical aspects of photodynamic therapy. J. Environm. Pathol. Toxicol. Oncol. 25, 7–28.

    CAS  Google Scholar 

  • Kalka, K., Merk, H., and Mukhtar, H. (2000) Photodynamic therapy in dermatology. J. Am. Acad. Dermatol. 42, 389–413.

    Article  PubMed  CAS  Google Scholar 

  • Karotki, A., Khurana, M., Lepock, J.R. and Wilson, B.C. (2006) Simultaneous two-photon excitation of Photofrin in relation to photodynamic therapy. Photochem. Photobiol. 82, 443–452.

    Article  PubMed  CAS  Google Scholar 

  • Karu, T.I. and Kolyakov, S.F. (2005) Exact action spectra for cellular responses relevant to phototherapy. Photomed. Laser Surgery 23, 355–361.

    Article  CAS  Google Scholar 

  • Kick, G., Messer, G. and Plewig, G. (1996) Historische Entwicklung der photodynamischen Therapie. Hautarzt 8, 644–649.

    Article  Google Scholar 

  • Knobler, R.M., Hönigsmann, H. and Edelson, R.L. (1988) Psoralen phototherapies. In: F.P. Gasparro (Ed.), Psoralen DNA photobiology, Vol. II. CRC Press, Boca Raton, FL, pp. 117–143.

    Google Scholar 

  • Knobler R. and Girardi M. (2001) Extracorporeal photochemoimmunotherapy in cutaneous T cell lymphomas. Ann. NY Acad. Sci. 941, 123–138.

    Article  PubMed  CAS  Google Scholar 

  • Knobler R., French L., Kim Y., Bisaccia, E., Graninger, W., Nahavandi, H., Strobl, F.J., Keystone, E., Mehlmauer, M., Rook, A.H. and Braverman, I. (2005) A randomized, double blind, placebo- controlled trial of photopheresis in systemic sclerosis. J. Am. Dermatol. 54, 793–799.

    Article  Google Scholar 

  • Knox, C.N., Land, E.J. and Truscott, T.G. (1986) Singlet oxygen generation by furocoumarin triplet states. 1. Linear furocoumarins (psoralens). Photochem. Photobiol. 43, 359–363.

    PubMed  CAS  Google Scholar 

  • Kuhn, M., Wolber, R. and Kolbe, L., Schnorr, O. and Sies, H. (2006) Solar-simulated radiation induces secretion of IL-6 and production of isoprostanes in human skin in vivo. Arch. Dermatol. Res. 297, 477–479.

    Article  PubMed  CAS  Google Scholar 

  • Li-Weber, M., Treiber, M.K., Giaisi, M., Palfi, K., Stephan, N., Parg, S., and Krammer, P.H. (2005) Ultraviolet irradiation suppresses T cell activation via blocking TCR-mediated ERK and NF-kappa B signaling pathways. J. Immunol. 175, 2132–2143.

    PubMed  CAS  Google Scholar 

  • Lubart, R., Lavi, I.R. and Friedmann, H. (2006) Photochemistry and photobiology of light absorption by living cells. Photomed. Laser Surgery 24, 179–185.

    Article  CAS  Google Scholar 

  • MacLaughlin, J.A., Anderson, R.R. and Holick, M.F. (1982) Spectral character of sunlight modulates photosynthesis of previtamin D3 and its photoisomers. Science 216, 1001–1003.

    Article  PubMed  CAS  Google Scholar 

  • Maeda A., Schwarz A., Kernebeck K. and Schwarz, T. (2005) Intravenous infusion of apoptotic cells by photopheresis induces antigen-specific regulatory T cells. J. Immunol. 174, 5968–5976.

    PubMed  CAS  Google Scholar 

  • Maunoury, V., Mordon, S., Bulois, P., Mirabel, X., B. Hecquet, B, and Mariette, C. (2005) Photodynamic therapy for early oesophageal cancer. Digestive Liver Dis. 37, 491–495.

    Article  CAS  Google Scholar 

  • Mitton, D., Claydon, P. and Ackroyd, R. (2004) Photodynamic therapy and photodiagnosis for Barrett’s oesophagus and early oesophageal carcinoma. Photodiagn. Photodynamic Ther. 1, 319–334.

    Article  CAS  Google Scholar 

  • Moan, J. and Peng, Q. (2003) An outline of the hundred-year history of PDT. Anticancer Res. 23, 3591–3600.

    PubMed  Google Scholar 

  • Moghissi, K., Dixon, K., Thorpea, J.A.C., Oxtoby, C. and Stringer, M.R. (2004) Photodynamic therapy (PDT) for lung cancer: the Yorkshire Laser Centre experience. Photodiagn. Photodyn. Therapy 1, 253–262.

    Article  Google Scholar 

  • Moghissi, K and Dixon, K. (2005) Photodynamic therapy in the management of malignant pleural mesothelioma: A review. Photodiagn. Photodynamic Therapy 2, 135–147.

    Article  CAS  Google Scholar 

  • Mozolowski, W. (1939) Jedrzej Sniadecki (1768-1838) on the cure of rickets. Nature 143, 121.

    Google Scholar 

  • Parrish, J.A., Jaenicke, K.F. (1981) Action spectrum for phototherapy of psoriasis. J. Invest. Dermatol. 76, 359–362.

