Photobiology pp 321-388 | Cite as

The Biological Clock and Its Resetting by Light

  • Anders Johnsson
  • Wolfgang Engelmann


Organisms use various clocks in order to adapt to the daily, tidal, monthly, and annual cycles of the environment. This chapter deals with circadian (daily) clocks and the role light plays in synchronizing them with the 24-hour cycles in the environment. We will first characterize these different clocks, their functions, and their properties (Section 14.1.). Then the effects of light on these clocks are presented (Section 14.2.). In the main part of the chapter the synchronization of the circadian system of several organisms by light is presented: Synechococcus and Synechocystis are chosen as representatives of cyanobacteria (Section 14.3.), the dinoflagellate Lingulodinium as a unicellular alga (Section 14.4.), Arabidopsis as a plant (Section 14.5.), the ascomycete Neurospora as a fungus (Section 14.6), Drosophila as an insect (Section 14.7.), and rodents (Section 14.8.) and humans (Section 14.9.) as mammals. In selecting these examples we want to show the general occurrence of circadian rhythms in almost all organisms and the similarities and differences in the effects of light and the mechanisms of the circadian clocks used by them. We furthermore mention models as important tools to deal with circadian clocks and their synchronization by light (Section 14.10.)


Circadian Rhythm Light Pulse Circadian Clock Clock Gene Neurospora Crassa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., Notaguchi, M., Goto, K. and Araki, T. (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309, 1052–1056.PubMedGoogle Scholar
  2. Able, K. P. (1995) Orientation and navigation: A perspective on fifty years of research. Condor 97, 592–604.Google Scholar
  3. Ahmad, M. (1999) Seeing the world in red and blue: insight into plant vision and photoreceptors. Curr. Opin. Plant Biol. 2, 230–235.PubMedGoogle Scholar
  4. Åkerstedt, T. Shift work and disturbed sleep/wakefulness. Occup. Med. 2003, 53, 89–94Google Scholar
  5. Åkerstedt, T. Is there an optimal sleep–wake pattern in shift work? Scand. J. Work Environ. Health 1998, 24 (Suppl. 3), 18–27Google Scholar
  6. Akimoto, H., Kinumi, T. and Ohmiya, Y. (2004) Biological rhythmicity in expressed proteins of the marine dino flagellate Lingulodinium polyedrum demonstrated by chronological proteomics. Biochem. Biophys. Res. Commun. 315, 306–312.PubMedGoogle Scholar
  7. Akimoto, H., Kinumi, T. and Ohmiya, Y. (2005) Circadian rhythm of a TCA cycle enzyme is apparently regulated at the translational level in the dino flagellate Lingulodinium polyedrum. J. Biol. Rhythms 20, 479–489.PubMedGoogle Scholar
  8. Albrecht, U., Sun, Z. S., Eichele, G. and Lee, C. C. (2004) A differential response of two putative mammalian circadian regulators mper1 and mper2 to light. Curr. Biol. 14, 975–980.Google Scholar
  9. Albus, H., Vansteensel, M. J., Michel, S., Block, G. D. and Meijer, J. H. (2005) A gabaergic mechanism is necessary for coupling dissociable ventral and dorsal regional oscillators within the circadian clock. Curr. Biol. 15, 886–893.PubMedGoogle Scholar
  10. Anderson, S., Somers, D., Millar, A., Hanson, K., Chory, J. and Kay, S. (1997) Attenuation of phytochrome A and B signaling pathways by the Arabidopsis circadian clock. Plant Cell 9, 1727–1743.PubMedGoogle Scholar
  11. Aoki, S., Kondo, T., Wada, H. and Ishiura, M. (1997) Circadian rhythm of the cyanobacterium Synechocystis sp. strain PCC 6803 in the dark. J. Bacteriol. 179, 5751–5755.PubMedGoogle Scholar
  12. Arendt, J. (2005) Melatonin: Characteristics, concerns, and prospects. J. Biol. Rhythms 20, 291–303.PubMedGoogle Scholar
  13. Ashkenazi, I., Hartman, H., Strulovitz, B. and Dar, O. (1975) Activity rhythms of enzymes in human red blood cell suspension. J. interdisc. Cycle Res. 6, 291–301.Google Scholar
  14. Ashmore, L. and Sehgal, A. (2003) A fly’s eye view of circadian entrainment. J. Biol. Rhythms 18(3), 206–216.PubMedGoogle Scholar
  15. Aton, S. J., Colwell, C. S., Harmar, A. J., Waschek, J. and Herzog, E. D. (2005) Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nature Neurosci. 8, 476–483.PubMedGoogle Scholar
  16. Baker, J. and Ranson, R. (1932) Factors affecting the breeding of the field mouse (Microtus agrestis). I. Light. Proc. R. Soc. Lond. B 110, 113–332.Google Scholar
  17. Baker, S. K. and Zee, P. C. (2000) Circadian disorders of the sleep–wake cycle. In: M. H. Kryger, T. Roth and W. C. Dement (Eds.), Principles and practice of sleep medicine, pp. 606–614. Saunders, Philadelphia.Google Scholar
  18. Banerjee, R. and Batschauer, A. (2005) Plant blue-light receptors. Planta 220, 498–502.PubMedGoogle Scholar
  19. Barger, L. K., Cade, B. E., Ayas, N. T., Cronin, J. W., Rosner, B., Speizer, F. E. and Czeisler, C. A. (2005) Extended work shifts and the risk of motor vehicle crashes among interns. N. Engl. J. Med. 352, 125–134.Google Scholar
  20. Barrenetxe, J., Delagrange, P. and Martinez, J. A. (2004) Physiological and metabolic functions of melatonin. J. Physiol. Biochem 60, 61–72.PubMedGoogle Scholar
  21. Beaule, C. and Amir, S. (2003) The eyes suppress a circadian rhythm of FOS expression in the suprachiasmatic nucleus in the absence of light. Neuroscience 121, 253–257.PubMedGoogle Scholar
  22. Beaver, L. M., Gvakharia, B. O., Vollintine, T. S., Hege, D. M., Stanewsky, R. and Giebultowicz, J. M. (2002) Loss of circadian clock function decreases reproductive fitness in males of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 19, p2134–2139.Google Scholar
  23. Beersma, D. G. (2005) Why and how do we model circadian rhythms? J. Biol. Rhythms 20, 304–313.PubMedGoogle Scholar
  24. Bell-Pedersen, D. (2000) Understanding circadian rhythmicity in Neurospora crassa: from behavior to genes and back again. Fung. Genet. Biol. 29, 1–18.Google Scholar
  25. Bell-Pedersen, D., Cassone, V., Earnest, D., Golden, S., Hardin, P., Thomas, T. and Zoran, M. (2005) Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nature Rev. Genet. 6, 544–556.Google Scholar
  26. Bellingham, J., Chaurasia, S., Melyan, Z., Liu, C., Cameron, M., Tarttelin, E., Iuvone, P., Hankins, M., Tosini, G. and Lucas, R. (2006) Evolution of melanopsin photoreceptors: Discovery and characterization of a new melanopsin in nonmammalian vertebrates. Public Library Sci. Biol. 4, e254.Google Scholar
  27. Berson, D. M. (2003) Strange vision: ganglion cells as circadian photoreceptors. Trends Neurosci. 26, 314–320.PubMedGoogle Scholar
  28. Bertolucci, C. and Foa, A. (2004) Extraocular photoreception and circadian entrainment in nonmammalian vertebrates. Chronobiol. Int. 21, 501–519.PubMedGoogle Scholar
  29. Boivin, D. B. and James, F. O. (2002) Circadian adaptation to night-shift work by judicious light and darkness exposure. J. Biol. Rhythms 17, 556–567.PubMedGoogle Scholar
  30. Boivin, D. B. and James, F. O. (2005) Light treatment and circadian adaptation to shift work. Ind. Health 43, 34–48.PubMedGoogle Scholar
  31. Bollig, I., Chandrashekaran, M., Engelmann, W. and Johnsson, A. (1976) Photoperiodism in Chenopodium rubrum - an explicit version of the Bünning hypothesis. Int. J. Chronobiol 4, 83–96.Google Scholar
  32. Boulos, Z., Campbell, S., Lewy, A., Terman, M., Dijk, D. and Eastman, C. (1995) Light treatment for sleep disorders: Consensus report. VII. Jet lag. J. Biol. Rhythms 10, 167–176.PubMedGoogle Scholar
  33. Bradbury, M., Dement, W. and Edgar, D. (1997) Serotonin-containing fibers in the suprachiasmatic hypothalamus attenuate light-induced phase delays in mice. Brain Res. 768, 125–134.PubMedGoogle Scholar
  34. Brainard, G. C. and Hanifin, J. P. (2005) Photons, clocks, and consciousness. J. Biol. Rhythms 20, 314–325.PubMedGoogle Scholar
  35. Bronson, F. H. (2004) Are humans seasonally photoperiodic? J. Biol. Rhythms 19, 180–192.PubMedGoogle Scholar
  36. Brown, R. and Robinson, P. (2004) Melanopsin -shedding light on the elusive circadian photopigment. Chronobiol. Int. 21, 189–204.PubMedGoogle Scholar
  37. Brunner, M. and Schafmeier, T. (2006) Transcriptional and post-transcriptional regulation of the circadian clock of cyanobacteria and Neurospora. Genes Develop. 20, 1061–1074.PubMedGoogle Scholar
  38. Bryant, T. (1972) Gas exchange in dry seeds: Circadian rhythmicity in the absence of DNA replication, transcription, and translation. Science 178, 634–636.PubMedGoogle Scholar
  39. Bunney, W. and Bunney, B. (2000) Molecular clock genes in man and lower animals: Possible implications for circadian abnormalities in depression. Neuropsychopharmacol. 22, 335–345.Google Scholar
  40. Burgess, H. J., Crowley, S. J., Gazda, C. J., Fogg, L. F. and Eastman, C. I. (2003) Preflight adjustment to eastward travel: 3 days of advancing sleep with and without morning bright light. J. Biol. Rhythms 18, 318–328.PubMedGoogle Scholar
  41. Bünning, E. (1936) Die endonome Tagesrhythmik als Grundlage der photoperiodischen Reaktion. Ber. Deut. Bot. Ges. 54, 590–607.Google Scholar
  42. Campbell, S. and Murphy, P. (1998) Extraocular circadian phototransduction in humans. Science 279, 396–399.PubMedGoogle Scholar
  43. Cardinali, D. (1998) The human body circadian: How the biological clock influences sleep and emotion. Cienc. Cult. 50, 172–177.Google Scholar
  44. Cayetanot, F., van Someren, E. J. W., Perret, M. and Aujard, F. (2005) Shortened seasonal photoperiodic cycles accelerate aging of the diurnal and circadian locomotor activity rhythms in a primate. J. Biol. Rhythms 20, 461–469.PubMedGoogle Scholar
  45. Ceriani, M., Darlington, T., Staknis, D., Mas, P., Petti, A., Weitz, C. and Kay, S. (1999) Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Science 285, 553–568.PubMedGoogle Scholar
  46. Chandrashekaran, M. and Engelmann, W. (1973) Early and late subjective night phase of the Drosophila rhythm require different energies of blue light for phase shifting. Z. Naturforsch. 28c, 750–753.Google Scholar
  47. Chang, D. C. (2006) Neural circuits underlying circadian behavior in Drosophila melanogaster. Behav. Process. 71, 211–225.Google Scholar
  48. Chen, M., Chory, J. and Fankhauser, C. (2004) Light signal transduction in higher plants. Annu. Rev. Genet. 38, 87–117.PubMedGoogle Scholar
