Photobiology pp 289-319 | Cite as

Photosynthetic Light Harvesting, Charge Separation, and Photoprotection: The Primary Steps

  • Villy Sundström


Photosynthesis is the process by which solar energy is converted into biomass at an overall efficiency of ~ 1%. This conversion process starts with highly efficient energy- and electron transfer processes transforming the energy of light into excited states and trans-membrane potentials. Energy rich carbohydrates are then produced through a series of dark reactions. In this chapter we will review the processes and pigment systems by which light energy is collected and converted into chemical energy.


Energy Transfer Transient Absorption Purple Bacterium Rhodobacter Sphaeroides Antenna Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akimoto, S., Yamazaki, I., Sakawa, T. and Mimuro, M. (2002) Temperature effects on excitation relaxation dynamics of the carotenoid beta-carotene and its analogue beta-apo-8 ‘-carotenal, probed by femtosecond fluorescence spectroscopy. J. Phys. Chem. A. 106, 2237–2243.CrossRefGoogle Scholar
  2. Akimoto, S., Yamazaki, I., Takaichi, S. and Mimuro, M. (1999) Excitation relaxation of carotenoids within the S-2 state probed by the femtosecond fluorescence up-conversion method. Chem. Physics Lett. 313, 63–68.CrossRefGoogle Scholar
  3. Angerhofer, A., Cogdell, R. J. and Hipkins, M. F. (1986) A spectral characterization of the light-harvesting pigment-protein complexes from Rhodopseudomonas Acidophila. Biochim. Biophys. Acta 848, 333–341.CrossRefGoogle Scholar
  4. Arlt, T., Schmidt, S., Kaiser, W., Lauterwasser, C., Meyer, M., Scheer, H. and Zinth, W. (1993) The accessory bacteriochlorophyll - a real electron carrier in primary photosynthesis. Proc. Natl Acad. Sci. USA 90, 11757–11761.PubMedCrossRefGoogle Scholar
  5. Atkins, P. W. (1998a) Molecular symmetry. In: Physical chemistry, pp. 427–451. Oxford University Press, Oxford.Google Scholar
  6. Atkins, P. W. (1998b) Quantum theory:introduction and principles. In: Physical chemistry, pp. 285–312. Oxford University Press, Oxford.Google Scholar
  7. Breton, J., Martin, J. L., Migus, A., Antonetti, A. and Orszag, A. (1986) Femtosecond Spectroscopy of excitation energy transfer and initial charge separation in the reaction center of the photosynthetic bacterium Rhodopseudomonas viridis. Proc. Natl Acad. Sci. USA 83, 5121–5125.PubMedCrossRefGoogle Scholar
  8. Chachisvilis, M., Kuhn, O., Pullerits, T. and Sundström, V. (1997) Excitons in photosynthetic purple bacteria: Wavelike motion or incoherent hopping? J. Phys. Chem. B, 101, 7275–7283.CrossRefGoogle Scholar
  9. Chekalin, S., Matveets, Y., Shkuropatova, A., Shuvalov, V. and Yartsev, A. (1987) Femtosecond spectroscopy of primary charge separation in modified reaction centers of Rhodobacter sphaeroides (R 26) FEBS Lett. 216, 245–248.CrossRefGoogle Scholar
  10. Christensen, R. L., Goyette, M., Gallagher, L., Duncan, J., DeCoster, B., Lugtenburg, J., Jansen, F. J. and van der Hoef, I. (1999) S-1 and S-2 states of apo- and diapocarotenes. J. Phys. Chem. A 103, 2399–2407.CrossRefGoogle Scholar
  11. Cogdell, R. J. and Frank, H. A. (1987) How Carotenoids function in photosynthetic Bacteria. Biochim. Biophys. Acta 895, 63–79.PubMedGoogle Scholar
  12. Crimi, M., Dorra, D., Bosinger, C. S., Giuffra, E., Holzwarth, A. R. and Bassi, R. (2001) Time-resolved fluorescence analysis of the recombinant photosystem II antenna complex CP29 - Effects of zeaxanthin, pH and phosphorylation. Eur. J. Biochem. 268, 260–267.Google Scholar
