Advertisement

Photobiology pp 417-463 | Cite as

Photomorphogenesis and Photoperiodism in Plants

  • James L. Weller
  • Richard E. Kendrick

Abstract

Plants depend on light as their main source of energy. However, light is also an important source of information for plants, and changes in the nature of the light reaching a plant can signal seasonal change, potential and actual competition by shading, proximity to the soil surface of roots and seeds, and potential photodamage. This chapter describes how plants detect and respond to their light environment. Plants possess several types of photoreceptors that collectively allow them to detect variation in a number of different light parameters including its spectral composition, irradiance, direction, and daily duration. Signaling pathways initiated by activation of these photoreceptors allow the plant to make adjustments to developmental processes such as germination, stem elongation, chloroplast development and orientation, stem and root bending, and the initiation of flowering. Recent molecular genetic analysis in the main higher plant model, Arabidopsis thaliana, has brought rapid progress to our understanding of the molecular nature and ecological significance of plant responses to light.

Keywords

Circadian Clock Hypocotyl Elongation Photoperiodic Flowering Phototropic Response Phytochrome Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., Notaguchi, M., Goto, K. and Araki, T. (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309, 1052–1056.PubMedCrossRefGoogle Scholar
  2. Ahmad, M. and Cashmore, A.R. (1994) HY4 gene of Arabidopsis thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366, 162–166.CrossRefGoogle Scholar
  3. Ahmad, M., Jarillo, J.A., Smirnova, O. and Cashmore, A.R. (1998) The CRY1 blue light photoreceptor of Arabidopsis interacts with phytochrome A in vitro. Mol. Cell 1, 939–948.PubMedCrossRefGoogle Scholar
  4. Alabadí D., Yanovsky, M.J., Mas, P., Harmer, S.L. and Kay, S.A. (2002) Critical role for CCA1 and LHY in maintaining circadian rhythmicity in Arabidopsis. Curr. Biol. 12, 757–761PubMedCrossRefGoogle Scholar
  5. Allen, T., Koustenis, A., Theodorou, G., Somers, D.E., Kay, S.A., Whitelam, G.C. and Devlin PF (2006) Arabidopsis FHY3 specifically gates phytochrome signaling to the circadian clock. Plant Cell 18, 2506–2516PubMedCrossRefGoogle Scholar
  6. Al-Sady, B., Ni, W., Kircher, S., Schäfer, E. and Quail, P.H. (2006) Photoactivated phytochrome induces rapid PIF3 phosphorylation prior to proteasome-mediated degradation. Mol. Cell. 23, 439–446.PubMedCrossRefGoogle Scholar
  7. An, H., Roussot, C., Suarez-Lopez, P., Corbesier, L., Vincent, C., Pineiro, M., Hepworth, S., Mouradov, A., Justin, S., Turnbull, C. and Coupland, G. (2004) CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development 131, 3615–3626.PubMedCrossRefGoogle Scholar
  8. Balasubramanian, S., Sureshkumar, S., Agrawal, M., Michael, T.P., Wessinger, C., Maloof, J.N., Clark, R., Warthmann, N., Chory, J. and Weigel, D. (2006) The PHYTOCHROME C photoreceptor gene mediates natural variation in flowering and growth responses of Arabidopsis thaliana. Nat. Genet. 38, 711–715.PubMedCrossRefGoogle Scholar
  9. Ballarè, C.L., Casal J.J., Kendrick R.E. (1991) Responses of light-grown wild-type and long-hypocotyl mutant cucumber seedlings to natural and simulated shade light. Photochem. Photobiol. 54, 819–826.Google Scholar
  10. Ballarè, C.L. (1999) Keeping up with the neighbours: phytochrome sensing and other signaling mechanisms. Trends Plant Sci. 4, 97–102.PubMedCrossRefGoogle Scholar
  11. Ballarè, C.L., Scopel, A.L. and Sanchez, R.A. (1990) Far-red irradiation reflected from adjacent leaves: an early signal of competition in plant canopies. Science 247, 329–332.Google Scholar
  12. Ballarè, C.L., Scopel, A.L. and Sanchez, R.A. (1997) Foraging for light-photosensory ecology and agricultural implications. Plant Cell Environ. 20, 820–825.CrossRefGoogle Scholar
  13. Ballarè, C.L., Scopel, A.L., Radosevich, S.R. and Kendrick, R.E. (1992) Phytochrome-mediated phototropism in de-etiolated seedlings. Occurrence and ecological significance. Plant Physiol. 100, 170–177.PubMedGoogle Scholar
  14. Baskin, T.I. and Iino, M. (1987) An action spectrum in the blue and ultraviolet for phototropism in alfalfa. Photochem. Photobiol 46, 127–136.Google Scholar
  15. Baum, G., Long, J.C., Jenkins, G.I. and Trewavas, A.J. (1999) Stimulation of the blue light phototropic receptor NPH1 causes a transient increase in cytosolic Ca2+. Proc. Natl Acad. Sci. USA 96, 13554–13559.PubMedCrossRefGoogle Scholar
  16. Bhoo, S.H., Davis, S.J., Walker, J., Karniol, B. and Vierstra, R.D. (2001) Bacteriophytochromes are photochromic histidine kinases using a biliverdin chromophore. Nature 414, 776–779.PubMedCrossRefGoogle Scholar
  17. Bieza, K. and Lois, R. (2001) An Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows contsitutively elevated accumulation of flavonoids and other phenolics. Plant Physiol. 126, 1105–1115.PubMedCrossRefGoogle Scholar
  18. Böhlenius, H., Huang, T., , O. (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312, 1040–1043.PubMedCrossRefGoogle Scholar
  19. Bouly, J.P, Giovani, B., Djamei, A., Mueller, M., Zeugner, A., Dudkin, E.A., Batschauer, A., and Ahmad, M. (2003) Novel ATP-binding and autophosphorylation activity associated with Arabidopsis and human cryptochrome-1. Eur. J. Biochem. 270, 2921–2928.Google Scholar
  20. Brautigam, C.A, Smith, B.S., Ma, Z., Palnitkar, M., Tomchick, D.R., Machius, M. and Deisenhofer, J. (2004) Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 101, 12142–12147.PubMedCrossRefGoogle Scholar