  49. Cheng, H. Y. and Obrietan, K. (2006) Dexras1: Shaping the responsiveness of the circadian clock. Semin. Cell Dev. Biol. 43, 715–728.Google Scholar
  50. Cheng, P., He, Q., Yang, Y., Wang, L. and Liu, Y. (2003) Functional conservation of light, oxygen, or voltage domains in light sensing. Proc. Natl. Acad. Sci. USA 100, 5938–5943.PubMedGoogle Scholar
  51. Cheng, P., Yang, Y., Heintzen, C. and Liu, Y. (2001a) Coiled-coil domain-mediated FRQ/FRQ interaction is essential for its circadian clock function in Neurospora. EMBO J. 20, 101–108.Google Scholar
  52. Cheng, P., Yang, Y. and Liu, Y. (2001b) Interlocked feedback loops contribute to the robustness of the Neurospora circadian clock. Proc. Natl. Acad. Sci. USA 98, 7408–7413.Google Scholar
  53. Christensen, M., Falkeid, G., Loros, J., Dunlap, J., Lillo, C. and Ruoff, P. (2004) A nitrate-induced frq-less oscillator in Neurospora crassa. J. Biol. Rhythms 19, 280–286.PubMedGoogle Scholar
  54. Clauser, C. (1954) Die Kopfuhr. Ferdinand Enke, Stuttgart.Google Scholar
  55. Cole, R. J., Smith, J. S., Alcala, Y. C., Elliott, J. A. and Kripke, D. F. (2002) Bright-light mask treatment of delayed sleep phase syndrome. J. Biol. Rhythms 17, 89–101.PubMedGoogle Scholar
  56. Comolli, J. C., Fagan, T. and Hastings, J. W. (2003) A type-1 phosphoprotein phosphatase from a dino flagellate as a possible component of the circadian mechanism. J. Biol. Rhythms 18, 367–376.PubMedGoogle Scholar
  57. Correa, A., Lewis, Z. A., Greene, A. V., March, I. J., Gomer, R. H. and Bell-Pedersen, D. (2003) Multiple oscillators regulate circadian gene expression in Neurospora. Proc. Natl. Acad. Sci. USA 100, 13597–13602.PubMedGoogle Scholar
  58. Covington, M. F., Pandab, S., Liu, X. L., Strayer, C. A., Wagner, D. R. and Kay, S. A. (2001) Elf3 modulates resetting of the circadian clock in Arabidopsis. Plant Cell 13, 1305–1316.PubMedGoogle Scholar
  59. Cremer, F. and Coupland, G. (2003) Distinct photoperiodic responses are conferred by the same genetic pathway in Arabidopsis and in rice. Trends Plant Sci. 8, 405–407.PubMedGoogle Scholar
  60. Crosthwait, S., Dunlap, J. and Loros, J. (1997) Neurospora wc-1 and wc-2: Transciption, photoresponses, and the origin of the circadian rhythmicity. Science 276, 763–769.Google Scholar
  61. Crowley, S. J., Lee, C., Tseng, C. Y., Fogg, L. F. and Eastman, C. I. (2003) Combinations of bright light, scheduled dark, sunglasses, and melatonin to facilitate circadian entrainment to night shift work. J. Biol. Rhythms 18, 513–523.PubMedGoogle Scholar
  62. Cyran, S., Yiannoulos, G., Buchsbaum, A., Saez, L., Young, M. and Blau, J. (2005) The double-time protein kinase regulates the subcellular localization of the Drosophila clock protein period. J. Neurosci. 25, 5430–5437.PubMedGoogle Scholar
  63. Czeisler, C., Kronauer, R., Allan, J., Duffy, J., Jewett, M., Brown, E. and Ronda, J. (1989) Bright light induction of strong (type 0) resetting of the human circadian pacemaker. Science 244, 1328–1333.PubMedGoogle Scholar
  64. Daan, S. (2000) Colin Pittendrigh, Jürgen Aschoff, and the natural entrainment of circadian systems. J. Biol. Rhythms 15, 195–207.PubMedGoogle Scholar
  65. Daan, S., Albrecht, U., van der Horst, G. T. J., Illnerova, H., Roenneberg, T., Wehr, T. A. and Schwartz, W. J. (2001) Assembling a clock for all seasons: are there M and E oscillators in the genes? J. Biol. Rhythms 16, 105–116.PubMedGoogle Scholar
  66. DeBruyne, J.P., Noton, E., Lambert, C.M., Maywood, E.S., Weaver, D.R. and Reppert, S.M. (2006) A clock shock: Mouse CLOCK is not required for circadian oscillator function. Neuron 50, 465–477.PubMedGoogle Scholar
  67. de la Iglesia, H. O., Cambras, T., Schwartz, W. J. and Diez-Noguera, A. (2004) Forced desynchronization of dual circadian oscillators within the rat suprachiasmatic nucleus. Curr. Biol. 14, 796–800.PubMedGoogle Scholar
  68. de Paula, R., Lewis, Z., Greene, A., Seo, K., Morgan, L., Vitalini, M., Bennett, L., Gomer, R. and Bell-Pedersen, D. (2006) Two circadian timing circuits in Neurospora crassa cells share components and regulate distinct rhythmic processes. J. Biol. Rhythms 21, 159–168.PubMedGoogle Scholar
  69. Deacon, S. and Arendt, J. (1996) Adapting to phase shifts. I. An experimental model for jet lag and shift work. Physiol. Behav 59, 665–673.PubMedGoogle Scholar
  70. DeCoursey, P. and Krulas, J. (1998) Behavior of SCN-lesioned chipmunks in a natural habitat: A pilot study. J. Biol. Rhythms 13, 229–244.PubMedGoogle Scholar
  71. DeCoursey, P. J., Krulas, J. R., Mele, G. and Holley, D. C. (1997) Circadian performance of suprachiasmatic nuclei (SCN)-lesioned antelope ground squirrels in a desert enclosure. Physiol. Behav 62, 1099–1108.PubMedGoogle Scholar
  72. Devlin, P. F. (2002) Signs of the time: environmental input to the circadian clock. J. Exp. Bot. 53, 1535–1550.PubMedGoogle Scholar
  73. Dharmananda, S. (1980) Studies on the circadian clock of Neurospora crassa: Light-induced phase shifting. Ph.D. thesis, University of California, Santa Cruz.Google Scholar
  74. Di Bitetti, M. S. and Janson, C. H. (2000) When will the stork arrive? Patterns of birth seasonality in neotropical primates. Am. J. Primatol. 50, 109–130.Google Scholar
  75. Diernfellner, A. C., Schafmeier, T., Merrow, M. W. and Brunner, M. (2005) Molecular mechanism of temperature sensing by the circadian clock of Neurospora crassa. Genes Develop. 19, 1968–1973.PubMedGoogle Scholar
  76. Diez-Noguera, A. (1994) A functional model of the circadian system based on the degree of intercommunication in a complex system. Am. J. Physiol. 267, 1118–1135.Google Scholar
  77. Dijk, D.-J. and von Schantz, M. (2005) Timing and consolidation of human sleep, wakefullness, and performance by a symphony of oscillators. J. Biol. Rhythms 20, 279–290.PubMedGoogle Scholar
  78. Ditty, J. L., Williams, S. B. and Golden, S. S. (2003) A cyanobacterial circadian timing mechanism. Annu. Rev. Genet. 37, 513–543.PubMedGoogle Scholar
  79. Dkhissi-Benyahya, O., Rieux, C., Hut, R. and Cooper, H. (2006) Immunohistochemical evidence of a melanopsin cone in human retina. Invest. Ophthalmol. Vis. Sci. 47, 1636–1641.PubMedGoogle Scholar
  80. Dowson-Day, M. and Millar, A. (1999) Circadian dysfunction causes aberrant hypocotyl elongation patterns in Arabidopsis. Plant J. 17, 63–71.PubMedGoogle Scholar
  81. Dragovic, Z. (2002) Light reception and circadian behavior in ‘blind’ and ‘clock-less’ mutants of Neurospora crassa. EMBO J. 21, 3643–3651.PubMedGoogle Scholar
  82. Duffy, J. F. and Wright, K. P. (2005) Entrainment of the human circadian system by light. J. Biol. Rhythms 20, 326–338.PubMedGoogle Scholar
  83. Dunlap, J. and Loros, J. (2004) The Neurospora circadian system. J. Biol. Rhythms 19, 414–424.PubMedGoogle Scholar
  84. Dunlap, J. C. and Loros, J. J. (2005) Analysis of circadian rhythms in Neurospora: Overview of assays and genetic and molecular biological manipulation. Methods Enzymol. 393, 3–22.PubMedGoogle Scholar
  85. Eastman, C., Boulos, Z., Terman, M., Campbell, S., Dijk, D. and Lewy, A. (1995) Light treatment for sleep disorders: Consensus report. VI. Shift work. J. Biol. Rhythms 10, 157–164.PubMedGoogle Scholar
  86. Eastman, C., Stewart, K., Mahoney, M., Liu, L. and Fogg, L. (1994) Dark goggles and bright light improve circadian rhythm adaptation to night-shift work. Sleep 17, 535–543.PubMedGoogle Scholar
  87. Egan, E., Franklin, T., Hilderbrand-Chae, M., McNeil, G., Roberts, M., Schroeder, A., Zhang, X. and Jackson, F. (1999) An extraretinally expressed insect cryptochrome with similarity to the blue light photoreceptors of mammals and plants. J. Neurosci. 19, 3665–3673.PubMedGoogle Scholar
  88. Elliott, W. J. (2001) Timing treatment to the rhythm of disease: A short course in chronotherapeutics. Postgrad. Med. 110, 119–129.PubMedGoogle Scholar
  89. Elvin, M., Loros, J. J., Dunlap, J. C. and Heintzen, C. (2005) The PAS/LOV protein VIVID supports a rapidly dampened daytime oscillator that facilitates entrainment of the Neurospora circadian clock. Genes Develop. 19, 2593–2605.PubMedGoogle Scholar
  90. Emens, J. S., Lewy, A. J., Lefler, B. J. and Sack, R. L. (2005) Relative coordination to unknown ‘weak zeitgebers, in free-running blind individuals. J. Biol. Rhythms 20, 159–167.PubMedGoogle Scholar
  91. Emery, P., So, W., Kaneko, M., Hall, J. and Rosbash, M. (1998) CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 95, 669–679.PubMedGoogle Scholar
  92. Engelmann, W. (1966) Effect of light and dark pulses on the emergence rhythm of Drosophila pseudoobscura. Experientia 22, 606–608.Google Scholar
  93. Engelmann, W. (1967) Tagesrhythmisches Schlüpfen von Drosophila pseudoobscura und tagesperiodische Blütenblattbewegung von Kalanchoe blossfeldiana als Überlagerung von An- und Aus-Rhythmen. Nachr. Akad. Wiss. Göttingen II Math. Phys. Kl. 10, 141.Google Scholar
  94. Engelmann, W. (2007) How plants identify the season by using a circadian clock. In: S. Mancuso and S. Shabala (Eds.), Rhythms in plants: Phenomenology, mechanisms, and adaptive significance. Springer, Heidelberg.Google Scholar
  95. Engelmann, W. and Honegger, H. (1967) Versuche zur Phasenverschiebung endogener Rhythmen: Blütenblattbewegung von Kalanchoe blossfeldiana. Z Naturforsch. 22b, 200–204.Google Scholar
  96. Engelmann, W., Johnsson, A., Kobler, H. and Schimmel, M. (1978) Attenuation of the petal movement rhythm of Kalanchoe with light pulses. Physiol. Behav 43, 68–76.Google Scholar
  97. Engelmann, W. and Mack, J. (1978) Different oscillators control the circadian rhythm of eclosion and activity in Drosophila. J. Comp. Physiol. 127, 229–237.Google Scholar
  98. Enright, J. (1965) Synchronization and ranges of entrainment. In: J. Ascho (Ed.), Circadian clocks. Proceedings of the Feldafing summer school, 7-18 September 1964, pp. 112–124. North-Holland Publishing Co., Amsterdam.Google Scholar
  99. Fankhauser, C. and Staiger, D. (2002) Photoreceptors in Arabidopsis thaliana: light perception, signal transduction and entrainment of the endogenous clock. Planta 216, 1–16.PubMedGoogle Scholar
  100. Figueiro, M., Bullough, J., Parsons, R. and Rea, M. (2005) Preliminary evidence for a change in spectral sensitivity of the circadian system at night. J. Circadian Rhythms 3, 14.PubMedGoogle Scholar
