Photobiology pp 553-576 | Cite as

The Photobiology of Human Skin

  • Mary Norval


The phenotypes and functions of the cells that comprise the layers of the skin and the skin immune system are described first. The changes occurring in the skin during the induction and elicitation phases of contact hypersensitivity and delayed-type hypersensitivity are summarized as examples of cutaneous immune responses. The exposure of human skin to solar UV radiation can result in a number of effects, many with adverse health outcomes, and the mechanisms involved in each are explained in turn. Pigmentation can develop (immediate pigment darkening and delayed tanning), depending on the phototype of the individual. If the exposure is greater than the minimal erythema dose, sunburn occurs. The features of photoageing are found in chronically sun-exposed skin. Skin cancer, the most common form of cancer in fair-skinned subjects, is also associated with sun exposure, either cumulative or intermittent but intense. The two forms of nonmelanoma skin cancer are squamous cell cancer and basal cell cancer, while the third type of skin cancer, malignant melanoma, is less frequent but more dangerous. Solar UV radiation causes suppression of cell-mediated immune responses, and the implication of this downregulation for the effective control of skin tumors and infectious diseases are considered. Finally, the photodermatoses, which represent a diverse group of conditions linked to abnormal skin responses to UV and/or visible radiation, are described in brief.


Skin Cancer Basal Cell Carcinoma Xeroderma Pigmentosum Hairless Mouse Contact Hypersensitivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akgul, B., Cooke, J.C. and Storey, A. (2006) HPV-associated skin disease. J. Pathol. 208, 165–175.PubMedCrossRefGoogle Scholar
  2. Ateenyi-Agaba, C., Weiderpass, E., Smet, A., Dong, W., Dai, M., Kahwa, B., Wabinga, H., Katongole-Nbidde, E., Franceschi, S. and Tommasino, M. (2004) Epidermodysplasia verruciformis human papillomavirus types and carcinoma of the conjunctiva: a pilot study. Br. J. Cancer 90, 1777–1779.PubMedGoogle Scholar
  3. Barr, B.B., Benton, E.C., McLaren K., Bunney, H., Smith, I.W., Blessing, K. and Hunter, J.A.A. (1989) Human papillomavirus infection and skin cancer in renal allograft recipients. Lancet 1, 124–129.PubMedCrossRefGoogle Scholar
  4. Barratt, M.D., Castell, J.V., Miranda, M.A. and Langowski, J.J. (2000) Development of an expert system rulebase for the prospective identification of photoallergens. J. Photochem. Photobiol. B: Biol. 58, 54–61.CrossRefGoogle Scholar
  5. Berg, R.J., van Kranen, H.J., Rebel, H.G., de Vries, A., van Voten, W.A., van Kreijl, C.F., van der Leun, J.C. and de Gruijl, F.R. (1996) Early p53 alterations in mouse skin carcinogenesis by UVB radiation: immunohistochemical detection of mutant p53 protein in clusters of preneoplastic epidermal cells. Proc. Natl Acad. Sci. USA 93, 274–278.PubMedCrossRefGoogle Scholar
  6. Bos, J.D. (2005) Skin immune system (SIS), 3rd ed. CRC Press, New York.Google Scholar
  7. Cooke, A. and Johnson, B.E. (1978) Dose response, wavelength dependence and rate of excision of ultraviolet radiation-induced pyrimidine dimers in mouse skin DNA. Biochim. Biophys. Acta 517, 24–30.PubMedGoogle Scholar
  8. Copeland, N.E., Hanke, C.W. and Michalak, J.A. (1997) The molecular basis of xeroderma pigmentosum. Dermatol. Surg. 23, 447–455.PubMedCrossRefGoogle Scholar
  9. Daya-Grosjean, L. and Sarasin, A. (2000) UV-specific mutations of the human patched gene in basal carcinomas from normal individuals and xeroderma pigmentosus patients. Mutat. Res. 450, 193–199.PubMedGoogle Scholar
