Photobiology pp 531-552 | Cite as

Vitamin D: Photobiological and Ecological Aspects

  • Lars Olof Björn


Vitamin D was discovered as a result of its ability to cure rickets, but recently many other important functions for it in the human body have been discoverred, and it counteracts several other diseases, such as diabetes and some forms of cancer. The nuclear vitamin D receptor has been found throughout the vertebrate phylum down to jawless fishes, but not in invertebrates. Its role in those organisms that are repsonsible for the main input to the aquatic food web and to human nutrition, i.e., phytoplankton and zooplankton, is not understood.This chapter summarizes the discovery of vitamin D and the chemistry and photochemistry of its precursors, transformations, and metabolites. The physiological roles of 1,25-dihydroxyvitamin D are briefly described, as well as evolutionary aspects of the signaling in animals based on this compound. The chapter is concluded with an overview of what is known about the occurrence and role of vitamin D in the plant kingdom, biogeographical aspects of vitamin D, and the relatively recent discovery of nonphotochemical production of vitamin D.


Ultraviolet Radiation Uropygial Gland Labeo Rohita Dark Skin Color Uropygial Secretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, E., Miyaura, C., Sakagami, H., Takeda, M., Konno, K., Yamazaki, T., Yoshiki, S. and Suda, T. (1981) Differentiation of mouse myeloid leukemia cells induced by 1,25-dihydroxyvitamin D_3. Proc. Acad. Sci. USA 78, 4990–4994.CrossRefGoogle Scholar
  2. Aburjai, T., Bernasconi, S., Manzocchi, L.A. and Pelizzoni, F. (1997) Effect of calcium and cell immobilization on the production of cholecalciferol and its derivatives by Solanum malacoxylon cell cultures. Phytochemistry 46, 1015–1018.CrossRefGoogle Scholar
  3. Armas, L.A.G., Hollis, B.W. and Heaney, R.P. (2004) Vitamin D_2 is much less effective than vitamin D_3 in humans. J. Clin. Endocrin. Metabol. 89, 5387–5391.CrossRefGoogle Scholar
  4. Ashok A., Rao, D.S. and Raghuramulu, N. (1998) Vitamin D is not an essential nutrient for rora (Labeo rohita) as a representative of freshwater fish. J. Nutrit. Sci. Vitaminol. 44, 195–205.Google Scholar
  5. Ashok, A., Rao, D.S., Chennaiah, S. and Raghuramulu, N. (1999) Vitamin D_2 is not biologically active for rora (Labeo rohita) as vitamin D_3. J. Nutrit. Sci. Vitaminol. 45, 21–30.Google Scholar
  6. Barnett, B.J., Cho, C.Y. and Slinger, S.J. (1979) The essentiality of cholecalciferol in the diets of rainbow trout (Salmo gairdneri). Comp. Biochem. Physiol. 63A, 291–297.CrossRefGoogle Scholar
  7. Bertrand, W., Brunet, F.G., Escriva, H., Parmentier, G., Laudet, V., and Robinson-Rechavi, M. (2004) Evolutionary genomics of nuclear receptors: From twenty-five ancestral genes to derived endocrine systems. Molec. Biol. Evol. 21, 1923–1937.PubMedCrossRefGoogle Scholar
  8. Berwick, M., Armstrong, B.K., Ben-Porat, L.J., Fine, J., Kricker, A., Eberle, C. and Barnhill, R. (2005) Sun exposure and mortality from melanoma, J. Natl Cancer Inst. 97, 195–199.PubMedCrossRefGoogle Scholar
  9. Bischoff-Ferrari, H.A. (2007) The 25-hydroxyvitamin D threshold for better health. J. Steroid Biochem. Mol. Biol. doi:10.1016/j.jsbmb.2006.12.016.Google Scholar
  10. Björn, L.O. and Wang, T. (2001) Is provitamin D a UV-B receptor in plants? Plant Ecology 154, 3–8.Google Scholar
  11. Boland, R., Skliar, M., Curino, A., and Milanesi, L. (2003) Vitamin D compounds in plants. Plant Sci. 164, 357–369.CrossRefGoogle Scholar