  21. Briggs W.R. (2006) Blue/UV-A receptors: Historical overview. In: E. Schäfer and F. Nagy (Eds.) Photomorphogenesis in Plants and Bacteria, Third Edition, Function and Signal Transduction Mechanisms. Springer, Dorcrecht. pp. 171–197.Google Scholar
  22. Briggs, W.R. and Huala, E. (1999) Blue-light photoreceptors in higher plants. Annu. Rev. Cell Develop. Biol. 15, 33–62. (2006) Blue/UV-A photoreceptors: historical overview. In: E Schäfer and F Nagy (Eds.) Photomorphogenesis in plants and bacteria, 3rd ed. Springer, Dordrecht, pp. 171–198.Google Scholar
  23. Bünning, E. (1964) The physiological clock. Springer Verlag, Berlin.Google Scholar
  24. Butler, W.L., Hendricks, S.B. and Siegelman, H.W. (1964) Action spectra of phytochrome in vitro. Photochem. Photobiol. 3, 521–528.Google Scholar
  25. Carr-Smith, H.D., Thomas, B. and Johnson, C.B. (1989) An action spectrum for the effect of continuous light on flowering in wheat. Planta 179, 428–432.CrossRefGoogle Scholar
  26. Casal, J.J. (2000) Phytochromes, cryptochromes, phototropin: photoreceptor interactions in plants. Photochem. Photobiol. 71, 1–11.PubMedCrossRefGoogle Scholar
  27. Casal, J.J. (2006) The photoreceptor interaction network. In: E. Schäfer and F. Nagy (Eds.), Photomorphogenesis in plants and bacteria, 3rd ed. Springer, Dordrecht, pp 407–438.Google Scholar
  28. Casal, J.J. and Sanchez, R.A. (1998) Phytochromes and seed germination. Seed Sci. Res. 8, 317–329.CrossRefGoogle Scholar
  29. Cashmore, A.R., Jarillo, J.A., Wu, Y.J. and Liu, D.M. (1999) Cryptochromes: Blue light receptors for plants and animals. Science 284, 760–765.PubMedCrossRefGoogle Scholar
  30. Choi, G., Yi, H., Lee, J., Kwon, Y.K., Soh, M.S., Shin, B., Luka, Z., Hahn, T.R., and Song, P.S. (1999) Phytochrome signaling is mediated through nucleoside diphosphate kinase 2. Nature 401, 610–613.PubMedCrossRefGoogle Scholar
  31. Christie, J.M., Salomon, M., Nozue, K., Wada, M. and Briggs, W.R. (1999) LOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin (nph1): Binding sites for the chromophore flavin mononucleotide Proc. Natl Acad. Sci. USA 96, 8779–8783.CrossRefGoogle Scholar
  32. Clack, T., Mathews, S. and Sharrock, R.A. (1994) The phytochrome apoprotein family in Arabidopsis is encoded by five genes—the sequences and expression of PHYD and PHYE. Plant Mol. Biol. 25, 413–427.PubMedCrossRefGoogle Scholar
  33. Colon-Carmona, A., Chen, D.L., Yeh, K.C. Abel S. (2000) Aux/IAA proteins are phosphorylated by phytochrome in vitro. Plant Physiol. 124, 1728–1738.PubMedCrossRefGoogle Scholar
  34. Corbesier, L., Gadisseur, I., Silvestre, G., Jacqmard, A. and Bernier, G. (1996) Design in Arabidopsis thaliana of a synchronous system of floral induction by one long day. Plant J. 9, 947–952.PubMedCrossRefGoogle Scholar
  35. Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Farrona, S., Gissot, L., Trunbull, C., and Coupland, G. (2007) FT protein movement contributes to long-distance signalling in floral induction in Arabidopsis. Science 316, 1030–1033.PubMedCrossRefGoogle Scholar
  36. Davis, S.J. (2006) The phytochrome chromophore. In: E. Schäfer and F. Nagy (Eds.), Photomorphogenesis in plants and bacteria, 3rd ed. Springer, Dordrecht, pp. 41–64.Google Scholar
  37. Davis, S.J., Vener, A.V. and Vierstra, R.D. (1999) Bacteriophytochromes: phytochrome-like photoreceptors from nonphotosynthetic eubacteria. Science 286, 2517–2520.PubMedCrossRefGoogle Scholar
  38. Deitzer, G.F., Hayes, R. and Jabben, M. (1982) Phase shift in the circadian rhythm of floral promotion by far-red light in Hordeum vulgare L. Plant Physiol. 69, 597–601.Google Scholar
  39. Devlin, P.F. and Kay, S.A. (2000) Cryptochromes are required for phytochrome signaling to the circadian clock but not for rhythmicity. Plant Cell 12, 2499–2509.PubMedCrossRefGoogle Scholar
  40. Devlin, P.F., Patel, S.R. and Whitelam, G.C. (1998) Phytochrome E influences internode elongation and flowering time in Arabidopsis. Plant Cell 10, 1479–1488.PubMedCrossRefGoogle Scholar
  41. Devlin, P.F., Robson, P.R.H., Patel, S.R., Goosey, L., Sharrock, R.A. and Whitelam, G.C. (1999) Phytochrome D acts in the shade-avoidance syndrome in Arabidopsis by controlling elongation growth and flowering time. Plant Physiol. 119, 909–915.PubMedCrossRefGoogle Scholar
  42. Dhingra, A., Bies, D.H., Lehner, K.R, and Folta, K.M. (2006) Green light adjusts the plastid transcriptome during early photomorphogenic development. Plant Physiol. 142, 1256–1266.PubMedCrossRefGoogle Scholar
  43. Dieterle, M., Zhou, Y.C., Schäfer, E., Funk, M. and Kretsch, T. (2001) EID1, an F-box protein involved in phytochrome A-specific light signaling. Genes Develop. 15, 939–944.PubMedCrossRefGoogle Scholar
  44. Duek, P.D. and Fankhauser, C. (2003) HFR1, a putative bHLH transcription factor, mediates both phytochrome A and cryptochrome signaling. Plant J. 34, 827–836.PubMedCrossRefGoogle Scholar
  45. Eichenberg, K., Baurle, I., Paulo, N., Sharrock, R.A., Rüdiger, W. and Schäfer, E. (2000) Arabidopsis phytochromes C and E have different spectral characteristics from those of phytochromes A and B. FEBS Lett. 470, 107–112.PubMedCrossRefGoogle Scholar
  46. Fairchild, C.D., Schumaker, M.A. and Quail, P.H. (2000) HFR1 encodes an atypical bHLH protein that acts in phytochrome A signal transduction. Genes Develop. 14, 2377–2391.PubMedGoogle Scholar
  47. Fankhauser, C. and Bowler, C. (2006) Biochemical and molecular analysis of signaling components. In: E. Schäfer and F. Nagy (Eds.), Photomorphogenesis in plants and bacteria, 3rd ed.. Springer, Dordrecht, pp. 379–406.Google Scholar
