Skip to main content

The Biological Clock and Its Resetting by Light

  • Chapter
Photobiology

Abstract

Organisms use various clocks in order to adapt to the daily, tidal, monthly, and annual cycles of the environment. This chapter deals with circadian (daily) clocks and the role light plays in synchronizing them with the 24-hour cycles in the environment. We will first characterize these different clocks, their functions, and their properties (Section 14.1.). Then the effects of light on these clocks are presented (Section 14.2.). In the main part of the chapter the synchronization of the circadian system of several organisms by light is presented: Synechococcus and Synechocystis are chosen as representatives of cyanobacteria (Section 14.3.), the dinoflagellate Lingulodinium as a unicellular alga (Section 14.4.), Arabidopsis as a plant (Section 14.5.), the ascomycete Neurospora as a fungus (Section 14.6), Drosophila as an insect (Section 14.7.), and rodents (Section 14.8.) and humans (Section 14.9.) as mammals. In selecting these examples we want to show the general occurrence of circadian rhythms in almost all organisms and the similarities and differences in the effects of light and the mechanisms of the circadian clocks used by them. We furthermore mention models as important tools to deal with circadian clocks and their synchronization by light (Section 14.10.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., Notaguchi, M., Goto, K. and Araki, T. (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309, 1052–1056.

    PubMed  CAS  Google Scholar 

  • Able, K. P. (1995) Orientation and navigation: A perspective on fifty years of research. Condor 97, 592–604.

    Google Scholar 

  • Ahmad, M. (1999) Seeing the world in red and blue: insight into plant vision and photoreceptors. Curr. Opin. Plant Biol. 2, 230–235.

    PubMed  CAS  Google Scholar 

  • Ã…kerstedt, T. Shift work and disturbed sleep/wakefulness. Occup. Med. 2003, 53, 89–94

    Google Scholar 

  • Ã…kerstedt, T. Is there an optimal sleep–wake pattern in shift work? Scand. J. Work Environ. Health 1998, 24 (Suppl. 3), 18–27

    Google Scholar 

  • Akimoto, H., Kinumi, T. and Ohmiya, Y. (2004) Biological rhythmicity in expressed proteins of the marine dino flagellate Lingulodinium polyedrum demonstrated by chronological proteomics. Biochem. Biophys. Res. Commun. 315, 306–312.

    PubMed  CAS  Google Scholar 

  • Akimoto, H., Kinumi, T. and Ohmiya, Y. (2005) Circadian rhythm of a TCA cycle enzyme is apparently regulated at the translational level in the dino flagellate Lingulodinium polyedrum. J. Biol. Rhythms 20, 479–489.

    PubMed  CAS  Google Scholar 

  • Albrecht, U., Sun, Z. S., Eichele, G. and Lee, C. C. (2004) A differential response of two putative mammalian circadian regulators mper1 and mper2 to light. Curr. Biol. 14, 975–980.

    Google Scholar 

  • Albus, H., Vansteensel, M. J., Michel, S., Block, G. D. and Meijer, J. H. (2005) A gabaergic mechanism is necessary for coupling dissociable ventral and dorsal regional oscillators within the circadian clock. Curr. Biol. 15, 886–893.

    PubMed  CAS  Google Scholar 

  • Anderson, S., Somers, D., Millar, A., Hanson, K., Chory, J. and Kay, S. (1997) Attenuation of phytochrome A and B signaling pathways by the Arabidopsis circadian clock. Plant Cell 9, 1727–1743.

    PubMed  CAS  Google Scholar 

  • Aoki, S., Kondo, T., Wada, H. and Ishiura, M. (1997) Circadian rhythm of the cyanobacterium Synechocystis sp. strain PCC 6803 in the dark. J. Bacteriol. 179, 5751–5755.

    PubMed  CAS  Google Scholar 

  • Arendt, J. (2005) Melatonin: Characteristics, concerns, and prospects. J. Biol. Rhythms 20, 291–303.

    PubMed  CAS  Google Scholar 

  • Ashkenazi, I., Hartman, H., Strulovitz, B. and Dar, O. (1975) Activity rhythms of enzymes in human red blood cell suspension. J. interdisc. Cycle Res. 6, 291–301.

    CAS  Google Scholar 

  • Ashmore, L. and Sehgal, A. (2003) A fly’s eye view of circadian entrainment. J. Biol. Rhythms 18(3), 206–216.

    PubMed  Google Scholar 

  • Aton, S. J., Colwell, C. S., Harmar, A. J., Waschek, J. and Herzog, E. D. (2005) Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nature Neurosci. 8, 476–483.

    PubMed  CAS  Google Scholar 

  • Baker, J. and Ranson, R. (1932) Factors affecting the breeding of the field mouse (Microtus agrestis). I. Light. Proc. R. Soc. Lond. B 110, 113–332.

    Google Scholar 

  • Baker, S. K. and Zee, P. C. (2000) Circadian disorders of the sleep–wake cycle. In: M. H. Kryger, T. Roth and W. C. Dement (Eds.), Principles and practice of sleep medicine, pp. 606–614. Saunders, Philadelphia.

    Google Scholar 

  • Banerjee, R. and Batschauer, A. (2005) Plant blue-light receptors. Planta 220, 498–502.

    PubMed  CAS  Google Scholar 

  • Barger, L. K., Cade, B. E., Ayas, N. T., Cronin, J. W., Rosner, B., Speizer, F. E. and Czeisler, C. A. (2005) Extended work shifts and the risk of motor vehicle crashes among interns. N. Engl. J. Med. 352, 125–134.

    CAS  Google Scholar 

  • Barrenetxe, J., Delagrange, P. and Martinez, J. A. (2004) Physiological and metabolic functions of melatonin. J. Physiol. Biochem 60, 61–72.

    PubMed  CAS  Google Scholar 

  • Beaule, C. and Amir, S. (2003) The eyes suppress a circadian rhythm of FOS expression in the suprachiasmatic nucleus in the absence of light. Neuroscience 121, 253–257.

    PubMed  CAS  Google Scholar 

  • Beaver, L. M., Gvakharia, B. O., Vollintine, T. S., Hege, D. M., Stanewsky, R. and Giebultowicz, J. M. (2002) Loss of circadian clock function decreases reproductive fitness in males of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 19, p2134–2139.

    Google Scholar 

  • Beersma, D. G. (2005) Why and how do we model circadian rhythms? J. Biol. Rhythms 20, 304–313.

    PubMed  Google Scholar 

  • Bell-Pedersen, D. (2000) Understanding circadian rhythmicity in Neurospora crassa: from behavior to genes and back again. Fung. Genet. Biol. 29, 1–18.

    CAS  Google Scholar 

  • Bell-Pedersen, D., Cassone, V., Earnest, D., Golden, S., Hardin, P., Thomas, T. and Zoran, M. (2005) Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nature Rev. Genet. 6, 544–556.

    CAS  Google Scholar 

  • Bellingham, J., Chaurasia, S., Melyan, Z., Liu, C., Cameron, M., Tarttelin, E., Iuvone, P., Hankins, M., Tosini, G. and Lucas, R. (2006) Evolution of melanopsin photoreceptors: Discovery and characterization of a new melanopsin in nonmammalian vertebrates. Public Library Sci. Biol. 4, e254.

    Google Scholar 

  • Berson, D. M. (2003) Strange vision: ganglion cells as circadian photoreceptors. Trends Neurosci. 26, 314–320.

    PubMed  CAS  Google Scholar 

  • Bertolucci, C. and Foa, A. (2004) Extraocular photoreception and circadian entrainment in nonmammalian vertebrates. Chronobiol. Int. 21, 501–519.

    PubMed  Google Scholar 

  • Boivin, D. B. and James, F. O. (2002) Circadian adaptation to night-shift work by judicious light and darkness exposure. J. Biol. Rhythms 17, 556–567.

    PubMed  Google Scholar 

  • Boivin, D. B. and James, F. O. (2005) Light treatment and circadian adaptation to shift work. Ind. Health 43, 34–48.

    PubMed  Google Scholar 

  • Bollig, I., Chandrashekaran, M., Engelmann, W. and Johnsson, A. (1976) Photoperiodism in Chenopodium rubrum - an explicit version of the Bünning hypothesis. Int. J. Chronobiol 4, 83–96.

    Google Scholar 

  • Boulos, Z., Campbell, S., Lewy, A., Terman, M., Dijk, D. and Eastman, C. (1995) Light treatment for sleep disorders: Consensus report. VII. Jet lag. J. Biol. Rhythms 10, 167–176.

    PubMed  CAS  Google Scholar 

  • Bradbury, M., Dement, W. and Edgar, D. (1997) Serotonin-containing fibers in the suprachiasmatic hypothalamus attenuate light-induced phase delays in mice. Brain Res. 768, 125–134.

    PubMed  CAS  Google Scholar 

  • Brainard, G. C. and Hanifin, J. P. (2005) Photons, clocks, and consciousness. J. Biol. Rhythms 20, 314–325.

    PubMed  CAS  Google Scholar 

  • Bronson, F. H. (2004) Are humans seasonally photoperiodic? J. Biol. Rhythms 19, 180–192.

    PubMed  CAS  Google Scholar 

  • Brown, R. and Robinson, P. (2004) Melanopsin -shedding light on the elusive circadian photopigment. Chronobiol. Int. 21, 189–204.

    PubMed  CAS  Google Scholar 

  • Brunner, M. and Schafmeier, T. (2006) Transcriptional and post-transcriptional regulation of the circadian clock of cyanobacteria and Neurospora. Genes Develop. 20, 1061–1074.

    PubMed  CAS  Google Scholar 

  • Bryant, T. (1972) Gas exchange in dry seeds: Circadian rhythmicity in the absence of DNA replication, transcription, and translation. Science 178, 634–636.

    PubMed  CAS  Google Scholar 

  • Bunney, W. and Bunney, B. (2000) Molecular clock genes in man and lower animals: Possible implications for circadian abnormalities in depression. Neuropsychopharmacol. 22, 335–345.

    CAS  Google Scholar 

  • Burgess, H. J., Crowley, S. J., Gazda, C. J., Fogg, L. F. and Eastman, C. I. (2003) Preflight adjustment to eastward travel: 3 days of advancing sleep with and without morning bright light. J. Biol. Rhythms 18, 318–328.

    PubMed  Google Scholar 

  • Bünning, E. (1936) Die endonome Tagesrhythmik als Grundlage der photoperiodischen Reaktion. Ber. Deut. Bot. Ges. 54, 590–607.

    Google Scholar 

  • Campbell, S. and Murphy, P. (1998) Extraocular circadian phototransduction in humans. Science 279, 396–399.

    PubMed  CAS  Google Scholar 

  • Cardinali, D. (1998) The human body circadian: How the biological clock influences sleep and emotion. Cienc. Cult. 50, 172–177.

    Google Scholar 

  • Cayetanot, F., van Someren, E. J. W., Perret, M. and Aujard, F. (2005) Shortened seasonal photoperiodic cycles accelerate aging of the diurnal and circadian locomotor activity rhythms in a primate. J. Biol. Rhythms 20, 461–469.

    PubMed  CAS  Google Scholar 

  • Ceriani, M., Darlington, T., Staknis, D., Mas, P., Petti, A., Weitz, C. and Kay, S. (1999) Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Science 285, 553–568.

    PubMed  CAS  Google Scholar 

  • Chandrashekaran, M. and Engelmann, W. (1973) Early and late subjective night phase of the Drosophila rhythm require different energies of blue light for phase shifting. Z. Naturforsch. 28c, 750–753.

    Google Scholar 

  • Chang, D. C. (2006) Neural circuits underlying circadian behavior in Drosophila melanogaster. Behav. Process. 71, 211–225.

    Google Scholar 

  • Chen, M., Chory, J. and Fankhauser, C. (2004) Light signal transduction in higher plants. Annu. Rev. Genet. 38, 87–117.

    PubMed  CAS  Google Scholar 

  • Cheng, H. Y. and Obrietan, K. (2006) Dexras1: Shaping the responsiveness of the circadian clock. Semin. Cell Dev. Biol. 43, 715–728.

    Google Scholar 

  • Cheng, P., He, Q., Yang, Y., Wang, L. and Liu, Y. (2003) Functional conservation of light, oxygen, or voltage domains in light sensing. Proc. Natl. Acad. Sci. USA 100, 5938–5943.

    PubMed  CAS  Google Scholar 

  • Cheng, P., Yang, Y., Heintzen, C. and Liu, Y. (2001a) Coiled-coil domain-mediated FRQ/FRQ interaction is essential for its circadian clock function in Neurospora. EMBO J. 20, 101–108.