  12. Bouillon, R., Norman, A.W. and Pasqualini, J.R. (Eds.) (2004) Vitamin D: Proceedings of the 12th Workshop on Vitamin D, July 6–10, 2003. Maastricht, the Netherlands. Elsevier, Amsterdam. (Reprinted from J. Steroid Biochem. Mol. Biol. 89–90.)Google Scholar
  13. Boomsma, F., Jacobs, H.J.C., Havinga, E. and van der Gen, A. (1975) Studies of vitamin D and related compounds, part 24. New irradiation products of pre-vitamin D_3. Tetrahedron Lett. 7, 427–430.CrossRefGoogle Scholar
  14. Branda, R.F. and J.W. Eaton, J.W. (1978) Skin color and nutrient photolysis: an evolutionary hypothesis. Science 201, 625–626.PubMedCrossRefGoogle Scholar
  15. Brown, P.B. and Robinson, E.H. (1992) Vitamin D studies with channel catfish (Ictalurus punctuatus) reared in calcium-free water. Comp. Biochem. Physiol. 103A, 213–219.CrossRefGoogle Scholar
  16. Buchala, A.J. and Pythoud, F. (1988) Vitamin D and related compounds as plant growth substances. Physiol. Plantarum 74, 391–396.CrossRefGoogle Scholar
  17. Buchala, A.J. and Schmid, A. (1979) Vitamin D and its analogues as a new class of plant growth substances affecting rhizogenesis. Nature 280, 230–231.CrossRefGoogle Scholar
  18. Burlini, N., Bernasconi, S. and Manzocchi, L.A. (2002) Effects of elicitors and Ca2+ deprivation on the levels of sterols and 1,25-dihydroxy vitamin D-3 in cell cultures of Solanum malacoxylon. Functional Plant Biol. 29, 527–533.CrossRefGoogle Scholar
  19. Chevalier, G., Baudet, C., AvenelAudran, M., Furman, I. and Wion, D. (1997) Was the formtion of 1,25-dihydroxyvitamin D initially a catabolic pathway? Medical Hypotheses 48, 325–329.PubMedCrossRefGoogle Scholar
  20. Clemens, T.L., Henderson, S.L., Adams, J.S. and Holick, M.F. (1982) Increased skin pigment reduces the capacity of skin to produce vitamin D in response to ultraviolet irradiation. Lancet 9, 74–76.CrossRefGoogle Scholar
  21. Cui, R., Widlund, H.R., Feige, E. Lin, J.Y., Wilensky, D.L., Igras, V.E., D’Orazio, J., Fung, C.Y., Schanbacher, C.F., Granter, S.R. and Fisher, D.E. (2007) Central role of p53 in the suntan response and pathologic hyperpigmentation. Cell 128, 853–864.PubMedCrossRefGoogle Scholar
  22. Curino, A., Skliar, M. and Boland, R. (1998) Identification of 7-dehydrocholesterol, vitamin D_3, 25(OH)-vitamin D_3 and 1,25(OH)_2-vitamin D_3 in Solanum glaucophyllum cultures grown in absence of light. Biochim. Biophys. Acta 1425, 485–492.PubMedGoogle Scholar
  23. Curino, A., Milanesi, L., Benassati, S., Skliar, M. and Boland, R. (2001) Effect of culture concitions on the synthesis of vitamin D_3 metabolites in Solanum glaucophyllum grown in vitro. Phytochemistry 58, 81–89.PubMedCrossRefGoogle Scholar
  24. De Haes, P., Garmyn, M., Verstuyf, A., De Clercq, P., Vandewalle, M., Degreef, H., Vantieghem, K., Bouillon, R. and Segaert, S. (2005) 1,25-Dihydroxyvitamin D_3 and analogues protect primary human keratinocytes against UVB-induced DNA damage. J. Photochem. Photobiol. B: Biology 78, 141–148.PubMedCrossRefGoogle Scholar
  25. DeLuca (1997) Historical overview. In: D. Feldman, F.H. Glorieux, and J.W. Pike (Eds): Vitamin D. Academic Press, New York, pp. 3–12.Google Scholar
  26. DeLuca, H.F., Plum, L.A. and Clagett-Dame, M. (2007) Selective analogs of 1,25-dihydroxyvitamin D3 for the study of specific functions of vitamin D. J. Steroid Biochem. Mol. Biol. doi:10.1016/j.jsbmb.2006.12.005.Google Scholar
