Advertisement

Photobiology pp 255-287 | Cite as

The Evolution of Photosynthesis and Its Environmental Impact

  • Lars Olof Björn
  • Govindjee

Abstract

Photosynthesis in plants is a very complicated process, utilizing two photosystems in series to carry out the very energy-demanding process of oxidizing water to molecular oxygen and reducing carbon dioxide to organic compounds. The first photosynthetic organisms, living more than 3.4, perhaps even 3.8 Ga, i.e., American billion (109), years ago, carried out a simpler process, without oxygen production and with only one photosystem. A great variety of such one-photosystem photosynthesizers are living even today, and by comparing them, and from chemical fossils, researchers are trying to piece together a picture of the course of the earliest evolution of photosynthesis. Chlorophyll a probably preceded bacteriochlorophyll a as a main pigment for conversion of light into life energy. The process of carbon dioxide assimilation, today taking place mainly in conjunction with photosynthesis, is even older than photosynthesis itself. Oxygenic photosynthesis, i.e., photosynthetic production of molecular oxygen, first appeared in ancestors of present-day cyanobacteria more than 2.7, perhaps already 3.7 Ga ago. Cyanobacteria entered into close association with other organisms more than 1.2 Ga ago, and chloroplasts in green algae and green plants as well as those in algae on the “red” line of evolution (red algae, cryptophytes, diatoms, brown algae, yellow-green algae, and others) stem from a single early event of endosymbiotic uptake of a cyanobacterium into a heterotrophic organism. Only ecologically unimportant exceptions to this rule have been found. The chloroplasts on the “red line,” except those of red algae, stem from a single event of secondary endosymbiosis, in which a red alga was taken up into another organism. There are also examples of tertiary (third level) endosymbiotic events. Thylakoids in land plants are partially appressed and form grana, while those of, e.g., red algae do not have this structure, and this difference can be explained by the different spectra of ambient light. At the end of the chapter a brief review is given of the evolution of the assimilation of carbon dioxide, the adaptation to terrestrial life, and the impact of photosynthesis on the terrestrial environment.

Keywords

Land Plant Hydrogen Sulfide Crassulacean Acid Metabolism Photosynthetic Organism Oxygenic Photosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, J.F. (2005) A redox switch hypothesis for the origin of two light reactions in photosynthesis. FEBS Lett. 579, 963–968.PubMedGoogle Scholar
  2. Allen, J.F. and Martin W. (2007) Out of thin air. Nature 445, 61–612.Google Scholar
  3. Anbar, A.D. and Holland, H.D. (1992) The photochemistry of manganese and the origin of banded iron formations. Geochim. Cosmochim Acta 56, 2595–2603.PubMedGoogle Scholar
  4. Anbar, A.D. and Knoll, A.H. (2002) Proterozoic ocean chemistry and evolution: a bioinorganic bridge. Science 297, 1137–1142.PubMedGoogle Scholar
  5. Anderson, J.M. (1999) Insights into the consequences of grana stacking of thylakoid membranes in vascular plants: a personal perspective. Aust. J. Plant Physiol. 26, 625–639.Google Scholar
  6. Asard, H., Venken, M., Caubergs, R., Reijnders, W., Oltmann, F.L. and De Greef, J.A. (1989) b-Type cytochromes in higher plant plasma membranes. Plant Physiol. 90, 1077–1083.PubMedGoogle Scholar