  101. Fleissner, G. and Fleissner, G. (2001) Perception of natural Zeitgeber signals. In: V. Kumar (Ed.), Biological rhythms. Narosa Publ. House, New Delhi.Google Scholar
  102. Fleury, F. (2000) Adaptive significance of a circadian clock: temporal segregation of activities reduces intrinsic competitive inferiority in Drosophila parasitoids. Proc. Biol. Sci. 267, 1005–1010.PubMedGoogle Scholar
  103. Folkard, S. and Tucker, P. (2003) Shift work, safety and productivity. Occup. Med. 53, 95–101.Google Scholar
  104. Forger, D., Jewett, M. and Kronauer, R. (1999) A simpler model of the human circadian pacemaker. J. Biol. Rhythms 14, 532–537.PubMedGoogle Scholar
  105. Forsgren, E. (1935) Über die Rhythmik der Leberfunktion, des Stoffwechsels und des Schlafes. Gumperts Bokhandel, Göteborg.Google Scholar
  106. Foster, R. and Helfrich-Förster, C. (2001) Photoreceptors for circadian clocks in mice and fruit flies. Philos. Trans. R. Soc. London (Biol.) 356 B, 1779–1789.Google Scholar
  107. Franklin, K. A. and Whitelam, G. C. (2004) Light signals, phytochromes and cross-talk with other environmental cues. J. Exp. Bot. 55, 271–276.PubMedGoogle Scholar
  108. Froehlich, A., Pregueiro, A., Lee, K., Denault, D., Colot, H., Nowrousian, M., Loros, J. J. and Dunlap, J. C. (2003) The molecular workings of the Neurospora biological clock. Novartis Found. Symp. 253, 184–198.PubMedGoogle Scholar
  109. Gachon, F., Nagoshi, E., Brown, S. A., Ripperger, J. and Schibler, U. (2004) The mammalian circadian timing system: from gene expression to physiology. Chromosoma 113, 103–112.PubMedGoogle Scholar
  110. Garceau, N., Liu, Y., Loros, J. and Dunlap, J. (1997) Alternative initiation of translation and time-specific phosphorylation yield multiple forms of the essential clock protein frequency. Cell 89, 469–476.PubMedGoogle Scholar
  111. Giedd, J. N., Swedo, S. E., Lowe, C. H. and Rosenthal, N. E. (1998) Case series: Pediatric seasonal affective disorder. A follow-up report. J. Am. Acad. Child Adolesc. Psychiatry 37, 218–220.PubMedGoogle Scholar
  112. Giedke, H., Engelmann, W. and Reinhard, P. (1983) Free running circadian rest-activity cycle in normal environment. A case study. Sleep Res. 12, 365.Google Scholar
  113. Gillette, M. and Abbott, S. (2005) Basic mechanisms of circadian rhythms and their relation to the sleep/wake cycle. In: D. P. Cardinali and S. R. Perumal (Eds.), Neuroendocrine correlates of sleep/wakefulness. Springer, New York.Google Scholar
  114. Glossop, N. and Hardin, P. (2002) Central and peripheral circadian oscillator mechanisms in flies and mammals. J. Cell Sci. 115, 3369–3377.PubMedGoogle Scholar
  115. Goldbeter, A. (1995) A model for circadian oscillations in the Drosophila period protein (PER). Proc. Biol. Sci. 261, 319–324.PubMedGoogle Scholar
  116. Golden, R. N., Gaynes, B. N., Ekstrom, R. D., Hamer, R. M., Jacobsen, F. M., Suppes, T., Wisner, K. L. and Nemeroff, C. B. (2005) The efficacy of light therapy in the treatment of mood disorders: A review and meta-analysis of the evidence. Am. J. Psychiatry 162, 656–662.Google Scholar
  117. Golombek, D. A., Agostino, P. V., Plano, S. A. and Ferreyra, G. A. (2004) Signaling in the mammalian circadian clock: the NO/cGMP pathway. Neurochem. Int. 45, 929–36.PubMedGoogle Scholar
  118. Gooley, J. J., Fischer, D. and Saper, C. B. (2003) A broad role for melanopsin in nonvisual photoreception. J. Neurosci. 23, 7093–7106.PubMedGoogle Scholar
  119. Grace, M., Chiba, A. and Menaker, M. (1999) Circadian control of photoreceptor outer segment membrane turnover in mice genetically incapable of melatonin synthesis. Visual Neurosci. 16, 909–918.Google Scholar
  120. Grace, M. S., A., W. L., Pickard, G. E., Besharse, J. C. and Menaker, M. (1996) The tau mutation shortens the period of rhythmic photopreceptor outer segment disk shedding in the hamster. Brain Res. 735, 93–100.PubMedGoogle Scholar
  121. Granshaw, T., Tsukamoto, M. and Brody, S. (2003) Circadian rhythms in Neurospora crassa: Farnesol or geraniol allow expression of rhythmicity in the otherwise arrhythmic strains frq 10, wc-1, and wc-2. J. Biol. Rhythms 18, 287–296.PubMedGoogle Scholar
  122. Graw, P., Recker, S., Sand, L., Krauchi, K. and Wirz-Justice, A. (1999) Winter and summer outdoor light exposure in women with and without seasonal affective disorder. J. Affect. Disord. 56, 163–169.PubMedGoogle Scholar
  123. Green, C. (2004) Cryptochromes: Tailored for distinct functions. Curr. Biol. 14, 847–849.Google Scholar
  124. Green, C. B. and Besharse, J. C. (2004) Retinal circadian clocks and control of retinal physiology. J. Biol. Rhythms 19, 91–102.PubMedGoogle Scholar
  125. Green, R. M., Tingay, S., Wang, Z. Y. and Tobin, E. M. (2002) Circadian rhythms confer a higher level of fitness to Arabidopsis plants. Plant Physiol. 129, 576–584.PubMedGoogle Scholar
  126. Griffiths, S., Dunford, R. P., Coupland, G. and Laurie, D. A. (2003) The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Physiol. 131, 1855–1867.PubMedGoogle Scholar
  127. Grima, B., Chelot, E., Xia, R. and Rouyer, F. (2004) Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain. Nature 431, 869–873.PubMedGoogle Scholar
  128. Guillemette, J., Hebert, M., Paquet, J. and Dumont, M. (1998) Natural bright light exposure in the summer and winter in subjects with and without complaints of seasonal mood variations. Biol. Psychiatry 44, 622–628.PubMedGoogle Scholar
  129. Hack, L. M., Lockley, S. W., Arendt, J. and Skene, D. J. (2003) The effects of low-dose 0.5-mg melatonin on the free-running circadian rhythms of blind subjects. J. Biol. Rhythms 18, 420–429.PubMedGoogle Scholar
  130. Halaris, A. (1987) Chronobiology and psychiatric disorders. Elsevier, New York.Google Scholar
  131. Hall, A., Bastow, R. M., Davis, S. J., Hanano, S., McWatters, H. G., Hibberd, V., Doyle, M. R., Sung, S. B., Halliday, K. J., Amasino, R. M. and Millar, A. J. (2003) The TIME FOR COFFEE gene maintains the amplitude and timing of Arabidopsis circadian clocks. Plant Cell 15, 2719–2729.PubMedGoogle Scholar
  132. Hall, J. (2002) Genetics and molecular biology of insect rhythms. In: Insect clocks. Saunders, D. S.Google Scholar
  133. Hall, J. C. (2003) Assembling a clock for all seasons: are there M and E oscillators in the genes? Adv. Genet. 48, 1–280.PubMedGoogle Scholar
  134. Halliday, K. J. and Whitelam, G. C. (2003) Changes in photoperiod or temperature alter the functional relationships between phytochromes and reveal roles for PHYD and PHYE. Plant Physiol. 131, 1913–1920.PubMedGoogle Scholar
  135. Hannibal, J. (2006) Roles of PACAP-containing retinal ganglion cells in circadian timing. Int. Rev. Cytol. 251, 1–39.PubMedGoogle Scholar
  136. Hannibal, J. and Fahrenkrug, J. (2006) Neuronal input pathways to the brain’s biological clock and their functional significance. Adv. Anat. Embryol. Cell Biol. 182, 1–71.Google Scholar
  137. Hannibal, J., Hindersson, P., Knudsen, S. M., Geor, B. and Fahrenkrug, J. (2002) Melanopsin is expressed in PACAP-containing retinal ganglion cells of the human retinohypothalamic tract. Invest. Ophthalmol. Vis. Sci. 45, 4202–4209.Google Scholar
  138. Hardin, P. E. (2005) The circadian timekeeping system of Drosophila. Curr. Biol. 15, R714–R722.Google Scholar
  139. Harmer, S., Hogenesch, L., Straume, M., Chang, H., Han, B., Zhu, T., Wang, X., Kreps, J. and Kay, S. (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290, 2110–2113.PubMedGoogle Scholar
  140. Hashimoto, S., Nakamura, K., Honma, S. and Honma, K. I. (1998) Free-running of plasma-melatonin rhythm prior to full manifestation of a non-24 hour sleep–wake syndrome. Psychiat. Clin. Neurosci. 52, 264–265.Google Scholar
  141. Hastings, J. and Sweeney, B. (1960) The action spectrum for shifting the phase of the rhythm of luminescence in Gonyaulax polyedra. J. Gen Physiol. 43, 697–706.PubMedGoogle Scholar
  142. Hastings, J. W. (2001) Cellular and molecular mechanisms of circadian regulation in the unicellular dino flagellate Gonyaulax polyedra. In: J. Takahashi, F. Turek, and R. Y. Moore (Eds.), Circadian clocks pp. 321–334. Kluwer Academic/Plenum Publishers, New York.Google Scholar
  143. Hattar, S., Kumar, M., Park, A., Tong, P., Tung, J., Yau, K. and Berson, D. (2006) Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J. Comp. Neurol. 497, 326–349.PubMedGoogle Scholar
  144. Hattar, S., Lucas, R. J., Mrosovsky, N., Thompson, S., Douglas, R. H., Hankins, M. W., Lem, J., Biel, M., Hofman, F. and Foster, R. G. (2003) Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424, 75–81.Google Scholar
  145. Hayama, R. and Coupland, G. (2003) Shedding light on the circadian clock and the photoperiodic control of flowering. Curr. Opin. Plant Biol. 6, 13–19.PubMedGoogle Scholar
  146. He, Q., Cheng, P., Yang, Y., Wang, L., Gardner, K. and Liu, Y. (2002) White collar-1, a DNA binding transcription factor and a light sensor. Science 297, 840–843.PubMedGoogle Scholar
  147. He, Q. and Liu, Y. (2005a) Degradation of the Neurospora circadian clock protein frequency through the ubiquitin–proteasome pathway. Biochem. Soc. Trans. 33, 953–956.Google Scholar
  148. He, Q. and Liu, Y. (2005b) Molecular mechanism of light responses in Neurospora: from light-induced transcription to photoadaptation. Genes Develop. 19, 2888–2899.Google Scholar
  149. Heintzen, C., Loros, J. J. and Dunlap, J. C. (2001) The PAS protein VIVID defines a clock-associated feedback loop that represses light input, modulates gating, and regulates clock resetting. Cell 104, 453–464.PubMedGoogle Scholar
  150. Heldmaier, G., Ortmann, S. and Elvert, R. (2004) Natural hypometabolism during hibernation and daily torpor in mammals. Respir. Physiol. Neurobiol. 141, 317–329.PubMedGoogle Scholar
  151. Heldmaier, G. and Steinlechner, S. (1981) Seasonal control of energy requirements for thermoregulation in the djungarian hamster (Phodopus sungorus), living in natural photoperiod. J. Comp. Physiol. B 142, 429–437.Google Scholar
  152. Heldmaier, G. and Werner, D. (2004) Environmental signal processing and adaptation, Vol. 110. Blackwell Synergy.Google Scholar