  48. Fankhauser, C., Yeh, K.C., Lagarias, J.C., Zhang, H., Elich, T.D. and Chory, J. (1999) PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis. Science 284, 1539–1541.PubMedCrossRefGoogle Scholar
  49. Farrè, E.M., Harmer, S.L, Harmon, F.G., Yanovsky, M.J. and Kay SA (2005) Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Curr. Biol. 15, 47–54.PubMedCrossRefGoogle Scholar
  50. Folta, K.M. and Spalding, E.P. (2001) Unexpected roles for cryptochrome 2 and phototropin revealed by high-resolution analysis of blue light-mediated hypocotyl growth inhibition. Plant J. 26, 471–478.PubMedCrossRefGoogle Scholar
  51. Folta, K.M. (2004) Green light stimulates early stem elongation, antagonizing light-mediated growth inhibition. Plant Physiol. 135, 1407–1416.PubMedCrossRefGoogle Scholar
  52. Fowler, S., Lee. K., Onouchi, H., Samach, A., Richardson, K., Morris, B., Coupland, G. and Putterill, J. (1999) GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J. 18, 4679–4688.PubMedCrossRefGoogle Scholar
  53. Franklin, K.A., Praekelt, U., Stoddart, W.M., Billingham, O.E., Halliday, K.J. and Whitelam, G.C. (2003) Phytochromes B, D, and E act redundantly to control multiple physiological responses in Arabidopsis. Plant Physiol. 131, 1340–1346.PubMedCrossRefGoogle Scholar
  54. Franklin, K.A. and Whitelam, G.C. (2005) Phytochromes and shade-avoidance responses in plants. Ann Bot 96, 169–175.PubMedCrossRefGoogle Scholar
  55. Furuya, M. (1989) Molecular properties and biogenesis of phytochrome I and II. Adv. Biophys. 25, 133–167.Google Scholar
  56. Galen, C., Rabenold, J.J, and Liscum, E. (2007) Functional ecology of a blue light photoreceptor: effects of phototropin-1 on root growth enhance drought tolerance in Arabidopsis thaliana. New Phytol. 173, 91–99.PubMedCrossRefGoogle Scholar
  57. Garner, W.W. and Allard, A.H. (1920) Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. J. Agric. Res. 18, 553–606.Google Scholar
  58. Gil P., Kircher S., Adam E., Bury E., Kozma-Bognar L., Schafer E., Nagy F. (2000) Photocontrol of subcellular partitioning of phytochrome-B:GFP fusion protein in tobacco seedlings. Plant J. 22, 135–145.PubMedCrossRefGoogle Scholar
  59. Giovani, B., Byrdin, M., Ahmad, M. and Brettel K. (2003) Light-induced electron transfer in a cryptochrome blue-light photoreceptor. Nat. Struct. Biol. 10, 489–490.PubMedCrossRefGoogle Scholar
  60. Goosey, L., Palecanda, L. and Sharrock, R.A. (1997) Differential patterns of expression of the Arabidopsis PHYB, PHYD, and PHYE phytochrome genes. Plant Physiol. 115, 959–969.PubMedCrossRefGoogle Scholar
  61. Guo, H.W., Mockler, T., Duong, H. and Lin, C.T. (2001) SUB1, an Arabidopsis Ca2+-binding protein involved in cryptochrome and phytochrome coaction. Science 291, 487–490.PubMedCrossRefGoogle Scholar
  62. Guo, H.W., Yang, W.Y., Mockler, T.C. and Lin, C.T. (1998) Regulation of flowering time by Arabidopsis photoreceptors. Science 279, 1360–1363.PubMedCrossRefGoogle Scholar
  63. Hall, A., Bastow, R.M., Davis, S.J., Hanano, S., McWatters, H.G., Hibberd, V., Doyle, M.R., Sung, S., Halliday, K.J., Amasino, R.M. and Millar, A.J. (2003) The TIME FOR COFFEE gene maintains the amplitude and timing of Arabidopsis circadian clocks. Plant Cell 15, 2719–2729.PubMedCrossRefGoogle Scholar
  64. Harada, A., Sakai, T. and Okada, K. (2003) Phot1 and phot2 mediate blue light-induced transient increases in cytosolic Ca2+ differently in Arabidopsis leaves. Proc. Natl Acad. Sci. USA 100, 8583–8588.PubMedCrossRefGoogle Scholar
  65. Harper, R.M., Stowe-Evans, E.L., Luesse, D.R., Muto, H., Tatematsu, K., Watahiki, M.K., Yamamoto, K. and Liscum, E. (2000) The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue. Plant Cell 12, 757–770.PubMedCrossRefGoogle Scholar
  66. Hauser, B.A., Cordonnier-Pratt, M.M. and Pratt, L.H. (1998) Temporal and photoregulated expression of five tomato phytochrome genes. Plant J. 14, 431–439.PubMedCrossRefGoogle Scholar
  67. Hauser, B.A., Cordonnier-Pratt, M.M., Daniel-Vedele, F. and Pratt, L.H. (1995) The phytochrome gene family in tomato includes a novel subfamily. Plant Mol. Biol. 29, 1143–1155.PubMedCrossRefGoogle Scholar
  68. Hauser, B.A., Pratt, L.H. and Cordonnier-Pratt, M.M. (1997) Absolute quantification of five phytochrome transcripts in seedlings and mature plants of tomato (Solanum lycopersicum L.). Planta 201, 379–387.PubMedCrossRefGoogle Scholar
  69. Hauser, B.A., Cordonnier-Pratt, M.M., and Pratt, L.H. (1998) Temporal and photoregulated expression of five tomato phytochrome genes. Plant J. 14, 431–439.PubMedCrossRefGoogle Scholar
  70. Hayama, R., Yokoi, S., Tamaki, S., Yano, M. and Shimamoto, K. (2003) Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422, 719–722.PubMedCrossRefGoogle Scholar
  71. Hazen, S.P., Schultz, T.F., Pruneda-Paz, J.L., Borevitz, J.O., Ecker, J.R. and Kay, S.A. (2005) LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms. Proc. Natl Acad. Sci. USA 102, 10387–10392.PubMedCrossRefGoogle Scholar
  72. Hennig, L. (2006) Phytochrome degradation and dark reversion. In: E. Schäfer and F. Nagy (Eds.), Photomorphogenesis in plants and bacteria, 3rd ed. Springer, Dordrecht, pp. 131–154.Google Scholar
  73. Hershey, H.P., Colbert, J.T., Lissemore, J.L., Barker, R.F. and Quail, P.H. (1984) Molecular cloning of cDNA for Avena phytochrome. Proc. Natl Acad. Sci. USA 81, 2332–2336.PubMedCrossRefGoogle Scholar
  74. Hicks, K.A., Millar, A.J., Carre, I.A., Somers, D.E., Straume, M., Meeks-Wagner, D.R. and Kay, S.A. (1996) Conditional circadian dysfunction of the Arabidopsis early-flowering 3 mutant. Science 274, 790–792.PubMedCrossRefGoogle Scholar