  7. Ashida, H., Saito, Y., Kojima, C., Kobayashi, K., Ogasawara, N., and Yokota, A. (2003) A functional link between RuBisCO-like protein of Bacillus and photosynthetic RuBisCO. Science 302, 287–290.Google Scholar
  8. Ashida, H., Danchin, A., and Yokota, A. (2005) Was photosynthetic RuBisCO recruited by acquisitive evolution from RuBisCO-like proteins involved in sulfur metabolism? Res. Microbiol. 156, 611–618.PubMedGoogle Scholar
  9. Awramik, S. M. (1992) The oldest records of photosynthesis. Photosynthesis Res. 33, 75–89.Google Scholar
  10. Badger, M.R. and Price, G.D. (2003) CO_2-concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J. Exp. Bot. 54, 609–622.PubMedGoogle Scholar
  11. Bald, D., Kruip, J., Boekema, E.J. and Rögner, M. (1992) Structural investigations on cyt b_6 f complex and PS I complex from the cyanobacterium Synechocystis PCC6803. In: N. Murata (Ed.), Photosynthesis: from Light to Biosphere, Part I. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 629–633.Google Scholar
  12. Baymann, F., M. Brugna, M., Muhlenhoff, U. and Nitschke, W. (2001) Daddy, where did (PS)I come from? Biochim. Biophys. Acta 1507, 291–310.PubMedGoogle Scholar
  13. Bhattcharaya, D., Yoon, H.S. and Hackett, J.D. (2003) Photosynthetic eukaryotes unite: endosymbiosis connects dots. BioEssays 26, 50–60.Google Scholar
  14. Beatty, J.T., Overmann, J., Lince, M.T., Manske, A.K., Lang, A.S., Blankenship, R.E., Van Dover, C.L., Martinson, T.A. and Plumley, G.F. (2005) An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Proc. Natl. Acad. Sci. USA 102, 9306–9310.PubMedGoogle Scholar
  15. Beerling, D.J. Lake, J.A., Berner, R.A., Hickey, J.J., Taylor, D.W. and Royer, D.L. (2002) Carbon isotope evidence implying high O_2/CO_2 ratios in the Permo-Carboniferous atmosphere. Geochim. Cosmochim. Acta, 66, 3757–3767.Google Scholar
  16. Berman-Frank, I., Lundgren, P. and Falkowski, P. (2003) Nitrogen fixation and oxygen evolution in cyanobacteria. Res. Microbiol. 154, 157–164.PubMedGoogle Scholar
  17. Berner, R.A. (2006) GEOCARBSULF: A combined model for Phanerozoic atmospheric O_2 and CO_2 . Geochim. Cosmochim. Acta 70, 5653–5664.Google Scholar
  18. Björn, L.O. (1995) Origins of photosynthesis Nature 376, 25–26.Google Scholar
  19. Björn, L.O., Ekelund, N.G.A. (2005) Dinoflagellater—hopplock från livets smörgåsbord. Svensk Bot. Tidskr. 99, 7–16.Google Scholar
  20. Blankenship, R.E. (2002) Molecular mechanisms of photosynthesis. Blackwell Science, Edinburgh.Google Scholar
  21. Blankenship, R.E. and Hartman, H. (1998) The origin and evolution of oxygenic photosynthesis. Trends Biochem. Sci. 23, 94–97.PubMedGoogle Scholar
  22. Bocherens, H., Friis, E.M., Mariotti, A. and Pedersen, K.R. (1993) Carbon isotopic abundances in Mesozoic and Cenozoic fossil plants—paleoecological implications. Lethaia 26, 347–358.Google Scholar
  23. Borda, M.J., Elsetinow, A.R., Schoonen, M.A. and Strongin, D.R. (2001) Pyrite-induced hydrogen peroxide formation as a driving force in the evolution of photosynthetic organisms on an early Earth. Astrobiology 1, 283–288.PubMedGoogle Scholar
  24. Brasier, M.D., Green, O.R., Lindsay, J.F., McLoughlin, N., Steele, A. and Stoakes, C. (2005) Precambrian Res. 140, 55–102.Google Scholar
  25. Brocks, J.J., Buick, R., Summons, R.E. and Logan, G.A. (2003) A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroups, Hamersley Basin, Western Australia. Beochim. Cosmochim. Acta 67, 4321–4335.Google Scholar
  26. Buchanan, B.B. and D.I. Arnon. (1990) A reverse Krebs cycle in photosynthesis: consensus at last. Photosynth. Res. 24, 47–53.PubMedGoogle Scholar