  153. Helfrich-Förster, C. (2000) Differential control of morning and evening components in the activity rhythm of Drosophila melanogaster—sex specific differences suggest a different quality of activity. J. Biol. Rhythms 15, 135–154.PubMedGoogle Scholar
  154. Helfrich-Förster, C. (2002) The circadian system of Drosophila melanogaster and its light input pathways. Zoology 105, 297–312.Google Scholar
  155. Helfrich-Förster, C. (2003) The neuroarchitecture of the circadian clock in the Drosophila brain. Micr. Res. Tech. 62, 94–102.Google Scholar
  156. Helfrich-Förster, C. (2005) Neurobiology of the fruit fly’s circadian clock. Genes Brain Behav. 4, 65–76.PubMedGoogle Scholar
  157. Helfrich-Förster, C., Edwards, T., Yasuyama, K., Schneuwly, S., Meinertzhagen, I. and Hofbauer, A. (2002) The extraretinal eyelet of Drosophila: development, ultrastructure and putative circadian function. J. Neurosci. 22, 9255–9266.PubMedGoogle Scholar
  158. Helfrich-Förster, C. and Engelmann, W. (2002) Photoreceptors for the circadian clock of the fruitfly. In: V. Kumar (Ed.), Biological rhythms, pp. 94–106. Narosa Publ. House, Pvt. Ltd., New Delhi.Google Scholar
  159. Helfrich-Förster, C., Stengl, M. and Homberg, U. (1998) Organization of the circadian system in insects. Chronobiol. Int. 15, 567–594.Google Scholar
  160. Helfrich-Förster, C., Winter, C., Hofbauer, A., Hall, J. and Stanewsky, R. (2001) The circadian clock of fruit flies is blind after elimination of all known photoreceptors. Neuron 30, 249–261.PubMedGoogle Scholar
  161. Helfrich-Förster, C. (2005) Organization of endogenous clocks in insects. Biochem. Soc. Trans. 33, 957–961.PubMedGoogle Scholar
  162. Helfrich-Förster, C., Shafer, O., Wülbeck, C., Grieshaber, E., Rieger, D. and Taghert, P. (2006) Development and morphology of the clock-gene-expressing lateral neurons of Drosophila melanogaster. J. Comp. Neurol. 500, 47–70.Google Scholar
  163. Heller, H. and Ruby, N. (2004) Sleep and circadian rhythms in mammalian torpor. Annu. Rev. Physiol. 66, 275–289.PubMedGoogle Scholar
  164. Hennessey, T. and Field, C. (1991) Circadian rhythms in photosynthesis. Plant Physiol. 96, 831–836.PubMedGoogle Scholar
  165. Hennig, L., Stoddart, W. M., Dieterle, M., Whitelam, G. C. and Schäfer, E. (2002) Phytochrome E controls light-induced germination of Arabidopsis. Plant Physiol. 128, 194–200.PubMedGoogle Scholar
  166. Herzog, E. and Tosini, G. (2001) The mammalian circadian clock shop. Semin. Cell Dev. Biol. 12, 295–303.Google Scholar
  167. Hitomi, K., Okamoto, K., Daiyasu, H., Miyashita, H., Iwai, S., Toh, H., Ishiura, M. and Todo, T. (2000) Bacterial cryptochrome and photolyase: Characterization of two photolyase-like genes of Synechocystis sp. PCC6803. Nucleic Acids Res. 28, 2353–2362.PubMedGoogle Scholar
  168. Ho, S. C., Wong, T. K., Tang, P. L. and Pang, S. M. (2002) Nonpharmacologic sleep promotion: bright light exposure. Complement Ther. Nurs. Midwifery 8, 130–135.Google Scholar
  169. Hoffmann, K. (1981) The role of the pineal gland in the photoperiodic control of seasonal cycles in hamsters. In: B. Follett and D. Follett (Eds.), Biological clocks in seasonal reproductive cycles, pp. 237–250. Wright, Bristol.Google Scholar
  170. Honma, S., Hashimoto, S., Nakao, M., Kato, Y. and Honma, K.-I. (2003) Period and phase adjustments of human circadian rhythms in the real world. J. Biol. Rhythms 18, 261–270.PubMedGoogle Scholar
  171. Horowitz, T., Cade, B., Wolfe, J. and Czeisler, C. (2001) Efficacy of bright light and sleep/darkness scheduling in alleviating circadian maladaptation to night work. Am. J. Physiol. 281, 384–391.Google Scholar
  172. Husain, M. (2005) The neural retina: Three channels of light detection. Adv. Clin. Neurosci. Rehabil. 5, 22–23.Google Scholar
  173. Imaizumi, T. and Kay, S. (2006) Photoperiodic control of flowering: not only by coincidence. Trends Plant Sci. 11, 550–558.PubMedGoogle Scholar
  174. Inouye, C. (1993) Circadian rhythms in peptides and their precursor messenger RNAs in the suprachiasmatic nucleus. In: H. Nakagawa, Y. Oomura, and K. Nagai (Eds.), International Symposion Osaka: New functional aspects of the suprachiasmatic nucleus of the hypothalamus, pp. 219–233. John Libbey and Co., London.Google Scholar
  175. Inouye, C., Okamoto, K., Ishiura, M. and Kondo, T. (1998) The action spectrum of phase shift by light signal in the circadian rhythm in cyanobacterium. Plant Cell Physiol. 39 (Suppl.), S82.Google Scholar
  176. Ishikawa, T., Matsumoto, A., Kato, T., Togashi, S., Ryo, H., Ikenaga, M., Todo, T., Ueda, R. and Tanimura, T. (1999) DCRY is a Drosophila photoreceptor protein implicated in light entrainment of circadian rhythm. Genes Cells 4, 57–65.PubMedGoogle Scholar
  177. Ishiura, M., Kutsuna, S., Aoki, S., Iwasaki, H., Andersson, C., Tanabe, A., Golden, S., Johnson, C. and Kondo, T. (1998) Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science 281, 1519–1523.PubMedGoogle Scholar
  178. Isoldi, M. C., Rollag, M. D., Castrucci, A. M. and Provencio, I. (2005) Rhabdomeric phototransduction initiated by the vertebrate photopigment melanopsin. Proc. Natl. Acad. Sci. USA 25, 1217–1221.Google Scholar
  179. Ivleva, N. B., Bramlett, M. R., Lindahl, P. A. and Golden, S. S. (2005) LdpA: A component of the circadian clock senses redox state of the cell. Embo J. 24, 1202–1210.PubMedGoogle Scholar
  180. Iwasaki, H. and Kondo, T. (2004) Circadian timing mechanism in the prokaryotic clock system of cyanobacteria. J. Biol. Rhythms 19, 436–444.PubMedGoogle Scholar
  181. Iwasaki, H., Williams, S., Kitayama, Y., Ishiura, M., Golden, S. and Kondo, T. (2000) A kaiC-interacting sensory histidine kinase, SasA, necessary to sustain robust circadian oscillation in cyanobacteria. Cell 101, 223–233.PubMedGoogle Scholar
  182. Izawa, T., Takahashi, Y. and Yano, M. (2003) Comparative biology comes into bloom: genomic and genetic comparison of flowering pathways in rice and Arabidopsis. Curr. Opin. Plant Biol. 6, 113–120.PubMedGoogle Scholar
  183. Jackson, F., Schroeder, A., Roberts, M., McNeil, G., Kume, K. and Akten, B. (2001) Cellular and molecular mechanisms of circadian control in insects. J. Insect Physiol. 47, 822–842.Google Scholar
  184. Jacobson, D., Powell, A., Dettman, J., Saenz, G., Barton, M., Hiltz, M., Dvorachek Jr, W., Glass, N., Taylor, J. and Natvig, D. (2004) Neurospora in temperate forests of western North America. Mycologia 96, 66–74.Google Scholar
  185. Jagota, A., de la Iglesia, H. and Schwartz, W. (2000) Morning and evening circadian oscillations in the suprachiasmatic nucleus in vitro. Nature Neurosci. 3, 372–376.PubMedGoogle Scholar
  186. Jewett, M., Kronauer, R. and Megan, E. (1999) Interactive mathematical models of subjective alertness and cognitive throughput in humans. J. Biol. Rhythms 14, 588–597.PubMedGoogle Scholar
  187. Jewett, M., Rimmer, D., Duffy, J., Klerman, E., Kronauer, R. and Czeisler, C. (1997) Human circadian pacemaker is sensitive to light throughout subjective day without evidence of transients. Am. J. Physiol. 273, R1800–R1809.Google Scholar
  188. Johnson, C., Golden, S. and Kondo, T. (1998) Adaptive significance of circadian programs in cyanobacteria. Trends Microbiol. 6, 407–410.PubMedGoogle Scholar
  189. Johnsson, A., Karlsson, H. and Engelmann, W. (1973) Phase shifts in the Kalanchoe petal rhythm, caused by light pulses of different duration. A theoretical and experimental study. J. Chronobiol. 1, 147–156.Google Scholar
  190. Johnston, J., Tournier, B., Andersson, H., Masson-Pevet, M., Lincoln, G. and Hazlerigg, D. (2006) Multiple effects of melatonin on rhythmic clock gene expression in the mammalian Pars tuberalis. Endocrinology 147, 959–965.PubMedGoogle Scholar
  191. Jouve, L., Greppin, H. and Degli Agosti, R. (1998) Arabidopsis thaliana floral stem elongation: Evidence for an endogenous circadian rhythm. Plant Physiol. Bioch. 36, 469–472.Google Scholar
  192. Kai, H., Arai, T. and Yasuda, F. (1999) Accomplishment of time-interval activation of esterase A4 by simple removal of pin fraction. Chronobiol. Int. 16, 51–58.PubMedGoogle Scholar
  193. Kaneko, M., Hamblen, M. and Hall, J. (2000) Involvement of the period gene in developmental time-memory: Effect of the per short mutation on phase shifts induced by light pulses delivered to Drosophila larvae. J. Biol. Rhythms 15, 13–30.PubMedGoogle Scholar
  194. Karakashian, M. and Schweiger, H. (1976) Circadian properties of the rhythmic system in individual nucleated and enucleated cells of Acetabularia mediterranea. Exp. Cell Res. 97, 366–377.PubMedGoogle Scholar
  195. Karlsson, H. and Johnsson, A. (1972) A feedback model for biological rhythms. II. Comparisions with experimental results, especially on the petal rhythm of Kalanchoe. J. Theor Biol. 36, 175–194.PubMedGoogle Scholar
  196. Khalsa, S., Jewett, M., Cajochen, C. and Czeisler, C. (2003) A phase response curve to single bright light pulses in human subjects. J. Physiol. 549, 945–952.PubMedGoogle Scholar
  197. Klarsfeld, A., Malpel, S., Michard-Vanhee, C., Picot, M., Chelot, E. and Rouyer, F. (2004) Novel features of cryptochrome-mediated photoreception in the brain circadian clock of Drosophila. J. Neurosci. 24, 1468–1477.PubMedGoogle Scholar
  198. Klarsfeld, A. and Rouyer, F. (1998) Effects of circadian mutations and LD periodicity on the life span of Drosophila melanogaster. J. Biol. Rhythms 13, 471–478.PubMedGoogle Scholar
  199. Klein, D., Moore, R. and Reppert, S. (1991) Suprachiasmatic nucleus: The mind’s clock. Oxford University Press, New York.Google Scholar
  200. Klemm, E. and Ninnemann, H. (1976) Detailed action spectrum for the delay shift in pupae emergence of Drosophila pseudoobscura. Photochem. Photobiol. 24, 369–371.Google Scholar
  201. Klerman, E. B. (2005) Clinical aspects of human circadian rhythms. J. Biol. Rhythms 20, 375–386.PubMedGoogle Scholar
  202. Klerman, E. B., Dijk, D. J., Kronauer, R. E. and Czeisler, C. A. (1996) Simulations of light effects on the human circadian pacemeker: Implications for assessment of intrinsic period. Am. J. Physiol. 270, R271–R282.Google Scholar
  203. Knutsson, A. (2003) Health disorders of shift workers. Occup. Med. 53, 103–108.Google Scholar
