Photobiology pp 503-530 | Cite as

Ozone Depletion and the Effects of Ultraviolet Radiation

  • Lars Olof Björn
  • Richard L. McKenzie


Because of the stratospheric ozone depletion that took place during the last decades of the past century, the effects of ultraviolet radiation on plants, animals, humans, and microorganisms became intensively studied. In this chapter we describe the role of the ozone layer as a radiation shield and various molecular and organismal effects of ultraviolet radiation, with an emphasis on the UV-B band (280–315 nm), which is strongly affected by the ozone content of the atmosphere. Also, physiological protection mechanisms and repair systems are briefly treated.


Ultraviolet Radiation Action Spectrum Ozone Depletion Ozone Layer Ozone Hole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A.-H.-Mackerness, S., Jordan, B.R. and Thomas, B. (1999) Reactive oxygen species in the regulation of photosynthetic genes by ultraviolet-B radiation (UV-B: 280-320 nm) in green and etiolated buds of pea (Pisum sativum L.). J. Photochem. Photobiol. B: Biol. 148, 180–188.Google Scholar
  2. A.-H. Mackerness, S., John, C.F., Jordan, B. and Thomas, B. (2001). Early singaling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide. FEBS Lett. 489, 237–242.CrossRefGoogle Scholar
  3. Ballaré, C.L., Rousseaux, M.C., Searles, P.S., Zaller, J.G., Giordano, C.V., Robson, T.M., Caldwell, M.M., SDala, O.E., and Scopel, A.L. (2001) Impact of solar ultraviolet-B radiation on terrestrial ecosystems of Tierra del Fuego (southern Argentina) – An overview of recent progress. J. Photochem. Photobiol. B: Biology 62, 67–77.Google Scholar
  4. Barnes, P.W., Jordan, P.W., Gold, W.G., Flint, S.D., Caldwell, M.M. (1988) Competition, morphology, and canopy structure in wheat (Triticum aestivum L.) and wild oats (Avena fatua L.) exposed to enhanced ultraviolet-B radiation. Functional Ecol. 2, 319–330.CrossRefGoogle Scholar
  5. Benedick, R.E. (1991) Ozone diplomacy: New directions in safeguarding the planet (enlarged edition 1998). Harvard University Press, Cambridge, MA.Google Scholar
  6. Berrocal,-Tito, G., Saetz-Baron, L., Eichenberg, K., Horwitz, B.A. and Herrera-Estrella, A. (1999) Rapid blue light regulation of a Trichoderma harzianum photolyase gene. J. Biol. Chem. 274, 14288–14294.PubMedCrossRefGoogle Scholar
  7. Bischof, K., Hanelt, D. and Wiencke, C. (2002) UV radiation and arctic marine macroalgae. In: D.O. Hessen (Ed.), UV radiation and arctic ecosystems. Springer, Berlin, pp. 225–243.Google Scholar
  8. Björn, L.O. (1969) Photoinactivation of catalases from mammal liver, plant leaves and bacteria. Comparison of inactivation cross sections and quantum yields at 406 nm. Photochem. Photobiol. 10, 125–129.Google Scholar
  9. Björn, L.O. (1996) Effects of ozone depletion and increased UV-B on terrestrial ecosystems. Int. J. Environ. Stud. 51/3(A), 217–243.Google Scholar
  10. Björn, L.O., Callaghan, T.V., Johnsen, I., Lee, J.A., Manetas, Y., PaJø rgensen, H.S., Gehrke, C., Gwynn-Jones, D., Johanson, U., Kyparissos, A., ul, N.D., Sonesson, M., Wellburn, A., Coop, D., Heide-Lenzou, E., Nikolopoulos, D., Petropoulou, Y. and Stephanou, M. (1997) The effects of UV-B radiation on European heathland species. Plant Ecology 128, 252–264.Google Scholar