  13. Croce, R., Muller, M. G., Caffarri, S., Bassi, R. and Holzwarth, A. R. (2003) Energy transfer pathways in the minor antenna complex CP29 of photosystem II: A femtosecond study of carotenoid to chlorophyll transfer on mutant and WT complexes. Biophys. J. 84, 2517–2532.PubMedCrossRefGoogle Scholar
  14. Crofts, A. R. and Yerkes, C. T. (1994) A Molecular Mechanism for Q(E)-Quenching. FEBS Lett. 352, 265–270.PubMedCrossRefGoogle Scholar
  15. Dahlbom, M., Pullerits, T., Mukamel, S. and Sandstrom, V. (2001) Exciton delocalization in the B850 light-harvesting complex: Comparison of different measures. J. Phys. Chem. B 105, 5515–5524.CrossRefGoogle Scholar
  16. Damjanovic, A., Ritz, T. and Schulten, K. (1999) Energy transfer between carotenoids and bacteriochlorophylls in light-harvesting complex II of purple bacteria. Physical Rev. 59, 3293–3311.Google Scholar
  17. Deisenhofer, J., Epp, O., Miki, K., Huber, R. and Michel, H. (1985) Structure of the protein subunits in the photosynthetic reaction center of Rhodopseudomonas viridis at 3A resolution. Nature 318, 618–624.CrossRefGoogle Scholar
  18. DellaPenna, D. (1999) Carotenoid synthesis and function in plants: Insights from mutant studies in Arabidopsis thaliana. In: H. A. Frank, A. J. Young, G. Britton and R. J. Cogdell (eds.), Photochemistry of carotenoid. Kluwer Academic Publishers, Dordrecht, pp. 21–42.Google Scholar
  19. Demmig-Adams, B. and Adams, W. W. III (1996) The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci. 1, 21–26.CrossRefGoogle Scholar
  20. Denhollander, W. T. F., Bakker, J. G. C. and van Grondelle, R. (1983) Trapping, loss and annihilation of excitations in a photosynthetic system. 1. Theoretical aspects. Biochim. Biophys. Acta 725, 492–507.CrossRefGoogle Scholar
  21. Dexter, D. L. (1953) A theory of sensitized luminescence in solids. J. Chem. Physics 21, 836–850.CrossRefGoogle Scholar
  22. Edge, R. and Truscott, T. G. (1999) Carotenoid radicals and the interaction of carotenoids with active oxygen species. In: H. A. Frank, A. J. Young, G. Britton and R. J. Cogdell (eds.), Photochemistry of carotenoids. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 223–237.Google Scholar
  23. Förster, T. (1946) Energiewanderung und Fluoreszenz. Naturwissenschaft 33, 166–175.CrossRefGoogle Scholar
  24. Frank, H. A. and Cogdell, R. J. (1993) Photochemistry of carotenoids. In: A. J. Young (ed.) Carotenoids in photosynthesis. Chapman & Hall, Boca Raton, FL, pp. 252–270.Google Scholar
  25. Frank, H. A. and Cogdell, R. J. (1996) Carotenoids in photosynthesis. Photochem. Photobiol. 63, 257-264.PubMedGoogle Scholar
  26. Frank, H. A., Cua, A., Chynwat, V., Young, A., Gosztola, D. and Wasielewski, M. R. (1994) Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis. Photosynthesis Res. 41, 389–395.CrossRefGoogle Scholar
  27. Frank, H. A., Das, S. K., Bautista, J. A., Bruce, D., Vasil’ev, S., Crimi, M., Croce, R. and Bassi, R. (2001) Photochemical behavior of xanthophylls in the recombinant photosystem II antenna complex, CP26. Biochemistry 40, 1220–1225.PubMedCrossRefGoogle Scholar
  28. Frank, H. A., Josue, J. S., Bautista, J. A., van der Hoef, I., Jansen, F. J., Lugtenburg, J., Wiederrecht, G. and Christensen, R. L. (2002) Spectroscopic and photochemical properties of open-chain carotenoids. J. Phys. Chem. B 106, 2083–2092.Google Scholar
  29. Fraser, N. J., Dominy, P. J., Ucker, B., Simonin, I., Scheer, H. and Cogdell, R. J. (1999) Selective release, removal, and reconstitution of bacteriochlorophyll a molecules into the B800 sites of LH2 complexes from Rhodopseudomonas acidophila 10050. Biochemistry 38, 9684–9692.PubMedCrossRefGoogle Scholar
  30. Freiberg, A., Godik, V. I., Pullerits, T. and Timpman, K. (1989) Picosecond dynamics of directed excitation transfer in spectrally heterogeneous light-harvesting antenna of purple bacteria. Biochim. Biophys. Acta 973, 93–104.CrossRefGoogle Scholar