  27. Dixon, K.M., Deo, S.S., Norman, A.W., Bishop, J.E., Halliday, G.M., Reeve, V.E., and Mason, R.S. (2007) In vivo relevance for photoprotection by the vitamin D rapid response pathway. J. Steroid Biochem. Molec. Biol. 103, 451–456.PubMedCrossRefGoogle Scholar
  28. Dmitrenko, O.G., Terenetskaya, I.P., and Reischl, W. (1997) Solvent effect on previtamin D conformational equilibrium and photoreactions. J. Photochem. Photobiol. A - Chemistry 104, 113–117.CrossRefGoogle Scholar
  29. Dorigan, J.L. and Wilbur, K.M. (1973) Calcification and its inhibition in cocco-lithophorids. J. Phycol. 9, 450–456.Google Scholar
  30. Fries, L. (1984) D-vitamins and their precursors as growth regulators in axenically cultivated marine macroalgae. J. Phycol. 20, 62–66.CrossRefGoogle Scholar
  31. Feldman, D., Glorieux, F.H. and Pike J.W. (Eds.) (1997, 2nd ed. 2005) Vitamin D. Academic Press, New York.Google Scholar
  32. Gershengorn. M.C., Smith, A.R.H., Goulston, G., Goad, L.J., Goodwon, T.W. and Haines, T.H. (1968) The sterols of Ochromonas danica and Ochromonas malhamensis. Biochemistry 7, 1698–1706.PubMedCrossRefGoogle Scholar
  33. Gil, S., Dallorso, M. and Horst, R. (2007) Screening of vitamin D activity (VDA) of Solanum glaucophyllum leaves measured by radioimmunoassay (RIA). J. Steroid Biochem. Mol. Biol. doi:10.1016/j.jsbmb.2006.11.008.Google Scholar
  34. Gilchrest, B.A. and Eller, M.S. (2005) The tale of the telomere: Implications for prevention and treatment of skin cancers. J. Investig. Dermatol. Symp. Proc. 10, 124–130.PubMedCrossRefGoogle Scholar
  35. Glerup, H., Mikkelsen, K., Poulsen, L., Hass, E., Overbeck, S., Thomsen, J., Charles, P. and Eriksen, E.F. (2000) Commonly recommeded daily intake of vitamin D is not sufficient if sunlight exposure is limited. J. Internal Med. 247, 260–268.PubMedCrossRefGoogle Scholar
  36. Glisson, F. (1650) De Rachitide sive morbo puerili, qui vulgo The Rickets diciteur.Google Scholar
  37. Grant, W.B. (2006) Epidemiology of disease risks in relation to vitamin D insufficiency. Progr. Biophys. Molec. Biol. 92, 65–79.CrossRefGoogle Scholar
  38. Griffin, M.D., Lutz, W., Phan, V.A., BAchman, L.A., McKean, D.J. and Kumar, R. (2001) Dendritic cell modulation by 1,25 dihydroxyvitamin D_3 and its analogs: A vitamin D receptor-dependent pathway that promotes a persistent state of immaturity in vitro and in vivo. Proc. Natl. Acad. Sci. USA 98, 6800–6805.PubMedCrossRefGoogle Scholar
  39. Guerin, J.P., Kirchner, M. and Cubizolles, F. (2001) Effects of Oxyrrhis marina (Dinoflagellata), bacteria and vitamin D_2 on population dynamics of Tisbe holothuris (Copepoda). J. Exp. Marine Biol. Ecol. 261, 1–16.CrossRefGoogle Scholar
  40. Habib, A. and Donnelly, D.J. (2005) Stimulation of Ca2+ uptake into micropropagated potato plantlets by UV light and vitamin D3. Am. J. Potato Res. 82, 191–196.Google Scholar
  41. Halsall, J.A., Osborne, J.E., Potter, L., Pringle, J.H. and Hutchinson, P.E. (2004) A novel polymorphism in the 1A promoter region of the vitamin D receptor is associated with altered susceptibilty and prognosis in malignant melanoma. Br. J. Cancer 91, 765–770.PubMedGoogle Scholar
  42. Havinga, E. (1973) Vitamin D, example and challenge. Experientia 29, 1181–1193.PubMedCrossRefGoogle Scholar
  43. Heaney, R.P. (2007) The case for improving vitamin D status. J. Steroid Biochem. Molec. Biol. 103, 635–641.PubMedCrossRefGoogle Scholar
  44. Hess, A.F. and Unger, L.G. (1921) Cure of infantile rickets by sunlight. J. Am. Med. Assoc. 77, 39.Google Scholar