  11. Björn, L.O. and McKenzie, R.L. (2007) Attempts to probe the ozone layer and the UV-B radiation levels of the past. Ambio 36, 366–371.PubMedCrossRefGoogle Scholar
  12. Boettner, E.K. and Wolter, J.R. (1962) Transmission of the ocular media. Investig. Ophthalmol. 1, 776-783.Google Scholar
  13. Buck, N., Callaghan, T.V. (1999) The direct and indirect effects of enhanced UV-B on the moth caterpillar Epirrita autumnata. Ecol. Bull. 47, 68–76.Google Scholar
  14. Cen, Y.-P. and Björn, L.O. (1994) Action spectra for enhancement of ultraweak luminescence by ultraviolet radiation (270–340 nm) in leaves of Brassica napus. J. Photochem. Photobiol. B: Biology 22, 125–129.CrossRefGoogle Scholar
  15. Chinnapen, D.J. and Sen, D. (2004) A deoxyribozyme that harnesses light to repair thymine dimers in DNA. Proc. Natl Acad. Sci. USA 101, 65–69.Google Scholar
  16. Chinnapen, D.J. and Sen, D. (2007) Towards elucidation of the mechanism of UV1C, a deoxyribozyme with photolyase activity. J. Mol. Biol. 365, 1326–1336.PubMedCrossRefGoogle Scholar
  17. Danon, A. and Gallois, P. (1998) UV-C radiation induces apoptotic-like changes in Arabidopsis thaliana . FEBS Lett. 437, 131–136.PubMedCrossRefGoogle Scholar
  18. Day, T.A. (2001) Multiple trophic levels in UV-B assessments—completing the ecosystem. New Phytol. 152, 183–185.CrossRefGoogle Scholar
  19. Day, T.A., Ruhland, C.T. and Xiong, F.S. (2001) Influence of solar ultraviolet-B radiation on Antarctic terrestrial plants: results from a 4-year study. J. Photochem. Photobiol. B: Biology 62, 78–87.CrossRefGoogle Scholar
  20. Deisenhofer, J. (2000) DNA photolyases and cryptochromes. Mutat. Res, 460, 143–149.PubMedGoogle Scholar
  21. Dulbecco, R. (1949) Reactivation of ultraviolet-inactivated bacteriophage by visible light. Nature 163, 949–950.PubMedGoogle Scholar
  22. Essen, L.O. and Klar, T. (2006) Light-driven DNA repair by photolyases. Cell. Mol. Life Sci. 63, 1266–1277.PubMedCrossRefGoogle Scholar
  23. Gehrke, C., Johanson, U., Callaghan, T.V., Chadwick, D. and Robinson, C.H. (1995) The impact of enhanced ultraviolet-B radiation on litter quality and decomposition processes in Vaccinium leaves from the Subarctic. Oikos 72, 213–222.CrossRefGoogle Scholar
  24. Gibbs, P.E.M., Kilbey, B.J., Banerjee, S.K. and Lawrence, C.W. (1993) The frequency of and accuracy of replication past a thymine-thymine cyclobutane dimer are very different in Saccharomyces cerevesiae and Escherichia coli. J. Bacteriol. 175, 2607–2612.PubMedGoogle Scholar
  25. Girotti, A. (2001) Photosensitized oxidation of membrane lipids: reaction pathways, cytotoxic effects, and cytoprotective mechanisms. J. Photochem. Photobiol. B: Biology 63, 103–113.PubMedCrossRefGoogle Scholar
  26. Godar, D.E. (1999a) Light and death: Photons and apoptosis. J. Invest. Dermatol. Symp. Proc. 4, 17–23.Google Scholar
  27. Godar, D.E. (1999b) UVA1 radiation triggers two different final apoptotic pathways. J. Invest. Dermatol. 112, 3–12.Google Scholar