  31. Fujii, R., Ishikawa, T., Koyama, Y., Taguchi, M., Isobe, Y., Nagae, H. and Watanabe, Y. (2001) Fluorescence spectroscopy of all-trans-anhydrorhodovibrin and spirilloxanthin: Detection of the 1B(u)(-) fluorescence. J. Phys. Chem. A 105, 5348–5355.CrossRefGoogle Scholar
  32. Groot, M. L., Pawlowicz, N. P., van Wilderen, L. J. G. W., Breton, J., van Stokkum, I. H. M. and van Grondelle, R. (2005) Initial electron donor and acceptor in isolated Photosystem II reaction centers identified with femtosecond mid-IR spectroscopy. Proc. Natl Acad. Sci. USA 102, 13087–13092.PubMedCrossRefGoogle Scholar
  33. Herek, J. L., Fraser, N. J., Pullerits, T., Martinsson, P., Polivka, T., Scheer, H., Cogdell, R. J. and Sundström, V. (2000) B800 rightarrow B850 energy transfer mechanism in bacterial LH2 complexes investigated by B800 pigment exchange. Biophys. J. 78, 2590–2596.PubMedGoogle Scholar
  34. Hess, S., Chachisvilis, M., Timpmann, K., Jones, M. R., Fowler, G. J. S., Hunter, C. N. and Sundström, V. (1995) Temporally and spectrally resolved subpicosecond energy transfer within the peripheral antenna complex (LH2) and from LH2 to the core antenna complex in photosynthetic purple bacteria. Proc. Natl Acad. Sci. USA 92, 12333–12337.PubMedCrossRefGoogle Scholar
  35. Holt, N. E., Zigmantas, D., Valkunas, L., Li, X. P., Niyogi, K. K. and Fleming, G. R. (2005) Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307, 433–436.PubMedCrossRefGoogle Scholar
  36. Holzapfel, W., Finkele, U., Kaiser, W., Oesterhelt, D., Scheer, H., Stilz, H. U. and Zinth, W. (1990) Initial electron-transfer in the reaction center from Rhodobacter sphaeroides. Proc. Natl Acad. Sci. USA 87, 5168–5172.PubMedCrossRefGoogle Scholar
  37. Horton, P., Ruban, A. V. and Walters, R. G. (1996) Regulation of light harvesting in green plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 655–684.PubMedCrossRefGoogle Scholar
  38. Jia, Y. W., Dimagno, T. J., Chan, C. K., Wang, Z. Y., Du, M., Hanson, D. K., Schiffer, M., Norris, J. R., Fleming, G. R. and Popov, M. S. (1993) primary charge separation in mutant reaction centers of Rhodobacter capsulatus. J. Phys. Chem. 97, 13180–13191.CrossRefGoogle Scholar
  39. Jonas, D. M., Lang, M. J., Nagasawa, Y., Joo, T. and Fleming, G. R. (1996) Pump-probe polarization anisotropy study of femtosecond energy transfer within the photosynthetic reaction center of Rhodobacter sphaeroides R26. J. Phys. Chem. 100, 12660–12673.CrossRefGoogle Scholar
  40. Kaufmann, K. J., Dutton, P. L., Netzel, T. L., Leigh, J. S. and Rentzepis, P. M. (1975) Picosecond kinetics of events leading to reaction center bacteriochlorophyll oxidation. Science 188, 1301–1304.PubMedCrossRefGoogle Scholar
  41. Kirmaier, C., Gaul, D., Debey, R., Holten, D. and Schenck, C. C. (1991) Charge separation in a reaction center incorporating bacteriochlorophyll for photoactive bacteriopheophytin. Science 251, 922–927.PubMedCrossRefGoogle Scholar
  42. Koepke, J., Hu, X. C., Muenke, C., Schulten, K. and Michel, H. (1996) The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum. Structure 4, 581–597.PubMedCrossRefGoogle Scholar
  43. Koyama, Y., Kuki, M., Andersson, P. O. and Gillbro, T. (1996) Singlet excited states and the light-harvesting function of carotenoids in bacterial photosynthesis. Photochem. Photobiol. 63, 243–256.Google Scholar
  44. Kuhn, O. and Sundström, V. (1997a) Energy transfer and relaxation dynamics in light-harvesting antenna complexes of photosynthetic bacteria. J. Phys. Chem. B 101, 3432–3440.CrossRefGoogle Scholar