  75. Hiltbrunner, A., Tscheuschler, A., Viczian, A., Kunkel, T., Kircher, S. and Schäfer, E. (2006) FHY1 and FHL act together to mediate nuclear accumulation of the phytochrome A photoreceptor. Plant Cell Physiol. 47, 1023–1034.PubMedCrossRefGoogle Scholar
  76. Hirose F., Shinomura T., Tanabata T., Shimada H., Takano M. (2006) Involvement of rice cryptochromes in de-etiolation responses and flowering. Plant Cell Physiol. 47, 915–925.PubMedCrossRefGoogle Scholar
  77. Hisada, A., Hanzawa, H., Weller, J.L., Nagatani, A., Reid, J.B. and Furuya, M. (2000) Light-induced nuclear translocation of endogenous pea phytochrome A visualized by immunocytochemical procedures. Plant Cell 12, 1063–1078.PubMedCrossRefGoogle Scholar
  78. Hoecker, U., Tepperman, J.M. and Quail, P.H. (1999) SPA1, a WD-repeat protein specific to phytochrome A signal transduction. Science 284, 496–499.PubMedCrossRefGoogle Scholar
  79. Hsieh, H.L., Okamoto, H., Wang, M.L., Ang, L.H., Matsui, M., Goodman, H. and Deng, X.W. (2000) FIN219, an auxin-regulated gene, defines a link between phytochrome A and the downstream regulator COP1 in light control of Arabidopsis development. Genes Develop. 14, 1958–1970.PubMedGoogle Scholar
  80. Huala, E., Oeller, P.W., Liscum, E., Han, I.S., Larsen, E. and Briggs, W.R. (1997) Arabidopsis NPH1—a protein kinase with a putative redox-sensing domain. Science 278, 2120–2123.PubMedCrossRefGoogle Scholar
  81. Hübschmann, T., Borner, T., Hartmann, E. and Lamparter, T. (2001) Characterization of the Cph1 holo-phytochrome from Synechocystis sp. PCC 6803. Eur. J. Biochem. 268, 2055–2063.PubMedCrossRefGoogle Scholar
  82. Hudson, M,E, and Quail, P.H. (2003) Identification of promoter motifs involved in the network of phytochrome A-regulated gene expression by combined analysis of genomic sequence and microarray data. Plant Physiol. 133, 1605–1616.PubMedCrossRefGoogle Scholar
  83. Hudson, M.E., Lisch, D.R. and Quail, P.H. (2003) The FHY3 and FAR1 genes encode transposase-related proteins involved in regulation of gene expression by the phytochrome A-signaling pathway. Plant J. 34, 453–471.PubMedCrossRefGoogle Scholar
  84. Hudson, M., Ringli, C., Boylan, M.T. and Quail, P.H. (1999) The FAR1 locus encodes a novel nuclear protein specific to phytochrome A signaling. Genes Develop. 13, 2017–2027.PubMedGoogle Scholar
  85. Imaizumi, T., Tran, H.G, Swartz, T.E., Briggs, W.R. and Kay, S.A. (2003) FKF1 is essential for photoperiodic-specific light signaling in Arabidopsis. Nature 426, 302–306.PubMedCrossRefGoogle Scholar
  86. Ishikawa, R., Tamaki, S., Yokoi, S., Inagaki, N., Shinomura, T., Takano, M. and Shimamoto, K. (2005) Suppression of the floral activator Hd3a is the principal cause of the night break effect in rice. Plant Cell. 17, 3326–3336.PubMedCrossRefGoogle Scholar
  87. Jackson, S.D., Heyer, A., Dietze, J. and Prat S. (1996) Phytochrome B mediates the photoperiodic control of tuber formation in potato. Plant J. 9, 159–166.CrossRefGoogle Scholar
  88. Jenkins, G.I., Long, J.C., Wade, H.K., Shenton, M.R. and Bibikova, T.N. (2001) UV and blue light signaling: pathways regulating chalcone synthase gene expression in Arabidopsis. New Phytol. 151, 121–131.CrossRefGoogle Scholar
  89. Johnson, E., Bradley, M., Harberd, N.P. and Whitelam, G.C. (1994) Photoresponses of light-grown phyA mutants of Arabidopsis-phytochrome A is required for the perception of daylength extensions. Plant Physiol. 105, 141–149.PubMedCrossRefGoogle Scholar
  90. Jones, A.M., Ecker, J.R. and Chen, J.G. (2003) A reevaluation of the role of the heterotrimeric G protein in coupling light responses in Arabidopsis. Plant Physiol. 131, 1623–1627.PubMedCrossRefGoogle Scholar
  91. Kagawa, T., Sakai, T., Suetsugu, N., Oikawa, K., Ishiguro, S., Kato, T., Tabata, S., Okada, K. and Wada, M. (2001) Arabidopsis NPL1: A phototropin homolog controlling the chloroplast high-light avoidance response. Science 291, 2138–2141.PubMedCrossRefGoogle Scholar
  92. Kanegae, H., Tahir, M., Savazzini, F., Yamamoto, K., Yano, M., Sasaki, T., Kanegae, T., Wada, M. and Takano, M. (2000) Rice NPH1 homologues, OsNPN1a and OsNPN1b, are differently photoregulated. Plant Cell Physiol. 41, 415–423.PubMedGoogle Scholar
  93. Kang, X., Chong, J. and Ni, M. (2005) HYPERSENSITIVE TO RED AND BLUE 1, a ZZ-type zinc finger protein, regulates phytochrome B-mediated red and cryptochrome-mediated blue light responses. Plant Cell 17, 822–835.PubMedCrossRefGoogle Scholar
  94. Kang, X. and Ni, M. (2006) Arabidopsis SHORT HYPOCOTYL UNDER BLUE1 contains SPX and EXS domains and acts in cryptochrome signaling. Plant Cell. 18, 921–934.PubMedCrossRefGoogle Scholar
  95. Kardailsky, I., Shukla, V.K., Ahn, J.H., Dagenais, N., Christensen, S.K., Nguyen, J.T., Chory, J., Harrison, M.J. and Weigel, D. (1999) Activation tagging of the floral inducer FT. Science 286, 1962–1965.PubMedCrossRefGoogle Scholar
  96. Karniol, B., Wagner, J.R., Walker, J.M. and Vierstra, R.D. (2005) Phylogenetic analysis of the phytochrome superfamily reveals distinct microbial subfamilies of photoreceptors. Biochem J. 392, 103–116.Google Scholar
  97. Kehoe, D.M. and Grossman, A.R. (1996) Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors. Science 273, 1409–1412.PubMedCrossRefGoogle Scholar
  98. Kerckhoffs, L.H.J., Schreuder, M.E.L., van Tuinen, A., Koornneef, M. and Kendrick, R.E. (1997) Phytochrome control of anthocyanin biosynthesis in tomato seedlings – analysis using photomorphogenic mutants. Photochem. Photobiol. 65, 374–381.Google Scholar
  99. Khanna, R., Shen, Y., Toledo-Ortiz, G., Kikis, E.A., Johannesson, H., Hwang, Y.S. and Quail, P.H. (2006) Functional profiling reveals that only a small number of phytochrome-regulated early-response genes in Arabidopsis are necessary for optimal deetiolation. Plant Cell 18, 2157–2171.PubMedCrossRefGoogle Scholar