  28. Gwynn-Jones, D. (1999) Enhanced UV-B radiation and herbivory. Ecol. Bull. 47, 77–83Google Scholar
  29. Hada, M., Iida, Y. and Takeuchi, Y. (2000) Action spectra of DNA photolyases for photorepair of cyclobutane pyrimidine dimers in sorghum and cucumber. Plant Cell Physiol. 41, 644–648.PubMedGoogle Scholar
  30. Halldal P (1961) Photoreactivation at 223 mμ in Platymonas. Physiol Plant 14, 890–895.CrossRefGoogle Scholar
  31. Hausser, K.W. and v. Oehmcke, H. (1933) Lichtbräunung an Fruchtschalen. Strahlentherapie 48, 223–229.Google Scholar
  32. Heck, D.E., Vetrano, A.M., Mariano, T.M and Laskin, J.D. (2003) UVB Light stimulates production of reactive oxygen species. Unexpected role for catalase. J. Biol. Chem. 278, 22432–22436.PubMedCrossRefGoogle Scholar
  33. Helbling, W., Ballarè, C.L. and Villafañe, V.E. (2001a) Impact of ultraviolet rdiation on aquatic and terrestrial ecosystems, pp. ix+122. J. Photochem. Photobiol. B: Biology 62, 1–122.Google Scholar
  34. Helbling, E.W., Buma, A.G.J., de Boer, M.K. and Villafañe, V.E. (2001b) In situ impact of solar ultraviolet radiation on photosynthesis and DNA in temperate marine phytoplankton. Mar. Ecol. Prog. Ser. 211, 43–49.CrossRefGoogle Scholar
  35. Helbling, E.W. and Willafañe V.E. (2002) UV radiation effects on phytoplankton primary production: A comparison between Arctic and Antarctic marine ecosystems. In Hessen, D.O. (ed) (2002a) UV radiation and arctic ecosystems. Springer, Berlin, pp. 203–226.Google Scholar
  36. Herndl, G.J., Brugger, A., Hager, S., Kaiser, E., Obernosterer, I., Reitner, B. and Slezak, D. (1997) Role of ultraviolet-B radiation on bacterioplankton and the availability of disolved organic matter. Plant Ecology 128, 42–51.CrossRefGoogle Scholar
  37. Hessen, D.O. (Ed.) (2002a) UV radiation and arctic ecosystems. Springer, Berlin.Google Scholar
  38. Hessen, D.O. (2002b) UV radiation and arctic freshwater zooplankton. In: D.O. Hessen (Ed,), UV radiation and arctic ecosystems. Springer, Berlin, pp. 158–184.Google Scholar
  39. Ikenaga, M., Kondo, S. and Fujii, T. (1974) Action spectrum for photoreactivation in maize. Photochem. Photobiol. 19, 109–113.Google Scholar
  40. IPCC (2005) IPCC/TEAP Special report: Safeguarding the ozone layer and the global climate system: Issues related to hydrofluorocarbons and perflorocarbons. Summary for policymakers, IPCC, Geneva.Google Scholar
  41. Javitt, J.C. and Taylor, H.R. (1994) Cataract and latitude. Documenta Ophthalmol. 88, 307–325.CrossRefGoogle Scholar
  42. Jiang, , N. and Taylor, J.-S. (1993) In vivo evidence that UV-induced CrightarrowT mutations at dipyrimidine sites could result from the replicative bypass of cis-syn cyclobutane dimers or their deamination products. Biochemistry 32, 472–481.PubMedCrossRefGoogle Scholar
  43. Karentz, D., Cleaver, J.E. and Mitchell, D.L. (1991) Cell-survival characteristics and molecular responses of antarctic phytoplankton to ultraviolet radiation. J. Phycol. 27, 326–341.CrossRefGoogle Scholar
  44. Kao, Y.-T., Saxena, C., Wang, L., Sancar, A. and Zhong, D. (2005) Direct observation of thymine dimer repair in DNA by photolyase. Proc. Natl Acad. Sci. USA 102, 16128–16132.Google Scholar
