Photobiology pp 465-478 | Cite as

The Light-Dependent Magnetic Compass

  • Rachel Muheim


Animals can detect different parameters of the geomagnetic field by two principal independent magnetoreception mechanisms: (1) a light-dependent process detecting the axial course and the inclination angle of the geomagnetic field lines, providing the animals with magnetic compass information (inclination compass), and (2) a magnetite-mediated process, providing magnetic map information (map sense). In vertebrates like birds and newts, light-dependent magnetic compass orientation depends on both wavelength and intensity of light, and experimental evidence suggests that magnetic compass information is perceived by magneto-sensitive photoreceptors, possibly containing cryptochromes, in the retina or the pineal.


Magnetic Field Line Magnetic Field Effect Pied Flycatcher Magnetic Compass Magnetic Orientation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avivi, A., Oster, H., Joel, A., Beiles, A., Albrecht, U. and Nevo, E. (2004) Circadian genes in a blind subterranean mammal III: molecular cloning and circadian regulation of cryptochrome genes in the blind subterranean mole rat, Spalax ehrenbergi, superspecies. J. Biol. Rhythms, 19, 22–34.PubMedCrossRefGoogle Scholar
  2. Brocklehurst, B. (2002) Magnetic fields and radical reactions: recent developments and their role in nature. Chem. Soc. Rev. 31, 301–311.PubMedCrossRefGoogle Scholar
  3. Cashmore, A.R., Jarillo, J.A., Wu, Y.-J. and Liu, D. (1999) Cryptochromes: blue light receptors for plants and animals. Science 284, 760–765.PubMedCrossRefGoogle Scholar
  4. Demaine, C. and Semm, P. (1985) The avian pineal gland as an independent magnetic sensor. Neurosci. Lett. 62, 119–122.PubMedCrossRefGoogle Scholar
  5. Deutschlander, M.E., Borland, S.C. and Phillips, J.B. (1999a) Extraocular magnetic compass in newts. Nature 400, 324–325.Google Scholar
  6. Deutschlander, M.E., Phillips, J.B. and Borland, S.C. (1999b) The case for light-dependent magnetic orientation in animals. J. Exp. Biol. 202, 891–908.Google Scholar
  7. Dommer, D.H., Gazzolo, P.J., Painter, M.S., and Phillips, J.B. (in press) Magnetic compass orientation by larval Drosophila melanogaster. J. Insect Behav.Google Scholar
  8. Eldred, W.D. and Nolte, J. (1978) Pineal photoreceptors: Evidence for a vertebrate visual pigment with two physiologically active states. Vision Res. 18, 29–32.PubMedCrossRefGoogle Scholar
  9. Emery, P., So, W.V., Kaneko, M., Hall, J.C. and Rosbash, M. (1998) CRY, a drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 95, 669–679.PubMedCrossRefGoogle Scholar
  10. Eun, B.K. and Kang, H.M. (2003) Cloning and expression of cryptochrome2 in the bullfrog, Rana catesbeiana. Mol. Cells 16, 239–244.Google Scholar
  11. Freake, M.J. and Phillips, J.B. (2005) Light-dependent shift in bullfrog tadpole magnetic compass orientation: evidence for a common magnetoreception mechanism in anuran and urodele amphibians. Ethology 111, 241–254.CrossRefGoogle Scholar
  12. Giovani, B., Byrdin, M., Ahmad, M. and Brettel, K. (2003) Light-induced electron-transfer in a cryptochrome blue-light photoreceptor. Nature Struct. Biol. 10, 489–490.PubMedCrossRefGoogle Scholar
  13. Grissom, C.B. (1995) Magnetic field effects in biology: a survey of possible mechanisms with emphasis on radical-pair recombination. Chem. Rev. 95, 3–24.CrossRefGoogle Scholar
  14. Henbest, K.B., Rodgers, C.T., Hore, P.J. and Timmel, C.R. (2004) Radio frequency magnetic field effects on a radical recombination reaction: a diagnostic test for the radical pair mechanism. J. Am. Chem. Soc. 126, 8102–8103.PubMedCrossRefGoogle Scholar