  27. Butterfield, N.J. (2000) Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26, 386–404.Google Scholar
  28. Canfield, D.E. (1998) A new model for proterozoic ocean chemistry. Nature 396, 450-453.Google Scholar
  29. Canfield, D.E. (2005) The early history of atmospheric oxygen: Homage to R.M. Garrels. Annu. Rev. Earth Planet. Sci. 33, 1–36.Google Scholar
  30. Canfield, D.E., Poulton, S.W. and Narbonne, G.M. (2007) Late Neo-Proterozoic deep-ocean oxygenation and the rise of animal life. Science 315, 92–95.PubMedGoogle Scholar
  31. Clausen, J., Beckmann, K., Junge, W. and Messinger, J. (2005) Evidence that bicarbonate is not the substrate in photosynthetic oxygen evolution. Plant Physiol. 139, 1444–1450.PubMedGoogle Scholar
  32. Clausen. J., Junge. W., Dau H. and Haumann, M. (2005) Photosynthetic water oxidation at high O_2 backpressure monitored by delayed chlorophyll fluorescence. Biochemistry 44, 12775–12779.PubMedGoogle Scholar
  33. Dashdori, N., Zhang, H., Kim, H., Yan, J., Cramer, W.A. and Savikhin, S. (2005) The single chlorophyll a molecule in the cytochrome b6 f complex, unusual optical properties protect the complex against singlet oxygen. Biophys. J. 88, 4178–4187.Google Scholar
  34. Decker, J.E. and de Wit, M.J. (2006) Carbon isotope evidence for CAM photosynthesis in the Mesozoic. Terra Nova 18, 9–17.Google Scholar
  35. Demmig-Adams, B., Adams III, W.W. and Mattoo, A. (eds.) (2006) Photoprotection, photoinhibition, gene regulation, and environment. Springer, New York.Google Scholar
  36. Dismukes, G.C., Klimo, V.V. Baranov, S.V., Kozlov, Yu, N., DasGupta, J. and Tyryshkin, A. (2001) The origin of atmospheric oxygen on Earth: The innovation of oxygenic photosynthesis. Proc. Natl. Acad. Sci. USA 98, 2170–2175.PubMedGoogle Scholar
  37. Eck, R.V. and Dayhoff, M.O. (1966) Evolution of the structure of ferredoxin based on living relics of primitive amino acid sequences. Science (N.S.) 152, 363–366.Google Scholar
  38. Evans, M. C., Buchanan, B.B. and Arnon, D.I. (1966) A new ferredoxin dependent carbon reduction cycle in a photosynthetic bacterium. Proc. Natl. Acad. Sci. USA 55, 928–934.PubMedGoogle Scholar
  39. Falkowski. P.G., Katz, M.E., Milligan, A.J., Fennel, K., Cramer, B.S., Aubry, M.P., Berner, R.A., Novacek, M.J. and Zapol, W.M. (2005) The rise of oxygen over the past 205 million years and the evolution of large placental mammals. Science 309, 2202–2204.PubMedGoogle Scholar
  40. Fennel, K., Follows, M. and Falkowski, P.G. (2005) The co-evolution of the nitrogen, carbon and oxygen cycles in the Proterozoic ocean. Am. J. Sci. 305, 526–545.Google Scholar
  41. Ferreira, K.N., Iverson, T.M., Maghlaoui, K., Barber, J. and Iwata, S. (2004) Architecture of the photosynthetic oxygen-evolving center. Nature 303, 1831–1837.Google Scholar
  42. Giordano, M., Beardall, J. and Raven, J.A. (2005) CO concentrating mechanisms in algae: Mechanisms, environmental modulation, and evolution. Annu. Rev. Plant Physiol. 56, 99–131.Google Scholar
  43. Golbeck, John H. (Ed.) (2006) Photosystem I: The light-driven plastocyanin: Ferredoxin oxidoreductase. Springer, New York.Google Scholar
  44. Golubic, S. and Seong-Joo, L. (1999) Early cyanobacterial fossil record: preservation, palaeoenvironments and identification. Eur. J. Phycol. 34, 339–348.Google Scholar
  45. Gomes, R., Levison, H.F., Tsiganis, K. and Morbidelli, A. (2005) Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435, 466–469.PubMedGoogle Scholar
  46. Gough, D.O. (1981) Solar interior structure and luminosity variations. Solar Physics 74, 21–34.Google Scholar