    Google Scholar 

  • Cheng, P., Yang, Y. and Liu, Y. (2001b) Interlocked feedback loops contribute to the robustness of the Neurospora circadian clock. Proc. Natl. Acad. Sci. USA 98, 7408–7413.

    Google Scholar 

  • Christensen, M., Falkeid, G., Loros, J., Dunlap, J., Lillo, C. and Ruoff, P. (2004) A nitrate-induced frq-less oscillator in Neurospora crassa. J. Biol. Rhythms 19, 280–286.

    PubMed  CAS  Google Scholar 

  • Clauser, C. (1954) Die Kopfuhr. Ferdinand Enke, Stuttgart.

    Google Scholar 

  • Cole, R. J., Smith, J. S., Alcala, Y. C., Elliott, J. A. and Kripke, D. F. (2002) Bright-light mask treatment of delayed sleep phase syndrome. J. Biol. Rhythms 17, 89–101.

    PubMed  Google Scholar 

  • Comolli, J. C., Fagan, T. and Hastings, J. W. (2003) A type-1 phosphoprotein phosphatase from a dino flagellate as a possible component of the circadian mechanism. J. Biol. Rhythms 18, 367–376.

    PubMed  CAS  Google Scholar 

  • Correa, A., Lewis, Z. A., Greene, A. V., March, I. J., Gomer, R. H. and Bell-Pedersen, D. (2003) Multiple oscillators regulate circadian gene expression in Neurospora. Proc. Natl. Acad. Sci. USA 100, 13597–13602.

    PubMed  CAS  Google Scholar 

  • Covington, M. F., Pandab, S., Liu, X. L., Strayer, C. A., Wagner, D. R. and Kay, S. A. (2001) Elf3 modulates resetting of the circadian clock in Arabidopsis. Plant Cell 13, 1305–1316.

    PubMed  CAS  Google Scholar 

  • Cremer, F. and Coupland, G. (2003) Distinct photoperiodic responses are conferred by the same genetic pathway in Arabidopsis and in rice. Trends Plant Sci. 8, 405–407.

    PubMed  CAS  Google Scholar 

  • Crosthwait, S., Dunlap, J. and Loros, J. (1997) Neurospora wc-1 and wc-2: Transciption, photoresponses, and the origin of the circadian rhythmicity. Science 276, 763–769.

    Google Scholar 

  • Crowley, S. J., Lee, C., Tseng, C. Y., Fogg, L. F. and Eastman, C. I. (2003) Combinations of bright light, scheduled dark, sunglasses, and melatonin to facilitate circadian entrainment to night shift work. J. Biol. Rhythms 18, 513–523.

    PubMed  Google Scholar 

  • Cyran, S., Yiannoulos, G., Buchsbaum, A., Saez, L., Young, M. and Blau, J. (2005) The double-time protein kinase regulates the subcellular localization of the Drosophila clock protein period. J. Neurosci. 25, 5430–5437.

    PubMed  CAS  Google Scholar 

  • Czeisler, C., Kronauer, R., Allan, J., Duffy, J., Jewett, M., Brown, E. and Ronda, J. (1989) Bright light induction of strong (type 0) resetting of the human circadian pacemaker. Science 244, 1328–1333.

    PubMed  CAS  Google Scholar 

  • Daan, S. (2000) Colin Pittendrigh, Jürgen Aschoff, and the natural entrainment of circadian systems. J. Biol. Rhythms 15, 195–207.

    PubMed  CAS  Google Scholar 

  • Daan, S., Albrecht, U., van der Horst, G. T. J., Illnerova, H., Roenneberg, T., Wehr, T. A. and Schwartz, W. J. (2001) Assembling a clock for all seasons: are there M and E oscillators in the genes? J. Biol. Rhythms 16, 105–116.

    PubMed  CAS  Google Scholar 

  • DeBruyne, J.P., Noton, E., Lambert, C.M., Maywood, E.S., Weaver, D.R. and Reppert, S.M. (2006) A clock shock: Mouse CLOCK is not required for circadian oscillator function. Neuron 50, 465–477.

    PubMed  CAS  Google Scholar 

  • de la Iglesia, H. O., Cambras, T., Schwartz, W. J. and Diez-Noguera, A. (2004) Forced desynchronization of dual circadian oscillators within the rat suprachiasmatic nucleus. Curr. Biol. 14, 796–800.

    PubMed  Google Scholar 

  • de Paula, R., Lewis, Z., Greene, A., Seo, K., Morgan, L., Vitalini, M., Bennett, L., Gomer, R. and Bell-Pedersen, D. (2006) Two circadian timing circuits in Neurospora crassa cells share components and regulate distinct rhythmic processes. J. Biol. Rhythms 21, 159–168.

    PubMed  Google Scholar 

  • Deacon, S. and Arendt, J. (1996) Adapting to phase shifts. I. An experimental model for jet lag and shift work. Physiol. Behav 59, 665–673.

    PubMed  CAS  Google Scholar 

  • DeCoursey, P. and Krulas, J. (1998) Behavior of SCN-lesioned chipmunks in a natural habitat: A pilot study. J. Biol. Rhythms 13, 229–244.

    PubMed  CAS  Google Scholar 

  • DeCoursey, P. J., Krulas, J. R., Mele, G. and Holley, D. C. (1997) Circadian performance of suprachiasmatic nuclei (SCN)-lesioned antelope ground squirrels in a desert enclosure. Physiol. Behav 62, 1099–1108.

    PubMed  CAS  Google Scholar 

  • Devlin, P. F. (2002) Signs of the time: environmental input to the circadian clock. J. Exp. Bot. 53, 1535–1550.

    PubMed  CAS  Google Scholar 

  • Dharmananda, S. (1980) Studies on the circadian clock of Neurospora crassa: Light-induced phase shifting. Ph.D. thesis, University of California, Santa Cruz.

    Google Scholar 

  • Di Bitetti, M. S. and Janson, C. H. (2000) When will the stork arrive? Patterns of birth seasonality in neotropical primates. Am. J. Primatol. 50, 109–130.

    Google Scholar 

  • Diernfellner, A. C., Schafmeier, T., Merrow, M. W. and Brunner, M. (2005) Molecular mechanism of temperature sensing by the circadian clock of Neurospora crassa. Genes Develop. 19, 1968–1973.

    PubMed  CAS  Google Scholar 

  • Diez-Noguera, A. (1994) A functional model of the circadian system based on the degree of intercommunication in a complex system. Am. J. Physiol. 267, 1118–1135.

    Google Scholar 

  • Dijk, D.-J. and von Schantz, M. (2005) Timing and consolidation of human sleep, wakefullness, and performance by a symphony of oscillators. J. Biol. Rhythms 20, 279–290.

    PubMed  Google Scholar 

  • Ditty, J. L., Williams, S. B. and Golden, S. S. (2003) A cyanobacterial circadian timing mechanism. Annu. Rev. Genet. 37, 513–543.

    PubMed  CAS  Google Scholar 

  • Dkhissi-Benyahya, O., Rieux, C., Hut, R. and Cooper, H. (2006) Immunohistochemical evidence of a melanopsin cone in human retina. Invest. Ophthalmol. Vis. Sci. 47, 1636–1641.

    PubMed  Google Scholar 

  • Dowson-Day, M. and Millar, A. (1999) Circadian dysfunction causes aberrant hypocotyl elongation patterns in Arabidopsis. Plant J. 17, 63–71.

    PubMed  CAS  Google Scholar 

  • Dragovic, Z. (2002) Light reception and circadian behavior in ‘blind’ and ‘clock-less’ mutants of Neurospora crassa. EMBO J. 21, 3643–3651.

    PubMed  CAS  Google Scholar 

  • Duffy, J. F. and Wright, K. P. (2005) Entrainment of the human circadian system by light. J. Biol. Rhythms 20, 326–338.

    PubMed  Google Scholar 

  • Dunlap, J. and Loros, J. (2004) The Neurospora circadian system. J. Biol. Rhythms 19, 414–424.

    PubMed  CAS  Google Scholar 

  • Dunlap, J. C. and Loros, J. J. (2005) Analysis of circadian rhythms in Neurospora: Overview of assays and genetic and molecular biological manipulation. Methods Enzymol. 393, 3–22.

    PubMed  CAS  Google Scholar 

  • Eastman, C., Boulos, Z., Terman, M., Campbell, S., Dijk, D. and Lewy, A. (1995) Light treatment for sleep disorders: Consensus report. VI. Shift work. J. Biol. Rhythms 10, 157–164.

    PubMed  CAS  Google Scholar 

  • Eastman, C., Stewart, K., Mahoney, M., Liu, L. and Fogg, L. (1994) Dark goggles and bright light improve circadian rhythm adaptation to night-shift work. Sleep 17, 535–543.

    PubMed  CAS  Google Scholar 

  • Egan, E., Franklin, T., Hilderbrand-Chae, M., McNeil, G., Roberts, M., Schroeder, A., Zhang, X. and Jackson, F. (1999) An extraretinally expressed insect cryptochrome with similarity to the blue light photoreceptors of mammals and plants. J. Neurosci. 19, 3665–3673.

    PubMed  CAS  Google Scholar 

  • Elliott, W. J. (2001) Timing treatment to the rhythm of disease: A short course in chronotherapeutics. Postgrad. Med. 110, 119–129.

    PubMed  CAS  Google Scholar 

  • Elvin, M., Loros, J. J., Dunlap, J. C. and Heintzen, C. (2005) The PAS/LOV protein VIVID supports a rapidly dampened daytime oscillator that facilitates entrainment of the Neurospora circadian clock. Genes Develop. 19, 2593–2605.

    PubMed  CAS  Google Scholar 

  • Emens, J. S., Lewy, A. J., Lefler, B. J. and Sack, R. L. (2005) Relative coordination to unknown ‘weak zeitgebers, in free-running blind individuals. J. Biol. Rhythms 20, 159–167.

    PubMed  Google Scholar 

  • Emery, P., So, W., Kaneko, M., Hall, J. and Rosbash, M. (1998) CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 95, 669–679.

    PubMed  CAS  Google Scholar 

  • Engelmann, W. (1966) Effect of light and dark pulses on the emergence rhythm of Drosophila pseudoobscura. Experientia 22, 606–608.

    Google Scholar 

  • Engelmann, W. (1967) Tagesrhythmisches Schlüpfen von Drosophila pseudoobscura und tagesperiodische Blütenblattbewegung von Kalanchoe blossfeldiana als Ãœberlagerung von An- und Aus-Rhythmen. Nachr. Akad. Wiss. Göttingen II Math. Phys. Kl. 10, 141.

    Google Scholar 

  • Engelmann, W. (2007) How plants identify the season by using a circadian clock. In: S. Mancuso and S. Shabala (Eds.), Rhythms in plants: Phenomenology, mechanisms, and adaptive significance. Springer, Heidelberg.

    Google Scholar 

  • Engelmann, W. and Honegger, H. (1967) Versuche zur Phasenverschiebung endogener Rhythmen: Blütenblattbewegung von Kalanchoe blossfeldiana. Z Naturforsch. 22b, 200–204.

    Google Scholar 

  • Engelmann, W., Johnsson, A., Kobler, H. and Schimmel, M. (1978) Attenuation of the petal movement rhythm of Kalanchoe with light pulses. Physiol. Behav 43, 68–76.

    Google Scholar 

  • Engelmann, W. and Mack, J. (1978) Different oscillators control the circadian rhythm of eclosion and activity in Drosophila. J. Comp. Physiol. 127, 229–237.

    Google Scholar 

  • Enright, J. (1965) Synchronization and ranges of entrainment. In: J. Ascho (Ed.), Circadian clocks. Proceedings of the Feldafing summer school, 7-18 September 1964, pp. 112–124. North-Holland Publishing Co., Amsterdam.

    Google Scholar 

  • Fankhauser, C. and Staiger, D. (2002) Photoreceptors in Arabidopsis thaliana: light perception, signal transduction and entrainment of the endogenous clock. Planta 216, 1–16.

    PubMed  CAS  Google Scholar 

  • Figueiro, M., Bullough, J., Parsons, R. and Rea, M. (2005) Preliminary evidence for a change in spectral sensitivity of the circadian system at night. J. Circadian Rhythms 3, 14.

    PubMed  Google Scholar 

  • Fleissner, G. and Fleissner, G. (2001) Perception of natural Zeitgeber signals. In: V. Kumar (Ed.), Biological rhythms. Narosa Publ. House, New Delhi.

    Google Scholar 

  • Fleury, F. (2000) Adaptive significance of a circadian clock: temporal segregation of activities reduces intrinsic competitive inferiority in Drosophila parasitoids. Proc. Biol. Sci. 267, 1005–1010.