  15. Kirschvink, J. L. (1996) Microwave absorption by magnetite: a possible mechanism for coupling nonthermal levels of radiation to biological systems. Bioelectromagnetics 17, 187–194.PubMedCrossRefGoogle Scholar
  16. Lohmann, K.J. and Johnson, S. (2000) The neurobiology of magnetoreception in vertebrate animals. Trends Neurosci. 23, 153–159.PubMedCrossRefGoogle Scholar
  17. Lohmann, K.J. and Lohmann, C.M. (1993) A light-independent magnetic compass in the leatherback sea turtle. Biol. Bull. 185, 149–151.CrossRefGoogle Scholar
  18. Maffei, L., Meschini, E. and Papi, F. (1983) Pineal body and magnetic sensitivity: homing in pinealectomized pigeons under overcast skies. Z. Tierpsychol. 62, 151–156.Google Scholar
  19. Marhold, S., Wiltschko, W. and Burda, H. (1997) A magnetic polarity compass for direction finding in a subterranean mammal. Naturwissenschaft 84, 421–423.CrossRefGoogle Scholar
  20. Möller, A., Sagasser, S., Schierwater, B. and Wiltschko, W. (2004) Retinal cryptochrome in a migratorybird: a possible transducer for the avian magnetic compass. Naturwissenschaft 91, 585–588.CrossRefGoogle Scholar
  21. Mouritsen, H., Janssen-Bienhold, U., Liedvogel, M., Feenders, G., Stalleicken, J., Dirks, P. and Weiler, R. (2004) Cryptochromes and neuronal-activity markers colocalize in the retina of migratory birds during magnetic orientation. Proc. Natl Acad. Sci. USA 101, 14294–14299.PubMedCrossRefGoogle Scholar
  22. Mouritsen, H. and Ritz, T. (2005) Magnetoreception and its use in bird navigation. Curr. Opin. Neurobiol. 15, 406–414.PubMedCrossRefGoogle Scholar
  23. Muheim, R., Bäckman, J. and Åkesson, S. (2002) Magnetic compass orientation in European robins is dependent on both wavelength and intensity of light. J. Exp. Biol. 205, 3845–3856.PubMedGoogle Scholar
  24. Muheim, R., Edgar, N.M., Sloan, K.A. and Phillips, J.B. (2006) Magnetic compass orientation in C57BL/6J mice. Learn. Behav. 34, 366–373.PubMedGoogle Scholar
  25. Němec, P., Burda, H. and Oelschläger, H.A. (2005) Towards the neural basis of magnetoreception: a neuroanatomical approach. Naturwissenschaft 92, 151–157.CrossRefGoogle Scholar
  26. Partch, C.L. and Sancar, A. (2005) Photochemistry and photobiology of cryptochrome blue-light photopigments: the search for a photocycle. Photochem. Photobiol. 81, 1291–1304.PubMedCrossRefGoogle Scholar
  27. Phillips, J.B. (1986) Two magnetoreception pathways in a migratory salamander. Science 233, 765–767.PubMedCrossRefGoogle Scholar
  28. Phillips, J.B. and Borland, S.C. (1992a) Behavioral evidence for use of light-dependent magnetoreception mechanism by a vertebrate. Nature 359, 142–144.Google Scholar
  29. Phillips, J.B. and Borland, S.C. (1992b) Magnetic compass orientation is eliminated under near-infrared light in the Eastern red-spotted newt, Notophthalmus viridescens. Anim. Behav. 44, 796–797.Google Scholar
  30. Phillips, J.B. and Borland, S.C. (1992c) Wavelength-specific effects of light on magnetic compass orientation of the Eastern red-spotted newt, Notophthalmus viridescens. Ethol. Ecol. Evol. 4, 33–42.CrossRefGoogle Scholar
  31. Phillips, J.B. and Sayeed, O. (1993) Wavelength-dependent effects of light on magnetic compass orientation in Drosophila melanogaster. J. Comp. Physiol. A 172, 303–308.PubMedCrossRefGoogle Scholar
  32. Rappl, R., Wiltschko, R., Weindler, P., Berthold, P. and Wiltschko, W. (2000) Orientation behaviour of garden warblers, Sylvia borin, under monochromatic light of various wavelengths. Auk 117, 256–260.CrossRefGoogle Scholar