  47. Govindjee (2000) Milestones in photosynthesis research. In: Yunus, M., Pathre, U. and Mohanty, P. (eds.), Probing photosynthesis: Mechanisms, regulation and adaptation. Taylor & Francis, London, pp. 9–39.Google Scholar
  48. Govindjee, Beatty, J.T., Gest, H., Allen, J.F. (eds.) (2005) Discoveries in photosynthesis. Springer, Dordrecht.Google Scholar
  49. Granick, S. (1957) Speculations on the origins and evolution of photosynthesis. Ann. NY Acad. Sci. 69, 292–308.PubMedGoogle Scholar
  50. Gu, Y., Li, P., Sage, J.T. and Champion, P.M. (1993) Photoreduction of heme proteins: spectroscopic studies and cross-section measurements. J. Am. Chem. Soc. 115, 4993–5004.Google Scholar
  51. Gutiérrez-Cirlos, E.B., Pérez-Gómez, B., Krogmann, D.W. and Gómez-Lojero, C. (2006) The phycocyanin-associated rod linker proteins of the phycobilisome of Gloeobacter violaceus PCC 7421 contain unusually located rod-capping domains. Biochim. Biophys. Acta 1757, 130–134.PubMedGoogle Scholar
  52. Hakala, M., Tuominen, I., Keränen, M., Tyystjärvi, T. and Tyystjärvi, E. (2005) Evidence for the role of the oxygen-evolving manganese complex in photoinhibition of Photosystem II. Biochim. Biophys. Acta 1706, 68–80.Google Scholar
  53. Hakala, M., Rantamäki, S., Puputti, E.-M., Tyystjärvi, T. and Tyystjärvi, E. (2006) Photoinhibition of manganese enzymes: insights into the mechanism of photosystem II photoinhibition. J. Exp. Bot. 57, 1809–1816.PubMedGoogle Scholar
  54. Hannah, J.L., Bekker, A., Stein, H.J., Markey, R.J. and Holland, H.D. (2004) Primitive Os and 2316 Ma age for marine shale: implications for Paleoproterozoic glacial events and the rise of atmospheric oxygen. Earth Planetary Sci. Lett. 225, 43–52.Google Scholar
  55. Hao, S.G., Beck, C.B. and Wang, D.M. (2003) Structure of the earliest leaves: Adaptations to high concentrations of atmospheric CO_2. Intern. J. Plant Sci. 164, 71–75.Google Scholar
  56. Haworth, M., Hesselbo, S.P., McElwain, J.C., Robinson, S.A. and Brunt, J. (2005) Mid-Cretaceous pCO_2 based on stomata of the exinct conifer Pseudofrenelopsis (Cheirolepidiaceae). Geology 33, 749–752.Google Scholar
  57. Heckman, D.S., Geiser, D.M., Eidell, B.R., Stauffer, R.L., Kardos, N.L. and Hedges, S.B. (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293, 1129–1133.PubMedGoogle Scholar
  58. Hess, W.R., Partensky, F., van der Staay, G.W.M., Garcia Fernandez, J.M., Borner, T. and Vaulot, D. (1996) Coexistence of phycoerythrin and a chlorophyll a/b antenna in a marine prokaryote. Proc. Natl Acad. Sci. USA 93, 11126-11130.PubMedGoogle Scholar
  59. Hirabayashi, H., Ishii, T., Takaichi, S., Inoue, K. and Uehara, K (2004) The role of carotenoids in the photoadaptation of the brown-colored sulfur bacterium Chlorobium phaeobacteroides. Photochem. Photobiol. 79, 280–285.PubMedGoogle Scholar
  60. Horodyski, R.J. and Knauth, L.P. (1994) Life on land in the Precambrian. Science 263, 494–498.PubMedGoogle Scholar
  61. Hu, X., Ritz, T., Damjanovic, A., Felix Autenrieth, F. and Schulten, K. (2002) Photosynthetic apparatus of purple bacteria. Quart. Revs Biophys. 35, 1–62.Google Scholar
  62. Huang, D., Everly, R. M. Cheng, R.H., Heymann, J.B., Schagger, H., Sled, V., Ohnishi, T., Baker, T.S. and Cramer, W.A. (1994) Characterization of the chloroplast cytochrome b f complex as a structural and functional dimer. Biochemistry. 33, 4401–4409.PubMedGoogle Scholar
  63. Huey, R.B. and Ward, P.D. (2005) Hypoxia, global warming, and terrestrial late Permian extinctions. Science 308, 398-401.PubMedGoogle Scholar