    PubMed  CAS  Google Scholar 

  • Folkard, S. and Tucker, P. (2003) Shift work, safety and productivity. Occup. Med. 53, 95–101.

    Google Scholar 

  • Forger, D., Jewett, M. and Kronauer, R. (1999) A simpler model of the human circadian pacemaker. J. Biol. Rhythms 14, 532–537.

    PubMed  CAS  Google Scholar 

  • Forsgren, E. (1935) Ãœber die Rhythmik der Leberfunktion, des Stoffwechsels und des Schlafes. Gumperts Bokhandel, Göteborg.

    Google Scholar 

  • Foster, R. and Helfrich-Förster, C. (2001) Photoreceptors for circadian clocks in mice and fruit flies. Philos. Trans. R. Soc. London (Biol.) 356 B, 1779–1789.

    Google Scholar 

  • Franklin, K. A. and Whitelam, G. C. (2004) Light signals, phytochromes and cross-talk with other environmental cues. J. Exp. Bot. 55, 271–276.

    PubMed  CAS  Google Scholar 

  • Froehlich, A., Pregueiro, A., Lee, K., Denault, D., Colot, H., Nowrousian, M., Loros, J. J. and Dunlap, J. C. (2003) The molecular workings of the Neurospora biological clock. Novartis Found. Symp. 253, 184–198.

    PubMed  CAS  Google Scholar 

  • Gachon, F., Nagoshi, E., Brown, S. A., Ripperger, J. and Schibler, U. (2004) The mammalian circadian timing system: from gene expression to physiology. Chromosoma 113, 103–112.

    PubMed  Google Scholar 

  • Garceau, N., Liu, Y., Loros, J. and Dunlap, J. (1997) Alternative initiation of translation and time-specific phosphorylation yield multiple forms of the essential clock protein frequency. Cell 89, 469–476.

    PubMed  CAS  Google Scholar 

  • Giedd, J. N., Swedo, S. E., Lowe, C. H. and Rosenthal, N. E. (1998) Case series: Pediatric seasonal affective disorder. A follow-up report. J. Am. Acad. Child Adolesc. Psychiatry 37, 218–220.

    PubMed  CAS  Google Scholar 

  • Giedke, H., Engelmann, W. and Reinhard, P. (1983) Free running circadian rest-activity cycle in normal environment. A case study. Sleep Res. 12, 365.

    Google Scholar 

  • Gillette, M. and Abbott, S. (2005) Basic mechanisms of circadian rhythms and their relation to the sleep/wake cycle. In: D. P. Cardinali and S. R. Perumal (Eds.), Neuroendocrine correlates of sleep/wakefulness. Springer, New York.

    Google Scholar 

  • Glossop, N. and Hardin, P. (2002) Central and peripheral circadian oscillator mechanisms in flies and mammals. J. Cell Sci. 115, 3369–3377.

    PubMed  CAS  Google Scholar 

  • Goldbeter, A. (1995) A model for circadian oscillations in the Drosophila period protein (PER). Proc. Biol. Sci. 261, 319–324.

    PubMed  CAS  Google Scholar 

  • Golden, R. N., Gaynes, B. N., Ekstrom, R. D., Hamer, R. M., Jacobsen, F. M., Suppes, T., Wisner, K. L. and Nemeroff, C. B. (2005) The efficacy of light therapy in the treatment of mood disorders: A review and meta-analysis of the evidence. Am. J. Psychiatry 162, 656–662.

    Google Scholar 

  • Golombek, D. A., Agostino, P. V., Plano, S. A. and Ferreyra, G. A. (2004) Signaling in the mammalian circadian clock: the NO/cGMP pathway. Neurochem. Int. 45, 929–36.

    PubMed  CAS  Google Scholar 

  • Gooley, J. J., Fischer, D. and Saper, C. B. (2003) A broad role for melanopsin in nonvisual photoreception. J. Neurosci. 23, 7093–7106.

    PubMed  CAS  Google Scholar 

  • Grace, M., Chiba, A. and Menaker, M. (1999) Circadian control of photoreceptor outer segment membrane turnover in mice genetically incapable of melatonin synthesis. Visual Neurosci. 16, 909–918.

    CAS  Google Scholar 

  • Grace, M. S., A., W. L., Pickard, G. E., Besharse, J. C. and Menaker, M. (1996) The tau mutation shortens the period of rhythmic photopreceptor outer segment disk shedding in the hamster. Brain Res. 735, 93–100.

    PubMed  CAS  Google Scholar 

  • Granshaw, T., Tsukamoto, M. and Brody, S. (2003) Circadian rhythms in Neurospora crassa: Farnesol or geraniol allow expression of rhythmicity in the otherwise arrhythmic strains frq 10, wc-1, and wc-2. J. Biol. Rhythms 18, 287–296.

    PubMed  CAS  Google Scholar 

  • Graw, P., Recker, S., Sand, L., Krauchi, K. and Wirz-Justice, A. (1999) Winter and summer outdoor light exposure in women with and without seasonal affective disorder. J. Affect. Disord. 56, 163–169.

    PubMed  CAS  Google Scholar 

  • Green, C. (2004) Cryptochromes: Tailored for distinct functions. Curr. Biol. 14, 847–849.

    Google Scholar 

  • Green, C. B. and Besharse, J. C. (2004) Retinal circadian clocks and control of retinal physiology. J. Biol. Rhythms 19, 91–102.

    PubMed  CAS  Google Scholar 

  • Green, R. M., Tingay, S., Wang, Z. Y. and Tobin, E. M. (2002) Circadian rhythms confer a higher level of fitness to Arabidopsis plants. Plant Physiol. 129, 576–584.

    PubMed  CAS  Google Scholar 

  • Griffiths, S., Dunford, R. P., Coupland, G. and Laurie, D. A. (2003) The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Physiol. 131, 1855–1867.

    PubMed  CAS  Google Scholar 

  • Grima, B., Chelot, E., Xia, R. and Rouyer, F. (2004) Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain. Nature 431, 869–873.

    PubMed  CAS  Google Scholar 

  • Guillemette, J., Hebert, M., Paquet, J. and Dumont, M. (1998) Natural bright light exposure in the summer and winter in subjects with and without complaints of seasonal mood variations. Biol. Psychiatry 44, 622–628.

    PubMed  CAS  Google Scholar 

  • Hack, L. M., Lockley, S. W., Arendt, J. and Skene, D. J. (2003) The effects of low-dose 0.5-mg melatonin on the free-running circadian rhythms of blind subjects. J. Biol. Rhythms 18, 420–429.

    PubMed  CAS  Google Scholar 

  • Halaris, A. (1987) Chronobiology and psychiatric disorders. Elsevier, New York.

    Google Scholar 

  • Hall, A., Bastow, R. M., Davis, S. J., Hanano, S., McWatters, H. G., Hibberd, V., Doyle, M. R., Sung, S. B., Halliday, K. J., Amasino, R. M. and Millar, A. J. (2003) The TIME FOR COFFEE gene maintains the amplitude and timing of Arabidopsis circadian clocks. Plant Cell 15, 2719–2729.

    PubMed  CAS  Google Scholar 

  • Hall, J. (2002) Genetics and molecular biology of insect rhythms. In: Insect clocks. Saunders, D. S.

    Google Scholar 

  • Hall, J. C. (2003) Assembling a clock for all seasons: are there M and E oscillators in the genes? Adv. Genet. 48, 1–280.

    PubMed  CAS  Google Scholar 

  • Halliday, K. J. and Whitelam, G. C. (2003) Changes in photoperiod or temperature alter the functional relationships between phytochromes and reveal roles for PHYD and PHYE. Plant Physiol. 131, 1913–1920.

    PubMed  CAS  Google Scholar 

  • Hannibal, J. (2006) Roles of PACAP-containing retinal ganglion cells in circadian timing. Int. Rev. Cytol. 251, 1–39.

    PubMed  CAS  Google Scholar 

  • Hannibal, J. and Fahrenkrug, J. (2006) Neuronal input pathways to the brain’s biological clock and their functional significance. Adv. Anat. Embryol. Cell Biol. 182, 1–71.

    CAS  Google Scholar 

  • Hannibal, J., Hindersson, P., Knudsen, S. M., Geor, B. and Fahrenkrug, J. (2002) Melanopsin is expressed in PACAP-containing retinal ganglion cells of the human retinohypothalamic tract. Invest. Ophthalmol. Vis. Sci. 45, 4202–4209.

    Google Scholar 

  • Hardin, P. E. (2005) The circadian timekeeping system of Drosophila. Curr. Biol. 15, R714–R722.

    Google Scholar 

  • Harmer, S., Hogenesch, L., Straume, M., Chang, H., Han, B., Zhu, T., Wang, X., Kreps, J. and Kay, S. (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290, 2110–2113.

    PubMed  CAS  Google Scholar 

  • Hashimoto, S., Nakamura, K., Honma, S. and Honma, K. I. (1998) Free-running of plasma-melatonin rhythm prior to full manifestation of a non-24 hour sleep–wake syndrome. Psychiat. Clin. Neurosci. 52, 264–265.

    CAS  Google Scholar 

  • Hastings, J. and Sweeney, B. (1960) The action spectrum for shifting the phase of the rhythm of luminescence in Gonyaulax polyedra. J. Gen Physiol. 43, 697–706.

    PubMed  CAS  Google Scholar 

  • Hastings, J. W. (2001) Cellular and molecular mechanisms of circadian regulation in the unicellular dino flagellate Gonyaulax polyedra. In: J. Takahashi, F. Turek, and R. Y. Moore (Eds.), Circadian clocks pp. 321–334. Kluwer Academic/Plenum Publishers, New York.

    Google Scholar 

  • Hattar, S., Kumar, M., Park, A., Tong, P., Tung, J., Yau, K. and Berson, D. (2006) Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J. Comp. Neurol. 497, 326–349.

    PubMed  Google Scholar 

  • Hattar, S., Lucas, R. J., Mrosovsky, N., Thompson, S., Douglas, R. H., Hankins, M. W., Lem, J., Biel, M., Hofman, F. and Foster, R. G. (2003) Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424, 75–81.

    Google Scholar 

  • Hayama, R. and Coupland, G. (2003) Shedding light on the circadian clock and the photoperiodic control of flowering. Curr. Opin. Plant Biol. 6, 13–19.

    PubMed  CAS  Google Scholar 

  • He, Q., Cheng, P., Yang, Y., Wang, L., Gardner, K. and Liu, Y. (2002) White collar-1, a DNA binding transcription factor and a light sensor. Science 297, 840–843.

    PubMed  CAS  Google Scholar 

  • He, Q. and Liu, Y. (2005a) Degradation of the Neurospora circadian clock protein frequency through the ubiquitin–proteasome pathway. Biochem. Soc. Trans. 33, 953–956.

    Google Scholar 

  • He, Q. and Liu, Y. (2005b) Molecular mechanism of light responses in Neurospora: from light-induced transcription to photoadaptation. Genes Develop. 19, 2888–2899.

    Google Scholar 

  • Heintzen, C., Loros, J. J. and Dunlap, J. C. (2001) The PAS protein VIVID defines a clock-associated feedback loop that represses light input, modulates gating, and regulates clock resetting. Cell 104, 453–464.

    PubMed  CAS  Google Scholar 

  • Heldmaier, G., Ortmann, S. and Elvert, R. (2004) Natural hypometabolism during hibernation and daily torpor in mammals. Respir. Physiol. Neurobiol. 141, 317–329.

    PubMed  Google Scholar 

  • Heldmaier, G. and Steinlechner, S. (1981) Seasonal control of energy requirements for thermoregulation in the djungarian hamster (Phodopus sungorus), living in natural photoperiod. J. Comp. Physiol. B 142, 429–437.

    Google Scholar 

  • Heldmaier, G. and Werner, D. (2004) Environmental signal processing and adaptation, Vol. 110. Blackwell Synergy.

    Google Scholar 

  • Helfrich-Förster, C. (2000) Differential control of morning and evening components in the activity rhythm of Drosophila melanogaster—sex specific differences suggest a different quality of activity. J. Biol. Rhythms 15, 135–154.

    PubMed  Google Scholar 

  • Helfrich-Förster, C. (2002) The circadian system of Drosophila melanogaster and its light input pathways. Zoology 105, 297–312.

    Google Scholar 

  • Helfrich-Förster, C. (2003) The neuroarchitecture of the circadian clock in the Drosophila brain. Micr. Res. Tech. 62, 94–102.

    Google Scholar 

  • Helfrich-Förster, C. (2005) Neurobiology of the fruit fly’s circadian clock. Genes Brain Behav. 4, 65–76.