  100. Kim, B.C., Tennessen, D.J. and Last, R.L. (1998) UV-B-induced photomorphogenesis in Arabidopsis thaliana. Plant J. 15, 667–674.PubMedCrossRefGoogle Scholar
  101. Kinoshita, T., Doi, M., Suetsugu, N., Kagawa, T., Wada, M. and Shimazaki, K. (2001) phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 414, 656–660.PubMedCrossRefGoogle Scholar
  102. Kircher, S., Gil, P., Kozma-Bognar, L., Fejes, E., Speth, V., Husselstein-Muller, T., Bauer, D., Adam, E., Schäfer, E. and Nagy, F. (2002) Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A, B, C, D, and E is regulated differentially by light and exhibits a diurnal rhythm. Plant Cell 14, 1541–1555.PubMedCrossRefGoogle Scholar
  103. Kircher, S., Kozma-Bognar, L., Kim, L., Adam, E., Harter, K., Schafer, E. and Nagy, F. (1999) Light quality-dependent nuclear import of the plant photoreceptors phytochrome A and B. Plant Cell 11, 1445–1456.PubMedCrossRefGoogle Scholar
  104. Kleiner, O., Kircher, S., Harter, K., Batschauer, A. (1999) Nuclear localization of the Arabidopsis blue light receptor cryptochrome 2. Plant J. 19, 289–296.PubMedCrossRefGoogle Scholar
  105. Kohchi, T., Mukougawa, K., Frankenberg, N., Masuda, M., Yokota, A. and Lagarias, J.C. (2001) The Arabidopsis HY2 gene encodes phytochromobilin synthase, a ferredoxin-dependent biliverdin reductase. Plant Cell 13, 425–436.PubMedCrossRefGoogle Scholar
  106. Kojima, S., Takahashi, Y., Kobayashi, Y., Monna, L., Sasaki, T., Araki, T. and Yano M. (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol. 43, 1096–1105.PubMedCrossRefGoogle Scholar
  107. Koornneef, M., Rolff, E. and Spruitt, C.J.P. (1980) Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana L. Heynh. Z. Pflanzenphysiol. 100, 147–160.Google Scholar
  108. Lariguet, P. and Fankhauser, C. (2004) Hypocotyl growth orientation in blue light is determined by phytochrome A inhibition of gravitropism and phototropin promotion of phototropism. Plant J. 40, 826–834.PubMedCrossRefGoogle Scholar
  109. Lariguet, P., Schepens, I., Hodgson, D., Pedmale, U.V., Trevisan, M., Kami, C., de Carbonnel, M., Alonso, J.M., Ecker, J.R., Liscum, E. and Fankhauser, C. (2006) PHYTOCHROME KINASE SUBSTRATE 1 is a phototropin 1 binding protein required for phototropism. Proc. Natl Acad. Sci. USA 103, 10134–10139.PubMedCrossRefGoogle Scholar
  110. Lin, C., Robertson, D.E., Ahmad, M., Raibekas, A.A., Jorns, M.S., Dutton, P.L. and Cashmore, A.R. (1995) Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor cry1. Science 269, 968–970.PubMedCrossRefGoogle Scholar
  111. Lin, C., Yang, H.Y., Guo, H.W., Mockler, T., Chen, J. and Cashmore, A.R. (1998) Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proc. Natl Acad. Sci. USA 95, 2686–2690.PubMedCrossRefGoogle Scholar
  112. Lin, M., Belanger, H., Lee, Y., Varkonyi-Gasic, E., Taoka, K., Miura, E., Xoconostle-Cásares, B., Dendler, K., Jorgensen, R., Phinney, B., Lough, T.J., and Lucas, W.J. (2007) FLOWERING LOCUS T protein may act as the long-distance florigenic signal in curcubits. Plant Cell 19, 1488–1506.PubMedCrossRefGoogle Scholar
  113. Liscum, E. and Briggs, W.R. (1995) Mutations in the nph1 locus of Arabidopsis disrupt the perception of phototropic stimuli. Plant Cell 7, 473–485.PubMedCrossRefGoogle Scholar
  114. Liscum, E. and Briggs, W.R. (1996) Mutations of Arabidopsis in potential transduction and response components of the phototropic signaling pathway. Plant Physiol. 112, 291–296.PubMedCrossRefGoogle Scholar
  115. Liscum, E. and Stowe-Ewans, E.L. (2000) Phototropism: A “simple” physiological response modulated by multiple interacting photosensory-response pathways. Photochem. Photobiol. 72, 273–282.PubMedCrossRefGoogle Scholar
  116. Locke, J.C., Kozma-Bognar, L., Gould, P.D., Feher, B., Kevei, E., Nagy, F., Turner, M.S., Hall, A., Millar, A.J. (2006) Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana. Mol. Syst. Biol. 2, 59.PubMedCrossRefGoogle Scholar
  117. Ma, L., Li, J., Qu, L., Hager, J., Chen, Z., Zhao, H. and Deng, X.W. (2001) Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell 13, 2589–2607.PubMedCrossRefGoogle Scholar
  118. Malhotra, K., Kim, S.T., Batschauer, A., Dawut. L. and Sancar, A. (1995) Putative blue-light photoreceptors from Arabidopsis thaliana and Sinapis alba with a high degree of sequence homology to DNA photolyase contain the two photolyase cofactors but lack DNA repair activity. Biochemistry 34, 6892–6899.PubMedCrossRefGoogle Scholar
  119. Martinez-Garcia, J.F., Huq, E. and Quail, P.H. (2000) Direct targeting of light signals to a promoter element-bound transcription factor. Science 288, 859–863.PubMedCrossRefGoogle Scholar
  120. Más, P., Kim, W.Y., Somers, D.E. and Kay, S.A. (2003) Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature 426, 567–570.PubMedCrossRefGoogle Scholar
  121. Mathews, S. (2006) Phytochrome-mediated development in land plants: red light sensing evolves to meet the challenges of changing light environments. Mol. Ecol. 15, 3483–3503PubMedCrossRefGoogle Scholar
  122. Mazzella, M.A., Magliano, T.M.A. and Casal, J.J. (1997) Dual effect of phytochrome A on hypocotyl growth under continuous red light. Plant Cell Environ. 20, 261–267.CrossRefGoogle Scholar
  123. McCormac, A.C., Whitelam, G.C., Boylan, M.T., Quail, P.H. and Smith, H. (1992) Contrasting responses of etiolated and light-adapted seedlings to red: far-red ratio: a comparison of wild type, mutant and transgenic plants has revealed differential functions of members of the phytochrome family. J. Plant Physiol. 140, 707–714.Google Scholar