  204. Kolar, C., Fejes, E., Adam, E., Schaefer, E., Kay, S. and Nagy, F. (1998) Transcription of Arabidopsis and wheat Cab genes in single tobacco transgenic seedlings exhibits independent rhythms in a developmentally regulated fashion. Plant J. 13, 563–569.PubMedGoogle Scholar
  205. Kondo, T., Johnson, C. and Hastings, J. (1991) Action spectrum for resetting the circadian phototaxis rhythm in the CW15 strain I: Cells in darkness. Plant Physiol. 95, 197–205.PubMedGoogle Scholar
  206. Kondo, T., Mori, T., Lebedeva, N. V., Aoki, S., Ishiura, M. and Golden, S. S. (1997) Circadian rhythms in rapidly dividing cyanobacteria. Science 275, 224–227.PubMedGoogle Scholar
  207. Kondo, T., Strayer, C., Kulkarni, R., Taylor, W., Ishiura, M., Golden, S. and Johnson, C. (1993) Circadian rhythms in prokaryotes: Luciferase as a reporter of circadian gene expression in cyanobacteria. Proc. Natl. Acad. Sci. USA 90, 5672–5676.PubMedGoogle Scholar
  208. Kondo, T., Tsinoremas, N., Golden, S., Johnson, C., Kutsuna, S. and Ishiura, M. (1994) Circadian clock mutants of cyanobacteria. Science 266, 1233–1236.PubMedGoogle Scholar
  209. Koorengevel, K., Beersma, D., den Boer, J. and van den Hoofdakker, R. (2002) A forced desynchrony study of circadian pacemaker characteristics in seasonal affective disorder. J. Biol. Rhythms 17, 463–475.PubMedGoogle Scholar
  210. Kräuchi, K., Cajochen, C., Pache, M., Flammer, J. and Wirz-Justice, A. (2006) Thermoregulatory effects of melatonin in relation to sleepiness. Chronobiol. Int. 23, 475–484.PubMedGoogle Scholar
  211. Kreps, J. and Kay, S. (1997) Coordination of plant metabolism and development by the circadian clock. Plant Cell 9, 1235–1244.PubMedGoogle Scholar
  212. Kreps, J. A., Wu, Y., Chang, H. S., Zhu, T., Wang, X. and Harper, J. F. (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol. 130, 2129–2141.PubMedGoogle Scholar
  213. Kronauer, R. E., Czeisler, C. A., Pilato, S. F., Moore-Ede, M. C. and Weitzman, E. D. (1982) Mathematical model of the human circadian system with two interacting oscillators. Am. J. Physiol. 242, 3–17.Google Scholar
  214. Kumar, S., Mohan, A. and Sharma, V. (2005) Circadian dysfunction reduces lifespan in Drosophila melanogaster. Chronobiol. Int. 22, 641–653.PubMedGoogle Scholar
  215. Kumbalasiri, T. and Provencio, I. (2005) Melanopsin and other novel mammalian opsins. Exp. Eye Res. 81, 368–375.PubMedGoogle Scholar
  216. Kurosawa, G., Aihara, K. and Iwasa, Y. (2006) A model for circadian rhythm of cyanobacteria, which maintains oscillation without gene expression. Biophys. J. 91, 2015–2023.PubMedGoogle Scholar
  217. Laakso, M.L., Hätönen, T., Stenberg, D., Alila, A. and Smith, S. (1993) The human circadian response to light – strong and weak resetting. J. Biol. Rhythms 8, 351–360.Google Scholar
  218. Lakin-Thomas, P. (2006a) Circadian clock genes frequency and white collar-1 are not essential for entrainment to temperature cycles in Neurospora crassa. Proc. Natl. Acad. Sci. USA 103, 4469–4474.Google Scholar
  219. Lakin-Thomas, P. and Brody, S. (2000) Circadian rhythms in Neurospora crassa: Lipid deficiencies restore robust rhythmicity to null frequency and white-collar mutants. Proc. Natl. Acad. Sci. USA 97, 256–261.PubMedGoogle Scholar
  220. Lakin-Thomas, P. and Brody, S. (2004) Circadian rhythms in microorganisms: New complexities. Annu. Rev. Microbiol. 58, 489–519.PubMedGoogle Scholar
  221. Lakin-Thomas, P., Cote, G. and Brody, S. (1990) Circadian rhythms in Neurospora crassa: biochemistry and genetics. Crit. Rev. Microbiol. 17, 365–416.PubMedGoogle Scholar
  222. Lakin-Thomas, P. and Johnson, H. (1999) Commentary: Molecular and cellular models of circadian systems. J. Biol. Rhythms 14, 486–489.PubMedGoogle Scholar
  223. Lakin-Thomas, P. L. (2006b) Transcriptional feedback oscillators: Maybe, maybe not. J. Biol. Rhythms 21, 83–92.Google Scholar
  224. Lam, R. and Levitan, R. (2000) Pathophysiology of seasonal affective disorder: a review. J. Psychiat. Neurosci. 25, 469–480.Google Scholar
  225. Larner, V. S. (2005) Photoreceptors and light signalling pathways in plants. In: A. J. W. Hall and H. McWaters (Eds.), Endogenous plant rhythms. Blackwell, Edinburgh.Google Scholar
  226. Lee, H., Billings, H. and Lehman, M. (2003) The suprachiasmatic nucleus: A clock of multiple components. J. Biol. Rhythms 18, 435–449.PubMedGoogle Scholar
  227. Lee, K., Loros, J. and Dunlap, J. (2000) Interconnected feedback loops in the Neurospora circadian system. Science 289, 107–110.PubMedGoogle Scholar
  228. Leloup, J. and Goldbeter, A. (1998) A model for circadian rhythms in Drosophila incorporating the formation of a complex between the per and tim proteins. J. Biol. Rhythms 13, 70–87.PubMedGoogle Scholar
  229. Leloup, J. and Goldbeter, A. (1999) Chaos and birhythmicity in a model for circadian oscillations of the PER and TIM proteins in Drosophila. J. Theor Biol. 198, 445–459.PubMedGoogle Scholar
  230. Leloup, J. and Goldbeter, A. (2001) A molecular explanation for the long-term suppression of circadian rhythms by a single light pulse. Am. J. Physiol. 280, 1206–1212.Google Scholar
  231. Leloup, J., Gonze, D. and Goldbeter, A. (1999) Limit cycle models for circadian rhythms based on transcriptional regulation in Drosophila and Neurospora. J. Biol. Rhythms 14, 433–448.PubMedGoogle Scholar
  232. Lewis, R. (1999) Control system models for the circadian clock of the New Zealand Weta, Hemideina thoracia (Orthoptera: Stenopelmatidae). J. Biol. Rhythms 14, 480–485.PubMedGoogle Scholar
  233. Lewis, Z. A., Correa, A., Schwerdtfeger, C., Link, K. L., Xie, X., Gomer, R. H., Thomas, T., Ebbole, D. J. and Bell-Pedersen, D. (2002) Overexpression of white collar-1(wc-1) activates circadian clock-associated genes, but is not sufficient to induce most light-regulated gene expression in Neurospora crassa. Mol. Microbiol. 45, 917–931.PubMedGoogle Scholar
  234. Lewy, A., Ahmed, S. and Sack, R. (1996) Phase shifting the human circadian clock using melatonin. Behav. Brain Res. 73, 131–4.PubMedGoogle Scholar
  235. Lewy, A. and Sack, R. (1997) Exogenous melatonin’s phase-shifting effects on the endogenous melatonin profile in sighted humans: A brief review and critique of the literature. J. Biol. Rhythms 12, 588–594.PubMedGoogle Scholar
  236. Lewy, A. J., Lefler, B. J., Emens, J. S. and Bauer, V. K. (2006) The circadian basis of winter depression. Proc. Natl. Acad. Sci. USA 103, 7414–7419.PubMedGoogle Scholar
  237. Lin, R., Chou, H. and Huang, T. (1999) Priority of light/dark entrainment over temperature in setting the circadian rhythms of the prokaryote Synechococcus RF-1. Planta 209, 202–206.PubMedGoogle Scholar
  238. Lincoln, G., Johnston, J., Andersson, H., Wagner, G. and Hazlerigg, D. (2005) Photorefractoriness in mammals: Dissociating a seasonal timer from the circadian-based photoperiod response. Endocrinology 146, 3782–3790.PubMedGoogle Scholar
  239. Lincoln, G., Messager, S., Andersson, H. and Hazlerigg, D. (2002) Temporal expression of seven clock genes in the suprachiasmatic nucleus and the pars tuberalis of the sheep: Evidence for an internal coincidence timer. Proc. Natl. Acad. Sci. USA 99, 13890–13895.PubMedGoogle Scholar
  240. Lincoln, G. A., Andersson, H. and Loudon, A. (2003) Clock genes in calendar cells as the basis of annual timekeeping in mammals–a unifying hypothesis. J. Endocrinol. 179, 1–13.PubMedGoogle Scholar
  241. Liu, Y. (2003) Molecular mechanisms of entrainment in the Neurospora circadian clock. J. Biol. Rhythms 18, 195–205.PubMedGoogle Scholar
  242. Liu, Y., Golden, S., Kondo, T., Ishiura, M. and Johnson, C. (1995) Bacterial luciferase as a reporter of circadian gene expression in cyanobacteria. J. Bacteriol. 177, 2080–2086.PubMedGoogle Scholar
  243. Liu, Y., Merrow, M., Loros, J. and Dunlap, J. (1998) How temperature changes reset a circadian oscillator. Science 281, 825–829.PubMedGoogle Scholar
  244. Lucas, R. J. (2006) Chromophore regeneration: Melanopsin does its own thing. Proc. Natl. Acad. Sci. USA 103, 10153–10154.PubMedGoogle Scholar
  245. Lumsden, P. and Millar, A. (1998) Biological rhythms and photoperiodism in plants. Environmental Plant Biology. Bios Scientific Publishers Oxford, Washington DC.Google Scholar
  246. Lundkvist, G., Kwak, Y., Davis, E., Tei, H. and Block, G. (2005) A calcium flux is required for circadian rhythm generation in mammalian pacemaker neurons. J. Neurosci. 25, 7682–7686.PubMedGoogle Scholar
  247. Malpel, S., Klarsfeld, A. and Rouyer, F. (2002) Larval optic nerve and adult extra-retinal photoreceptors sequentially associate with clock neurons during Drosophila brain development. Developm. 129, 1443–1453.Google Scholar
  248. Malpel, S., Klarsfeld, A. and Rouyer, F. (2004) Circadian synchronization and rhythmicity in larval photoperception-defective mutants of Drosophila. J. Biol. Rhythms 19, 10–21.PubMedGoogle Scholar
  249. Manthena, P. and Zee, P. C. (2006) Neurobiology of circadian rhythm sleep disorders. Curr. Neurol. Neurosci. Rep. 6, 163–168.PubMedGoogle Scholar
  250. Marchant, E. and Mistlberger, R. (1997) Anticipation and entrainment to feeding time in intact and SCN-ablated C57BL/6j mice. Brain Res. 765, 273–282.PubMedGoogle Scholar
  251. Martin, S. and Eastman, C. (1998) Medium-intensity light produces circadian rhythm adaptation to simulated night-shift work. Sleep 21, 154–165.PubMedGoogle Scholar
  252. Màs, P. (2005) Circadian clock signaling in Arabidopsis thaliana: from gene expression to physiology and development. Int. J. Dev. Biol. 49, 491–500.Google Scholar
  253. Màs, P., Devlin, P. F., Panda, S. and Kay, S. A. (2000) Functional interaction of PHYTOCHROME A and CRYPTOCHROME 2. Nature 408, 207–211.PubMedGoogle Scholar
  254. Màs, P., Kim, W. J., Somers, D. E. and Kay, S. A. (2003) Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis. Nature 426, 567–570.PubMedGoogle Scholar
  255. Maywood, E., Reddy, A., Wong, G., O’Neill, J., O’Brien, J., McMahon, D., Harmar, A., Okamura, H. and Hastings, M. (2006) Synchronization and maintenance of timekeeping in suprachiasmatic circadian clock cells by neuropeptidergic signaling. Curr. Biol. 16, 599–605.PubMedGoogle Scholar
  256. McClung, C., Hsu, M., Painter, J., Gagne, J., Karlsberg, S. and Salome, P. (2000) Integrated temporal regulation of the photorespiratory pathway. Circadian regulation of two Arabidopsis genes encoding serine hydroxymethyltransferase. Plant Physiol. 123, 381–391.PubMedGoogle Scholar