    Article  PubMed  CAS  Google Scholar 

  • Pass, H.I., DeLaney, T.F., Tochner, Z., Smith, P.E., Temeck, B.K., Pogrebniak, H.W., Kranda, K.C., Russo, A. Friauf, W., Cole, J.W., Mitchell, J.B. and Thomas, G. (1994) Intrapleural photodynamic therapy — results of a phase-1 trial. Ann. Surgical Oncol. 1, 28–37.

    Article  CAS  Google Scholar 

  • Perrit, D. (2006) Potential mechanisms of photopheresis in hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 12, 7–12.

    Article  CAS  Google Scholar 

  • Rauschmann, M.A., Eberhardt, C., Patzel, U. and Thomann, K.-D. (2003) Das rachitische X-Bein im Kindesalter (Rachitic knock knees in children). Orthopäde 32, 101–109.

    Article  PubMed  CAS  Google Scholar 

  • Redmond, R.W. and Gamlin, J.N. (1999) A compilation of singlet oxygen yields from biologically relevant molecules. Photochem. Photobiol. 70, 391–475.

    Article  PubMed  CAS  Google Scholar 

  • Ris, H.-B., Altermatt, H.J., Nachbur, B., Stewart, C.M., Qiang Wang, Q., Chung K. Lim, C.K. Bonnett, R., and Ulrich Althaus, U. (1996) Intraoperative photodynamic therapy with m-tetrahydroxyphenylchlorin for chest malignancies. Lasers Surg. Med. 18, 39–45.

    Article  PubMed  CAS  Google Scholar 

  • Roelandts, R. (2002) The history of phototherapy: Something new under the sun? J. Am. Acad. Dermatol. 46, 926–930.

    Article  PubMed  Google Scholar 

  • Schön, M.P. and Boehncke, W.-H. (2005) Psoriasis. N. Engl. J. Med. 352, 1899–1912.

    Google Scholar 

  • Seret, A., Piette, J., Jacobs, A. and Vandevorst, A. (1992) Singlet oxygen quantum yield of sulfur and selenium analogs of psoralen. Photochem. Photobiol. 56, 409–412.

    PubMed  CAS  Google Scholar 

  • Serrano-Pèrez, J.J., Luis Serrano-Andrès, L. and Merchàn, M. (2006) A theoretical insight into the photophysics of psoralen. J. Chem. Phys. 124, 124502 1–7.

    Google Scholar 

  • Sigmundsdottir, H., Johnston, A., Gudjonsson, J.E., and Valdimarsson, H. (2005) Narrowband-UVB irradiation decreases the production of pro-inflammatory cytokines by stimulated T cells. Arch. Derm. Res. 297, 39–42.

    Article  PubMed  CAS  Google Scholar 

  • Smith, K.C. (2005) Laser (and LED) therapy is phototherapy. Photomed- Laser Surg. 23, 78–80.

    Article  PubMed  Google Scholar 

  • Stavropoulos, N.E., Kim, A., Nseyo, U.U., Tsimaris, I., Chung, T.D., Miller, T.A., Redlak, M., Nseyo, U.O. and Skalkos, D. (2006) Hypericum perforatum L. extract—Novel photosensitizer against human bladder cancer cells. J. Photochem. Photobiol. B: Biology 84, 64–69.

    Google Scholar 

  • Tardivo, J.P., Del Giglio, A., Santos de Oliveira, C., Gabrielli, D.S., Couto Junqueira, H., Batista Tada, D., Severino, D., de Fàtima Turchiello, R., Mauricio, S. and Baptista, M.S. (2005) Methylene blue in photodynamic therapy: From basic mechanisms to clinical applications. Photodiagn. Photodynamic Ther. 2, 175–191.

    Article  CAS  Google Scholar 

  • Urbach, F., Forbes, P.D., Davies, R.E. and Berger, D. (1976) Cutaneous photobiology: Past, present and future. J. Invest. Dermatol. 67, 209–224.

    Article  PubMed  CAS  Google Scholar 

  • von Tappeiner, H. and Jodlbauer, A. (1994) Ãœber die Wirkung der photodynamischen (fluorescierenden) Stoffe auf Protozoen und Enzyme. Dtsch Arch Klin Med 80, 427–87.

    Google Scholar 

  • Vreman, H.J., Wong, R.J., Stevenson, D.K., Route, R.K., Reader, S.D., Fejer, M.M., Gale, R., and Seidman, D.S. (1998) Light-emitting diodes: A novel light-source for phototherapy. Pediatric Res. 44, 804–809.

    Article  CAS  Google Scholar 

  • Zeng, H., McWilliams, A. and Lam, S. (2004) Optical spectroscopy and imaging for early lung cancer detection: a review. Photodiagn. Photodynamic Ther. 1, 111–122.

    CAS  Google Scholar 

  • Zic J., Stricklin G.P., Greer, J.P., Kinney, M.C., Shyr, Y., Wilson, D.C. and King, L.E. (1996) Long-term follow-up of patients with cutaneous T-cell lymphoma treated with extracorporal photochemotherapy. J. Am. Acad. Dermatol., 35, 935–945

    Article  PubMed  CAS  Google Scholar 

  • Zietz, B. (2006) An Ultrafast Spectroscopic and Quantum-Chemical Study of the Photochemistry of Bilirubin. Doctoral Diss. UmeÃ¥ University. ISBN 91-7264-010-3. Abstract available at http://www.diva-portal.org/umu/theses/abstract.xsql?dbid=672&lang=sv

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jurkowitsch, T., Knobler, R. (2008). Light Treatment in Medicine. In: Björn, L.O. (eds) Photobiology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72655-7_22

Download citation

Publish with us

Policies and ethics