  124. McWatters, H.G., Bastow, R.M., Hall, A. and Millar, A.J. (2000) The ELF3 zeitnehmer regulates light signaling to the circadian clock. Nature 408, 716–720.PubMedCrossRefGoogle Scholar
  125. Michael, T.P., Salome, P.A., Yu, H.J., Spencer, T.R., Sharp, E.L., McPeek, M.A., Alonso, J.M., Ecker, J.R. and McClung, C.R. (2003) Enhanced fitness conferred by naturally occurring variation in the circadian clock. Science 302, 1049–1053.PubMedCrossRefGoogle Scholar
  126. Mizoguchi, T., Wheatley, K., Hanzawa, Y., Wright, L., Mizoguchi, M., Song, H.R., Carre, I.A. and Coupland, G. (2002) LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Dev. Cell. 2, 629–641.PubMedCrossRefGoogle Scholar
  127. Mockler, T., Yang, H., Yu, X., Parikh, D., Cheng, Y.C., Dolan, S. and Lin, C. (2003) Regulation of photoperiodic flowering by Arabidopsis photoreceptors. Proc. Natl Acad. Sci. USA 100, 2140–2145.PubMedCrossRefGoogle Scholar
  128. Motchoulski, A. and Liscum, E. (1999) Arabidopsis NPH3: a NPH1 photoreceptor-interacting protein essential for phototropism. Science 286, 961–964.PubMedCrossRefGoogle Scholar
  129. Mullineaux, P. and Karpinski, S. (2002) Signal transduction in response to excess light: getting out of the chloroplast. Curr. Opin. Plant Biol. 5, 43–48.PubMedCrossRefGoogle Scholar
  130. Muramoto, T., Kohchi, T., Yokota, A., Hwang, I.H. and Goodman, H.M. (1999) The Arabidopsis photomorphogenic mutant hy1 is deficient in phytochrome chromophore biosynthesis as a result of a mutation in a plastid heme oxygenase. Plant Cell 11, 335–347.PubMedCrossRefGoogle Scholar
  131. Nakamichi, N., Kita, M., Ito, S., Yamashino, T., Mizuno, T. (2005) PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of Arabidopsis thaliana. Plant Cell Physiol. 46, 686–698.PubMedCrossRefGoogle Scholar
  132. Nelson, D.C., Lasswell, J., Rogg, L.E., Cohen, M.A. and Bartel, B. (2000) FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell 101, 331–340.PubMedCrossRefGoogle Scholar
  133. Osterlund, M.T. and Deng, X.W. (1998) Multiple photoreceptors mediate the light-induced reduction of GUS-COP1 from Arabidopsis hypocotyl nuclei. Plant J. 16, 201–208.PubMedCrossRefGoogle Scholar
  134. Osterlund, M.T., Hardtke, C.S., Wei, N. and Deng, X.W. (2000) Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405, 462–466.PubMedCrossRefGoogle Scholar
  135. Park, D.H., Somers, D.E., Kim, Y.S., Choy, Y.H., Lim, H.K., Soh, M.S., Kim, H.J., Kay, S.A. and Nam, H.G. (1999) Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 285, 1579–1582.PubMedCrossRefGoogle Scholar
  136. Parker, M.W., Hendricks, S.B., Borthwick, H.A. and Went, F.W. (1949) Spectral sensitivities for stem and leaf growth of etiolated pea seedlings and their similarity to action spectra for photoperiodism. Am. J. Bot. 36, 194–204.CrossRefGoogle Scholar
  137. Parks, B.M. and Spalding, E.P. (1999) Sequential and coordinated action of phytochromes A and B during Arabidopsis stem growth revealed by kinetic analysis. Proc. Natl Acad. Sci. USA 96, 14142–14146.PubMedCrossRefGoogle Scholar
  138. Parks, B.M, and Quail, P.H. (1991) Phytochrome-deficient hy1 and hy2 long hypocotyl mutants of Arabidopsis are defective in phytochrome chromophore biosynthesis. Plant Cell 3, 1177–1186.PubMedCrossRefGoogle Scholar
  139. Parks, B.M., Cho, M.H. and Spalding, E.P. (1998) Two genetically separable phases of growth inhibition induced by blue light in Arabidopsis seedlings. Plant Physiol. 118, 609–615.PubMedCrossRefGoogle Scholar
  140. Parks, B.M., Quail, P.H. and Hangarter, R.P. (1996) Phytochrome A regulates red-light induction of phototropic enhancement in Arabidopsis. Plant Physiol. 110, 155–162.PubMedCrossRefGoogle Scholar
  141. Perrotta, G., Ninu, L., Flamma, F., Weller, J.L., Kendrick, R.E., Nebuloso, E. and Giuliano, G. (2000) Tomato contains homologues of Arabidopsis cryptochromes 1 and 2. Plant Mol. Biol. 42, 765–773.PubMedCrossRefGoogle Scholar
  142. Platten, J.D., Foo, E., Elliott, R.C., Hecht, V., Reid, J.B. and Weller, J.L. (2005b) Cryptochrome 1 contributes to blue-light sensing in pea. Plant Physiol. 139, 1472–1482.CrossRefGoogle Scholar
  143. Platten, J.D., Foo, E., Foucher, F., Hecht, V., Reid, J.B. and Weller, J.L. (2005a) The cryptochrome gene family in pea includes two differentially expressed CRY2 genes. Plant Mol. Biol. 59, 683–696.CrossRefGoogle Scholar
  144. Poppe, C., Sweere, U., Drumm-Herrel, H. and Schäfer E. (1998) The blue light receptor cryptochrome 1 can act independently of phytochrome A and B in Arabidopsis thaliana. Plant J. 16, 465–471.PubMedCrossRefGoogle Scholar
  145. Quail, P.H. (1997) An emerging molecular map of the phytochromes. Plant Cell Environ. 20, 657–665.CrossRefGoogle Scholar
  146. Quail, P.H. (2006) Phytochrome signal transduction network. In: E. Schäfer and F. Nagy (Eds.) Photomorphogenesis in plants and bacteria, 3rd Ed., Springer, Dordrecht, The Netherlands, pp. 335–356.Google Scholar
  147. Quecini, V. and Liscum, E. (2006) Signal transduction in blue light-mediated responses. In: E. Schäfer and F. Nagy (Eds.), Photomorphogenesis in plants and bacteria, 3rd ed. Springer, Dordrecht, pp. 305–327.Google Scholar
  148. Robson, P.R.H., McCormac, A.C., Irvine, A.S. and Smith H. (1996) Genetic engineering of harvest index in tobacco through overexpression of a phytochrome gene. Nature Biotechnol. 14,995–998.Google Scholar
  149. Rockwell, N.C., Su Y.S., Lagarias J.C. (2006) Phytochrome structure and signaling mechanisms. Annu. Rev. Plant. Biol. 57, 837–858.PubMedCrossRefGoogle Scholar
  150. Roden, L.C., Song, H.R., Jackson, S., Morris, K. and Carre, I.A. (2002) Floral responses to photoperiod are correlated with the timing of rhythmic expression relative to dawn and dusk in Arabidopsis. Proc. Natl Acad. Sci. USA 99, 13313–13318.PubMedCrossRefGoogle Scholar