  257. McClung, C. R. (2006) Plant circadian rhythms. Plant Cell 18, 792–803.PubMedGoogle Scholar
  258. Meijer, J., Watanabe, K., Detari, L., deVries, M., Albus, H., Treep, J., Schaap, J. and Rietveld, W. (1996) Light entrainment of the mammalian biological clock. Prog. Brain Res. 111, 175–190.PubMedGoogle Scholar
  259. Meijer, J. H. and Schwartz, W. J. (2003) In search of the pathways for light-induced pacemaker resetting in the suprachiasmatic nucleus. J. Biol. Rhythms 18, 235–249.PubMedGoogle Scholar
  260. Melyan, Z., Tarttelin, E. E., Bellingham, J., Lucas, R. J. and Hankins, M. W. (2005) Addition of human melanopsin renders mammalian cells photosensitive. Nature 433, 741–744.PubMedGoogle Scholar
  261. Menaker, M., Moreira, L. and Tosini, G. (1997) Evolution of circadian organization in vertebrates. Braz. J. Med. Biol. Res. 30, 305–313.Google Scholar
  262. Merrow, M., Boesl, C., Ricken, J., Messerschmitt, M., Goedel, M. and Roenneberg, T. (2006) Entrainment of the Neurospora circadian clock. Chronobiol. Int. 23, 71–80.PubMedGoogle Scholar
  263. Merrow, M., Brunner, M. and Roenneberg, T. (1999) Assignment of circadian function for the Neurospora clock gene frequency. Nature 399, 584–6.PubMedGoogle Scholar
  264. Mersch, P. P., Middendorp, H. M., Bouhuys, A. L., Beersma, D. G. and van den Hoofdakker, R. H. (1999) Seasonal affective disorder and latitude: a review of the literature. J. Affect. Disord. 53, 35–48.PubMedGoogle Scholar
  265. Meyer, P., Saez, L. and Young, M. (2006) PER-TIM interactions in living Drosophila cells: An interval timer for the circadian clock. Science 311, 226–229.PubMedGoogle Scholar
  266. Michael, T. P., Salome, P. A., Yu, H. J., Spencer, T. R., Sharp, E. L., McPeek, M. A., Alonso, J. M., Exker, J. R. and McClung, C. R. (2003) Enhanced fitness conferred by naturally occurring variations in the circadian clock. Science 302, 1049–1053.PubMedGoogle Scholar
  267. Michel, S., Colwell, C. and Colwell, C. (2001) Cellular communication and coupling within the suprachiasmatic nucleus. Chronobiol. Int. 18, 579–600.Google Scholar
  268. Mihalcescu, I., Hsing, W. and Leibler, S. (2004) Resilient circadian oscillator revealed in individual cyanobacteria. Nature 430, 81–85.PubMedGoogle Scholar
  269. Miles, L., Raynal, D. and Wilson, M. (1977) Blind man living in normal society has circadian rhythm of 24.9 hours. Science 198, 421–423.PubMedGoogle Scholar
  270. Millar, A. J. (1999a) Biological clocks in Arabidopsis thaliana. New Phytol. 141, 175–197.Google Scholar
  271. Millar, A. J. (1999b) Tansley review no. 103—biological clocks in Arabidopsis thaliana. New Phytol. 141, 175–197.Google Scholar
  272. Millar, A. J. (2003) A suite of photoreceptors entrains the plant circadian clock. J. Biol. Rhythms 18, 217–262.PubMedGoogle Scholar
  273. Millar, A. J. (2004) Input signals to the plant circadian clock. J. Exp. Bot. 55, 277–283.PubMedGoogle Scholar
  274. Millar, A. J., Carre, I. A., Strayer, C. A., Chua, N.-H. and A., K. S. (1995a) Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science 267, 1161–1163.Google Scholar
  275. Millar, A. J. and Kay, S. A. (1996) Integration of circadian and phototransduction pathways in the network controlling CAB gene transcription in Arabidopsis. Proc. Natl. Acad. Sci. USA 93, 15491–15496.PubMedGoogle Scholar
  276. Millar, A. J., Straume, M., Chory, J., Chua, N.-H. and Kay, S. A. (1995b) The regulation of circadian period by phototransduction pathways in Arabidopsis. Science 267, 1163–1166.Google Scholar
  277. Min, H., Johnson, C. H. and Golden, S. S. (2004) Phase determination of circadian gene expression in Synechococcus elongatus PCC 7942. J. Biol. Rhythms 19, 103–112.PubMedGoogle Scholar
  278. Minors, D. and Waterhouse, J. (1981) Circadian rhythms and the human. Wright, London.Google Scholar
  279. Minors, D., Waterhouse, J. and Wirz-Justice, A. (1991) A human phase response curve to light. Neurosci. Lett. 133, 36–40.PubMedGoogle Scholar
  280. Mistlberger, R., de Groot, J. and Marchant, E. (1996) Discrimination of circadian phase in intact and suprachiasmatic nuclei ablated rats. Brain Res. 96, 12–18.Google Scholar
  281. Mistlberger, R. E. and Skene, D. J. (2005) Nonphotic entrainment in humans? J. Biol. Rhythms 20, 339–352.PubMedGoogle Scholar
  282. Monk, T. H. (2000) What can the chronobiologist do to help the shift worker? J. Biol. Rhythms 15, 86–94.PubMedGoogle Scholar
  283. Moore, R., Speh, J. and Card, J. (1995) The rhd originates from a distinct subset of retinal ganglion cells. J. Comp. Neurol. 352, 351–366.PubMedGoogle Scholar
  284. Morgan, L., Greene, A. and Bell-Pedersen, D. (2003) Circadian and light-induced expression of luciferase in Neurospora crassa. Fung. Genet. Biol. 38, 327–332.Google Scholar
  285. Mori, T., Binder, B. and Johnson, C. (1996) Circadian gating of cell division in cyanobacteria growing with average doubling times of less than 24 hours. Proc. Natl. Acad. Sci. USA 93, 10183–10188.PubMedGoogle Scholar
  286. Mori, T., Saveliev, S., Xu, Y., Stafford, W., Cox, M., Inman, R. and Johnson, C. (2002) Circadian clock protein KaiC forms ATP-dependent hexameric rings and binds DNA. Proc. Natl. Acad. Sci. USA 99, 17203–17208.Google Scholar
  287. Morse, D., Hastings, J. and Roenneberg, T. (1994) Different phase responses of two circadian oscillators in Gonyaulax. J. Biol. Rhythms 9, 263–274.PubMedGoogle Scholar
  288. Mrosovsky, N. (1999) Masking: history, definitions, and measurement. Chronobiol. Int. 16(4), 415–29.PubMedGoogle Scholar
  289. Naef, F. (2005) Circadian clocks go in vitro: purely post-translational oscillators in cyanobacteria. Mol. Systems Biol. .Google Scholar
  290. Nagy, F. and Schäfer, E. (2002) Phytochromes control photomorphogenesis by differentially regulated, interacting signaling pathways in higher plants. Annu. Rev. Plant Biol. 53, 329–355.PubMedGoogle Scholar
  291. Naidoo, N., Song, W., Hunter-Ensor, M. and Seghal, A. (1999) A role for the proteasome in the light response of the timeless clock protein. Science 285, 1737–1741.PubMedGoogle Scholar
  292. Nakahira, Y., Katayama, M., Miyashita, H., Kutsuna, S., Iwasaki, H., Oyama, T. and Kondo, T. (2004) Global gene repression by KaiC as a master process of prokaryotic circadian system. Proc. Natl. Acad. Sci. USA 101, 881–885.PubMedGoogle Scholar
  293. Nakajima, M., Imai, K., Ito, H., Nishiwaki, T., Murayama, Y., Iwasaki, H. and Oyama, T., T. ans Kondo (2005) Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308, 414–415.PubMedGoogle Scholar
  294. Nathan, P., Burrows, G. and Norman, T. (1999) Melatonin sensitivity to dim white light in affective disorders. Neuropsychopharmacology 21, 408–413.PubMedGoogle Scholar
  295. Nickla, D., Wildsoet, C. and Wallman, J. (1998) Visual influences on diurnal rhythms in ocular length and choroidal thickness in chick eyes. Exp. Eye Res. 66, 163–181.PubMedGoogle Scholar
  296. Nishiwaki, T., Iwasaki, H., Ishiura, M. and Kondo, T. (2000) Nucleotide binding and autophosphorylation of the clock protein KaiC as a circadian timing process of cyanobacteria. Proc. Natl. Acad. Sci. USA 97, 495–499.PubMedGoogle Scholar
  297. Nitabach, M. N., Holmes, T. C. and Blau, J. (2005) Membranes, ions, and clocks: testing the Njus-Sulzman-Hastings model of the circadian oscillator. Methods Enzymol. 393, 682–93.PubMedGoogle Scholar
  298. Oishi, T., Yamao, M., Kondo, C., Haida, Y., Masuda, A. and Tamotsu, S. (2001) Multiphotoreceptor and multioscillator system in avian circadian organization. Micr. Res. Tech. 53, 43–47.Google Scholar
  299. Oltmanns, O. (1960) Über den Einfluss der Temperatur auf die endogene Tagesrhythmik und die Blühinduktion bei der Kurztagpflanze Kalanchoe blossfeldiana. Planta 54, 233–264.Google Scholar
  300. Ouyang, Y., Andersson, C., Kondo, T., Golden, S. and Johnson, C. (1998) Resonating circadian clocks enhance fittness in cyanobacteria. Proc. Natl. Acad. Sci. USA 95, 8660–8664.PubMedGoogle Scholar
  301. Panda, S. and Hogenesch, J. B. (2004) It’s all in the timing: Many clocks, many outputs. J. Biol. Rhythms 19, 374–387.PubMedGoogle Scholar
  302. Pandit, A. and Maheshwari, R. (1994) Sexual reproduction by Neurospora in nature. Fung. Genet. Newslett 41, 67–68.Google Scholar
  303. Parcy, F. (2005) Flowering: a time for integration. Int. J. Dev. Biol. 49, 585–593.Google Scholar
  304. Park, Y. (2002) Downloading central clock information in Drosophila. Neurobiol. 26, 217–233.Google Scholar
  305. Partonen, T. and Magnusson, A. (2001) Seasonal affective disorder: Practice and research. Oxford University Press, New York.Google Scholar
  306. Peirson, S. and Foster, R. (2006) Melanopsin: another way of signaling light. Neuron 49, 331–9.PubMedGoogle Scholar
  307. Peterson, E. (1981a) Dynamic response of a circadian pacemaker. I. Recovery from extended light exposure. Biol. Cybern. 40, 171–179.Google Scholar
  308. Peterson, E. (1981b) Dynamic response of a circadian pacemaker. II. Recovery from light pulse perturbations. Biol. Cybern. 40, 181–194.Google Scholar
  309. Pèvet, P., Agez, L., Bothorel, B., Saboureau, M., Gauer, F., Laurent, V. and Masson-Pcyrsym vet, M. (2006) Melatonin in the multi-oscillatory mammalian circadian world. Chronobiol. Int. 23, 39–51.PubMedGoogle Scholar
  310. Piechulla, B. (1999) Circadian expression of the light-harvesting complex protein genes in plants. Chronobiol. Int. 6, 115–128.Google Scholar
  311. Pittendrigh, C. and Daan, S. (1976) A functional analysis of circadian pacemakers in nocturnal rodents. J. Comp. Physiol. A106, 333–355.Google Scholar
  312. Pittendrigh, C. S., Bruce, B. G., Rosensweig, N. S. and Rubin, M. L. (1959) Growth patterns in Neurospora. Nature 184, 169–170.Google Scholar
  313. Plachetzki, D., Serb, J. and Oakley, T. (2005) New insights into the evolutionary history of photoreceptor cells. Trends Ecol. Evol. 20, 465–467.PubMedGoogle Scholar
  314. Plautz, J., Kaneko, M., Hall, J. and Kay, S. (1997) Independent photoreceptive circadian clocks throughout Drosophila. Science 278, 1632–1635.PubMedGoogle Scholar