  64. Hügler, M., Hüber, H., Stetter, K.O. and Fuchs, G. (2003) Autotrophic CO2 fixation pathways in archaea (Crenarchaeota). Arch. Microbiol. 179, 160–173.PubMedGoogle Scholar
  65. Jahren, A.H., Porter, S. and Kuglitsch, J.J. (2003) Lichen metabolism identified in early Devonian terrestrial organisms. Geology 31, 99–102.Google Scholar
  66. Kappler, A., Pasquero, C., Konhauser, K.O. and Newman, D.K. (2005) Deposition of banded iron formtions by anoxygnic phototrophic Fe(II)-oxidizing bacteria. Geology 33, 865–868.Google Scholar
  67. Karol, K.G., McCourt, R.M., Cimino, M.T. and Delwiche, C.F. (2001) The closest living relatives of land plants. Science 294, 2351–2353.PubMedGoogle Scholar
  68. Ke, B. (2001) Photosynthesis: Photobiochemistry and photobiophysics. Springer, Dordrecht.Google Scholar
  69. Keeley, J.E. and Rundel, P.W. (2003) Evolution of CAM and C4 carbon-concentrating mechanisms. Int. J. Plant Sci. 164 (3 Suppl.), S55–S77.Google Scholar
  70. Kirschvink, J.L., Gaidos, E.J., Bertani, L.E., Beukes, N.J., Gutzmer, J., Maepa, L.N. and Steinberger, R.E. (2000) Paleoproterozoic snowball earth: Extreme climatic and geochemica global change and its biological consquences. Proc. Natl. Acad. Sci. USA 97, 1400–1405.PubMedGoogle Scholar
  71. Kiang, N.Y., Siefert, J., Govindjee and Blankenship, R.E. (2007) Spectral signatures of photosynthesis. I. Review of earth organisms. Astrobiology 7, 252–274.PubMedGoogle Scholar
  72. Kleine, T., Münker, C., Mezger, K. and Palmer, H. (2002) Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf–W chronometry. Nature 952–955.Google Scholar
  73. Kopp, R.E., Kirschwink, J-L., Hilburn, I.A. and Nash, C.Z. (2005) the Paleoproterozoic snowball Earth: A climate disaster triggered by the evolution of oxygenic photosynthesis. Proc. Natl. Acad. Sci. USA 102, 11131–11136.PubMedGoogle Scholar
  74. Krapecheckz, B., Barley, M.A. and Pickard, A.L. (2003) Hydrothermal and resedimented origins of the precursor sediments to banded iron formation: sedimentological evidence from the early Palaeoproterozoic Brockman supersequence of western Australia. Sedimentology 50, 979–1011.Google Scholar
  75. Kurisu, G., Zhang, H., Smith, J.L. and Cramer, W.A. (2003) Structure of the cytochrome b f complex of oxygenic photosynthesis: tuning the cavity. Science 302, 1009–1014.Google Scholar
  76. Lenton, T. (2001) The role of land plants, phosphorus weathering and fire in the rise and regulation of atmospheric oxygen. Global Change Biol. 7, 613–629.Google Scholar
  77. Levrard, B. and Laskar, J. (2003) Climate friction and the earth’s obliquity. Geophys. J. 154, 970–990.Google Scholar
  78. Marin, B., Nowack, E.C.M. and Melkonian, M. (2005) A plastid in the making: evidence for a second primary endosymbiosis. Protist 156, 425–432.PubMedGoogle Scholar
  79. Markham, K.R. and Porter, LJ. 1969. Flavonoids in the green algae (Chlorophyta). Phytochemistry 8, 1777–1781.Google Scholar
  80. Mauzerall, D. (1976) Chlorophyll and photosynthesis. Phil. Trans. Roy. Soc. Lond. B 273, 287–294.Google Scholar
  81. McElwain, J.C. (1998) Do fossil plants signal palaeatmospheric CO_2 concentration in teh geological past? Royal Soc. London Phil. Transact. B 353, 83–96.Google Scholar
  82. McElwain, J.C., Mitchell, F.J.G. and Jones, M.B (1995) Relationship of stomatal density and index of Salix cinerea to atmospheric carbon dioxide concentrations in the Holocene. The Holocene 5, 539–570.Google Scholar