  45. Kelner, A. (1949) Effect of visible light on the recovery of Streptomyces griseus conidia from ultraviolet-injury. Proc. Natl Acad. Sci. USA 35, 73–79.PubMedCrossRefGoogle Scholar
  46. Labitzke, K. and van Loon, H. (1997) Total ozone and the 11 yr-sunspot cycle. J. Atmospheric Solar-Terrestrial Phys. 59, 9–19.CrossRefGoogle Scholar
  47. Lamb, C. and Dixon, R.A. (1997) The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 251–275.PubMedCrossRefGoogle Scholar
  48. Laurion, I and Vincent, W.F. (1998) Cell size versus taxonomic composition as determinatnts of UV-sensitivity in natural phytoplankton communities. Limnol. Oceanogr. 43, 1774–1779.Google Scholar
  49. Lavola, A., Julkunen-Tiitto, R., Roinenen, H., Aphalo, P. (1998) Host-plant preference of an insect herbivore mediated by UV-B and CO2 in relation to plant secondary metabolites. Biochem. Syst. Ecol. 26, 1–12.CrossRefGoogle Scholar
  50. Lean, J. and Rind, D. (1999) Evaluating sun-climate relationships since the Little Ice Age. J. Solar-Terrestrial Physics 61, 25–36.CrossRefGoogle Scholar
  51. Longstreth, J., de Gruijl, F.R., Kripke, M.L., Abseck, S. Arnold, F., Slaper, H.I., Velders, G., Takizawa, Y. and van der Leun, J.C. (1998) Health risks. J. Photochem. Photobiol. B: Biology 46, 20–39.PubMedCrossRefGoogle Scholar
  52. Lumsden, P. (ed.) (1997) Plants and UV-B: Responses to environmental change. Society for Experimental Biology Seminar Series: 64. Cambridge University Press, Cambridge.Google Scholar
  53. Merriam, J.C., Löfgren, S., Michael, R., Söderberg, P., Dillon, J., Zheng, L. and Ayala, M. (2000) An action spectrum for UV-B radiation and the rat lens. Investig. Ophthalmol. Visual Sci. 41, 2642–2647.Google Scholar
  54. Michalova, K., Clemett, R., Dempster, A., Evans, J. and Allardyce, R.A. (2001) Iris melanomas: are they more frequent in New Zealand? Brit. J. Ophthalmol. 85, 4–5.CrossRefGoogle Scholar
  55. Moody, S.A., Paul, N.D., Björn, L.O., Callaghan, T.V., Lee, J.A., Manetas, Y., Rozema, J., Gwynn-Jones, D., Johanson, U., Kyparissis, A. and Oudejans, A.M.C. (2001) The direct effects of UV-B radiation on Betula pubescens litter decomposing at flur European sites. Plant Ecology 154, 29–36.CrossRefGoogle Scholar
  56. Mostajir, B., Sime-Ngando, T., Demers, S., Belzile, C., Roy, S., Gosselin, M., Chanut, J.P., de Mora, S., Fauchot, J., Vidussi, F. and Levasseur, M. (1999a) Ecological implications of changes in cell size and photosynthetic capacity of marine Prymnesiphyceae induced by ultraviolet-B radiation. Marine Ecol. Progr. Ser. 187, 89–100.CrossRefGoogle Scholar
  57. Mostajir, B., Demers, S., de Mora, S., Belzile, C., Chanut, J.P., Gosselin, M., Roy, S., Villegas, P.Z., Fauchot, J., Bouchard , J., Bird, D., Monfort , P. and Levasseur, M. (1999b) Experimental test of the effect of ultraviolet-B radiation in a planktonic community. Limnol. Oceanogr. 44, 586–596.Google Scholar
  58. Murphy, T.M. (1990) Effect of broadband and visible radiation on hydrogen peroxide formation by cultured rose cells. Physiol. Plant. 80, 63–68.CrossRefGoogle Scholar
  59. Murphy, T.M. and Huerta, A.J. (1990) Hydrogen peroxide formation in cultured rose cells in response to UV–C radiation. Physiol. Plant. 78, 247–253.CrossRefGoogle Scholar