  33. Ritz, T., Adem, S. and Schulten, K. (2000) A model for photoreceptor-based magnetoreception in birds. Biophys. J. 78, 707–718.CrossRefGoogle Scholar
  34. Ritz, T., Dommer, D.H. and Phillips, J.B. (2002) Shedding light on vertebrate magnetoreception. Neuron 34, 503–506.PubMedCrossRefGoogle Scholar
  35. Ritz, T., Thalau, P., Phillips, J.B., Wiltschko, R. and Wiltschko, W. (2004) Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature 429, 177–180.PubMedCrossRefGoogle Scholar
  36. Sancar, A. (2000) CRYPTOCHROME: The second photoactive pigment in the eye and its role in circadian photoreception. Annu. Rev. Biochem. 69, 31–67.PubMedCrossRefGoogle Scholar
  37. Schneider, T., Thalau, H.P., Semm, P. and Wiltschko, W. (1994) Melatonin is crucial for the migratory orientation of pied flycatchers, Ficedula hypoleuca. J. Exp. Biol. 194, 255–262.PubMedGoogle Scholar
  38. Schulten, K. (1982) Magnetic field effects in chemistry and biology. Adv. Solid State Phys. 22, 61–83.Google Scholar
  39. Schulten, K. and Windemuth, A. (1986) Model for a physiological magnetic compass. In: G. Maret, J. Kiepenheuer and N. Boccara (Eds.), Biophysical effects steady magnetic fields. Springer Verlag, New York, pp. 99–106.Google Scholar
  40. Semm, P. (1983) Neurobiological investigations on the magnetic sensitivity of the pineal gland in rodents and pigeons. Comp. Biochem. Physiol. 76, 683–689.CrossRefGoogle Scholar
  41. Semm, P. and Demaine, C. (1986) Neurophysiological properties of magnetic cells in the pigeon’s visual system. J. Comp. Physiol. A 159, 619–625.PubMedCrossRefGoogle Scholar
  42. Semm, P., Nohr, D., Demaine, C. and Wiltschko, W. (1984) Neural basis of the magnetic compass: interactions of visual, magnetic and vestibular inputs in the pigeon’s brain. J. Comp. Physiol. A, 155, 283–288.CrossRefGoogle Scholar
  43. Solessio, E. and Engbretson, G.A. (1993) Antagonistic chromatic mechanisms in photoreceptors of the parietal eye of lizards. Nature 364, 442–445.PubMedCrossRefGoogle Scholar
  44. Steiner U.E. and Ulbricht T. (1989) Magnetic field effects in chemical kinetics and related phenomena. Chem. Rev. 89, 51–147.CrossRefGoogle Scholar
  45. Thalau, P., Ritz, T., Burda, H., Wegner, R. and Wiltschko, R. (2006) The magnetic compass mechanisms of birds and rodents are based on different physical principles. J. R. Soc. Interface 3, 583–587.Google Scholar
  46. Thalau, P., Ritz, T., Stapput, K., Wiltschko, R. and Wiltschko, W. (2005) Magnetic compass orientation of migratory birds in the presence of a 1.315 MHz oscillating field. Naturwissenschaft 92, 86–90.CrossRefGoogle Scholar
  47. Vacha, M. and Soukopova, H. (2004) Magnetic orientation in the mealworm beetle Tenebrio and the effect of light. J. Exp. Biol. 207, 1241–1248.PubMedCrossRefGoogle Scholar
  48. Van der Horst, G.T.J., Muijtjens, M., Kobayashi, K., Takano, R., Kanno, S., Takao, M., De Wit, R., Verkerk, A., Eker, A.P.M., Van Leenen, D., Buijs, R., Bootsma, D., Hoeijmakers, J.H.J. and Yasui, A. (1999) Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398, 627–630.PubMedCrossRefGoogle Scholar
  49. Weber, S., Kay, C.W.M., Mogling, H., Mobius, K., Hitomi, K. and Todo, T. (2002) Photoactivation of the flavin cofactor in Xenopus laevis (6 – 4) photolyase: Observation of a transient tyrosyl radical by time-resolved electron paramagnetic resonance. Proc. Natl Acad. Sci. USA 99, 1319–1322.PubMedCrossRefGoogle Scholar
  50. Wiltschko, R., Ritz, T., Stapput, K., Thalau, P. and Wiltschko, W. (2005) Two different types of light-dependent responses to magnetic fields in birds. Curr. Biol. 15, 1518–1523.PubMedCrossRefGoogle Scholar