  151. Ryan, K.G., Swinny, E.E., Winefield, C. and Markham, K.R. (2001) Flavonoids and UV photoprotection in Arabidopsis mutants. Z. Naturforsch. 56, 745–754.Google Scholar
  152. Sage, L.C. (1992) Pigment of the imagination: a history of phytochrome research. Academic Press, New York.Google Scholar
  153. Sakai, T., Wada, T., Ishiguro, S. and Okada, K. (2000) RPT2: A signal transducer of the phototropic response in Arabidopsis. Plant Cell 12, 225–236.Google Scholar
  154. Sakai, T., Kagawa, T., Kasahara, M., Swartz, T.E., Christie, J.M., Briggs, W.R., Wada, M. and Okada, K. (2001) Arabidopsis nph1 and npl1: Blue light receptors that mediate both phototropism and chloroplast relocation Proc. Natl Acad. Sci. USA 98, 6969–6974.CrossRefGoogle Scholar
  155. Sakamoto, K. and Briggs, W.R. (2002) Cellular and subcellular localization of phototropin 1. Plant Cell. 14, 1723–1735.PubMedCrossRefGoogle Scholar
  156. Salome, P.A. and McClung, C.R. (2004) The Arabidopsis thaliana clock. J. Biol. Rhythms. 19, 425–435.PubMedCrossRefGoogle Scholar
  157. Salomon, M., Knieb, E., von Zeppelin, T. and Rüdiger, W. (2003) Mapping of low- and high-fluence autophosphorylation sites in phototropin 1. Biochemistry 42, 4217–4225.PubMedCrossRefGoogle Scholar
  158. Samach, A., Onouchi, H., Gold, S.E., Ditta, G.S., Schwarz-Sommer, Z., Yanofsky, M.F. and Coupland, G. (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288, 1613–1616.PubMedCrossRefGoogle Scholar
  159. Schneider-Poetsch, H.A.W., Kolukisaoglu, Ü., Clapham, D.H., Hughes, J. and Lamparter, T. (1998) Non-angiosperm phytochromes and the evolution of vascular plants. Physiol. Plant. 102, 612–622.CrossRefGoogle Scholar
  160. Schultz, T.F., Kiyosue, T., Yanovsky, M., Wada, M. and Kay, S.A. (2001) A role for LKP2 in the circadian clock of Arabidopsis. Plant Cell 13, 2659–2670.Google Scholar
  161. Schwechheimer, C., Serino, G., Callis, J., Crosby, W.L., Lyapina, S., Deshaies, R.J., Gray, W.M., Estelle, M. and Deng, X.W. (2001) Interactions of the COP9 signalosome with the E3 ubiquitin ligase SCF/TIR1 in mediating auxin response. Science 292, 1379–1382.PubMedCrossRefGoogle Scholar
  162. Shalitin, D., Yu, X., Maymon, M., Mockler, T. and Lin, C. (2003) Blue light-dependent in vivo and in vitro phosphorylation of Arabidopsis cryptochrome 1. Plant Cell. 15, 2421–2429.PubMedCrossRefGoogle Scholar
  163. Sharrock, R.A. and Clack, T. (2004) Heterodimerization of type II phytochromes in Arabidopsis. Proc. Natl. Acad. Sci. USA 101, 11500–11505.PubMedCrossRefGoogle Scholar
  164. Sharrock, R.A. and Mathews, S. (2006) Phytochrome genes in higher plants. In: E. Schäfer and F. Nagy (Eds.), Photomorphogenesis in plants and bacteria, 3rd ed. Springer, Dordrecht, pp. 99–130.Google Scholar
  165. Shinomura, T., Nagatani, A., Hanzawa, H., Kubota, M., Watanabe, M. and Furuya, M. (1996) Action spectra for phytochrome A- and B-specific photoinduction of seed germination in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 93, 8129–8133.PubMedCrossRefGoogle Scholar
  166. Shinomura, T., Uchida, K. and Furuya, M. (2000) Elementary processes of photoperception by phytochrome A for high-irradiance response of hypocotyl elongation in Arabidopsis. Plant Physiol. 122, 147–156.Google Scholar
  167. Shirley, B.W. (1996) Flavonoid biosynthesis—new functions for an old pathway. Trends Plant Sci. 1, 377–382.CrossRefGoogle Scholar
  168. Smith, Hm (1995) Physiological and ecological function within the phytochrome family. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 289–315.CrossRefGoogle Scholar
  169. Smith, H. (2000) Phytochromes and light signal perception by plants – an emerging synthesis. Nature 407, 585–591.PubMedCrossRefGoogle Scholar
  170. Somers, D.E., Devlin, P.F. and Kay, S.A. (1998) Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 282,1488–1490.Google Scholar
  171. Somers, D.E., Schultz, T.F., Milnamow, M. and Kay, S.A. (2000) ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell 101, 319–329.PubMedCrossRefGoogle Scholar
  172. Strickland, E., Rubio, V. and Deng, X.W. (2006) The function of the COP/DET/FUS proteins in controlling photomorphogenesis: a role for regulated proteolysis. In: E. Schäfer and F. Nagy (Eds.), Photomorphogenesis in plants and bacteria, 3rd ed. Springer, Dordrecht, pp. 357–378.Google Scholar
  173. Suarez-Lopez, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F. and Coupland, G. (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410, 1116–1120.PubMedCrossRefGoogle Scholar
  174. Takano, M., Inagaki, N., Xie, X., Yuzurihara, N., Hihara, F., Ishizuka, T., Yano, M., Nishimura, M., Miyao, A., Hirochika, H. and Shinomura, T. (2005) Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. Plant Cell. 17, 3311–3325.PubMedCrossRefGoogle Scholar
  175. Talbott, L.D., Hammad, J.W., Harn, L.C., Nguyen, V.H., Patel, J. and Zeiger, E. (2006) Reversal by green light of blue light-stimulated stomatal opening in intact, attached leaves of Arabidopsis operates only in the potassium-dependent, morning phase of movement. Plant Cell Physiol. 47, 332–339.PubMedCrossRefGoogle Scholar
  176. Tepperman, J.M., Hudson, M.E., Khanna, R., Zhu, T., Chang, S.H., Wang, X. and Quail, P.H. (2004) Expression profiling of phyB mutant demonstrates substantial contribution of other phytochromes to red-light-regulated gene expression during seedling de-etiolation. Plant J. 38, 725–739.PubMedCrossRefGoogle Scholar
  177. Tepperman, J.M., Zhu, T., Chang, H.S., Wang, X. and Quail, P.H. (2001) Multiple transcription-factor genes are early targets of phytochrome A signaling. Proc. Natl Acad. Sci. USA 98, 9437–9342.PubMedCrossRefGoogle Scholar