  60. Nilsson, A. (1996) Ultraviolet reflections: Life under a thinning ozone layer. Wiley, Chichester.Google Scholar
  61. Nishigaki, R., Mitani, H., and Shima, A. 1998. Evasion of UVC-induced apoptosis by photorepair of cyclobutane pyrimidine dimers. Exp. Cell Res. 244, 43–53.Google Scholar
  62. Nolin, J. (1995) Ozonskiktet och vetenskapen. Almqvist and Wiksell, Stockholm.Google Scholar
  63. Oriowo, O.M., Cullen, A.P., Chou, B.R. and Sivak, J.G. (2001) Action spectrum and recovery for in vitro UV-induced cataract using whole lenses. Invest. Ophthalmol. Visual Sci. 42, 2596–2602.Google Scholar
  64. Paul, D.D. (2000) Stratospheric ozone depletion, UV-B radiation and crop disease. Environ. Pollut. 108, 343–355.PubMedCrossRefGoogle Scholar
  65. Pang, Q.S. and Hays, J.B. (1991) UV-B inducible and temperature-sensitive photoreactivation of cyclobutane pyrimidine dimers in Arabidopsis thaliana. Plant Physiol. 95, 536–543.PubMedCrossRefGoogle Scholar
  66. Paul, N.D., Callaghan, T.V., Moody, S., Gwynn-Jones, D., Johanson, U. and Gehrke, C. (1999) UV-B impacts on decomposition and biogeochemical cycling. In: J. Rozema (Ed.), Stratospheric ozone depletion: the effects of enhanced UV-B radiation on terrestrial ecosystems, pp. 117–133. Backhaus, Leiden.Google Scholar
  67. Peletier, H., Gieskes, W.W.C and Buma, A.G.J. (1996) Ultraviolet-B radiation resistance of benthic diatoms isolated from tidal flats in the Dutch Wadden Sea. Marine Ecol.-Progr. Series 135,163–168.Google Scholar
  68. Petersen, A.B., Gniadecki, R., Vicanova, J., Thorn, T. and Wulf, H.C (2000) Hydrogen peroxide is responsible for UVA-induced DNA damage measured by alkaline comet assay in HaCaT keratinocytes. J. Photoch. Photobiol. B: Biology 59, 123–131.CrossRefGoogle Scholar
  69. Pitts, D.G., Cullen, A.P. and Hacker, P.D. (1977) Ocular effects of ultraviolet radiation from 295 to 365 nm. Investig. Ophthalmol. 16, 932–939.Google Scholar
  70. Podskochy, A., Gan, L., Fagerholm, P. (2000) Apoptosis in UV-exposed rabbit corneas. Cornea 19, 99–103.PubMedCrossRefGoogle Scholar
  71. Polo, V., Pinilla, I., Abecia, E., Larrosa, J.M., Pablo, L.E. and Honrubia, F.M. (1997) Assessment of the ocular media absorption index. Int. Ophthalmol. 20, 1–3.CrossRefGoogle Scholar
  72. Ravanat, J.-L., Douki, T. and Cadet, J. (2001) Direct and indirect effects of UV radiation on DNA and its components. J. Photochem. Photobiol. B: Biology 63, 88–102.PubMedCrossRefGoogle Scholar
  73. Reid, G.C. (1999) Solar variability and its implications fo the human environment. J. Atmospheric Solar-Terrestrial Phys. 61, 3–14.CrossRefGoogle Scholar
  74. Ren, H.W. and Wilson, G. (1994) The effect of ultraviolet-B irradiation on the cell shedding rate of the corneal epithelium. Acta Ophthalmol. 72, 447–452.Google Scholar
  75. Rozema J. (Ed.) (1999) Stratospheric ozone depletion: the effects of enhanced UV-B radiation on terrestrial ecosystems. Backhuys, Leiden.Google Scholar
  76. Rozema, J., van de Staaij, J., Caldwell, M.M. and Björn, L.O. (1997a) UV-B as an environmental factor in plant life: stress and regulation. Trends Ecol. Evolution 12, 22–28.CrossRefGoogle Scholar