  51. Wiltschko, R. and Wiltschko, W. (1995) Magnetic orientation in animals. Berlin: Springer.Google Scholar
  52. Wiltschko, R. and Wiltschko, W. (1998) Pigeon homing: effect of various wavelengths of light during displacement. Naturwiss. 85, 164–167.CrossRefGoogle Scholar
  53. Wiltschko, W. (1968) Über den Einfluss statischer Magnetfelder auf die Zugorientierung der Rotkehlchen, Erithacus rubecula. Z. Tierpsychol. 25, 537–558.PubMedGoogle Scholar
  54. Wiltschko, W. (1978) Further analysis of the magnetic compass of migratory birds. In: K. Schmidt-Koenig and W.T. Keeton (Eds.), Animal migration, navigation and homing. Springer, Berlin, pp. 301–310.Google Scholar
  55. Wiltschko, W., Gesson, M., Stapput, K. and Wiltschko, R. (2004a) Light-dependent magnetoreception in birds: interaction of at least two different receptors. Naturwissenschaft 91, 130–134.Google Scholar
  56. Wiltschko, W., Möller, A., Gesson, M., Noll, C. and Wiltschko, R. (2004b) Light-dependent magnetoreception in birds: analysis of the behaviour under red light after pre-exposure to red light. J. Exp. Biol. 207, 1193–1202.CrossRefGoogle Scholar
  57. Wiltschko, W., Munro, U., Ford, H. and Wiltschko, R. (1993) Red light disrupts magnetic orientation of migratory birds. Nature 364, 525–527.CrossRefGoogle Scholar
  58. Wiltschko, W., Munro, U., Ford, H. and Wiltschko, R. (2003) Lateralization of magnetic compass orientation in silvereyes, Zosterops l. lateralis. Austral. J. Zool. 51, 597–602.CrossRefGoogle Scholar
  59. Wiltschko, W., Traudt, J., Güntürkün, O., Prior, H. and Wiltschko, R. (2002) Lateralization of magnetic compass orientation in a migratory bird. Nature 419, 467–470.PubMedCrossRefGoogle Scholar
  60. Wiltschko, W., Stapput, K., Thalau, P. and Wiltschko, R. (2006) Avian magnetic compass: fast adjustment to intensities outside the normal functional window. Naturwissenschaft 93, 300–304.CrossRefGoogle Scholar
  61. Wiltschko, W. and Wiltschko, R. (1972) Magnetic compass of European robins. Science 176, 62–64.PubMedCrossRefGoogle Scholar
  62. Wiltschko, W. and Wiltschko, R. (1981) Disorientation of inexperienced young pigeons after transportation in total darkness. Nature 291, 433–434.CrossRefGoogle Scholar
  63. Wiltschko, W. and Wiltschko, R. (1992) Migratory orientation: magnetic compass orientation of garden warblers, Sylvia borin, after a simulated crossing of the magnetic equator. Ethology 91, 70–74.CrossRefGoogle Scholar
  64. Wiltschko, W. and Wiltschko, R. (1999) The effect of yellow and blue light on magnetic compass orientation in European robins, Erithacus rubecula. J. Comp. Physiol. A, 184, 295–299.CrossRefGoogle Scholar
  65. Wiltschko, W. and Wiltschko, R. (2001) Light-dependent magnetoreception in birds: the behaviour of European robins, Erithacus rubecula, under monochromatic light of various wavelengths and intensities. J. Exp. Biol. 204, 3295–3302.PubMedGoogle Scholar
  66. Wiltschko, W. and Wiltschko, R. (2002) Magnetic orientation in birds and its physiological basis. Naturwissenschaft 89, 445–452.CrossRefGoogle Scholar
  67. Wiltschko, W. and Wiltschko, R. (2005) Magnetic orientation and magnetoreception in birds and other animals. J. Comp. Physiol. A 191, 675–693.CrossRefGoogle Scholar
  68. Woodward, J.R., Timmel, C.R., Hore, P.J. and McLauchlan, K.A. (2002) Oscillating magnetic field effects on chemical reaction yields. RIKEN Review 44, 79–81.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Rachel Muheim

There are no affiliations available

Personalised recommendations