    PubMed  Google Scholar 

  • Helfrich-Förster, C., Edwards, T., Yasuyama, K., Schneuwly, S., Meinertzhagen, I. and Hofbauer, A. (2002) The extraretinal eyelet of Drosophila: development, ultrastructure and putative circadian function. J. Neurosci. 22, 9255–9266.

    PubMed  Google Scholar 

  • Helfrich-Förster, C. and Engelmann, W. (2002) Photoreceptors for the circadian clock of the fruitfly. In: V. Kumar (Ed.), Biological rhythms, pp. 94–106. Narosa Publ. House, Pvt. Ltd., New Delhi.

    Google Scholar 

  • Helfrich-Förster, C., Stengl, M. and Homberg, U. (1998) Organization of the circadian system in insects. Chronobiol. Int. 15, 567–594.

    Google Scholar 

  • Helfrich-Förster, C., Winter, C., Hofbauer, A., Hall, J. and Stanewsky, R. (2001) The circadian clock of fruit flies is blind after elimination of all known photoreceptors. Neuron 30, 249–261.

    PubMed  Google Scholar 

  • Helfrich-Förster, C. (2005) Organization of endogenous clocks in insects. Biochem. Soc. Trans. 33, 957–961.

    PubMed  Google Scholar 

  • Helfrich-Förster, C., Shafer, O., Wülbeck, C., Grieshaber, E., Rieger, D. and Taghert, P. (2006) Development and morphology of the clock-gene-expressing lateral neurons of Drosophila melanogaster. J. Comp. Neurol. 500, 47–70.

    Google Scholar 

  • Heller, H. and Ruby, N. (2004) Sleep and circadian rhythms in mammalian torpor. Annu. Rev. Physiol. 66, 275–289.

    PubMed  CAS  Google Scholar 

  • Hennessey, T. and Field, C. (1991) Circadian rhythms in photosynthesis. Plant Physiol. 96, 831–836.

    PubMed  CAS  Google Scholar 

  • Hennig, L., Stoddart, W. M., Dieterle, M., Whitelam, G. C. and Schäfer, E. (2002) Phytochrome E controls light-induced germination of Arabidopsis. Plant Physiol. 128, 194–200.

    PubMed  CAS  Google Scholar 

  • Herzog, E. and Tosini, G. (2001) The mammalian circadian clock shop. Semin. Cell Dev. Biol. 12, 295–303.

    CAS  Google Scholar 

  • Hitomi, K., Okamoto, K., Daiyasu, H., Miyashita, H., Iwai, S., Toh, H., Ishiura, M. and Todo, T. (2000) Bacterial cryptochrome and photolyase: Characterization of two photolyase-like genes of Synechocystis sp. PCC6803. Nucleic Acids Res. 28, 2353–2362.

    PubMed  CAS  Google Scholar 

  • Ho, S. C., Wong, T. K., Tang, P. L. and Pang, S. M. (2002) Nonpharmacologic sleep promotion: bright light exposure. Complement Ther. Nurs. Midwifery 8, 130–135.

    Google Scholar 

  • Hoffmann, K. (1981) The role of the pineal gland in the photoperiodic control of seasonal cycles in hamsters. In: B. Follett and D. Follett (Eds.), Biological clocks in seasonal reproductive cycles, pp. 237–250. Wright, Bristol.

    Google Scholar 

  • Honma, S., Hashimoto, S., Nakao, M., Kato, Y. and Honma, K.-I. (2003) Period and phase adjustments of human circadian rhythms in the real world. J. Biol. Rhythms 18, 261–270.

    PubMed  Google Scholar 

  • Horowitz, T., Cade, B., Wolfe, J. and Czeisler, C. (2001) Efficacy of bright light and sleep/darkness scheduling in alleviating circadian maladaptation to night work. Am. J. Physiol. 281, 384–391.

    Google Scholar 

  • Husain, M. (2005) The neural retina: Three channels of light detection. Adv. Clin. Neurosci. Rehabil. 5, 22–23.

    Google Scholar 

  • Imaizumi, T. and Kay, S. (2006) Photoperiodic control of flowering: not only by coincidence. Trends Plant Sci. 11, 550–558.

    PubMed  CAS  Google Scholar 

  • Inouye, C. (1993) Circadian rhythms in peptides and their precursor messenger RNAs in the suprachiasmatic nucleus. In: H. Nakagawa, Y. Oomura, and K. Nagai (Eds.), International Symposion Osaka: New functional aspects of the suprachiasmatic nucleus of the hypothalamus, pp. 219–233. John Libbey and Co., London.

    Google Scholar 

  • Inouye, C., Okamoto, K., Ishiura, M. and Kondo, T. (1998) The action spectrum of phase shift by light signal in the circadian rhythm in cyanobacterium. Plant Cell Physiol. 39 (Suppl.), S82.

    Google Scholar 

  • Ishikawa, T., Matsumoto, A., Kato, T., Togashi, S., Ryo, H., Ikenaga, M., Todo, T., Ueda, R. and Tanimura, T. (1999) DCRY is a Drosophila photoreceptor protein implicated in light entrainment of circadian rhythm. Genes Cells 4, 57–65.

    PubMed  CAS  Google Scholar 

  • Ishiura, M., Kutsuna, S., Aoki, S., Iwasaki, H., Andersson, C., Tanabe, A., Golden, S., Johnson, C. and Kondo, T. (1998) Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science 281, 1519–1523.

    PubMed  CAS  Google Scholar 

  • Isoldi, M. C., Rollag, M. D., Castrucci, A. M. and Provencio, I. (2005) Rhabdomeric phototransduction initiated by the vertebrate photopigment melanopsin. Proc. Natl. Acad. Sci. USA 25, 1217–1221.

    Google Scholar 

  • Ivleva, N. B., Bramlett, M. R., Lindahl, P. A. and Golden, S. S. (2005) LdpA: A component of the circadian clock senses redox state of the cell. Embo J. 24, 1202–1210.

    PubMed  CAS  Google Scholar 

  • Iwasaki, H. and Kondo, T. (2004) Circadian timing mechanism in the prokaryotic clock system of cyanobacteria. J. Biol. Rhythms 19, 436–444.

    PubMed  CAS  Google Scholar 

  • Iwasaki, H., Williams, S., Kitayama, Y., Ishiura, M., Golden, S. and Kondo, T. (2000) A kaiC-interacting sensory histidine kinase, SasA, necessary to sustain robust circadian oscillation in cyanobacteria. Cell 101, 223–233.

    PubMed  CAS  Google Scholar 

  • Izawa, T., Takahashi, Y. and Yano, M. (2003) Comparative biology comes into bloom: genomic and genetic comparison of flowering pathways in rice and Arabidopsis. Curr. Opin. Plant Biol. 6, 113–120.

    PubMed  CAS  Google Scholar 

  • Jackson, F., Schroeder, A., Roberts, M., McNeil, G., Kume, K. and Akten, B. (2001) Cellular and molecular mechanisms of circadian control in insects. J. Insect Physiol. 47, 822–842.

    Google Scholar 

  • Jacobson, D., Powell, A., Dettman, J., Saenz, G., Barton, M., Hiltz, M., Dvorachek Jr, W., Glass, N., Taylor, J. and Natvig, D. (2004) Neurospora in temperate forests of western North America. Mycologia 96, 66–74.

    Google Scholar 

  • Jagota, A., de la Iglesia, H. and Schwartz, W. (2000) Morning and evening circadian oscillations in the suprachiasmatic nucleus in vitro. Nature Neurosci. 3, 372–376.

    PubMed  CAS  Google Scholar 

  • Jewett, M., Kronauer, R. and Megan, E. (1999) Interactive mathematical models of subjective alertness and cognitive throughput in humans. J. Biol. Rhythms 14, 588–597.

    PubMed  CAS  Google Scholar 

  • Jewett, M., Rimmer, D., Duffy, J., Klerman, E., Kronauer, R. and Czeisler, C. (1997) Human circadian pacemaker is sensitive to light throughout subjective day without evidence of transients. Am. J. Physiol. 273, R1800–R1809.

    Google Scholar 

  • Johnson, C., Golden, S. and Kondo, T. (1998) Adaptive significance of circadian programs in cyanobacteria. Trends Microbiol. 6, 407–410.

    PubMed  CAS  Google Scholar 

  • Johnsson, A., Karlsson, H. and Engelmann, W. (1973) Phase shifts in the Kalanchoe petal rhythm, caused by light pulses of different duration. A theoretical and experimental study. J. Chronobiol. 1, 147–156.

    Google Scholar 

  • Johnston, J., Tournier, B., Andersson, H., Masson-Pevet, M., Lincoln, G. and Hazlerigg, D. (2006) Multiple effects of melatonin on rhythmic clock gene expression in the mammalian Pars tuberalis. Endocrinology 147, 959–965.

    PubMed  CAS  Google Scholar 

  • Jouve, L., Greppin, H. and Degli Agosti, R. (1998) Arabidopsis thaliana floral stem elongation: Evidence for an endogenous circadian rhythm. Plant Physiol. Bioch. 36, 469–472.

    CAS  Google Scholar 

  • Kai, H., Arai, T. and Yasuda, F. (1999) Accomplishment of time-interval activation of esterase A4 by simple removal of pin fraction. Chronobiol. Int. 16, 51–58.

    PubMed  CAS  Google Scholar 

  • Kaneko, M., Hamblen, M. and Hall, J. (2000) Involvement of the period gene in developmental time-memory: Effect of the per short mutation on phase shifts induced by light pulses delivered to Drosophila larvae. J. Biol. Rhythms 15, 13–30.

    PubMed  CAS  Google Scholar 

  • Karakashian, M. and Schweiger, H. (1976) Circadian properties of the rhythmic system in individual nucleated and enucleated cells of Acetabularia mediterranea. Exp. Cell Res. 97, 366–377.

    PubMed  CAS  Google Scholar 

  • Karlsson, H. and Johnsson, A. (1972) A feedback model for biological rhythms. II. Comparisions with experimental results, especially on the petal rhythm of Kalanchoe. J. Theor Biol. 36, 175–194.

    PubMed  CAS  Google Scholar 

  • Khalsa, S., Jewett, M., Cajochen, C. and Czeisler, C. (2003) A phase response curve to single bright light pulses in human subjects. J. Physiol. 549, 945–952.

    PubMed  CAS  Google Scholar 

  • Klarsfeld, A., Malpel, S., Michard-Vanhee, C., Picot, M., Chelot, E. and Rouyer, F. (2004) Novel features of cryptochrome-mediated photoreception in the brain circadian clock of Drosophila. J. Neurosci. 24, 1468–1477.

    PubMed  CAS  Google Scholar 

  • Klarsfeld, A. and Rouyer, F. (1998) Effects of circadian mutations and LD periodicity on the life span of Drosophila melanogaster. J. Biol. Rhythms 13, 471–478.

    PubMed  CAS  Google Scholar 

  • Klein, D., Moore, R. and Reppert, S. (1991) Suprachiasmatic nucleus: The mind’s clock. Oxford University Press, New York.

    Google Scholar 

  • Klemm, E. and Ninnemann, H. (1976) Detailed action spectrum for the delay shift in pupae emergence of Drosophila pseudoobscura. Photochem. Photobiol. 24, 369–371.

    Google Scholar 

  • Klerman, E. B. (2005) Clinical aspects of human circadian rhythms. J. Biol. Rhythms 20, 375–386.

    PubMed  Google Scholar 

  • Klerman, E. B., Dijk, D. J., Kronauer, R. E. and Czeisler, C. A. (1996) Simulations of light effects on the human circadian pacemeker: Implications for assessment of intrinsic period. Am. J. Physiol. 270, R271–R282.

    CAS  Google Scholar 

  • Knutsson, A. (2003) Health disorders of shift workers. Occup. Med. 53, 103–108.

    Google Scholar 

  • Kolar, C., Fejes, E., Adam, E., Schaefer, E., Kay, S. and Nagy, F. (1998) Transcription of Arabidopsis and wheat Cab genes in single tobacco transgenic seedlings exhibits independent rhythms in a developmentally regulated fashion. Plant J. 13, 563–569.

    PubMed  CAS  Google Scholar 

  • Kondo, T., Johnson, C. and Hastings, J. (1991) Action spectrum for resetting the circadian phototaxis rhythm in the CW15 strain I: Cells in darkness. Plant Physiol. 95, 197–205.

    PubMed  Google Scholar 

  • Kondo, T., Mori, T., Lebedeva, N. V., Aoki, S., Ishiura, M. and Golden, S. S. (1997) Circadian rhythms in rapidly dividing cyanobacteria. Science 275, 224–227.