  45. Kuhn, O. and Sundström, V. (1997b) Pump-probe spectroscopy of dissipative energy transfer dynamics in photosynthetic antenna complexes: A density matrix approach. J. Chem. Phys. 107, 4154–4164.CrossRefGoogle Scholar
  46. Landrum, J. T. and Bone, R. A. (2001) Lutein, zeaxanthin, and the macular pigment. Arch. Biochem. Biophys. 385, 28–40.PubMedCrossRefGoogle Scholar
  47. Leupold, D., Stiel, H., Teuchner, K., Nowak, F., Sandner, W., Ucker, B. and Scheer, H. (1996) Size enhancement of transition dipoles to one- and two-exciton bands in a photosynthetic antenna. Phys. Rev. Lett. 77, 4675–4678.PubMedCrossRefGoogle Scholar
  48. Li, X.-P., Bjorkman, O., Shih, C., Grossman, A. R., Rosenquist, M., Jansson, S. and Niyogi, K. K. (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403, 391–395.PubMedCrossRefGoogle Scholar
  49. Li, X.-P., Gilmore, A.M. and Niyogi, K.K. (2002) Molecular and global time-resolved analysis of a psbS gene dosage effect on pH- and xanthophyll cycle-dependent nonphotochemical quenching in photosystem II. J. Biol. Chem. 277, 33590–33597.PubMedCrossRefGoogle Scholar
  50. Liu, Z., Yan, H., Wang, K., Kuang, T., Zhang, J., Gui, L., An, X. and Chang, W. (2004) Crystal structure of spinach major lightharvesting complex at 2.72 A resolution. Nature 428, 287–292.PubMedCrossRefGoogle Scholar
  51. Ma, Y. Z., Holt, N. E., Li, X. P., Niyogi, K. K. and Fleming, G. R. (2003) Evidence for direct carotenoid involvement in the regulation of photosynthetic light harvesting. Proc. Natl Acad. Sci. USA 100, 4377–4382.PubMedCrossRefGoogle Scholar
  52. Marcus, R. A. and Sutin, N. (1985) Electron transfers in chemistry and biology. Proc. Natl Acad. Sci. USA 811, 265–322.Google Scholar
  53. Mauzerall, D. (1976) Multiple excitations in photosynthetic systems. Biophys. J. 16, 87–91.Google Scholar
  54. Mcdermott, G., Prince, S. M., Freer, A. A., Hawthornthwaitelawless, A. M., Papiz, M. Z., Cogdell, R. J. and Isaacs, N. W. (1995) Crystal-Structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374, 517–521.CrossRefGoogle Scholar
  55. Meier, T., Chernyak, V. and Mukamel, S. (1997) Multiple exciton coherence sizes in photosynthetic antenna complexes viewed by pump-probe spectroscopy. J. Phys. Chem. B 101, 7332–7342.CrossRefGoogle Scholar
  56. Monshouwer, R., Abrahamsson, M., van Mourik, F. and van Grondelle, R. (1997) Superradiance and exciton delocalization in bacterial photosynthetic light-harvesting systems. J. Phys. Chem. B 101, 7241–7248.CrossRefGoogle Scholar
  57. Nagae, H., Kakitani, T., Katoh, T. and Mimuro, M. (1993) Calculation of the excitation transfer-matrix elements between the S(2) Or S(1) State of carotenoid and the S(2) Or S(1) state of bacteriochlorophyll. J. Chem. Phys. 98, 8012–8023.CrossRefGoogle Scholar
  58. Nagarajan, V. and Parson, W. W. (1997) Excitation energy transfer between the B850 and B875 antenna complexes of Rhodobacter sphaeroides. Biochemistry 36, 2300–2306.PubMedCrossRefGoogle Scholar
  59. Nishino, H. (1997) Cancer prevention by natural carotenoids. J. Cell. Biochem. 86–91.Google Scholar
  60. Niyogi, K.K., Li, X.-P. Rosenberg, V. and Jung, H.-S. (2005) Is PsbS the site of non-photochemical quenching in photosynthesis? J. Exp. Bot. 56, 375–382.Google Scholar
  61. Novoderezhkin, V. I., Andrizhiyevskaya, E. G., Dekker, J. P. and van Grondelle, R. (2005) Pathways and timescales of primary charge separation in the photosystem II reaction center as revealed by a simultaneous fit of time-resolved fluorescence and transient absorption. Biophys. J. 89, 1464–1481.PubMedCrossRefGoogle Scholar
  62. Polivka, T., Herek, J. L., Zigmantas, D., Åkerlund, H. E. and Sundström, V. (1999) Direct observation of the (forbidden) S-1 state in carotenoids. Proc. Natl Acad. Sci. USA 96, 4914–4917.Google Scholar