  178. Terashima, I. and Hikosaka, K. (1995) Comparative ecophysiology of leaf and canopy photosynthesis. Plant Cell Environ. 18, 1111–1128.CrossRefGoogle Scholar
  179. Thomas, B. and Vince-Prue, D. (1997) Photoperiodism in plants (2nd ed.). Academic Press, London.Google Scholar
  180. Toth, R., Kevei, E., Hall, A., Millar A.J., Nagy, F. and Kozma-Bognar, L. (2001) Circadian cloc-regulated expression of phytochrome and cryptochrome genes in Arabidopsis. Plant Physiol. 127, 1607–1616.PubMedCrossRefGoogle Scholar
  181. Ulm R. (2006) UV-B perception and signaling in higher plants. In: E. Schäfer and F. Nagy (Eds.), Photomorphogenesis in plants and bacteria, 3rd ed. Springer, Dordrecht, pp. 279–304.Google Scholar
  182. Valverde, F., Mouradov, A., Soppe, W., Ravenscroft, D., Samach, A. and Coupland, G. (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303, 1003–1006.PubMedCrossRefGoogle Scholar
  183. Vogelmann, T.C., Nishio, J.N. and Smith, W.K. (1996) Leaves and light capture-light propagation and gradients of carbon fixation within leaves. Trends Plant Sci. 1, 65–70.CrossRefGoogle Scholar
  184. Wang, H.Y., Ma, L.G., Li, J.M., Zhao, H.Y. and Deng, X.W. (2001) Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science 294, 154–158.PubMedCrossRefGoogle Scholar
  185. Wang, H., Ma, L., Habashi, J., Li, J., Zhao, H. and Deng, X.W. (2002) Analysis of far-red light-regulated genome expression profiles of phytochrome A pathway mutants in Arabidopsis. Plant J. 32, 723–733.PubMedCrossRefGoogle Scholar
  186. Ward, J.M., Cufr, C.A., Denzel, M.A., Neff, M.M. (2005) The Dof transcription factor OBP3 modulates phytochrome and cryptochrome signaling in Arabidopsis. Plant Cell 17, 475–485.PubMedCrossRefGoogle Scholar
  187. Weller, J.L., Beauchamp, N., Kerckhoffs, L.H.J., Platten, J.D. and Reid, J.B. (2001) Interaction of phytochromes A and B in the control of de-etiolation and flowering in pea. Plant J. 26, 283–294.PubMedCrossRefGoogle Scholar
  188. Weller, J.L., Murfet, I.C. and Reid, J.B. (1997a) Pea mutants with reduced sensitivity to far-red light define an important role for phytochrome a in day-length detection. Plant Physiol. 114, 1225–1236.Google Scholar
  189. Weller, J.L., Perrotta, G., Schreuder, M.E.L., van Tuinen, A., Koornneef, M., Giuliano, G. and Kendrick, R.E. (2001b) Genetic dissection of blue-light sensing in tomato using mutants deficient in cryptochrome 1 and phytochromes A, B1 and B2. Plant J. 25, 427–440.CrossRefGoogle Scholar
  190. Weller, J.L., Terry, M.J., Reid, J.B. and Kendrick, R.E. (1997c) The phytochrome-deficient pcd2 mutant of pea is unable to convert biliverdin IX a to 3(Z)-phytochromobilin. Plant J. 11, 1177–1186.CrossRefGoogle Scholar
  191. Went, F.W. (1941) Effects of light on stem and leaf growth. Am. J. Bot. 28, 83–95.CrossRefGoogle Scholar
  192. Wigge, P.A., Kim, M.C., Jaeger, K.E., Busch, W., Schmid, M., Lohmann, J.U. and Weigel, D. (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309, 1056–1059.PubMedCrossRefGoogle Scholar
  193. Withrow, R.B., Klein, W.H. and Elstad, V. (1957) Action spectra of photomorphogenic induction and its inactivation. Plant Physiol. 32, 453–462.PubMedGoogle Scholar
  194. Wu, S.H., McDowell, M.T. and Lagarias, J.C. (1997) Phycocyanobilin is the natural precursor of the phytochrome chromophore in the green alga Mesotaenium caldariorum. J. Biol. Chem. 272, 25700–25705.PubMedCrossRefGoogle Scholar
  195. Yang, H.Q., Wu, Y.J., Tang, R.H., Liu, D.M., Liu, Y. and Cashmore, A.R. (2000) The C-termini of Arabidopsis cryptochromes mediate a constitutive light response. Cell. 103, 815–827.PubMedCrossRefGoogle Scholar
  196. Yano, M., Kojima, S., Takahashi, Y., Lin, H.X. and Sasaki, T. (2001) Genetic control of flowering time in rice, a short-day plant. Plant Physiol. 127, 1425–1429.PubMedCrossRefGoogle Scholar
  197. Yanovsky, M.J. and Kay, S.A. (2002) Molecular basis of seasonal time measurement in Arabidopsis. Nature 419, 308–312.PubMedCrossRefGoogle Scholar
  198. Yanovsky, M.J., Casal, J.J. and Whitelam, G.C. (1995) Phytochrome A, phytochrome B and HY4 are involved in hypocotyl growth responses to natural radiation in Arabidopsis – weak de-etiolation of the phyA mutant under dense canopies. Plant Cell Environ. 18, 788–794.CrossRefGoogle Scholar
  199. Yanovsky, M.J., Mazzella, M.A. and Casal, J.J. (2000a) A quadruple photoreceptor mutant still keeps track of time. Curr. Biol. 10, 1013–1015.CrossRefGoogle Scholar
  200. Yanovsky, M.J., Izaguirre, M., Wagmaister, J.A., Gatz, C., Jackson, S.D., Thomas, B. and Casal, J.J. (2000b) Phytochrome A resets the circadian clock and delays tuber formation under long days in potato. Plant J. 23, 223–232.CrossRefGoogle Scholar
  201. Yeh, K.C. and Lagarias, J.C. (1998) Eukaryotic phytochromes- light-regulated serine/threonine protein kinases with histidine kinase ancestry. Proc. Natl Acad. Sci. USA 95, 13976–13981.PubMedCrossRefGoogle Scholar
  202. Zeilinger, M.N., Farrè, E.M., Taylor, S.R., Kay, S.A. and Doyle, F.J. 3rd. (2006) A novel computational model of the circadian clock in Arabidopsis that incorporates PRR7 and PRR9. Mol. Syst. Biol. 2, 1–13.CrossRefGoogle Scholar
  203. Zhu, Y.X., Tepperman, J.M., Fairchild, C.D. and Quail, P.H. (2000) Phytochrome B binds with greater apparent affinity than phytochrome A to the basic helix-loop-helix factor PIF3 in a reaction requiring the PAS domain of PIF3. Proc. Natl Acad. Sci. USA 97, 13419–13424.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • James L. Weller
  • Richard E. Kendrick

There are no affiliations available

Personalised recommendations