  45. Hess, A.F. and Weinstock, M. (1924) Antirachitic properties imparted to inert fluids and green vegetables by ultraviolet irradiation. J. Biol. Chem. 62, 301–313.Google Scholar
  46. Holick, M.F. (1989) Phylogenetic and evolutionary aspects of vitamin D from phytoplankton to humans. In: Pang, P.K.T. and Schreibman, M.P. (Eds.), Vertebrate endocrinology: Fundamentals and biomedical implications, vol. 3. Academic Press, Orlando, FL, pp. 7–43.Google Scholar
  47. Holick, M.F., MacLaughlin, J.A. and Doppelt, S.H. (1981) Regulation of cutaneous previtamin D3 photosynthesis in man: skin pigment is not an essential regulator. Science 211, 590–592.PubMedCrossRefGoogle Scholar
  48. Holick, M.F., Tian, X.Q. and Allen, M. (1995) Evolutionary importance for the membrane enhancement of the production of vitamin D_3 in the skin of poikilothermic animals. Proc. Natl Acad. Sci. USA 98, 3124–3126.CrossRefGoogle Scholar
  49. Holick, M.F. (Ed.) (1999) Vitamin D: Physiology, molecular biology, and clinical. Humana Press, Totowa, NJ).Google Scholar
  50. Horst, R.L., Reinhardt, T.A., Russell, J.R., and Napoli, J.L. (1984) The isolation and identification of vitamin D2 and vitamin D3 from Medicago sativa (alfalfa plant). Arch. Biochem. Biophys. 231, 67–71.PubMedCrossRefGoogle Scholar
  51. Jablonski, N.G. and Chaplin, G. (2000) The evolution of human skin coloration. J. Human Evol. 39, 57–106.CrossRefGoogle Scholar
  52. Jarvis, B.C. and Booth, A. (1981) Influence of indole-butyric acid, boron, myo-inositol, vitamin D_2 and seedling age on adventitious root developmant in cuttings of Phaseolus aureus. Physiol. Plantarum 53, 213–218.CrossRefGoogle Scholar
  53. Jones, G. (1999) Metabolism and catabolism of vitamin D, its metabolites and clinically relevant analogs. In: M.F. Holick (Ed.), Vitamin D: Physiology, molecular biology, and clinical applications. Humana Press, Totowa, NJ), pp. 57–84.Google Scholar
  54. Kingsley, R.J., Corcoran, M.L., Krider, K.L. and Kriechbaum, K.L. (2001) Thyroxine and vitamin D in the gorgonian Leptogorgia virgulata. Comp. Biochem. Physiol. A 129, 897–907.CrossRefGoogle Scholar
  55. Kwiecinski, G.G., Lu, Z.R., Chen, T.C. and Holick, M.F. (2001) Observations on serum 25-hydroxyvitamin D and calcium concentrations form wild-caught and captive neotropical bats, Artibeus jamaicensis. Gen. Comp. Endocrinol. 122, 225–231.PubMedCrossRefGoogle Scholar
  56. Koutkia, P., Chen, T.C. and Holick, M.F. (2001) Vitamin D intoxication associated with an over-the-counter supplement. N. Engl. J. Med. 345, 66–67.PubMedCrossRefGoogle Scholar
  57. Kriajev, L. and Edelstein, S. (1994) Vitamin D metabolites and extracellular calcium currents in hemocytes of land snails. Biochem. Biophys. Res. Commun. 204, 1096–1101.PubMedCrossRefGoogle Scholar
  58. Kriajev, L. and Edelstein, S. (1995) Effect of light and nutrient restriction on the metabolism of calcium and vitamin D in land snails. J. Exp. Zool. 272, 153–158.CrossRefGoogle Scholar
  59. Kriajev, L., Otremski, I. and Edelstein, S. (1994) Calcium shells from snails: Response to vitamin D metabolites. Calcified Tissue Int. 55, 204–207.CrossRefGoogle Scholar
  60. Larsson, D. (1999) Vitamin D in teleost fish: Non-genomic regulation of intestinal calcium transport. Diss. Göteborg Univ., Dept of Zoophysiology. ISBN 91-628-3681-1.Google Scholar
  61. Lehmann, B., Genehr, T., Pietzsch, J. and Meurer, M. (2001) UVB-induced conversion of 7-dehydrocholesterol to 1UPalpha,25-dihydroxyvitamin D_3 in an in vitro human skin equivalent model. J. Investig. Dermatol. 117, 1179–1185.PubMedCrossRefGoogle Scholar