  10. De Fabo, E.C. and Noonan, F.P. (1983) Mechanism of immune suppression by ultraviolet irradiation in vivo. I. Evidence for the eistence of a unique photoreceptor in skin and its role in photoimmunology. J. Exp. Med. 157, 84–98.CrossRefGoogle Scholar
  11. De Fabo, E.C., Noonan, F.P., Fears, T. and Merlino, G. (2004) Ultraviolet B but not ultraviolet A radiation initiates melanoma. Cancer Res. 64, 6372–6376.PubMedCrossRefGoogle Scholar
  12. de Gruijl, F.R., Sterenborg, H.J., Forbes, P.D., Davies, R.E., Cole, C., Kelfkens, G., van Weelden, H., Slaper, H and van der Leun, J.C. (1993) Wavelength dependence of skin cancer induction by ultraviolet irradiation of albino hairless mice. Cancer Res. 53, 53–60.PubMedGoogle Scholar
  13. de Gruijl, F.R. and van der Leun, J.C. (1982) Systemic influence of pre-irradiation of a limited area on UV-tumorigenesis. Photochem. Photobiol. 35, 379–383.Google Scholar
  14. De Vries, E., Louwman, M., Bastiaens, M., de Gruijl, F and Coebergh, J.W. (2004) Rapid and continuous increases in incidence rates of basal cell carcinoma in the southeast Netherlands since 1973. J. Invest. Dermatol. 123, 634–638.PubMedCrossRefGoogle Scholar
  15. De Vries, E., van de Poll-Franse, L.V., Louwman, W.J., de Gruijl, F.R. and Coebergh, J.W.W. (2005) Prediction of skin cancer incidence in the Netherlands up to 2015. Br. J. Dermatol. 152, 481–488.PubMedCrossRefGoogle Scholar
  16. Diffey, B.L. (2002) Sources and measurement of ultraviolet radiation. Methods 28, 4–13.PubMedCrossRefGoogle Scholar
  17. Diffey, B.L. (2004) The future incidence of cutaneous melanoma within the UK. Br. J. Dermatol. 151, 868–872.PubMedCrossRefGoogle Scholar
  18. Duthie, M.S., Kimber, I. and Norval M. (1999) The effects of ultraviolet radiation on the human immune system. Br. J. Dermatol. 140, 995–1009.PubMedCrossRefGoogle Scholar
  19. Elwood, J.M. and Jopson, J. (1997) Melanoma and sun exposure: an overview of published studies. Int. J. Cancer, 73, 198–203.PubMedCrossRefGoogle Scholar
  20. English, D.R., Kricker, A., Heenan, P.J., Randell, P.L., Winter, M.G. and Armstrong, B.K. (1997) Incidence of non-melanocytic skin cancer in Geraldton, Western Australia. Int. J. Cancer, 73, 629–633.PubMedCrossRefGoogle Scholar
  21. Fisher, M.S. and Kripke, M.L. (1977) Systemic alteration induced in mice by ultraviolet light irradiation and its relationship to ultraviolet carcinogenesis. Proc. Natl Acad. Sci USA 74, 1688–1692.PubMedCrossRefGoogle Scholar
  22. Fisher, G.J., Wang, Z.Q., Datta, S.C., Varani, J., Kang, S. and Vourhees, J.J. (1997) Pathophysiology of premature skin ageing induced by ultraviolet light. N. Engl. J. Med. 337, 1419–1428.PubMedCrossRefGoogle Scholar
  23. Fitzpatrick, T.B. (1988) The validity and practicality of sun-reactive skin types I through VI. Arch. Dermatol. 124, 869–871.PubMedCrossRefGoogle Scholar
  24. Garssen, J., Goettsch, W., de Gruijl, F., Slob, W and Van Loveren, H. (1996) Risk assessment of UVB effects on resistance to infectious diseases. Photochem. Photobiol. 64, 269–274.PubMedGoogle Scholar
  25. Gibbs, N.K., Norval, M., Traynor, N.J., Wolf, M., Johnson, B.E. and Crosby, J. (1993) Action spectra for the trans to cis photoisomerisation of urocanic acid in vitro and in mouse skin. Photochem. Photobiol. 57, 584–590.PubMedGoogle Scholar
  26. Gilchrest, B.A., Soter, N.A., Stoff, J.S. and Mihm, M.C. (1981) The human sunburn reaction: Histologic and biochemical studies. J. Am. Acad. Dermatol. 5, 411–422.PubMedGoogle Scholar
  27. Green, A., Williams, G., Neale R., Hart, V., Leslie, D., Parsons, P., Marks, G.C., Gaffney, P., Battistutta, D., Frost, C., Lang, C. and Russell, A. (1999) Daily sunscreen application and betacarotene supplementation in prevention of basal-cell and squamous-cell carcinoma of the skin: a randomised controlled trial. Lancet 354, 723–729.PubMedCrossRefGoogle Scholar