  63. Polivka, T., Pullerits, T., Herek, J. L. and Sundström, V. (2000) Exciton relaxation and polaron formation in LH2 at low temperature. J. Phys. Chem. B, 104, 1088–1096.CrossRefGoogle Scholar
  64. Polivka, T. and Sundström, V. (2004) Ultrafast dynamics of carotenoid excited states - From solution to natural and artificial systems. Chem. Revs 104, 2021–2071.CrossRefGoogle Scholar
  65. Polivka, T., Zigmantas, D., Sundström, V., Formaggio, E., Cinque, G. and Bassi, R. (2002) Carotenoid S-1 state in a recombinant light-harvesting complex of photosystem II. Biochemistry 41, 439–450.PubMedCrossRefGoogle Scholar
  66. Pullerits, T., Chachisvilis, M. and Sundström, V. (1996) Exciton delocalization length in the B850 antenna of Rhodobacter sphaeroides. J. Phys. Chem. 100, 10787–10792.CrossRefGoogle Scholar
  67. Pullerits, T. and Sundström, V. (1996) Photosynthetic light-harvesting pigment-protein complexes: Toward understanding how and why. Accounts Chem. Res. 29, 381–389.CrossRefGoogle Scholar
  68. Ricci, M., Bradforth, S. E., Jimenez, R. and Fleming, G. R. (1996) Internal conversion and energy transfer dynamics of spheroidene in solution and in the LH-1 and LH-2 light-harvesting complexes. Chem. Physics Lett. 259, 381–390.CrossRefGoogle Scholar
  69. Richter, M., Goss, R., Wagner, B. and Holzwarth, A. R. (1999) Characterization of the fast and slow reversible components of non-photochemical quenching in isolated pea thylakoids by picosecond time-resolved chlorophyll fluorescence analysis. Biochemistry 38, 12718–12726.PubMedCrossRefGoogle Scholar
  70. Ritz, T., Damjanovic, A., Schulten, K., Zhang, J. P. and Koyama, Y. (2000) Efficient light harvesting through carotenoids. Photosynthesis Res. 66, 125–144.CrossRefGoogle Scholar
  71. Scheuring, S., Levy, D. and Rigaud, J.-L. (2005) Watching the components of photosynthetic bacterial membranes and their in situ organisation by atomic force microscopy. Biochim. Biophys. Acta, 1712, 109–127.PubMedCrossRefGoogle Scholar
  72. Scheuring, S., Seguin, J., Marco, S., Livy, D., Robert, B. and Rigaud, J.-L. (2003) Nanodissection and high-resolution imaging of the Rhodopseudomonas viridis. Proc. Natl. Acad. Sci. USA 100, 1690–1693.Google Scholar
  73. Scholes, G. D. and Fleming, G. R. (2000) On the mechanism of light harvesting in photosynthetic purple bacteria: B800 to B850 energy transfer. J. Phys. Chem. B, 104, 1854–1868.CrossRefGoogle Scholar
  74. Scholes, G. D., Harcourt, R. D. and Fleming, G. R. (1997) Electronic interactions in photosynthetic light-harvesting complexes: The role of carotenoids. J. Phys. Chem. B, 101, 7302–7312.CrossRefGoogle Scholar
  75. Schubert, A., Stenstam, A., Beenken, W. J. D., Herek, J. L., Cogdell, R., Pullerits, T. and Sundström, V. (2004) In vitro self-assembly of the light harvesting pigment-protein LH2 revealed by ultrafast spectroscopy and electron microscopy. Biophys. J. 86, 2363–2373.PubMedGoogle Scholar
  76. Standfuss, R., van Scheltinga, A. C. T., Lamborghini, M. and Kuhlbrandt, W. (2005) Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5A resolution. EMBO J. 24, 919–928.PubMedCrossRefGoogle Scholar
  77. Stanley, R. J. and Boxer, S. G. (1995) Oscillations in the Spontaneous Fluorescence from Photosynthetic Reaction Centers. J. Phys. Chem. 99, 859–863.CrossRefGoogle Scholar
  78. Strickler, S. J. and Berg, R. A. (1962) Relationship Between Absorption Intensity and Fluorescence Lifetime of Molecules. J. Chem. Phys. 37, 814–825.CrossRefGoogle Scholar
  79. Sumi, H. (1999) Theory on rates of excitation-energy transfer between molecular aggregates through distributed transition dipoles with application to the antenna system in bacterial photosynthesis. J. Phys. Chem. B 103, 252–260.CrossRefGoogle Scholar