    PubMed  CAS  Google Scholar 

  • Kondo, T., Strayer, C., Kulkarni, R., Taylor, W., Ishiura, M., Golden, S. and Johnson, C. (1993) Circadian rhythms in prokaryotes: Luciferase as a reporter of circadian gene expression in cyanobacteria. Proc. Natl. Acad. Sci. USA 90, 5672–5676.

    PubMed  CAS  Google Scholar 

  • Kondo, T., Tsinoremas, N., Golden, S., Johnson, C., Kutsuna, S. and Ishiura, M. (1994) Circadian clock mutants of cyanobacteria. Science 266, 1233–1236.

    PubMed  CAS  Google Scholar 

  • Koorengevel, K., Beersma, D., den Boer, J. and van den Hoofdakker, R. (2002) A forced desynchrony study of circadian pacemaker characteristics in seasonal affective disorder. J. Biol. Rhythms 17, 463–475.

    PubMed  Google Scholar 

  • Kräuchi, K., Cajochen, C., Pache, M., Flammer, J. and Wirz-Justice, A. (2006) Thermoregulatory effects of melatonin in relation to sleepiness. Chronobiol. Int. 23, 475–484.

    PubMed  Google Scholar 

  • Kreps, J. and Kay, S. (1997) Coordination of plant metabolism and development by the circadian clock. Plant Cell 9, 1235–1244.

    PubMed  CAS  Google Scholar 

  • Kreps, J. A., Wu, Y., Chang, H. S., Zhu, T., Wang, X. and Harper, J. F. (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol. 130, 2129–2141.

    PubMed  CAS  Google Scholar 

  • Kronauer, R. E., Czeisler, C. A., Pilato, S. F., Moore-Ede, M. C. and Weitzman, E. D. (1982) Mathematical model of the human circadian system with two interacting oscillators. Am. J. Physiol. 242, 3–17.

    Google Scholar 

  • Kumar, S., Mohan, A. and Sharma, V. (2005) Circadian dysfunction reduces lifespan in Drosophila melanogaster. Chronobiol. Int. 22, 641–653.

    PubMed  Google Scholar 

  • Kumbalasiri, T. and Provencio, I. (2005) Melanopsin and other novel mammalian opsins. Exp. Eye Res. 81, 368–375.

    PubMed  CAS  Google Scholar 

  • Kurosawa, G., Aihara, K. and Iwasa, Y. (2006) A model for circadian rhythm of cyanobacteria, which maintains oscillation without gene expression. Biophys. J. 91, 2015–2023.

    PubMed  CAS  Google Scholar 

  • Laakso, M.L., Hätönen, T., Stenberg, D., Alila, A. and Smith, S. (1993) The human circadian response to light – strong and weak resetting. J. Biol. Rhythms 8, 351–360.

    Google Scholar 

  • Lakin-Thomas, P. (2006a) Circadian clock genes frequency and white collar-1 are not essential for entrainment to temperature cycles in Neurospora crassa. Proc. Natl. Acad. Sci. USA 103, 4469–4474.

    Google Scholar 

  • Lakin-Thomas, P. and Brody, S. (2000) Circadian rhythms in Neurospora crassa: Lipid deficiencies restore robust rhythmicity to null frequency and white-collar mutants. Proc. Natl. Acad. Sci. USA 97, 256–261.

    PubMed  CAS  Google Scholar 

  • Lakin-Thomas, P. and Brody, S. (2004) Circadian rhythms in microorganisms: New complexities. Annu. Rev. Microbiol. 58, 489–519.

    PubMed  CAS  Google Scholar 

  • Lakin-Thomas, P., Cote, G. and Brody, S. (1990) Circadian rhythms in Neurospora crassa: biochemistry and genetics. Crit. Rev. Microbiol. 17, 365–416.

    PubMed  CAS  Google Scholar 

  • Lakin-Thomas, P. and Johnson, H. (1999) Commentary: Molecular and cellular models of circadian systems. J. Biol. Rhythms 14, 486–489.

    PubMed  CAS  Google Scholar 

  • Lakin-Thomas, P. L. (2006b) Transcriptional feedback oscillators: Maybe, maybe not. J. Biol. Rhythms 21, 83–92.

    Google Scholar 

  • Lam, R. and Levitan, R. (2000) Pathophysiology of seasonal affective disorder: a review. J. Psychiat. Neurosci. 25, 469–480.

    CAS  Google Scholar 

  • Larner, V. S. (2005) Photoreceptors and light signalling pathways in plants. In: A. J. W. Hall and H. McWaters (Eds.), Endogenous plant rhythms. Blackwell, Edinburgh.

    Google Scholar 

  • Lee, H., Billings, H. and Lehman, M. (2003) The suprachiasmatic nucleus: A clock of multiple components. J. Biol. Rhythms 18, 435–449.

    PubMed  CAS  Google Scholar 

  • Lee, K., Loros, J. and Dunlap, J. (2000) Interconnected feedback loops in the Neurospora circadian system. Science 289, 107–110.

    PubMed  CAS  Google Scholar 

  • Leloup, J. and Goldbeter, A. (1998) A model for circadian rhythms in Drosophila incorporating the formation of a complex between the per and tim proteins. J. Biol. Rhythms 13, 70–87.

    PubMed  CAS  Google Scholar 

  • Leloup, J. and Goldbeter, A. (1999) Chaos and birhythmicity in a model for circadian oscillations of the PER and TIM proteins in Drosophila. J. Theor Biol. 198, 445–459.

    PubMed  CAS  Google Scholar 

  • Leloup, J. and Goldbeter, A. (2001) A molecular explanation for the long-term suppression of circadian rhythms by a single light pulse. Am. J. Physiol. 280, 1206–1212.

    Google Scholar 

  • Leloup, J., Gonze, D. and Goldbeter, A. (1999) Limit cycle models for circadian rhythms based on transcriptional regulation in Drosophila and Neurospora. J. Biol. Rhythms 14, 433–448.

    PubMed  CAS  Google Scholar 

  • Lewis, R. (1999) Control system models for the circadian clock of the New Zealand Weta, Hemideina thoracia (Orthoptera: Stenopelmatidae). J. Biol. Rhythms 14, 480–485.

    PubMed  CAS  Google Scholar 

  • Lewis, Z. A., Correa, A., Schwerdtfeger, C., Link, K. L., Xie, X., Gomer, R. H., Thomas, T., Ebbole, D. J. and Bell-Pedersen, D. (2002) Overexpression of white collar-1(wc-1) activates circadian clock-associated genes, but is not sufficient to induce most light-regulated gene expression in Neurospora crassa. Mol. Microbiol. 45, 917–931.

    PubMed  CAS  Google Scholar 

  • Lewy, A., Ahmed, S. and Sack, R. (1996) Phase shifting the human circadian clock using melatonin. Behav. Brain Res. 73, 131–4.

    PubMed  CAS  Google Scholar 

  • Lewy, A. and Sack, R. (1997) Exogenous melatonin’s phase-shifting effects on the endogenous melatonin profile in sighted humans: A brief review and critique of the literature. J. Biol. Rhythms 12, 588–594.

    PubMed  CAS  Google Scholar 

  • Lewy, A. J., Lefler, B. J., Emens, J. S. and Bauer, V. K. (2006) The circadian basis of winter depression. Proc. Natl. Acad. Sci. USA 103, 7414–7419.

    PubMed  CAS  Google Scholar 

  • Lin, R., Chou, H. and Huang, T. (1999) Priority of light/dark entrainment over temperature in setting the circadian rhythms of the prokaryote Synechococcus RF-1. Planta 209, 202–206.

    PubMed  CAS  Google Scholar 

  • Lincoln, G., Johnston, J., Andersson, H., Wagner, G. and Hazlerigg, D. (2005) Photorefractoriness in mammals: Dissociating a seasonal timer from the circadian-based photoperiod response. Endocrinology 146, 3782–3790.

    PubMed  CAS  Google Scholar 

  • Lincoln, G., Messager, S., Andersson, H. and Hazlerigg, D. (2002) Temporal expression of seven clock genes in the suprachiasmatic nucleus and the pars tuberalis of the sheep: Evidence for an internal coincidence timer. Proc. Natl. Acad. Sci. USA 99, 13890–13895.

    PubMed  CAS  Google Scholar 

  • Lincoln, G. A., Andersson, H. and Loudon, A. (2003) Clock genes in calendar cells as the basis of annual timekeeping in mammals–a unifying hypothesis. J. Endocrinol. 179, 1–13.

    PubMed  CAS  Google Scholar 

  • Liu, Y. (2003) Molecular mechanisms of entrainment in the Neurospora circadian clock. J. Biol. Rhythms 18, 195–205.

    PubMed  CAS  Google Scholar 

  • Liu, Y., Golden, S., Kondo, T., Ishiura, M. and Johnson, C. (1995) Bacterial luciferase as a reporter of circadian gene expression in cyanobacteria. J. Bacteriol. 177, 2080–2086.

    PubMed  CAS  Google Scholar 

  • Liu, Y., Merrow, M., Loros, J. and Dunlap, J. (1998) How temperature changes reset a circadian oscillator. Science 281, 825–829.

    PubMed  CAS  Google Scholar 

  • Lucas, R. J. (2006) Chromophore regeneration: Melanopsin does its own thing. Proc. Natl. Acad. Sci. USA 103, 10153–10154.

    PubMed  CAS  Google Scholar 

  • Lumsden, P. and Millar, A. (1998) Biological rhythms and photoperiodism in plants. Environmental Plant Biology. Bios Scientific Publishers Oxford, Washington DC.

    Google Scholar 

  • Lundkvist, G., Kwak, Y., Davis, E., Tei, H. and Block, G. (2005) A calcium flux is required for circadian rhythm generation in mammalian pacemaker neurons. J. Neurosci. 25, 7682–7686.

    PubMed  CAS  Google Scholar 

  • Malpel, S., Klarsfeld, A. and Rouyer, F. (2002) Larval optic nerve and adult extra-retinal photoreceptors sequentially associate with clock neurons during Drosophila brain development. Developm. 129, 1443–1453.

    CAS  Google Scholar 

  • Malpel, S., Klarsfeld, A. and Rouyer, F. (2004) Circadian synchronization and rhythmicity in larval photoperception-defective mutants of Drosophila. J. Biol. Rhythms 19, 10–21.

    PubMed  Google Scholar 

  • Manthena, P. and Zee, P. C. (2006) Neurobiology of circadian rhythm sleep disorders. Curr. Neurol. Neurosci. Rep. 6, 163–168.

    PubMed  CAS  Google Scholar 

  • Marchant, E. and Mistlberger, R. (1997) Anticipation and entrainment to feeding time in intact and SCN-ablated C57BL/6j mice. Brain Res. 765, 273–282.

    PubMed  CAS  Google Scholar 

  • Martin, S. and Eastman, C. (1998) Medium-intensity light produces circadian rhythm adaptation to simulated night-shift work. Sleep 21, 154–165.

    PubMed  CAS  Google Scholar 

  • Màs, P. (2005) Circadian clock signaling in Arabidopsis thaliana: from gene expression to physiology and development. Int. J. Dev. Biol. 49, 491–500.

    Google Scholar 

  • Màs, P., Devlin, P. F., Panda, S. and Kay, S. A. (2000) Functional interaction of PHYTOCHROME A and CRYPTOCHROME 2. Nature 408, 207–211.

    PubMed  Google Scholar 

  • Màs, P., Kim, W. J., Somers, D. E. and Kay, S. A. (2003) Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis. Nature 426, 567–570.

    PubMed  Google Scholar 

  • Maywood, E., Reddy, A., Wong, G., O’Neill, J., O’Brien, J., McMahon, D., Harmar, A., Okamura, H. and Hastings, M. (2006) Synchronization and maintenance of timekeeping in suprachiasmatic circadian clock cells by neuropeptidergic signaling. Curr. Biol. 16, 599–605.

    PubMed  CAS  Google Scholar 

  • McClung, C., Hsu, M., Painter, J., Gagne, J., Karlsberg, S. and Salome, P. (2000) Integrated temporal regulation of the photorespiratory pathway. Circadian regulation of two Arabidopsis genes encoding serine hydroxymethyltransferase. Plant Physiol. 123, 381–391.

    PubMed  CAS  Google Scholar 

  • McClung, C. R. (2006) Plant circadian rhythms. Plant Cell 18, 792–803.

    PubMed  CAS  Google Scholar 

  • Meijer, J., Watanabe, K., Detari, L., deVries, M., Albus, H., Treep, J., Schaap, J. and Rietveld, W. (1996) Light entrainment of the mammalian biological clock. Prog. Brain Res. 111, 175–190.