  28. Hacker, E., Irwin, N., Muller, H.K., Powell, M.B., Kay, G., Hayward, N. and Walker, G. (2005) Neonatal ultraviolet radiation exposure is critical for malignant melanoma induction in pigmented Tpras transgenic mice. J. Invest. Dermatol. 125, 1074–1077.PubMedCrossRefGoogle Scholar
  29. Halliday, K.E. and Norval, M. (1997) The effects of ultraviolet radiation on infectious diseases. Rev. Med. Microbiol. 8, 179–188.Google Scholar
  30. Hartevelt, M.M., Bouwes Bavinck, J.N., Kootte A.M., Vermeer, B-J. and Vandenbroucke, J.P. (1990) Incidence of skin cancer after renal transplantation in the Netherlands. Transplantation, 49, 506–509.PubMedCrossRefGoogle Scholar
  31. Ichihashi, M., Nagai, H. and Matsunaga, K. (2004) Sunlight is an important causative factor of recurrent herpes simplex. Cutis 74 (Suppl. 5), 14–18.PubMedGoogle Scholar
  32. Irwin, C., Barnes, A., Veres, D. and Kaidbey, K. (1993) An ultraviolet action spectrum for immediate pigment darkening. Photochem. Photobiol. 57, 504–507.PubMedGoogle Scholar
  33. Iversen, T. and Tretli, S. (1999) Trends for invasive squamous cell neoplasia of the skin in Norway. Br. J. Cancer, 81, 528–531.PubMedCrossRefGoogle Scholar
  34. Jans, J., Schul, W., Sert, Y.G., Rijksen, Y., Rebel, H., Eker, A.P., Nakajima, S., van Steeg, H., de Gruijl, F.R., Yasui, A., Hoeijmakers, J.H. and van der Horst, G.T. (2005) Powerful skin cancer protection by a CPD-photolyase transgene. Curr. Biol. 15, 105–115.PubMedCrossRefGoogle Scholar
  35. Kelly, D.A., Young, A.R., McGregor, J.M., Seed, P.T., Potten, C.S. and Walker, S.L. (2000) Sensitivity to sunburn is associated with susceptibility to ultraviolet radiation-induced suppression of cutaneous cell-mediated immunity. J. Exp. Med. 191, 561–566.PubMedCrossRefGoogle Scholar
  36. Kraemer, K.H. Lee, M.M. and Scotto, J. (1987) Xeroderma pigmentosum. Cutaneous, ocular, and neurologic abnormalities in 830 published cases. Arch. Dermatol. 123, 241–250.PubMedCrossRefGoogle Scholar
  37. Kramata, P., Lu, Y.P., Lou, Y.R., Singh, R.N., Kwon, S.M. and Conney, A.H. (2005) Patches of mutant p53-immunoreactive epidermal cells induced by chronic UVB irradiation harbor the same p53 mutations as squamous cell carcinomas in the skin of hairless SKH-1 mice. Cancer Res. 65, 3577–3585.PubMedCrossRefGoogle Scholar
  38. Kricker, A., Armstrong B.K. and English, D.R. (1994) Sun exposure and non-melanocytic skin cancer. Cancer Causes Control 5, 367–392.PubMedCrossRefGoogle Scholar
  39. Kricker, A., Armstrong, B.K., English, D.R. and Heenan, P.J. (1995) Does intermittent sun exposure cause basal cell carcinoma? A case-control study in Western Australia. Int. J. Cancer 60, 489–494.PubMedCrossRefGoogle Scholar
  40. Kripke, M.L. (1981) Immunologic mechanisms in UV radiation carcinogenesis. Adv. Cancer Res. 34, 69–106.PubMedCrossRefGoogle Scholar
  41. Lavker, R.M. and Kligman, A.M. (1988) Chronic heliodermatitis: a morphologic evaluation of chronic actinic dermal damage with emphasis on the role of mast cells. J. Invest. Dermatol. 90, 325–330.PubMedCrossRefGoogle Scholar
  42. Ley, R.D. (1997) Ultraviolet radiation A-induced precursors of cutaneous melanoma in Monodelphus domestica. Cancer Res. 57, 3682–3684.PubMedGoogle Scholar
  43. Loiacono, C.M., Taus, N.S. and Mitchell, WJ. (2003) The herpes simplex type 1 ICP0 promoter is activated by viral reactivation stimuli in trigeminal ganglia neurons of transgenic mice. J. Neurovirol. 9, 336–345.PubMedCrossRefGoogle Scholar
  44. MacLaughlin, J.A., Anderson, R.R. and Holick, M.F. (1982) Spectral character of sunlight modulates photosynthesis of previtamin D3 and its photisomers in human skin. Science 216, 1001–1003.PubMedCrossRefGoogle Scholar