  62. Lips, P. (2006) Vitamin D physiology. Progr. Biophys. Molecul. Biol. 92, 4–8.CrossRefGoogle Scholar
  63. Mathieu, C., Van Etten, E., Gysemans, C., Decallone, B., Kato, S., Laureys, J., Devovere, J., Valcx, D., Verstuyf, A. and Bouillon, R. (2001) In vitro and in vivo analysis of the immune system of vitamin D receptor knockout mice. J. Bone Mineral Res. 16, 2057–2065.CrossRefGoogle Scholar
  64. MacLaughlin, J.A., Anderson, R.R. and Holick, M.F. (1982) Spectral character of sunlight modulates photosynthesis of previtamin D_3 and its photoisomers in human skin. Science 216, 1001–1003.Google Scholar
  65. Mellanby, E. (1918) The part played by an “accessory factor“in the production of experimental rickets. J. Physiol. (Lond.) 52, 11–14.Google Scholar
  66. Milanesi, L. and Boland, R. (2006) Presence of vitamin D-3 receptor (VDR)-like proteins in Solanum glaucophyllum. Physiol. Plant. 128, 341–350.CrossRefGoogle Scholar
  67. Moncousin, C. and Gaspar, T. (1983) Peroxidase as a marker for rooting improvement of Cynara scolymus L. cultured in vitro. Biochem. Physiol. Pflanzen 178, 263–271.Google Scholar
  68. Mozolowski, W. (1939) Jedrzej Sniadecki (1768–1838) on the cure of rickets. Nature 143, 121.Google Scholar
  69. Napoli, J.L., Reeve, L.E., Eisman. J., Schnoes, H.K. and DeLuca, H.F. (1977) Solanum glaucophyllum as source of 1,25-dihydroxyvitamin D3. J. Biol. Chem. 252, 2580–2583.PubMedGoogle Scholar
  70. Nei, M., Xu, P., and Glazko, G. (2001) Estimation of divergence times from multiprotein sequences for a few mammalian species and several distantly related organisms. Proc. Natl Acad. Sci. USA 98, 2497–2502.PubMedCrossRefGoogle Scholar
  71. Norman, A.W. (2006) Minireview: Vitamin D receptor: New assignments for an already busy receptor. Endocrinology 147, 5542–5548.PubMedCrossRefGoogle Scholar
  72. Norman, A.W., Mizwicki, M.T. and Norman, D.P.G. (2004) Steroid hormone rapid actions, membrane receptors and a conformational ensemble model. Nature Rev. Drug Discov. 3, 27–41.Google Scholar
  73. Norman, T.C. and Norman, A.W. (1993) Consideration of chemical mechanisms for the nonphotochemical production of vitamin D3 in biological systems. Bioorg. Medical Chem. Lett. 3, 1785–1788.CrossRefGoogle Scholar
  74. Norton, H.L., Kittles, R.A., Parra, E., McKeigue, P., Mao, X., Cheng, K., Canfield, V.A., Bradley, D.G., McEvoy, B. and Shriver, M.D. (2007) Genetic evidence for the convergent evolution of light skin in Europeans and East Asians. Mol. Biol. Evol. 24, 710–722.PubMedCrossRefGoogle Scholar
  75. Nunn, J.D., Katz, D.R., Barker, S., Fraher, L.J., Hewison, M., Hendy, G.N. and O’Riordan, J.L.H. (1986) Regulation of human tonsillar T-cell proliferation by the active metabolite of vitamin D_3. Immunology 59, 479–484.Google Scholar
  76. Okuda, K.-I. and Ohyama, Y. (1999) The enzymes responsible for metabolizing vitamin D. In: M.F. Holick (Ed.), Vitamin D: Physiology, molecular biology, and clinical applications. Humana Press, Totowa, NJ), pp. 85–107.Google Scholar
  77. Opperman, L.A. and Ross, F.P. (1990) The adult fruit bat (Rousettus aegypticus) expresses only calbindin-D9K (vitamin D-dependent calcium-binding protein) in its kidney. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 97, 295–299.Google Scholar