    PubMed  CAS  Google Scholar 

  • Meijer, J. H. and Schwartz, W. J. (2003) In search of the pathways for light-induced pacemaker resetting in the suprachiasmatic nucleus. J. Biol. Rhythms 18, 235–249.

    PubMed  Google Scholar 

  • Melyan, Z., Tarttelin, E. E., Bellingham, J., Lucas, R. J. and Hankins, M. W. (2005) Addition of human melanopsin renders mammalian cells photosensitive. Nature 433, 741–744.

    PubMed  CAS  Google Scholar 

  • Menaker, M., Moreira, L. and Tosini, G. (1997) Evolution of circadian organization in vertebrates. Braz. J. Med. Biol. Res. 30, 305–313.

    CAS  Google Scholar 

  • Merrow, M., Boesl, C., Ricken, J., Messerschmitt, M., Goedel, M. and Roenneberg, T. (2006) Entrainment of the Neurospora circadian clock. Chronobiol. Int. 23, 71–80.

    PubMed  CAS  Google Scholar 

  • Merrow, M., Brunner, M. and Roenneberg, T. (1999) Assignment of circadian function for the Neurospora clock gene frequency. Nature 399, 584–6.

    PubMed  CAS  Google Scholar 

  • Mersch, P. P., Middendorp, H. M., Bouhuys, A. L., Beersma, D. G. and van den Hoofdakker, R. H. (1999) Seasonal affective disorder and latitude: a review of the literature. J. Affect. Disord. 53, 35–48.

    PubMed  CAS  Google Scholar 

  • Meyer, P., Saez, L. and Young, M. (2006) PER-TIM interactions in living Drosophila cells: An interval timer for the circadian clock. Science 311, 226–229.

    PubMed  CAS  Google Scholar 

  • Michael, T. P., Salome, P. A., Yu, H. J., Spencer, T. R., Sharp, E. L., McPeek, M. A., Alonso, J. M., Exker, J. R. and McClung, C. R. (2003) Enhanced fitness conferred by naturally occurring variations in the circadian clock. Science 302, 1049–1053.

    PubMed  CAS  Google Scholar 

  • Michel, S., Colwell, C. and Colwell, C. (2001) Cellular communication and coupling within the suprachiasmatic nucleus. Chronobiol. Int. 18, 579–600.

    CAS  Google Scholar 

  • Mihalcescu, I., Hsing, W. and Leibler, S. (2004) Resilient circadian oscillator revealed in individual cyanobacteria. Nature 430, 81–85.

    PubMed  CAS  Google Scholar 

  • Miles, L., Raynal, D. and Wilson, M. (1977) Blind man living in normal society has circadian rhythm of 24.9 hours. Science 198, 421–423.

    PubMed  CAS  Google Scholar 

  • Millar, A. J. (1999a) Biological clocks in Arabidopsis thaliana. New Phytol. 141, 175–197.

    Google Scholar 

  • Millar, A. J. (1999b) Tansley review no. 103—biological clocks in Arabidopsis thaliana. New Phytol. 141, 175–197.

    Google Scholar 

  • Millar, A. J. (2003) A suite of photoreceptors entrains the plant circadian clock. J. Biol. Rhythms 18, 217–262.

    PubMed  CAS  Google Scholar 

  • Millar, A. J. (2004) Input signals to the plant circadian clock. J. Exp. Bot. 55, 277–283.

    PubMed  CAS  Google Scholar 

  • Millar, A. J., Carre, I. A., Strayer, C. A., Chua, N.-H. and A., K. S. (1995a) Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science 267, 1161–1163.

    Google Scholar 

  • Millar, A. J. and Kay, S. A. (1996) Integration of circadian and phototransduction pathways in the network controlling CAB gene transcription in Arabidopsis. Proc. Natl. Acad. Sci. USA 93, 15491–15496.

    PubMed  CAS  Google Scholar 

  • Millar, A. J., Straume, M., Chory, J., Chua, N.-H. and Kay, S. A. (1995b) The regulation of circadian period by phototransduction pathways in Arabidopsis. Science 267, 1163–1166.

    CAS  Google Scholar 

  • Min, H., Johnson, C. H. and Golden, S. S. (2004) Phase determination of circadian gene expression in Synechococcus elongatus PCC 7942. J. Biol. Rhythms 19, 103–112.

    PubMed  CAS  Google Scholar 

  • Minors, D. and Waterhouse, J. (1981) Circadian rhythms and the human. Wright, London.

    Google Scholar 

  • Minors, D., Waterhouse, J. and Wirz-Justice, A. (1991) A human phase response curve to light. Neurosci. Lett. 133, 36–40.

    PubMed  CAS  Google Scholar 

  • Mistlberger, R., de Groot, J. and Marchant, E. (1996) Discrimination of circadian phase in intact and suprachiasmatic nuclei ablated rats. Brain Res. 96, 12–18.

    Google Scholar 

  • Mistlberger, R. E. and Skene, D. J. (2005) Nonphotic entrainment in humans? J. Biol. Rhythms 20, 339–352.

    PubMed  Google Scholar 

  • Monk, T. H. (2000) What can the chronobiologist do to help the shift worker? J. Biol. Rhythms 15, 86–94.

    PubMed  CAS  Google Scholar 

  • Moore, R., Speh, J. and Card, J. (1995) The rhd originates from a distinct subset of retinal ganglion cells. J. Comp. Neurol. 352, 351–366.

    PubMed  CAS  Google Scholar 

  • Morgan, L., Greene, A. and Bell-Pedersen, D. (2003) Circadian and light-induced expression of luciferase in Neurospora crassa. Fung. Genet. Biol. 38, 327–332.

    CAS  Google Scholar 

  • Mori, T., Binder, B. and Johnson, C. (1996) Circadian gating of cell division in cyanobacteria growing with average doubling times of less than 24 hours. Proc. Natl. Acad. Sci. USA 93, 10183–10188.

    PubMed  CAS  Google Scholar 

  • Mori, T., Saveliev, S., Xu, Y., Stafford, W., Cox, M., Inman, R. and Johnson, C. (2002) Circadian clock protein KaiC forms ATP-dependent hexameric rings and binds DNA. Proc. Natl. Acad. Sci. USA 99, 17203–17208.

    CAS  Google Scholar 

  • Morse, D., Hastings, J. and Roenneberg, T. (1994) Different phase responses of two circadian oscillators in Gonyaulax. J. Biol. Rhythms 9, 263–274.

    PubMed  CAS  Google Scholar 

  • Mrosovsky, N. (1999) Masking: history, definitions, and measurement. Chronobiol. Int. 16(4), 415–29.

    PubMed  CAS  Google Scholar 

  • Naef, F. (2005) Circadian clocks go in vitro: purely post-translational oscillators in cyanobacteria. Mol. Systems Biol. http://www.nature.com/msb/journal/v1/n1/full/msb4100027.html .

    Google Scholar 

  • Nagy, F. and Schäfer, E. (2002) Phytochromes control photomorphogenesis by differentially regulated, interacting signaling pathways in higher plants. Annu. Rev. Plant Biol. 53, 329–355.

    PubMed  CAS  Google Scholar 

  • Naidoo, N., Song, W., Hunter-Ensor, M. and Seghal, A. (1999) A role for the proteasome in the light response of the timeless clock protein. Science 285, 1737–1741.

    PubMed  CAS  Google Scholar 

  • Nakahira, Y., Katayama, M., Miyashita, H., Kutsuna, S., Iwasaki, H., Oyama, T. and Kondo, T. (2004) Global gene repression by KaiC as a master process of prokaryotic circadian system. Proc. Natl. Acad. Sci. USA 101, 881–885.

    PubMed  CAS  Google Scholar 

  • Nakajima, M., Imai, K., Ito, H., Nishiwaki, T., Murayama, Y., Iwasaki, H. and Oyama, T., T. ans Kondo (2005) Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308, 414–415.

    PubMed  CAS  Google Scholar 

  • Nathan, P., Burrows, G. and Norman, T. (1999) Melatonin sensitivity to dim white light in affective disorders. Neuropsychopharmacology 21, 408–413.

    PubMed  CAS  Google Scholar 

  • Nickla, D., Wildsoet, C. and Wallman, J. (1998) Visual influences on diurnal rhythms in ocular length and choroidal thickness in chick eyes. Exp. Eye Res. 66, 163–181.

    PubMed  CAS  Google Scholar 

  • Nishiwaki, T., Iwasaki, H., Ishiura, M. and Kondo, T. (2000) Nucleotide binding and autophosphorylation of the clock protein KaiC as a circadian timing process of cyanobacteria. Proc. Natl. Acad. Sci. USA 97, 495–499.

    PubMed  CAS  Google Scholar 

  • Nitabach, M. N., Holmes, T. C. and Blau, J. (2005) Membranes, ions, and clocks: testing the Njus-Sulzman-Hastings model of the circadian oscillator. Methods Enzymol. 393, 682–93.

    PubMed  CAS  Google Scholar 

  • Oishi, T., Yamao, M., Kondo, C., Haida, Y., Masuda, A. and Tamotsu, S. (2001) Multiphotoreceptor and multioscillator system in avian circadian organization. Micr. Res. Tech. 53, 43–47.

    CAS  Google Scholar 

  • Oltmanns, O. (1960) Ãœber den Einfluss der Temperatur auf die endogene Tagesrhythmik und die Blühinduktion bei der Kurztagpflanze Kalanchoe blossfeldiana. Planta 54, 233–264.

    Google Scholar 

  • Ouyang, Y., Andersson, C., Kondo, T., Golden, S. and Johnson, C. (1998) Resonating circadian clocks enhance fittness in cyanobacteria. Proc. Natl. Acad. Sci. USA 95, 8660–8664.

    PubMed  CAS  Google Scholar 

  • Panda, S. and Hogenesch, J. B. (2004) It’s all in the timing: Many clocks, many outputs. J. Biol. Rhythms 19, 374–387.

    PubMed  CAS  Google Scholar 

  • Pandit, A. and Maheshwari, R. (1994) Sexual reproduction by Neurospora in nature. Fung. Genet. Newslett 41, 67–68.

    Google Scholar 

  • Parcy, F. (2005) Flowering: a time for integration. Int. J. Dev. Biol. 49, 585–593.

    Google Scholar 

  • Park, Y. (2002) Downloading central clock information in Drosophila. Neurobiol. 26, 217–233.

    CAS  Google Scholar 

  • Partonen, T. and Magnusson, A. (2001) Seasonal affective disorder: Practice and research. Oxford University Press, New York.

    Google Scholar 

  • Peirson, S. and Foster, R. (2006) Melanopsin: another way of signaling light. Neuron 49, 331–9.

    PubMed  CAS  Google Scholar 

  • Peterson, E. (1981a) Dynamic response of a circadian pacemaker. I. Recovery from extended light exposure. Biol. Cybern. 40, 171–179.

    Google Scholar 

  • Peterson, E. (1981b) Dynamic response of a circadian pacemaker. II. Recovery from light pulse perturbations. Biol. Cybern. 40, 181–194.

    Google Scholar 

  • Pèvet, P., Agez, L., Bothorel, B., Saboureau, M., Gauer, F., Laurent, V. and Masson-Pcyrsym vet, M. (2006) Melatonin in the multi-oscillatory mammalian circadian world. Chronobiol. Int. 23, 39–51.

    PubMed  Google Scholar 

  • Piechulla, B. (1999) Circadian expression of the light-harvesting complex protein genes in plants. Chronobiol. Int. 6, 115–128.

    Google Scholar 

  • Pittendrigh, C. and Daan, S. (1976) A functional analysis of circadian pacemakers in nocturnal rodents. J. Comp. Physiol. A106, 333–355.

    Google Scholar 

  • Pittendrigh, C. S., Bruce, B. G., Rosensweig, N. S. and Rubin, M. L. (1959) Growth patterns in Neurospora. Nature 184, 169–170.

    Google Scholar 

  • Plachetzki, D., Serb, J. and Oakley, T. (2005) New insights into the evolutionary history of photoreceptor cells. Trends Ecol. Evol. 20, 465–467.

    PubMed  Google Scholar 

  • Plautz, J., Kaneko, M., Hall, J. and Kay, S. (1997) Independent photoreceptive circadian clocks throughout Drosophila. Science 278, 1632–1635.

    PubMed  CAS  Google Scholar 

  • Pregueiro, A., Price-Lloyd, N., Bell-Pedersen, D., Heintzen, C., Loros, J. and Dunlap, J. (2005) Assignment of an essential role for the Neurospora frequency gene in circadian entrainment to temperature cycles. Proc. Natl. Acad. Sci. USA 102, 2210–2215.