  77. Rozema, J., Gieskes, W.W.C., van de Geijn, S.C., Nolan, C. and de Boois, H. (Eds.) (1997b) UV-B and biosphere. Kluwer, Dordrecht.Google Scholar
  78. Rozema, J., Manetas, Y. and Björn, L.O. (eds) (2001) Responses of plants to UV-B radiation. Kluwer Academic Publishers, Dordrecht.Google Scholar
  79. Rozema, J. and BjöL.O. (Eds.) (2002) Special issue: Evolution of UV-B absorbing compounds in aquatic and terrrestrial plants. J. Photochem. Photobiol. B: Biology 66, 1–87.Google Scholar
  80. Rousseaux, J.C., Ballarè, C.L., Giordano, C.V., Scopel, A.L., Zima, A.M., Szwarccberg-Bracitta, M., Searles, P.S., Caldwell, M.M. and Diaz, S.B. (1999) Ozone depletion and UVB radiation: impact on plant DNA damage in southern South America. Proc. Natl Acad. Sci. USA 96, 15310–15315.PubMedCrossRefGoogle Scholar
  81. Saito, N. and Werbin, H. (1969) Action spectrum for a DNA-photoreactivating enzyme isolated from higher plants. Radiation Botany 9, 421–424.CrossRefGoogle Scholar
  82. Sancar, A. (2003) Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem. Rev. 103, 2203–2237.PubMedCrossRefGoogle Scholar
  83. Scheuerlein, R., Treml, S., Thar, B., Tirlapur, U.K. and Häder, D.-P. (1995) Evidence for UV-B-induced DNA degradation in Euglena gracilis mediated by activation of metal-dependent nucleases. J. Photochem. Photobiol. B: Biol. 31, 113–123.CrossRefGoogle Scholar
  84. Scott, B.R. (1998) Ultraviolet radiation effects upon the eye: Problems of dosimetry. Radiation Prot. Dosim. 76, 277–277Google Scholar
  85. Sinha, R.P., Klisch, M., Gröninger, A. and Häder, D.-P. (1998) Ultraviolet-absorbing Ultraviolet-absorbing/screening substances in cyanobacteria, phytoplankton and macroalgae. J. Photochem. Photobiol. B: Biol. 47, 83–94.CrossRefGoogle Scholar
  86. Sinha, R.P., Klisch, M., Gröniger, A. and Häder, D.-P. (2001) Responses of aquatic algae and cyanobacteria to solar UV-B. Plant Ecology 154, 221–236.CrossRefGoogle Scholar
  87. Sliney, D.H. (1997) Ultraviolet radiation effects upon the eye: Problems of dosimetry. Radiation Prot. Dosim. 72, 197–206.Google Scholar
  88. Smith, C.C., Prèzelin, B.B., Baker, K.S., Bidigare, R.R., Boucher, N.P., Coley, T.L., Karentz, D., MacIntyre, S., Matlick, H.A., Menzies, D., Ondrusek, M., Wan, Z., and Waters, K.J. (1992) Ozone depletion: ultraviolet radiation and phytoplankton biology in Antarctic waters. Science 255, 952–959.PubMedCrossRefGoogle Scholar
  89. Takeuchi, Y., Murakami, M., Nakajima, N., Kondo, N. and Nikaido, O. (1998) The photorepair and photoisomerization of DNA lesions in etiolated cucumber cotyledons after irradiation by UV-B depends on wavelength. Plant Cell Physiol. 39, 745–750.Google Scholar
  90. Taylor, H.R. (1994) Ocular effects of UV-B exposure. Documenta Ophthalm. 88, 285–293.Google Scholar
  91. Threlfall, T.J. and English, D.R. (1999) Sun exposure and pterygium of the eye: A dose-response curve. Am. J. Ophthalmol. 128, 280–287.Google Scholar
  92. Todo, T. (1999) Functional diversity of the DNA photolyase/blue light receptor family. Mutat. Res. 434, 89–97.PubMedGoogle Scholar