  80. Sundström, V., Pullerits, T. and van Grondelle, R. (1999) Photosynthetic light-harvesting: Reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit. J. Phys. Chem. B 103, 2327–2346.CrossRefGoogle Scholar
  81. Sundström, V., van Grondelle, R., Bergstrom, H., Åkesson, E. and Gillbro, T. (1986) Excitation-energy transport in the bacteriochlorophyll antenna systems of Rhodospirillum rubrum and Rhodobacter sphaeroides, studied by low-intensity picosecond absorption spectroscopy. Biochim. Biophy. Acta 851, 431–446.CrossRefGoogle Scholar
  82. Takaichi, S. (1999) Carotenoids and Carotenogenesis in Anoxygenic Photosynthetic Bacteria. In: H. A. Frank, A. J. Young, G. Britton and R. J. Cogdell (eds.), Photochemistry of carotenoids, pp. 39–54. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  83. Timpmann, K., Katiliene, Z., Woodbury, N. W. and Freiberg, A. (2001) Exciton self trapping in one-dimensional photosynthetic antennas. J. Phys. Chem. B 105, 12223–12225.CrossRefGoogle Scholar
  84. Timpmann, K., Zhang, F. G., Freiberg, A. and Sundström, V. (1993) Detrapping of excitation energy from the reaction center in the photosynthetic purple bacterium Rhodospirillum Rubrum. Biochim. Biophys. Acta 1183, 185–193.CrossRefGoogle Scholar
  85. Trautman, J. K., Shreve, A. P., Violette, C. A., Frank, H. A., Owens, T. G. and Albrecht, A. C. (1990) Femtosecond Dynamics of Energy-Transfer in B800-850 Light-Harvesting Complexes of Rhodobacter sphaeroides. Proc. Natl. Acad. Sci. USA 87, 215–219.Google Scholar
  86. Trinkunas, G., Herek, J. L., Polivka, T., Sundström, V. and Pullerits, T. (2001) Exciton delocalization probed by excitation annihilation in the light-harvesting antenna LH2. Phys. Rev. Lett. 86, 4167–4170.PubMedCrossRefGoogle Scholar
  87. van Amerongen, H. and van Grondelle, R. (2001) Understanding the energy transfer function of LHCII, the major light-harvesting complex of green plants. J. Phys. Chem. B 105, 604–617.CrossRefGoogle Scholar
  88. van Brederode, M. E., van Stokkum, I. H. M., Katilius, E., van Mourik, F., Jones, M. R. and van Grondelle, R. (1999) Primary charge separation routes in the BChl: BPhe heterodimer reaction centers of Rhodobacter sphaeroides. Biochemistry 38, 7545–7555.PubMedCrossRefGoogle Scholar
  89. van Grondelle, R. and Novoderezhkin, V. I. (2006) Energy transfer in photosynthesis: experimental insights and quantitative models. Phys. Chem. Chem. Phys. 8, 793–807.PubMedCrossRefGoogle Scholar
  90. van Grondelle, R. (1985) Excitation energy transfer, trapping and annihilation in photosynthetic systems. Biochim. Biophys. Acta 811, 147–195.Google Scholar
  91. Visscher, K. J., Bergström, H., Sundström, V., Hunter, C. N. and vanGrondelle, R. (1989) Temperature dependence of energy-transfer from the long wavelength antenna Bchl-896 to the reaction center in Rhodospirillum rubrum and Rhodobacter sphaeroides (Wt and M21 Mutant) from 77 to 177 K, studied by picosecond absorption spectroscopy. Photosynthesis Res. 22, 211–217.CrossRefGoogle Scholar
  92. Visschers, R. W., Vulto, S. I. E., Jones, M. R., van Grondelle, R. and Kraayenhof, R. (1999) Functional LH1 antenna complexes influence electron transfer in bacterial photosynthetic reaction centers. Photosynthesis Res. 59, 95–104.CrossRefGoogle Scholar
  93. Vos, M. H., Rappaport, F., Lambry, J. C., Breton, J. and Martin, J. L. (1993) Visualization of coherent nuclear motion in a membrane protein by femtosecond spectroscopy. Nature 363, 320–325.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Villy Sundström

There are no affiliations available

Personalised recommendations