  315. Pregueiro, A., Price-Lloyd, N., Bell-Pedersen, D., Heintzen, C., Loros, J. and Dunlap, J. (2005) Assignment of an essential role for the Neurospora frequency gene in circadian entrainment to temperature cycles. Proc. Natl. Acad. Sci. USA 102, 2210–2215.PubMedGoogle Scholar
  316. Price-Lloyd, N., Elvin, M. and Heintzen, C. (2005) Synchronizing the Neurospora crassa circadian clock with the rhythmic environment. Biochem. Soc. Trans. 33, 949–952.PubMedGoogle Scholar
  317. Putterill, J., Robson, F., Lee, K., Simon, R. and Coupland, G. (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80, 847–857.PubMedGoogle Scholar
  318. Quintero, J., Kuhlman, S. and McMahon, D. (2003) The biological clock nucleus: A multiphasic oscillator network regulated by light. J. Neurosci. 23, 8070–8076.PubMedGoogle Scholar
  319. Ralph, M. R., Foster, R. G., Davis, F. C. and Menaker, M. (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247(4945), 975–978.PubMedGoogle Scholar
  320. Rand, D. A., Shulgin, B. V., Salazar, D. and Millar, A. J. (2004) Design principles underlying circadian clocks. J. Royal Soc. Interface 1(1), 119–130.Google Scholar
  321. Rea, M. (1998) Photic entrainment of circadian rhythms in rodents. Chronobiol. Int. 15, 395–423.Google Scholar
  322. Redfern, P., Minors, D. and Waterhouse, J. (1994) Circadian rhythms, jet lag, and chronobiotics: An overview. Chronobiol. Int. 11, 253–265.PubMedGoogle Scholar
  323. Reid, K. J. and Burgess, H. J. (2005) Circadian rhythm sleep disorders. Prim. Care 32, 449–473.PubMedGoogle Scholar
  324. Reiter, R., Tan, D., Cabrera, J., D’Arpa, D., Sainz, R., Mayo, J. and Ramos, S. (1999) The oxidant/antioxidant network: role of melatonin. Biol. Signals Recept. 8, 56–63.PubMedGoogle Scholar
  325. Reiter, R., Tan, D., Herman, T. and Thomas, C. (2004) Melatonin as a radioprotective agent: a review. Int. J. Rad. Oncol. Biol. Physics 59, 639–653.Google Scholar
  326. Reme, C. E., Wirz-Justice, A. and Terman, M. (1991) The visual input stage of the mammalian circadian pacemaking system: I. Is there a clock in the mammalian eye? J. Biol. Rhythms 6, 5–29.PubMedGoogle Scholar
  327. Reuss, S. (2003) The clock in the brain: Anatomy of the mammalian circadian timing system, pp. 1–40. University of Mainz, Germany.Google Scholar
  328. Revell, V. L. and Eastman, C. I. (2005) How to trick mother nature into letting you fly around or stay up all night. J. Biol. Rhythms 20, 353–365.PubMedGoogle Scholar
  329. Rieger, D., Shafer, O. T., Tomioka, K. and Helfrich-Förster, C. (2006) Functional analysis of circadian pacemaker neurons in Drosophila melanogaster. J. Neurosci. 26, 2531–2543.PubMedGoogle Scholar
  330. Rieger, D., Stanewsky, R. and Helfrich-Förster, C. (2003) Cryptochrome, compound eyes, hofbauer-buchner eyelets, and ocelli play different roles in the entrainment and masking pathway of the locomotor activity rhythm in the fruit fly Drosophila melanogaster. J. Biol. Rhythms 18, 377–391.PubMedGoogle Scholar
  331. Roenneberg, T. (1996) The complex circadian system of Gonyaulax polyedra. Plant Physiol. 96, 733–737.Google Scholar
  332. Roenneberg, T. and Aschoff, J. (1990) Annual rhythm of human reproduction II: environmental correlations. J. Biol. Rhythms 5, 217–240.PubMedGoogle Scholar
  333. Roenneberg, T. and Foster, R. (1997) Twilight times: light and the circadian system. Photochem. Photobiol. 66, 549–61.PubMedGoogle Scholar
  334. Roenneberg, T. and Merrow, M. (1998) Molecular circadian oscillators: An alternative hypothesis. J. Biol. Rhythms 13, 167–179.PubMedGoogle Scholar
  335. Roenneberg, T. and Mittag, M. (1996) The circadian program of algae. Semin. Cell Dev. Biol. 7, 753–763.Google Scholar
  336. Ruan, G. X., Zhang, D. Q., Zhou, T., Yamazaki, S. and McMahon, D. G. (2006) Circadian organization of the mammalian retina. Proc. Natl. Acad. Sci. USA 20, 9703–9708.Google Scholar
  337. Ruby, N. (2003) Hibernation: When good clocks go cold. J. Biol. Rhythms 18, 275–286.PubMedGoogle Scholar
  338. Ruby, N., Dark, J., Burns, D., Heller, H. and Zucker, I. (2002) The suprachiasmatic nucleus is essential for circadian body temperature rhythms in hibernating ground squirrels. J. Neurosci. 22, 357–364.PubMedGoogle Scholar
  339. Rüger, M., Gordijn, M. C. M., Beersma, D. G. M., de Vries, B. and Daan, S. (2003) Acute and phase-shifting effects of ocular and extraocular light in human circadian physiology. J. Biol. Rhythms 18, 409–419.PubMedGoogle Scholar
  340. Ruoff, P. and Rensing, L. (1996) The temperature-compensated Goodwin model simulates many circadian clock properties. J. Theor. Biol. 179, 275–285.Google Scholar
  341. Ruoff, P. and Rensing, L. (2004) Temperature effects on circadian clocks. J. Theor Biol. 29, 445–456.Google Scholar
  342. Rusak, B. and Zucker, I. (1979) Neural regulation of circadian rhythms. Physiol. Rev 59, 449–526.PubMedGoogle Scholar
  343. Russo, V. (1988) Blue light induces circadian rhythms in the bd mutant of Neurospora: double mutants bd,wc-1 and bd,wc-2 are blind. J. Photochem. Photobiol. B 2, 59–65.PubMedGoogle Scholar
  344. Saarela, S. and Reiter, R. (1994) Function of melatonin in thermoregulatory processes. Life Sci. 54, 295–311.PubMedGoogle Scholar
  345. Salome, P. A. and McClung, C. R. (2005) What makes the Arabidopsis clock tick on time? A review on entrainment. Plant Cell Environ. 28, 21–38.Google Scholar
  346. Samel, A. and Wegmann, H. (1997) Bright light: A countermeasure for jet lag? Chronobiol. Int. 14, 173–183.PubMedGoogle Scholar
  347. Sancar, A. (2000) Cryptochrome: The second photoactive pigment in the eye and its role in circadian photoreception. Annu. Rev. Biochem. 69, 31–67.PubMedGoogle Scholar
  348. Satoh, Y., Kawai, H., Kudo, N., Kawashima, Y. and Mitsumoto, A. (2006) Time-restricted feeding entrains daily rhythms of energy metabolism in mice. Am. J. Physiol. 290, 1276–1283.Google Scholar
  349. Schaap, J., Albus, H., vanderLeest, H., Eilers, P., Detari, L. and Meijer, J. (2003) Heterogeneity of rhythmic suprachiasmatic nucleus neurons: Implications for circadian waveform and photoperiodic encoding. Proc. Natl. Acad. Sci. USA 100, 15994–15999.PubMedGoogle Scholar
  350. Schaffer, R., Landgraf, J., Accerbi, M., Simon, V., Larson, M. and Wisman, E. (2001) Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis. Plant Cell 13, 113–123.PubMedGoogle Scholar
  351. Schafmeier, T., Haase, A., Kaldi, K., Scholz, J., Fuchs, M. and Brunner, M. (2005) Transcriptional feedback of Neurospora circadian clock gene by phosphorylation-dependent inactivation of its transcription factor. Cell 122, 235–46.PubMedGoogle Scholar
  352. Schafmeier, T., Kaldi, K., Diernfellner, A., Mohr, C. and Brunner, M. (2006) Phosphorylation-dependent maturation of Neurospora circadian clock protein from a nuclear repressor toward a cytoplasmic activator. Genes Develop. 20, 297–306.PubMedGoogle Scholar
  353. Schepens, I., Duek, P. and Fankhauser, C. (2004) Phytochrome-mediated light signalling in Arabidopsis. Curr. Opin. Plant Biol. 7, 564–569.PubMedGoogle Scholar
  354. Schibler, U., Ripperger, J. and Brown, S.A. (2003) Peripheral circadian oscillators in mammals: Time and food. J. Biol. Rhythms. 18, 250–260.PubMedGoogle Scholar
  355. Schmidt-Koenig, K. (1975) Migration and homing in animals. Springer Berlin, Heidelberg, New York.Google Scholar
  356. Schmitz, O., Katayama, M., Williams, S., Kondo, T. and Golden, S. (2000) CikA, a bacteriophytochrome that resets the cyanobacterial circadian clock. Science 289, 765–768.PubMedGoogle Scholar
  357. Schwerdtfeger, C. (2003) Vivid is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation. EMBO J. 22, 4846–4855.PubMedGoogle Scholar
  358. Schwerdtfeger, C. and Linden, H. (2001) Blue light adaptation and desensitization of light signal transduction in Neurospora crassa. Mol. Microbiol. 39, 1080–1087.PubMedGoogle Scholar
  359. Sehgal, A., Price, J. and Young, M. W. (1992) Ontogeny of a biological clock in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 89, 1423–1427.PubMedGoogle Scholar
  360. Shafer, O., Helfrich-Förster, C., Renn, S. and Taghert, P. (2006) Re-evaluation of Drosophila melanogasterFs neuronal circadian pacemakers reveals new neuronal classes and inter-class neurochemical interactions. J. Comp. Neurol. 498, 180–193.PubMedGoogle Scholar
  361. Sharma, V. (2003) Adaptive significance of circadian clocks. Chronobiol. Int. 20, 901–919.PubMedGoogle Scholar
  362. Silver, R. and Moore, R. (1998) Special issue on suprachiasmatic nucleus. Chronobiol. Int. 15, VII–X and 395 ff.Google Scholar
  363. Silver, R. and Schwartz, W. (2005) The suprachiasmatic nucleus is a functionally heterogeneous timekeeping organ. Methods Enzymol. 393, 451–465.PubMedGoogle Scholar
  364. Simonneaux, V. and Ribelayga, C. (2003) Generation of the melatonin endocrine message in mammals: A review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol. Rev. 55, 325–395.PubMedGoogle Scholar
  365. Skene, D. J. (2003) Optimization of light and melatonin to phase-shift human circadian rhythms. J. Neuroendocrinol. 15, 438–441.PubMedGoogle Scholar
  366. Slominski, A., Fischer, T. W., Zmijewski, M. A., Wortsman, J., Semak, I., Zbytek, B., Slominski, R. M. and Tobin, D. J. (2005) On the role of melatonin in skin physiology and pathology. Endocrine 27, 137–148.PubMedGoogle Scholar
  367. Smith, R. M. and Williams, S. B. (2006) Circadian rhythms in gene transcription imparted by chromosome compaction in the cyanobacterium Synechococcus eleongatus. Proc. Natl. Acad. Sci. USA 103, 8564–8569.PubMedGoogle Scholar
  368. Smolen, P., Baxter, D. A. and Byrne, J. H. (2002) A reduced model clarifies the role of feedback loops and time delays in the Drosophila circadian oscillator. Biophys. J. 83, 2349–2359.PubMedGoogle Scholar
  369. Somers, D., Devlin, P. and Kay, S. (1998) Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 282, 1488–1490.PubMedGoogle Scholar
  370. Springer, M. L. (1993) Genetic control of fungal differentiation: the three sporulation pathways of Neurospora crassa. BioEssays 15, 365–374.PubMedGoogle Scholar
  371. Stal, L. and Krumbein, M. (1985) Oxygen protection of nitrogenase in the aerobically nitrogen fixing non-heterocystous cyanobacterium Oscillatoria sp. Arch. Microbiol. 143, 72–76.Google Scholar
  372. Stanewsky, R. (2002) Clock mechanisms in Drosophila. Cell Tissue Res. 309, 11–26.PubMedGoogle Scholar