  83. McElwain, J.C., Mayle, F.E. and Beerling, D.J. (2002) Stomatal evidence for a decline in atmospheric CO concentration during the Younger Dryas stadial: a comparison with Antarctic ice core records. J. Quaternary Sci. 17, 21–29.Google Scholar
  84. Mercer-Smith, J.A. and Mauzerall, D. (1981) Molecular hydrogen production by uroporphyrin and coproporhyrin: A model for the origin of photosynthetic function. Photochem. Photobiol. 34, 407–10.Google Scholar
  85. Moorbath, S. (2005) Palaebiology: Dating the earliest life. Nature 434, 155.PubMedGoogle Scholar
  86. Mulkidjanian, A.Y., Koonin, E.V., Makarova, K.S., Mekhedov S.L., Sorokin, A., Wolf, Y.I, Dufresne, A., Partensky, F., Burd, H., Kaznadzey, D., Haselkorn, R. and Galperin, M.Y. (2006) The cyanobacterial genome core and the origin of photosynthesis. Proc. Natl Acad. Sci. USA 103, 13126–13131.PubMedGoogle Scholar
  87. Nelson, N. and Ben-Shem, A. (2005) The structure of photosystem I and evolution of photosynthesis. BioEssays 27, 914–922.PubMedGoogle Scholar
  88. Nisbet, E. G., Cann, J. R. and VanDover, C. L. (1995) Origins of photosynthesis. Nature (London) 373, 479–480.Google Scholar
  89. Olson, J.M. (2006) Photosynthesis in the Archean era. Photosynthesis Res. 88, 109–117.Google Scholar
  90. Osborne, C.P. and Beerling, D.J. (2006) Nature’s green revolution: the remarkable evolutionary rise of C4 plants. Phil. Transact. Roy. Soc. B. – Biol. Sci. 361, 173–194.Google Scholar
  91. Petersen, J., Teich, R., Brinkmann, H. and Cerff, R. (2006) A “green” phosphoribulokinase in complex algae with red plastids: Evidence fro a single secondary endosymbiosis leading to haptophytes, cryptophytes, heterokonts, and dinoflagellates. J. Mol. Evol. 23, 1109–1118.Google Scholar
  92. Pierre, J., Bazin, M., Debey, P. and Santus, R. (1982) One-electron photo-reduction of bacterial cytochrome P450 by ultraviolet light. 1. Steady-state measurements. Eur. J. Biochem. 124, 533–537.PubMedGoogle Scholar
  93. Pierre, Y., Breyton, C., Lemoine, Y., Robert, B., Vernotte, C. and Popot, J.-L. (1997) On the presence and role of a molecule of chlorophyll a in the cytochrome b f complex. J. Biol. Chem. 272, 21901–21908.PubMedGoogle Scholar
  94. Rascio, N. (2002) The underwater life of secondarily aquatic plants: Some problems and solutions. Critical Reviews in Plant Sciences, 21, 401–427.Google Scholar
  95. Raven, J.A., Evans, M.C.W., and Korb, R.E. (1999) The role of trace metals in photosynthetic electron transport in O_2-evolving organisms. Photosynthesis Res. 60, 111–149.Google Scholar
  96. Raven, J.A., Kübler, J.E. and Beardall, J. (2000) Put out the light and then put out the light. J. Mar. Biol. Ass. UK 80, 1–25.Google Scholar
  97. Raymond, J. and Blankenship, R.E. (2003) Horizontal gene transfer in eukaryotic algal evolution. Proc. Natl Acad. Sci. USA 100, 7419-7420.PubMedGoogle Scholar
  98. Raymond, J., Zhaxybayeva, O., Gogarten, J.P. and Blankenship, R.E. (2003) Evolution of photosynthetic prokaryotes: a maximum-likelihood mapping approach. Royal Soc. London Phil. Transact. B 358, 223–230.Google Scholar
  99. Raymond, J., Siefert, J.L., Staples, C.R. and Blankenship, R.E. (2003) The natural history of nitrogen fixation. Mol. Biol. Evol. 21, 541–554.PubMedGoogle Scholar
  100. Reinfelder, J.R., Kraepiel, A.M.L., and Morel, F.M.M. (2000) Unicellular C4 photosynthesis in a marine diatom. Nature 407, 996–99PubMedGoogle Scholar
  101. Reinfelder, J.R., Milligan, A.J. and Morel F.M.M. (2004) The role of C4 photosynthesis in carbon accumulation and fixation in a marine diatom. Plant Physiol. 135, 2106–11.Google Scholar