  45. McDermid, I. (2005) Cancer incidence projections Australia 2002–2011. Australian Institute of Health and Welfare, Australasian Association of Cancer Registries and the National Cancer Strategies Group, Report No. 30, Canberra, Australia, p. 166.Google Scholar
  46. McKinlay, A.F. and Diffey, B.L. (1987) A reference action spectrum for ultraviolet induced erythema in humans skin. In: W.F. Passhier and B.F. Bosnjakovic (Eds.), Human exposure to ultraviolet radiation: Risks and regulation, pp. 45–52. Elsevier, Amsterdam.Google Scholar
  47. McLoone, P., Simics, E., Barton, A., Norval, M. and Gibbs, N.K. (2005) An action spectrum for the production of cis-urocanic acid in human skin. J. Invest Dermatol. 125, 1071–1074.CrossRefGoogle Scholar
  48. Mohammad, T., Morrison, H. and HogenEsch, H. (1999) Urocanic acid photochemistry and photobiology. Photochem. Photobiol. 69, 115–135.PubMedCrossRefGoogle Scholar
  49. Noonan, F.P., Bucana, C., Sauder, D.N. and De Fabo, E.C. (1984) Mechanism of systemic immune suppression by UV radiation in vivo. II. The UV effects on number and morphology of epidermal Langerhans cells and the UV-induced suppression of contact hypersensitivity have different wavelength dependencies. J. Immunol. 132, 2408–2416.PubMedGoogle Scholar
  50. Noonan, F.P., Recio, J.A., Takayama, H., Duray, P., Anver, M.R., Rish, W.L., De Fabo, E.C. and Merlino, G. (2001) Neonatal sunburn and melanoma in mice. Nature 413, 271–272.PubMedCrossRefGoogle Scholar
  51. Novak, Z., Berces, A., Ronto, G., Pallinger, E., Dobozy, A and Kemeny, L. (2004) Efficacy of different UV-emitting light sources in the induction of T-cell apoptosis. Photochem. Photobiol. 79, 434–439.PubMedCrossRefGoogle Scholar
  52. Parrish, J.A., Jaenicke, K.F. and Anderson, R.R. (1982) Erythemas and melanogenesis action spectra of normal human skin. Photochem. Photobiol. 36, 187–191.PubMedGoogle Scholar
  53. Rebel, H., Kram, N., Westerman, A., Banus, S., van Kranedn, H.J. and de Gruijl, F.R. (2005) Relationship between UV-induced mutant p53 patches and skin tumors, analysed by mutation spectra and by induction kinetics in various DNA-repair-deficient mice. Carcinogenesis 26, 2123–2130.PubMedCrossRefGoogle Scholar
  54. Reifenberger, J., Wolter, M., Knobbe, C.B., Kohler, B., Schonicke, A., Scharwachter, C., Kumar, K., Blaschke, B., Ruzicka, T. and Reifenberger, G. (2005) Somatic mutations in the PTCH, SMOH, SUFUH and TP53 genes in sporadic basal cell carcinomas. Br. J. Dermatol. 152, 43–51.PubMedCrossRefGoogle Scholar
  55. Rhodes, L.E. (2004) Polymorphic light eruption: does a neutrophil defect contribute to the pathogenesis? J. Invest. Dermatol. 123, xiii–xv.PubMedCrossRefGoogle Scholar
  56. Rosso, S., Zanetti, R., Pippioni, M. and Sancho-Garnier, H. (1998) Parallel risk assessment of melanoma and basal cell carcinoma: skin characteristics and sun exposure. Melanoma Res. 8, 573–583.PubMedCrossRefGoogle Scholar
  57. Sams, W.M. and Smith, J.G. (1961) The histochemistry of chronically sun damaged skin. J. Invest. Dermatol. 37, 447–452.PubMedGoogle Scholar
  58. Schade, N., Esser, C. and Krutmann, J. (2005) Ultraviolet B radiation-induced immunosuppression: molecular mechanisms and cellular alteration. Photochem. Photobiol. Sci. 4, 699–708.PubMedCrossRefGoogle Scholar
  59. Schmitt, D.A., Owen-Schaub, L. and Ullrich, S.E. (1995) Effect of IL-12 on immune suppression and suppressor cell induction by ultraviolet light. J. Immunol. 154, 5114–5120.PubMedGoogle Scholar
  60. Schwarz, T. (2005a) Mechanisms of UV-induced immunosuppression. Keino J. Med. 54, 165–171.CrossRefGoogle Scholar