  78. Panda, D.K., Miao, D., Tremblay, M.L., Sirois, J., Faroohki, R., Hendy, G.N. 6 Goltzman, D. (2001) Targeted ablation of the 25-hydroxyvitamin D 1UPalpha-hydroxylase enzyme: evidence for skeletal, reproductive, and immune dysfunction. Proc. Natl Acad. Sci. USA 98, 7498–7503.PubMedCrossRefGoogle Scholar
  79. Patterson, G.W. (1971) The distribution of sterols in algae. Lipids 6, 120–127.CrossRefGoogle Scholar
  80. Patterson, G.W. (1974) Sterols of some green algae. Comp. Biochem. Physiol. B 47, 453–457.Google Scholar
  81. Pitcher, T. and Buffenstein, R. (1995) Intestinal calcium-transport in mole rats (Cryptomys damarensis and Heterocephalus glaber) is independent of both genomic and non-genomic vitamin D mediation. Exp. Physiol. 80, 597–608.PubMedGoogle Scholar
  82. Prema, T.P. and Raghuramulu, N. (1996) Vitamin D3 and its metabolites in the tomato plant. Phytochemistry 42, 617–620.PubMedCrossRefGoogle Scholar
  83. Rambeck, W.A., Kreutzberg, O., Bruns-Droste, C. and Zucker, H. (1981) Vitamin D-like activity of Trisetum flavescens. Zschr. Pflanzenphysiol. 104, 9–16.Google Scholar
  84. Saltiel, J., Cires, L., and Turek, A.M. (2003) Conformer-specific photoconversion of 25-hydroxytachysterol to 25-hydroxyprevitamin D3: Role in production of vitamin Ds. J. Am. Cenm. Soc. 125, 2866–2867.CrossRefGoogle Scholar
  85. Santonocito, C., Capizzi,, R. Concolino, P., Lavieri,, M.M., Paradisi, A., Gentileschi, S., Torti, E., Rutella, S., Rocchetti, S., Di Carlo, A., Di Stasio, E., Ameglio, M., Zuppi, C. and Capoluongo, E. (2007) Association between cutaneous melanoma, Breslow thickness and vitamin D receptor BsmI polymorphism. Br. J. Dermatol. 156, 277–282.PubMedCrossRefGoogle Scholar
  86. Schauber, J., Dorschner, R.A., Coda, A.B., Büchau, A.S., Liu, P.T., Kiken, D., Helfrich, Y.R., Kang, S., Elalieh, H.Z., Steinmeyer, A., Zügel, U., Bikle, D.D., Modlin, R.L. and Gallo, R.L. (2007) Injury enhances TLR2 function and antimicrobial peptide expression through a vitamin D–dependent mechanism. J. Clin. Investig. 117, 803–811.PubMedCrossRefGoogle Scholar
  87. Skliar, M., Curino, A., Milanesi, E., Benassati, S., and Boland, R. (2000) Nicotiana glauca: another plant species containing vitamin D3 metabolites. Plant Sci. 156, 193–199.PubMedCrossRefGoogle Scholar
  88. Schwartz, G.G. and Skinner, H.G. (2007) Vitamin D status and cancer: New insights. Curr. Opin. Clin. Nutr. Metab. Care. 10, 6–11.PubMedGoogle Scholar
  89. Shewakramani, S., Rakita, D., Tangpricha, V. and Holick, M.F. (2001) Vitamin D insufficiency is common and under-diagnosed among African American patients. J. Bone Mineral Res. 16, S512.Google Scholar
  90. Sigmundsdottir, H., Pan, J., Debes, G.F., Alt, C., Habtezion, A., Soler, D. and Butcher, E.C. (2007) DCs metabolize sunlight-induced vitamin D3 to “program” T cell attraction to the epidermal chemokine CCL27. Nature Immunol. 8, 283–292.CrossRefGoogle Scholar
  91. Steenbock, H. and Black, A. (1924) The induction of growth-promoting and calcifying properties in a ration by exposure to ultra-violet light. J. Biol.Chem. 64, 263–298.Google Scholar
  92. Takada, K. (1983) Formation of fatty acid esterified vitamin D_3 in rat skin by exposure to ultraviolet radiation. J. Lipid Res. 24, 441–448.PubMedGoogle Scholar
  93. Takeuchi, A., Okano, T., Tanda, M. and Kobayashi, T. (1991) Possible origin of extremely high contents of vitamin D_3 in some kinds of fish liver. Comp. Biochem. Physiol. 100A, 483–487.Google Scholar
  94. Tasende, M.G. (2000) Fatty acid and sterol composition of gametophytes and sporophytes of Chondrus crispusGigartinaceae, Rhodophyta). Scientia Marina 64, 421–426.Google Scholar