  102. Rogers, M.B., Gilson, P.R., Su, V., McFadden, G.I. and Keeling, P.J. (2007) The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: Evidence for independent origins of Chlorarachniophyte and Euglenid secondary endosymbionts. Mol. Biol. Evol. 24, 54–62.Google Scholar
  103. Rosing, M.T. and Frei, R. (2004) U-rich Archaean sea-floor sediments from Greenland—indications of >3700 Ma oxygenic photosynthesis. Earth Planet. Sci. Lett. 217, 237–244.Google Scholar
  104. Rubinstein, B. (1993) Plasma membrane redox processes: components and role in plant processes. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 131–55.Google Scholar
  105. Rutherford, A.W. and Faller, P. (2003) Photosystem II: evolutionary perspectives. Phil. Trans. Roy. Soc. London B 358, 254–253.Google Scholar
  106. Sage, R.F. (2004) The evolution of C4 photosynthesis. New Phytologist 161, 341–370.Google Scholar
  107. Sauer, K and Yachandra, V.K. (2002) A possible evolutionary origin for the Mn-4 cluster of the photosynthetic water oxidation complex from natural MnO2 precipitates in the early ocean. Proc. Natl Acad. Sci. USA 99, 8631–8636.PubMedGoogle Scholar
  108. Segura, A., Krelove, K., Kasting, JF., Sommerlatt, D., Meadows, V., Crisp, D., Cohen, M. and Mlawer, E. (2003) Ozone concentrations and ultraviolet fluxes on earth-like planets around other stars. Astrobiology 3, 689–708.PubMedGoogle Scholar
  109. Selesi, D., Schmid, M. and Hartmann, A. (2005) Diversity of green-like and red-like ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes (cbbL) in differently managed agricultural soils. Appl. Environ. Microbiol. 71, 175–184.PubMedGoogle Scholar
  110. Stoebe, B. and Maier, U.-G. (2002) One, two, three: nature’s tool box for building plastids. Protoplasma 219, 123–130.PubMedGoogle Scholar
  111. Stroebel, D., Choquet, Y., Popot, J.-L. and Picot, D. (2003) An atypical haem in the cytochrome b_6 f complex. Nature 426, 413–418.PubMedGoogle Scholar
  112. Strzepek, R.F. and Harrison, P.J. (2004) Photosynthetic architecture differs in coastal and oceanic diatoms. Nature 431, 689–692.PubMedGoogle Scholar
  113. Summons, R.E., Jahnke, L.L., Hope, J.M. and Logan, G.A. (1999) 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400, 554–557.PubMedGoogle Scholar
  114. Tajika, E. (2003) Faint young sun and the carbon cycle: implication for the Proterozoic global glaciations. Earth Planet. Sci. Lett. 214, 443–453.Google Scholar
  115. Tapley, D.W., Buettner, G.R. and Shick, J.M. (1999) Free radicals and chemiluminescence as products of the spontaneous oxidation of sulfide in seawater, and their biological implications. Biol. Bull. 196, 52–56.Google Scholar
  116. Taylor, W.A., Free, C., Boyce, C., Helgemo, R., and Ochoada, J. (2004) SEM analysis of Spongiophyton interpreted as a fossil lichen. Int. J. Plant Sci. 165, 875–881.Google Scholar
  117. Tice, M.M. and Lowe, D.R. (2004) Photosynthetic microbial mats in the 3,416 Myr-old ocean. Nature 431, 549–552.PubMedGoogle Scholar
  118. Tice, M.M. and Lowe, D.R. (2006) Hydrogen-based carbon fixation in the earlies known photosynthetic organisms. Geology 34, 37–40.Google Scholar
  119. Tomitani. A., Knoll, A.H., Cavanaugh, C.M, and Ohno, T. (2006) The evolutionary diversification of cyanobacteria: Molecular-phylogenetic and paleontological perspectives. Proc. Natl Acad. Sci. USA 103, 5442–5447.PubMedGoogle Scholar
  120. Van Rensen, J.J.S., Xu, C. and Govindjee (1999) Role of bicarbonate in Photosystem II, the water—plastoquinone oxido-reductase of plant photosynthesis. Physiol. Plant. 105, 585–592.Google Scholar