  61. Schwarz, T. (2005b) Regulatory T cells induced by ultraviolet radiation. Int. Arch. Allergy Immunol. 137, 187–193.Google Scholar
  62. Schwarz, A., Maeda, A., Kernbeck, K., van Steeg, H., Beissert, S. and Schwarz, T. (2005) Prevention of UV radiation-induced immunosuppression by IL-12. J. Exp. Med. 201, 173–179.PubMedCrossRefGoogle Scholar
  63. Setlow, R.B., Woodhead, A.D. and Grist, E. (1989) Animal model for ultraviolet radiation-induced malignant melanoma. Proc. Natl Acad. Sci. USA 86, 8922–8926.Google Scholar
  64. Sleijffers, A., Garssen, J., de Gruijl, F.R., Boland, G.J., van Hattum, J., van Vloten and van Loveren, H. (2001) Influence of ultraviolet B exposure on immune responses following hepatitis B vaccination in human volunteers. J. Invest. Dermatol. 117, 1144–1150.PubMedCrossRefGoogle Scholar
  65. Sleijffers, A., Yucesoy, B., Kashon, M., Garssen, J., de Gruijl, F.R., Boland, G.J., van Hattum, J., Luster, M.I. and van Loveren, H. (2003) Cytokine polymorphisms play a role in susceptibility to ultraviolet B-induced modulation of immune responses after hepatitis B vaccination. J. Immunol. 170, 3423–3428.PubMedGoogle Scholar
  66. Sleijffers, A., Kammeyer, A., de Gruijl, F.R., Boland, G.J., van Hattum, van Vloten W.A., van Loveren, H., Teunissen, M.B. and Garssen, J. (2003) Epidermal cis-urocanic acid levels correlate with lower specific cellular immune responses after hepatitis B vaccination of ultraviolet B-exposed humans. Photochem. Photobiol. 77, 271–275.PubMedCrossRefGoogle Scholar
  67. Spruance, S.L. (1985) Pathogenesis of herpes simplex labialis: experimental induction of lesions with UV light. J. Clin. Microbiol. 22, 366–368.PubMedGoogle Scholar
  68. Streilein, J.W. (1978) Lymphocyte traffic, T cell malignancies and the skin. J. Invest. Dermatol. 71, 167–171.PubMedCrossRefGoogle Scholar
  69. Swerdlow, A.J., English, J., MacKie, R.M., O’Doherty, C.J., Hunter, J.A.A., Clark, J. and Hole, D. (1986) Benign melanocytic naevi as a risk factor for malignant melanoma. Br. Med. J. 292, 1555–1559.Google Scholar
  70. Takashima, A and Bergstresser, P.R. (1996) Impact of UVB radiation on the epidermal cytokine network. Photochem. Photobiol. 63, 397–400.PubMedGoogle Scholar
  71. Taylor, C.R., Stern, R., Leyden, J.J. and Gilchrest, B.A. (1990) Photoageing, photodamage and photoprotection. J. Am. Acad. Dermatol. 22, 1–15.PubMedGoogle Scholar
  72. Toews, G.B., Bergstresser, P.R. and Streilein, J.W. (1980) Epidermal Langerhans density determines whether contact hypersensitivity or unresponsiveness follows skin painting with DNFB. J. Immunol. 124, 445–453.PubMedGoogle Scholar
  73. Tsoureli-Nikita, E., Watson, R.E.B. and Griffiths, C.E.M. (2006) Photoageing: the darker side of the sun. Photochem. Photobiol. Sci. 5, 160–164.PubMedCrossRefGoogle Scholar
  74. Ullrich, S.E. (2005) Mechanisms underlying UV-induced immune suppression. Mutat. Res. 571, 185–205.PubMedGoogle Scholar
  75. Vink, A.A., Schreedhar, V., Roza, L., Krutmann, J. and Kripke, M.L. (1998) Cellular target of UVB-induced DNA damage resulting in local suppression of contact hypersensitivity. J. Photochem. Photobiol. B: Biol. 44, 107–111.CrossRefGoogle Scholar
  76. Vocanson, M., Hennino, A., Chavagnac, C., Saint-Mezard, P., Dubois, B., Kaiserlian, D. and Nicolas, J.-F. (2005) Contribution of CD4+ and CD8+ T-cells in contact hypersensitivity and allergic contact hypersensitivity. Expert Rev. Dermatol. 1, 75–86.Google Scholar
  77. Yarosh, D.B. (2004) DNA repair, immunosuppression, and skin cancer. Cutis, 74 (Suppl 5), 10–13.PubMedGoogle Scholar
  78. Young, A.R. (1986) The sunburn cell. Photodermatology 4, 127–134.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Mary Norval

There are no affiliations available

Personalised recommendations