  93. van der Leun, J., Tang, X. and Tevini, M. et al. (1995) Environmental effects of ozone depletion: 1994 assessment. Ambio 24, 137–197.Google Scholar
  94. van der Leun, J., Tang, X. and Tevini, M. et al. (1999) Environmental effects of ozone depletion: 1998 assessment. J. Photochem. Photobiol. B: Biology 46, 1–108.Google Scholar
  95. van der Leun, J., Tang, X. and Tevini, M. et al. (2003) Environmental effects of ozone depletion and its interactions with climate change: 2002 assessment. Photochem. Photobiol. Sci. 2, i-xxiv and 1–72.Google Scholar
  96. van der Leun, J., Bornman, J.F., Tang, X. et al. (2007) Environmental effects of ozone depletion and its interactions with climate change: 2006 assessment. Photochem. Photobiol. Sci. 6, 208–330.Google Scholar
  97. van Donk, E., Faafeng, B.A., De Lange, H.J. and Hessen, D.O. (2001) Differential sensitivity to natural ultraviolet radiation among phytoplankton species in Arctic lakes (Spitsbergen, Norway). Plant Ecology 154, 213–223.CrossRefGoogle Scholar
  98. Velders, G.J.M , Andersen, S.O., Daniel, J.S., David W. Fahey, D.W. and Mack McFarland, M. 2007) The importance of the Montreal Protocol in protecting climate. Proc. Natl Acad. Sci. USA 104, 4814–4819.PubMedCrossRefGoogle Scholar
  99. Weber, S. (2004) Light-driven enzymatic catalysis of DNA repair: a review of recent biophysical studies on photolyases. Biochim. Biophys. Acta 1707, 1–23.Google Scholar
  100. Wu, F. and Deng, N.S. (2000) Photochemistry of hydrolytic iron (III) species and photoinduced degradation of organic compounds. A minireview. Chemosphere 41, 1137–1147.CrossRefGoogle Scholar
  101. WHO (1994) Environmental health criteria 160: Ultraviolet radiation. World Health Organisation, Geneva.Google Scholar
  102. Yamada, Y. and Aoki, S. (2006) Efficient cycloreversion of cis,syn-thymine photodimer by a Zn2+-1,4,7,10-tetraazacyclododecane complex bearing a lumiflavin and tryptophan by chemical reduction and photoreduction of a lumiflavin unit. J. Biol. Inorg. Chem. 11, 1007–1023.PubMedCrossRefGoogle Scholar
  103. Yoon, J.-H., Lee, C.-S., O’Connor, T.R., Yasui, A. and Pfeifer, G.P. (2000) The DNA damage spectrum produced by simulated sunlight. J. Mol. Biol. 299, 681–693.PubMedCrossRefGoogle Scholar
  104. Young, A.R. BjöL.O., Moan, J., and Nultsch, W. (Eds) (1993) Environmental UV Photobiology, pp. xxi+479. Plenum Press, New York.Google Scholar
  105. Young, R.W. (1994) The family of sunlight-related eye diseases. Optometry Vision Sci. 71, 125–144.CrossRefGoogle Scholar
  106. Zhao, X. and Taylor, J-S. (1996) Mutation spectra of TA, the major photoproduct of thymidylyl-(3’5’)-deoxyadenosine, in Escherichia coli under SOS conditions. Nucleic Acids Res. 24, 1561–1565.PubMedCrossRefGoogle Scholar
  107. Zhao, X., Liu, J., Hsu, D.S., Zhao, S., Taylor, J.-S. and Sancar, A. (1997) Reaction mechanism of (6–4) photolyase. J. Biol. Chem. 272, 32580–32590.PubMedCrossRefGoogle Scholar
  108. Zigman, S. (1995) Environmental near-UV radiation and cataracts. Optometry Vision Sci., 72, 899–901.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Lars Olof Björn
  • Richard L. McKenzie

There are no affiliations available

Personalised recommendations