  121. Warburg, O., Krippahl, G. and Jetschma, C. (1965) Widerlegung der Photolyse des Wassers und Beweis der Photolyse der Kohlensäure nach Versuchen mit lebender Chlorella und den Hill-Reagentien Nitrat und K Fe(Cn) . Z. Naturforsch. B B20, 993–996.Google Scholar
  122. Wellman, C.H., Osterloff, P.L. and Mohiuddin, U. (2003) Fragments of the earliest land plants. Nature 425, 282–285.PubMedGoogle Scholar
  123. White, S.N., Chave, A.D., Reynolds, G.T., Gaidos, E.J., Tyson, J.A. and Van Dover, C.L. (2000) Variations in ambient light emission from black smokers and flange pools on the Juan de Fuca Ridge. Geophys. Res. Lett. 27, 1151–1154.Google Scholar
  124. White, S.N., Chave, A.D. and Reynolds, G.T. (2002) Investigations of ambient light emission at deep-sea hydrothermal vents. J. Geophys. Res. Solid Earth 107 (B1), Art. No. 2001.Google Scholar
  125. White SN, Chave AD, Reynolds GT, Van Dover CL. (2002) Ambient light emission from hydrothermal vents on the. Mid-Atlantic Ridge. Geophys. Res. Lett. 29, Art. No. 1744.Google Scholar
  126. Wilde, S.A., Valley, J.W., Peck, W.H. and Graham, C.M. (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the earth 4.4 Gyr ago. Nature 409, 175–178.PubMedGoogle Scholar
  127. Williams, D.M., Kasting, J.F. and Frakes LA (1998) Low-latitude glaciation and rapid changes in the Earth’s obliquity explained by obliquity-oblateness feedback. Nature 396, 453–455.PubMedGoogle Scholar
  128. Woese, C.R. (2005) The archaeal concept and the world it lives in: a retrospective. In: Govindjee, J.T. Beatty, H. Gest, and J.F. Allen (Eds.), Discoveries in photosynthesis. Springer, Dordrecht, pp 1109–1120Google Scholar
  129. Wydrzynski, T.J., Satoh, K. (Eds.) (2005) Photosystem II — The light-driven water: Plastoquinone oxidoreductase (Advances in photosynthesis and respiration, vol. 22). Springer, Dordrecht, The Netherlands.Google Scholar
  130. Xiong, J. and Bauer, C.E. (2002) A cytochrome b origin of photosynthetic reaction centers: an evolutionary link betweeen respiration and photosynthesis. J. Mol. Biol. 322, 1025–1037.PubMedGoogle Scholar
  131. Xiong, J. and Bauer, C.E. (2002) Complex evolution of photosynthesis. Annu. Rev. Plant Biol. 53, 503–521.PubMedGoogle Scholar
  132. Yano, J., Kern, J,, Sauer, K., Latimer, M.J., Pushkar, Y., Biesiadka, J., Loll, B., Saenger, W., Messinger, J., Zouni, A. and Yachandra, V.K. (2006) Where water is oxidized to dioxygen: Structure of the photosynthetic Mn_4 Ca cluster. Science 314, 821–825.PubMedGoogle Scholar
  133. Yin, Q., Jacobsen, S.B., Yamashita, K., Blichert-Toft, J., Télouk, P. and Albarède, F. (2002) A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites. Nature 418, 949–952.PubMedGoogle Scholar
  134. Yoshi, Y. (2006) Diversity and evolution of photosynthetic antenna systems in green plants. Phycol. Res. 54, 220–229.Google Scholar
  135. Yuan, X., Xiao, S. and Taylor, T.N. (2005) Lichen-like symbiosis 600 million years ago. Science 308, 1017–1020.PubMedGoogle Scholar
  136. Zhang, B.P., Janicke, M.T., Woodruff, W.H. and Bailey, J.A. (2005) Photoreduction of a heme peptide encapsulated in nanostructured materials. J. Phys. Chem. B. 109, 19547–19549.PubMedGoogle Scholar
  137. Zhaxybayeva, O., Lapierre, P. and Gogarten, J.P. (2005) Ancient gene duplications and the root(s) of the tree of life. Protoplasma 227, 53–64.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Lars Olof Björn
  • Govindjee

There are no affiliations available

Personalised recommendations