    PubMed  CAS  Google Scholar 

  • Price-Lloyd, N., Elvin, M. and Heintzen, C. (2005) Synchronizing the Neurospora crassa circadian clock with the rhythmic environment. Biochem. Soc. Trans. 33, 949–952.

    PubMed  CAS  Google Scholar 

  • Putterill, J., Robson, F., Lee, K., Simon, R. and Coupland, G. (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80, 847–857.

    PubMed  CAS  Google Scholar 

  • Quintero, J., Kuhlman, S. and McMahon, D. (2003) The biological clock nucleus: A multiphasic oscillator network regulated by light. J. Neurosci. 23, 8070–8076.

    PubMed  CAS  Google Scholar 

  • Ralph, M. R., Foster, R. G., Davis, F. C. and Menaker, M. (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247(4945), 975–978.

    PubMed  CAS  Google Scholar 

  • Rand, D. A., Shulgin, B. V., Salazar, D. and Millar, A. J. (2004) Design principles underlying circadian clocks. J. Royal Soc. Interface 1(1), 119–130.

    CAS  Google Scholar 

  • Rea, M. (1998) Photic entrainment of circadian rhythms in rodents. Chronobiol. Int. 15, 395–423.

    Google Scholar 

  • Redfern, P., Minors, D. and Waterhouse, J. (1994) Circadian rhythms, jet lag, and chronobiotics: An overview. Chronobiol. Int. 11, 253–265.

    PubMed  CAS  Google Scholar 

  • Reid, K. J. and Burgess, H. J. (2005) Circadian rhythm sleep disorders. Prim. Care 32, 449–473.

    PubMed  Google Scholar 

  • Reiter, R., Tan, D., Cabrera, J., D’Arpa, D., Sainz, R., Mayo, J. and Ramos, S. (1999) The oxidant/antioxidant network: role of melatonin. Biol. Signals Recept. 8, 56–63.

    PubMed  CAS  Google Scholar 

  • Reiter, R., Tan, D., Herman, T. and Thomas, C. (2004) Melatonin as a radioprotective agent: a review. Int. J. Rad. Oncol. Biol. Physics 59, 639–653.

    Google Scholar 

  • Reme, C. E., Wirz-Justice, A. and Terman, M. (1991) The visual input stage of the mammalian circadian pacemaking system: I. Is there a clock in the mammalian eye? J. Biol. Rhythms 6, 5–29.

    PubMed  CAS  Google Scholar 

  • Reuss, S. (2003) The clock in the brain: Anatomy of the mammalian circadian timing system, pp. 1–40. University of Mainz, Germany.

    Google Scholar 

  • Revell, V. L. and Eastman, C. I. (2005) How to trick mother nature into letting you fly around or stay up all night. J. Biol. Rhythms 20, 353–365.

    PubMed  Google Scholar 

  • Rieger, D., Shafer, O. T., Tomioka, K. and Helfrich-Förster, C. (2006) Functional analysis of circadian pacemaker neurons in Drosophila melanogaster. J. Neurosci. 26, 2531–2543.

    PubMed  CAS  Google Scholar 

  • Rieger, D., Stanewsky, R. and Helfrich-Förster, C. (2003) Cryptochrome, compound eyes, hofbauer-buchner eyelets, and ocelli play different roles in the entrainment and masking pathway of the locomotor activity rhythm in the fruit fly Drosophila melanogaster. J. Biol. Rhythms 18, 377–391.

    PubMed  CAS  Google Scholar 

  • Roenneberg, T. (1996) The complex circadian system of Gonyaulax polyedra. Plant Physiol. 96, 733–737.

    CAS  Google Scholar 

  • Roenneberg, T. and Aschoff, J. (1990) Annual rhythm of human reproduction II: environmental correlations. J. Biol. Rhythms 5, 217–240.

    PubMed  CAS  Google Scholar 

  • Roenneberg, T. and Foster, R. (1997) Twilight times: light and the circadian system. Photochem. Photobiol. 66, 549–61.

    PubMed  CAS  Google Scholar 

  • Roenneberg, T. and Merrow, M. (1998) Molecular circadian oscillators: An alternative hypothesis. J. Biol. Rhythms 13, 167–179.

    PubMed  CAS  Google Scholar 

  • Roenneberg, T. and Mittag, M. (1996) The circadian program of algae. Semin. Cell Dev. Biol. 7, 753–763.

    CAS  Google Scholar 

  • Ruan, G. X., Zhang, D. Q., Zhou, T., Yamazaki, S. and McMahon, D. G. (2006) Circadian organization of the mammalian retina. Proc. Natl. Acad. Sci. USA 20, 9703–9708.

    Google Scholar 

  • Ruby, N. (2003) Hibernation: When good clocks go cold. J. Biol. Rhythms 18, 275–286.

    PubMed  Google Scholar 

  • Ruby, N., Dark, J., Burns, D., Heller, H. and Zucker, I. (2002) The suprachiasmatic nucleus is essential for circadian body temperature rhythms in hibernating ground squirrels. J. Neurosci. 22, 357–364.

    PubMed  CAS  Google Scholar 

  • Rüger, M., Gordijn, M. C. M., Beersma, D. G. M., de Vries, B. and Daan, S. (2003) Acute and phase-shifting effects of ocular and extraocular light in human circadian physiology. J. Biol. Rhythms 18, 409–419.

    PubMed  Google Scholar 

  • Ruoff, P. and Rensing, L. (1996) The temperature-compensated Goodwin model simulates many circadian clock properties. J. Theor. Biol. 179, 275–285.

    Google Scholar 

  • Ruoff, P. and Rensing, L. (2004) Temperature effects on circadian clocks. J. Theor Biol. 29, 445–456.

    Google Scholar 

  • Rusak, B. and Zucker, I. (1979) Neural regulation of circadian rhythms. Physiol. Rev 59, 449–526.

    PubMed  CAS  Google Scholar 

  • Russo, V. (1988) Blue light induces circadian rhythms in the bd mutant of Neurospora: double mutants bd,wc-1 and bd,wc-2 are blind. J. Photochem. Photobiol. B 2, 59–65.

    PubMed  CAS  Google Scholar 

  • Saarela, S. and Reiter, R. (1994) Function of melatonin in thermoregulatory processes. Life Sci. 54, 295–311.

    PubMed  CAS  Google Scholar 

  • Salome, P. A. and McClung, C. R. (2005) What makes the Arabidopsis clock tick on time? A review on entrainment. Plant Cell Environ. 28, 21–38.

    CAS  Google Scholar 

  • Samel, A. and Wegmann, H. (1997) Bright light: A countermeasure for jet lag? Chronobiol. Int. 14, 173–183.

    PubMed  CAS  Google Scholar 

  • Sancar, A. (2000) Cryptochrome: The second photoactive pigment in the eye and its role in circadian photoreception. Annu. Rev. Biochem. 69, 31–67.

    PubMed  CAS  Google Scholar 

  • Satoh, Y., Kawai, H., Kudo, N., Kawashima, Y. and Mitsumoto, A. (2006) Time-restricted feeding entrains daily rhythms of energy metabolism in mice. Am. J. Physiol. 290, 1276–1283.

    Google Scholar 

  • Schaap, J., Albus, H., vanderLeest, H., Eilers, P., Detari, L. and Meijer, J. (2003) Heterogeneity of rhythmic suprachiasmatic nucleus neurons: Implications for circadian waveform and photoperiodic encoding. Proc. Natl. Acad. Sci. USA 100, 15994–15999.

    PubMed  CAS  Google Scholar 

  • Schaffer, R., Landgraf, J., Accerbi, M., Simon, V., Larson, M. and Wisman, E. (2001) Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis. Plant Cell 13, 113–123.

    PubMed  CAS  Google Scholar 

  • Schafmeier, T., Haase, A., Kaldi, K., Scholz, J., Fuchs, M. and Brunner, M. (2005) Transcriptional feedback of Neurospora circadian clock gene by phosphorylation-dependent inactivation of its transcription factor. Cell 122, 235–46.

    PubMed  CAS  Google Scholar 

  • Schafmeier, T., Kaldi, K., Diernfellner, A., Mohr, C. and Brunner, M. (2006) Phosphorylation-dependent maturation of Neurospora circadian clock protein from a nuclear repressor toward a cytoplasmic activator. Genes Develop. 20, 297–306.

    PubMed  CAS  Google Scholar 

  • Schepens, I., Duek, P. and Fankhauser, C. (2004) Phytochrome-mediated light signalling in Arabidopsis. Curr. Opin. Plant Biol. 7, 564–569.

    PubMed  CAS  Google Scholar 

  • Schibler, U., Ripperger, J. and Brown, S.A. (2003) Peripheral circadian oscillators in mammals: Time and food. J. Biol. Rhythms. 18, 250–260.

    PubMed  Google Scholar 

  • Schmidt-Koenig, K. (1975) Migration and homing in animals. Springer Berlin, Heidelberg, New York.

    Google Scholar 

  • Schmitz, O., Katayama, M., Williams, S., Kondo, T. and Golden, S. (2000) CikA, a bacteriophytochrome that resets the cyanobacterial circadian clock. Science 289, 765–768.

    PubMed  CAS  Google Scholar 

  • Schwerdtfeger, C. (2003) Vivid is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation. EMBO J. 22, 4846–4855.

    PubMed  CAS  Google Scholar 

  • Schwerdtfeger, C. and Linden, H. (2001) Blue light adaptation and desensitization of light signal transduction in Neurospora crassa. Mol. Microbiol. 39, 1080–1087.

    PubMed  CAS  Google Scholar 

  • Sehgal, A., Price, J. and Young, M. W. (1992) Ontogeny of a biological clock in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 89, 1423–1427.

    PubMed  CAS  Google Scholar 

  • Shafer, O., Helfrich-Förster, C., Renn, S. and Taghert, P. (2006) Re-evaluation of Drosophila melanogasterFs neuronal circadian pacemakers reveals new neuronal classes and inter-class neurochemical interactions. J. Comp. Neurol. 498, 180–193.

    PubMed  Google Scholar 

  • Sharma, V. (2003) Adaptive significance of circadian clocks. Chronobiol. Int. 20, 901–919.

    PubMed  Google Scholar 

  • Silver, R. and Moore, R. (1998) Special issue on suprachiasmatic nucleus. Chronobiol. Int. 15, VII–X and 395 ff.

    Google Scholar 

  • Silver, R. and Schwartz, W. (2005) The suprachiasmatic nucleus is a functionally heterogeneous timekeeping organ. Methods Enzymol. 393, 451–465.

    PubMed  CAS  Google Scholar 

  • Simonneaux, V. and Ribelayga, C. (2003) Generation of the melatonin endocrine message in mammals: A review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol. Rev. 55, 325–395.

    PubMed  CAS  Google Scholar 

  • Skene, D. J. (2003) Optimization of light and melatonin to phase-shift human circadian rhythms. J. Neuroendocrinol. 15, 438–441.

    PubMed  CAS  Google Scholar 

  • Slominski, A., Fischer, T. W., Zmijewski, M. A., Wortsman, J., Semak, I., Zbytek, B., Slominski, R. M. and Tobin, D. J. (2005) On the role of melatonin in skin physiology and pathology. Endocrine 27, 137–148.

    PubMed  CAS  Google Scholar 

  • Smith, R. M. and Williams, S. B. (2006) Circadian rhythms in gene transcription imparted by chromosome compaction in the cyanobacterium Synechococcus eleongatus. Proc. Natl. Acad. Sci. USA 103, 8564–8569.

    PubMed  CAS  Google Scholar 

  • Smolen, P., Baxter, D. A. and Byrne, J. H. (2002) A reduced model clarifies the role of feedback loops and time delays in the Drosophila circadian oscillator. Biophys. J. 83, 2349–2359.

    PubMed  CAS  Google Scholar 

  • Somers, D., Devlin, P. and Kay, S. (1998) Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 282, 1488–1490.

    PubMed  CAS  Google Scholar 

  • Springer, M. L. (1993) Genetic control of fungal differentiation: the three sporulation pathways of Neurospora crassa. BioEssays 15, 365–374.

    PubMed  CAS  Google Scholar 

  • Stal, L. and Krumbein, M. (1985) Oxygen protection of nitrogenase in the aerobically nitrogen fixing non-heterocystous cyanobacterium Oscillatoria sp. Arch. Microbiol. 143, 72–76.

    CAS  Google Scholar 

  • Stanewsky, R. (2002) Clock mechanisms in Drosophila. Cell Tissue Res. 309, 11–26.