  95. Tian, W.Q. and Holick, M.F. (1995) Catalyzed thermal isomerization between previtamin D_3 and vitamin D_3 via UPbeta-cyclodextrin complexation. J. Biol. Chem. 270, 8706–8711.PubMedCrossRefGoogle Scholar
  96. Tian, W.Q. and Holick, M.F. (1999) A liposomal model that mimics the cutaneous production of vitamin D_3. J. Biol. Chem. 274, 4174–4179.PubMedCrossRefGoogle Scholar
  97. Tian, X.Q., Chen, T.C., Matsuoka, L.Y., Wortsman, J. and Holick, M.F. (1993) Kinetic and thermodynamic studies of the conversion of previtamin D_3 to vitamin D_3 in human skin. J. Biol. Chem. 268, 14888–14892.PubMedGoogle Scholar
  98. Uva, B.M., Ghiani, P., Deplano, S., Madich, A., Vaccari, M. and Vallarino, M. (1978) Occurrence of 7-dehydrocholesterol in the uropygial gland of domestic fowls. Acta Histochem. 62, 237–243.PubMedGoogle Scholar
  99. Van de Peer, Y., Baldauf, S.L., Doolittle, W.F., and Meyer, A. (2000) An updated and comprehensive rRNA phylogeny of (crown) eukaryotes based on rate-calibrated evolutionary distances. J. Molec. Evol. 51, 565–576.PubMedGoogle Scholar
  100. Vega, M.A. and Boland, R.L. (1986)Vitamin D-3 induces the novo synthesis of calmodulin in Phaseolus vulgaris root segments in vitro. Biochim. Biophys. Acta 881, 364–374.Google Scholar
  101. Vega, M.A. and Boland, R.L. (1988) Presence of sterol-binding sites in the cytosol of French-bean (Phaseolus vulgaris) roots. Biochem. J. 250, 565–569.PubMedGoogle Scholar
  102. Vega, M.A. and Boland, R.L. (1989) Partial characterization of the sterol binding macromolecule of Phaseolus vulgaris roots. Biochim. Biophys. Acta 1012, 10–15.CrossRefGoogle Scholar
  103. Vorobey, P., Steindal, A.E., Off, M.K., Vorobey, A. and Johan Moan, J. (2006) Influence of human serum albumin on photodegradation of folic acid in solution. Photochem. Photobiol. 82, 817–822.PubMedCrossRefGoogle Scholar
  104. Wang, T., Bengtsson, G., Kärnefelt, I. and Björn, L.O. (2001) Provitamins and vitamins D_2 and D_3 in Cladina spp. over a latitudinal gradient: possible correlation with UV levels. J. Photochem. Photobiol. B: Biology 62, 118–122.PubMedCrossRefGoogle Scholar
  105. Washburn, E.W. et al. (Eds.) (1929) International critical tables of numerical data, physics chemistry and technology, vol. V, p. 270.McGraw-Hill, New York.Google Scholar
  106. Webb, A.R., de Costa, B. and Holick, M.F. (1989) Sunlight regulates the cutaneous production of vitamin D_3 by causing its photodegradation. J. Clin. Endocrin. Metab. 68, 882–887.CrossRefGoogle Scholar
  107. Whistler, D. (1645) Morbo puerili Anglorum, quem patrio idiomate indigenae vocant The Rickets. Lugduni Batavorum 1–13.Google Scholar
  108. Whitfield, G.K., Dang, H.T.L., Schluter, S.F., Bernstein, R.M., Bnag, T., Manzon, L.A., Hsieh, G., Domnguez, C.E., Youson, J.H., Haussler, M.R. and Marchalonis, J.J. (2003) Cloning of a functional vitamin D receptor from the lamprey (Petromyzon marinus), an ancient vertebrate lacking a calcified skeleton and teeth. Endocrinology 144(6): 2704–2716.PubMedCrossRefGoogle Scholar
  109. Wickelgren, I. (2007) A healthy tan? Science 315, 1214–1216.PubMedCrossRefGoogle Scholar
  110. Zelinski, J.M., Sykes, D.E. and Weiser, M.M. (1991) The effect of vitamin D on rat intestinal plasma membrane Ca-pump mRNA. Biochem. Biophys. Res. Commun, 179, 749–755.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Lars Olof Björn

There are no affiliations available

Personalised recommendations