  373. Stanewsky, R., Jamison, C., Plautz, J., Kay, S. and Hall, J. (1997) Multiple circadian-regulated elements contribute to cycling period gene expression in Drosophila. EMBO J. 16, 5006–5018.PubMedGoogle Scholar
  374. Steenhard, B. M. and Besharse, J. C. (2000) Phase shifting the retinal circadian clock: xper2 mrna induction by light and dopamine. J. Neurosci. 20, 8572–8577.PubMedGoogle Scholar
  375. Stehle, J., von Gall, C., Schomerus, C. and Korf, H. (2001) Of rodents and ungulates and melatonin: Creating a uniform code for darkness by different signaling mechanisms. J. Biol. Rhythms 16, 312–325.PubMedGoogle Scholar
  376. Steiner, M., Werstiuk, E. and Seggie, J. (1987) Dysregulation of neuroendocrine crossroads: depression, circadian rhythms and the retina—a hypothesis. Prog. Neuropsychopharmacol. Biol. Psych. 11, 267–278.Google Scholar
  377. Steinlechner, S. and Niklowitz, P. (1992) Impact of photoperiod and melatonin on reproduction in small mammals. Animal Reprod. Sci. 30, 1–28.Google Scholar
  378. Stephan, F. (2002) The ‘other’ circadian system: Food as a zeitgeber. J. Biol. Rhythms 17, 284–292.PubMedGoogle Scholar
  379. Stephan, F., Swann, J. and Sisk, C. (1979) Entrainment of circadian rhythms by feeding schedules in rats with suprachiasmatic lesions. Behav. Neural Biol. 25, 545–554.PubMedGoogle Scholar
  380. Stoleru, D., Peng, Y., Agosto, J. and Rosbash, M. (2004) Coupled oscillators control morning and evening locomotor behaviour of Drosophila. Nature 431, 862–868.PubMedGoogle Scholar
  381. Suarez-Lopez, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F. and Coupland, G. (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410, 1116–1120.PubMedGoogle Scholar
  382. Suri, V., Qian, Z., Hall, J. and Rosbash, M. (1998) Evidence that the TIM light response is relevant to light-induced phase shifts in Drosophila melanogaster. Neuron 21, 225–234.PubMedGoogle Scholar
  383. Sweeney, B. M. (1963) Resetting the biological clock in Gonyaulax with ultraviolet light. Plant Physiol. 38, 704–708.PubMedGoogle Scholar
  384. Takahashi, J. (2004) Finding new clock components: Past and future. J. Biol. Rhythms 19, 339–347.PubMedGoogle Scholar
  385. Tan, Y., Merrow, M. and Roenneberg, T. (2004) Photoperiodism in Neurospora crassa. J. Biol. Rhythms 19, 135–143.PubMedGoogle Scholar
  386. Tassi, P., Pellerin, N., Moessinger, M., Hoeft, A. and Muzet, A. (2000) Visual resolution in humans fluctuates over the 24h period. Chronobiol. Int. 17, 187–195.PubMedGoogle Scholar
  387. Tauber, E., Last, K., Olive, P. and Kyriacou, C. (2004) Clock gene evolution and functional divergence. J. Biol. Rhythms 19, 445–458.PubMedGoogle Scholar
  388. Teng, C., Akerman, D., Cordas, T., Kasper, S. and Vieira, A. (1995) Seasonal affective disorder in a tropical country: A case report. Psychiat. Res. 56, 11–15.Google Scholar
  389. Terman, J. and Terman, M. (1999) Photopic and scotopic light detection in patients with seasonal affective disorder and control subjects. Biol. Cybern. 46, 1642–1648.Google Scholar
  390. Terman, M., Amira, L., Terman, J. and Ross, D. (1996) Predictors of response and nonresponse to light treatment for winter depression. Am. J. Psychiatry 153, 1423–1429.Google Scholar
  391. Thompson, C., Childs, P., Martin, N., Rodin, I. and Smythe, P. (1997) Effects of morning phototherapy on circadian markers in seasonal affective disorder. Br. J. Psychiatry 170, 431–435.Google Scholar
  392. Thompson, C. L., Rickman, C. B., Shaw, S. J., Ebright, J. N., Kelly, U., Sancar, A. and Rickman, D. W. (2003) Expression of the blue-light receptor cryptochrome in the human retina. Invest. Ophthalmol. Vis. Sci. 44, 4515–4521.Google Scholar
  393. Toh, K. I., Jones, R., He, Y., Eide, E. J., Hinz, W. A., Virshup, D. M., Pt?cek, L. J. and Fu, Y. H. (2001) An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291, 1040–1043.PubMedGoogle Scholar
  394. Tomita, J., Nakajima, M., Kondo, T. and Iwasaki, H. (2005) No transcription-translation feedback in circadian rhythm of KaiC phosphorylation. Science 307, 251–254.PubMedGoogle Scholar
  395. Tosini, G. and Fukuhara, C. (2002) The mammalian retina as a clock. Cell Tissue Res. 309, 119–126.PubMedGoogle Scholar
  396. Tosini, G. and Menaker, M. (1996) Circadian rhythms in cultured mammalian retina. Science 272, 419–421.PubMedGoogle Scholar
  397. Toth, R., Kevei, E., Hall, A., Millar, A. J., Nagy, F. and Kozma-Bognar, L. (2001) Circadian clock-regulated expression of phytochrome and cryptochrome genes in Arabidopsis. Plant Physiol. 127, 1607–1616.PubMedGoogle Scholar
  398. Touitou, Y. (1998) Biological clocks: Mechanisms and applications. Proceedings of the International Congress on Chronobiology Paris 7 - 11 September 1997. Elsevier Amsterdam.Google Scholar
  399. Tu, D., Owens, L., Anderson, L., Golczak, M., Doyle, S., McCall, M., Menaker, M., Palczewski, K. and Van Gelder, R. (2006) From the cover: Inner retinal photoreception independent of the visual retinoid cycle. Proc. Natl. Acad. Sci. USA 103, 10426–10431.PubMedGoogle Scholar
  400. Turek, F. W. (2005) Role of light in circadian entrainment and treating sleep disorders—and more. Sleep 28, 548–549.PubMedGoogle Scholar
  401. Veleri, S., Rieger, D., Helfrich-Förster, C. and Stanewsky, R. (2007) Hofbauer-Buchner eyelets affect circadian photosensitivity and coordinates TIM and PER expression in Drosophila clock neurons. J. Biol. Rhythms 22, 29–42.PubMedGoogle Scholar
  402. Visser, E., Beersma, D. and Daan, S. (1999) Melatonin suppression by light in humans is maximal when the nasal part of the retina is illuminated. J. Biol. Rhythms 14, 116–121.PubMedGoogle Scholar
  403. Vollrath, L. (2002) Chronoendokrinologia- quo vadis? Ann. Anatomy 184, 583–593.Google Scholar
  404. Wada, M., Shimazaki, K. and Iino, M. (2005) Light sensing in plants. Springer, New York.Google Scholar
  405. Warren, E., Allen, C., Brown, R. and Robinson, D. (2003) Intrinsic light responses of retinal ganglion cells projecting to the circadian system. Eur. J. Neurosci. 17, 1727–1735.Google Scholar
  406. Watanabe, T., Kajimura, N., Kato, M., Sekimoto, M., Hori, T. and Takahashi, K. (2000) Case of non-24 h sleep–wake syndrome patient improved by phototherapy. Psychiatr. Clin. Neurosci. 54, 369–370.Google Scholar
  407. Webb, A. (1998) Stomatal rhythms. In: P. Lumsden and A. Millar (Eds.), Biological rhythms and photoperiodism in plants, pp. 69–79. Bios Scientific Publishers, Abingdon.Google Scholar
  408. Wehr, T. A. (2001) Photoperiodism in humans and other primates: Evidence and implications. J. Biol. Rhythms 16, 348–364.PubMedGoogle Scholar
  409. Weller, J., Reid, J., Taylor, S. and Murfet, I. (1997) The genetic control of flowering in pea. Trends Plant Sci. 2, 412–418.Google Scholar
  410. Wever, R. (1979) The circadian system of man. Springer, New York.Google Scholar
  411. Wigge, P. A., Kim, M. C., Jaeger, K. E., Busch, W., Schmid, M., Lohmann, J. U. and Weigel, D. (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309, 1056–1059.PubMedGoogle Scholar
  412. Winfree, A. (1970) Integrated view of resetting a circadian clock. J. Comp. Physiol. A 28, 327–374.Google Scholar
  413. Winfree, A. (1986) The timing of biological clocks. Scientific American Books, Inc., New York.Google Scholar
  414. Wolfson, A. R. and Carskadon, M. A. (2003) Understanding adolescents, sleep patterns and school performance: A critical appraisal. Sleep Med. Rev. 7, 491–506.PubMedGoogle Scholar
  415. Wright, K. P., Gronfier, C., Duffy, J. F. and Czeisler, C. A. (2005) Intrinsic period and light intensity determine the phase relationship between melatonin and sleep in humans. J. Biol. Rhythms 20, 168–177.PubMedGoogle Scholar
  416. Wright, K. P., Hughes, R. J., kronauer, R. E., Dijk, D. J. and Czeisler, C. A. (2001) Intrinsic near-24-hour pacemaker period determines limits of circadian entrainment to a weak synchronizer in humans. Proc. Natl. Acad. Sci. USA 98, 14027–14032.PubMedGoogle Scholar
  417. Wyatt, J. K. (2004) Delayed sleep phase syndrome: pathophysiology and treatment options. Sleep 27, 1195–1203.PubMedGoogle Scholar
  418. Xu, Y., Padiath, Q. S., Shapiro, R. E., Jones, C. R., Wu, S. C., Saigoh, N., Saigoh, K., Ptacek, L. J. and Fu, Y. H. (2005) Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature 434, 640–644.PubMedGoogle Scholar
  419. Yamaguchi, S., Isejima, H., Matsuo, T., Okura, R., Yagita, K., Kobayashi, M. and Okamura, H. (2003) Synchronization of cellular clocks in the suprachiasmatic nucleus. Science 302, 1408–1412.PubMedGoogle Scholar
  420. Yamazaki, S., Numano, R., Abe, M., Hida, A., Takahashi, R., Ueda, M., Block, G. D., Sakaki, Y., Menaker, M. and Tei, H. (2000) Resetting central and peripheral circadian oscillators in transgenic rats. Science 288, 682–685.PubMedGoogle Scholar
  421. Yanovsky, M., Mazzella, M. and Casal, J. (2000) A quadruple photoreceptor mutant still keeps track of time. Curr. Biol. 10, 1013–1015.PubMedGoogle Scholar
  422. Yanovsky, M. J. and Kay, S. A. (2003) Living by the calendar: How plants know when to flower. Nature Rev. Mol. Biol. 4, 265–275.Google Scholar
  423. Yoshii, T., Funada, Y., Ibuki-Ishibashi, T., Matsumoto, A., Tanimura, T. and Tomioka, K. (2004) Drosophila cryb mutation reveals two circadian clocks that drive locomotor rhythm and have different responsiveness to light. J. Insect Physiol. 50, 479–488.PubMedGoogle Scholar
  424. Young, R. (1976) Visual cells and the concept of renewal. Invest. Ophthalmol. Vis. Sci. 15, 700–725.Google Scholar
  425. Zak, D. E., Doyle, F. J., Vlachos, D. G. and Schwaber, J. S. (2001) Stochastic kinetic analysis of transcriptional feedback models for circadian rhythms. Proc. Second Int. Conf. Systems Biol. 1, 231–238.Google Scholar
  426. Zhong, H. and McClung, C. (1996) The circadian clock gates expression of two Arabidopsis catalase genes to distinct and opposite circadian phases. Mol. General Genet. 251, 196–203.Google Scholar
  427. Zhu, H., Yuan, Q., Froy, O., Casselman, A. and Reppert, S. M. (2005) The two crys of the butterfly. Curr. Biol. 15, R953–954.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Anders Johnsson
  • Wolfgang Engelmann

There are no affiliations available

Personalised recommendations