    PubMed  CAS  Google Scholar 

  • Stanewsky, R., Jamison, C., Plautz, J., Kay, S. and Hall, J. (1997) Multiple circadian-regulated elements contribute to cycling period gene expression in Drosophila. EMBO J. 16, 5006–5018.

    PubMed  CAS  Google Scholar 

  • Steenhard, B. M. and Besharse, J. C. (2000) Phase shifting the retinal circadian clock: xper2 mrna induction by light and dopamine. J. Neurosci. 20, 8572–8577.

    PubMed  CAS  Google Scholar 

  • Stehle, J., von Gall, C., Schomerus, C. and Korf, H. (2001) Of rodents and ungulates and melatonin: Creating a uniform code for darkness by different signaling mechanisms. J. Biol. Rhythms 16, 312–325.

    PubMed  CAS  Google Scholar 

  • Steiner, M., Werstiuk, E. and Seggie, J. (1987) Dysregulation of neuroendocrine crossroads: depression, circadian rhythms and the retina—a hypothesis. Prog. Neuropsychopharmacol. Biol. Psych. 11, 267–278.

    CAS  Google Scholar 

  • Steinlechner, S. and Niklowitz, P. (1992) Impact of photoperiod and melatonin on reproduction in small mammals. Animal Reprod. Sci. 30, 1–28.

    Google Scholar 

  • Stephan, F. (2002) The ‘other’ circadian system: Food as a zeitgeber. J. Biol. Rhythms 17, 284–292.

    PubMed  Google Scholar 

  • Stephan, F., Swann, J. and Sisk, C. (1979) Entrainment of circadian rhythms by feeding schedules in rats with suprachiasmatic lesions. Behav. Neural Biol. 25, 545–554.

    PubMed  CAS  Google Scholar 

  • Stoleru, D., Peng, Y., Agosto, J. and Rosbash, M. (2004) Coupled oscillators control morning and evening locomotor behaviour of Drosophila. Nature 431, 862–868.

    PubMed  CAS  Google Scholar 

  • Suarez-Lopez, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F. and Coupland, G. (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410, 1116–1120.

    PubMed  CAS  Google Scholar 

  • Suri, V., Qian, Z., Hall, J. and Rosbash, M. (1998) Evidence that the TIM light response is relevant to light-induced phase shifts in Drosophila melanogaster. Neuron 21, 225–234.

    PubMed  CAS  Google Scholar 

  • Sweeney, B. M. (1963) Resetting the biological clock in Gonyaulax with ultraviolet light. Plant Physiol. 38, 704–708.

    PubMed  CAS  Google Scholar 

  • Takahashi, J. (2004) Finding new clock components: Past and future. J. Biol. Rhythms 19, 339–347.

    PubMed  CAS  Google Scholar 

  • Tan, Y., Merrow, M. and Roenneberg, T. (2004) Photoperiodism in Neurospora crassa. J. Biol. Rhythms 19, 135–143.

    PubMed  Google Scholar 

  • Tassi, P., Pellerin, N., Moessinger, M., Hoeft, A. and Muzet, A. (2000) Visual resolution in humans fluctuates over the 24h period. Chronobiol. Int. 17, 187–195.

    PubMed  CAS  Google Scholar 

  • Tauber, E., Last, K., Olive, P. and Kyriacou, C. (2004) Clock gene evolution and functional divergence. J. Biol. Rhythms 19, 445–458.

    PubMed  CAS  Google Scholar 

  • Teng, C., Akerman, D., Cordas, T., Kasper, S. and Vieira, A. (1995) Seasonal affective disorder in a tropical country: A case report. Psychiat. Res. 56, 11–15.

    CAS  Google Scholar 

  • Terman, J. and Terman, M. (1999) Photopic and scotopic light detection in patients with seasonal affective disorder and control subjects. Biol. Cybern. 46, 1642–1648.

    CAS  Google Scholar 

  • Terman, M., Amira, L., Terman, J. and Ross, D. (1996) Predictors of response and nonresponse to light treatment for winter depression. Am. J. Psychiatry 153, 1423–1429.

    Google Scholar 

  • Thompson, C., Childs, P., Martin, N., Rodin, I. and Smythe, P. (1997) Effects of morning phototherapy on circadian markers in seasonal affective disorder. Br. J. Psychiatry 170, 431–435.

    Google Scholar 

  • Thompson, C. L., Rickman, C. B., Shaw, S. J., Ebright, J. N., Kelly, U., Sancar, A. and Rickman, D. W. (2003) Expression of the blue-light receptor cryptochrome in the human retina. Invest. Ophthalmol. Vis. Sci. 44, 4515–4521.

    Google Scholar 

  • Toh, K. I., Jones, R., He, Y., Eide, E. J., Hinz, W. A., Virshup, D. M., Pt?cek, L. J. and Fu, Y. H. (2001) An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291, 1040–1043.

    PubMed  CAS  Google Scholar 

  • Tomita, J., Nakajima, M., Kondo, T. and Iwasaki, H. (2005) No transcription-translation feedback in circadian rhythm of KaiC phosphorylation. Science 307, 251–254.

    PubMed  CAS  Google Scholar 

  • Tosini, G. and Fukuhara, C. (2002) The mammalian retina as a clock. Cell Tissue Res. 309, 119–126.

    PubMed  CAS  Google Scholar 

  • Tosini, G. and Menaker, M. (1996) Circadian rhythms in cultured mammalian retina. Science 272, 419–421.

    PubMed  CAS  Google Scholar 

  • Toth, R., Kevei, E., Hall, A., Millar, A. J., Nagy, F. and Kozma-Bognar, L. (2001) Circadian clock-regulated expression of phytochrome and cryptochrome genes in Arabidopsis. Plant Physiol. 127, 1607–1616.

    PubMed  CAS  Google Scholar 

  • Touitou, Y. (1998) Biological clocks: Mechanisms and applications. Proceedings of the International Congress on Chronobiology Paris 7 - 11 September 1997. Elsevier Amsterdam.

    Google Scholar 

  • Tu, D., Owens, L., Anderson, L., Golczak, M., Doyle, S., McCall, M., Menaker, M., Palczewski, K. and Van Gelder, R. (2006) From the cover: Inner retinal photoreception independent of the visual retinoid cycle. Proc. Natl. Acad. Sci. USA 103, 10426–10431.

    PubMed  CAS  Google Scholar 

  • Turek, F. W. (2005) Role of light in circadian entrainment and treating sleep disorders—and more. Sleep 28, 548–549.

    PubMed  Google Scholar 

  • Veleri, S., Rieger, D., Helfrich-Förster, C. and Stanewsky, R. (2007) Hofbauer-Buchner eyelets affect circadian photosensitivity and coordinates TIM and PER expression in Drosophila clock neurons. J. Biol. Rhythms 22, 29–42.

    PubMed  Google Scholar 

  • Visser, E., Beersma, D. and Daan, S. (1999) Melatonin suppression by light in humans is maximal when the nasal part of the retina is illuminated. J. Biol. Rhythms 14, 116–121.

    PubMed  CAS  Google Scholar 

  • Vollrath, L. (2002) Chronoendokrinologia- quo vadis? Ann. Anatomy 184, 583–593.

    Google Scholar 

  • Wada, M., Shimazaki, K. and Iino, M. (2005) Light sensing in plants. Springer, New York.

    Google Scholar 

  • Warren, E., Allen, C., Brown, R. and Robinson, D. (2003) Intrinsic light responses of retinal ganglion cells projecting to the circadian system. Eur. J. Neurosci. 17, 1727–1735.

    Google Scholar 

  • Watanabe, T., Kajimura, N., Kato, M., Sekimoto, M., Hori, T. and Takahashi, K. (2000) Case of non-24 h sleep–wake syndrome patient improved by phototherapy. Psychiatr. Clin. Neurosci. 54, 369–370.

    CAS  Google Scholar 

  • Webb, A. (1998) Stomatal rhythms. In: P. Lumsden and A. Millar (Eds.), Biological rhythms and photoperiodism in plants, pp. 69–79. Bios Scientific Publishers, Abingdon.

    Google Scholar 

  • Wehr, T. A. (2001) Photoperiodism in humans and other primates: Evidence and implications. J. Biol. Rhythms 16, 348–364.

    PubMed  CAS  Google Scholar 

  • Weller, J., Reid, J., Taylor, S. and Murfet, I. (1997) The genetic control of flowering in pea. Trends Plant Sci. 2, 412–418.

    Google Scholar 

  • Wever, R. (1979) The circadian system of man. Springer, New York.

    Google Scholar 

  • Wigge, P. A., Kim, M. C., Jaeger, K. E., Busch, W., Schmid, M., Lohmann, J. U. and Weigel, D. (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309, 1056–1059.

    PubMed  CAS  Google Scholar 

  • Winfree, A. (1970) Integrated view of resetting a circadian clock. J. Comp. Physiol. A 28, 327–374.

    CAS  Google Scholar 

  • Winfree, A. (1986) The timing of biological clocks. Scientific American Books, Inc., New York.

    Google Scholar 

  • Wolfson, A. R. and Carskadon, M. A. (2003) Understanding adolescents, sleep patterns and school performance: A critical appraisal. Sleep Med. Rev. 7, 491–506.

    PubMed  Google Scholar 

  • Wright, K. P., Gronfier, C., Duffy, J. F. and Czeisler, C. A. (2005) Intrinsic period and light intensity determine the phase relationship between melatonin and sleep in humans. J. Biol. Rhythms 20, 168–177.

    PubMed  Google Scholar 

  • Wright, K. P., Hughes, R. J., kronauer, R. E., Dijk, D. J. and Czeisler, C. A. (2001) Intrinsic near-24-hour pacemaker period determines limits of circadian entrainment to a weak synchronizer in humans. Proc. Natl. Acad. Sci. USA 98, 14027–14032.

    PubMed  CAS  Google Scholar 

  • Wyatt, J. K. (2004) Delayed sleep phase syndrome: pathophysiology and treatment options. Sleep 27, 1195–1203.

    PubMed  Google Scholar 

  • Xu, Y., Padiath, Q. S., Shapiro, R. E., Jones, C. R., Wu, S. C., Saigoh, N., Saigoh, K., Ptacek, L. J. and Fu, Y. H. (2005) Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature 434, 640–644.

    PubMed  CAS  Google Scholar 

  • Yamaguchi, S., Isejima, H., Matsuo, T., Okura, R., Yagita, K., Kobayashi, M. and Okamura, H. (2003) Synchronization of cellular clocks in the suprachiasmatic nucleus. Science 302, 1408–1412.

    PubMed  CAS  Google Scholar 

  • Yamazaki, S., Numano, R., Abe, M., Hida, A., Takahashi, R., Ueda, M., Block, G. D., Sakaki, Y., Menaker, M. and Tei, H. (2000) Resetting central and peripheral circadian oscillators in transgenic rats. Science 288, 682–685.

    PubMed  CAS  Google Scholar 

  • Yanovsky, M., Mazzella, M. and Casal, J. (2000) A quadruple photoreceptor mutant still keeps track of time. Curr. Biol. 10, 1013–1015.

    PubMed  CAS  Google Scholar 

  • Yanovsky, M. J. and Kay, S. A. (2003) Living by the calendar: How plants know when to flower. Nature Rev. Mol. Biol. 4, 265–275.

    CAS  Google Scholar 

  • Yoshii, T., Funada, Y., Ibuki-Ishibashi, T., Matsumoto, A., Tanimura, T. and Tomioka, K. (2004) Drosophila cryb mutation reveals two circadian clocks that drive locomotor rhythm and have different responsiveness to light. J. Insect Physiol. 50, 479–488.

    PubMed  CAS  Google Scholar 

  • Young, R. (1976) Visual cells and the concept of renewal. Invest. Ophthalmol. Vis. Sci. 15, 700–725.

    CAS  Google Scholar 

  • Zak, D. E., Doyle, F. J., Vlachos, D. G. and Schwaber, J. S. (2001) Stochastic kinetic analysis of transcriptional feedback models for circadian rhythms. Proc. Second Int. Conf. Systems Biol. 1, 231–238.

    Google Scholar 

  • Zhong, H. and McClung, C. (1996) The circadian clock gates expression of two Arabidopsis catalase genes to distinct and opposite circadian phases. Mol. General Genet. 251, 196–203.

    CAS  Google Scholar 

  • Zhu, H., Yuan, Q., Froy, O., Casselman, A. and Reppert, S. M. (2005) The two crys of the butterfly. Curr. Biol. 15, R953–954.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Johnsson, A., Engelmann, W. (2008). The Biological Clock and Its Resetting by Light. In: Björn, L.O. (eds) Photobiology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72655-7_14

Download citation

Publish with us

Policies and ethics