Photobiology pp 197-222 | Cite as

Photochemical Reactions in Biological Light Perception and Regulation

  • Lars Olof Björn


Many photochemical reactions involved in the sensing of and regulation by light and ultraviolet radiation by organisms consist of cis-trans (and trans-cis) isomerizations. This chapter starts with a description of these, and then goes on to the blue-light receptors cryptochrome and phototropin, which use other chemical mechanisms, and concludes with a discussion of ultraviolet-B receptors.


Photochemical Reaction Action Spectrum Flavin Adenine Dinucleotide Chromatic Adaptation Antenna Pigment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmad, M., Galland, P., Ritz, T., Wiltschko, R. and Wiltschko, W. (2007) Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana. Planta 225, 615–624.PubMedCrossRefGoogle Scholar
  2. Assmann, S.M. and Wang, X.-Q. (2001) From milliseconds to millions of years: guard cells and environmental responses. Curr. Opinion Plant Biol. 4, 421–428.Google Scholar
  3. Ballaré, C.L., Barnes, P.W. and Flint, S.D. (1995) Inhibition of hypocotyl elongation by ultraviolet-B radiation in de-etiolating tomato seedlings. I. The photoreceptor. Physiol. Plant. 93, 584–592.CrossRefGoogle Scholar
  4. Ballario, P. and Macino, G. (1997) White-collar proteins: PASsing the light signal in Neurospora crassa. Trends Microbiol. 5, 458–462.PubMedCrossRefGoogle Scholar
  5. Barinaga, M. (2002) How the brain’s clock gets daily enlightenment. Science 295, 955–957.PubMedCrossRefGoogle Scholar
  6. Beale, S.I. (1999) Enzymes of chlorophyll biosynthesis. Photosynthesis Res. 60, 43–73.CrossRefGoogle Scholar
  7. Beggs, C.J. and Wellmann, E. (1985) Analysis of light-controlled anthocyanin formation in coleoptiles of Zea mays L.: The role of UV-B, blue, red and far-red light. Photochem. Photobiol. 41, 481–486.Google Scholar
  8. Beggs, C.J. and Wellmann, E. (1994) Photocontrol of flavonoid synthesis. In: R.-E. Kendrick and G.H.M Kronenberg (eds.), Photomorphogenesis in plants, 2nd ed. Kluwer Academic Publishers, Dordrecht, pp. 733–751.Google Scholar
  9. Berson, D.M., Dunn, F.A. and Takao, M. (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295, 1070–1073.PubMedCrossRefGoogle Scholar
  10. Bhoo, S.-H., Davis, S.D., Walker, J., Karniol, B. and Vierstra, R.D. (2001) Bacteriophytochromes are photochromic histidine kinasis using a biliverdin chromophore. Nature 414, 776–779.PubMedCrossRefGoogle Scholar
  11. Björn, G.S. (1980) Photoreversibly photochromic pigments from blue-green algae. Diss. Lund University. LUNBDS/(NBFB-1009/1-28/(1980).Google Scholar
  12. Björn, G.S. and Björn, L.O. (1978) Action spectra for conversions of phytochrome c from Nostoc muscorum. Physiol. Plant. 43, 195–200.Google Scholar
  13. Björn, L.O. (1979) Photoreversibly photochromic pigments in organisms: properties and role in biological light perception. Quart. Revs Biophys. 12, 1–23.Google Scholar
  14. Björn, L.O. (1980) The history of phyto-photo-science (not to be left in skoto toto and silence). In: J. De Greef (Ed.), Photoreceptors and plant development. Proc. Annu. Europ. Photomorphogenesis Symp. pp. 9-13. Antwerp Univ. Press, Antwerp.Google Scholar
  15. Björn, L.O. (1984) Light-induced linear dichroism in photoreversibly photochromic sensor pigments. V. Reinterpretation of the experiments on in vivo action dichroism of phytochrome. Physiol. Plant. 60, 369–372.CrossRefGoogle Scholar
  16. Björn, L.O. (1999) UV-B effects: Receptors and targets. In: G.S. Singhal, G. Renger, S.K. Sopory, K.-D. Irrgang, and Govindjee (Eds) Concepts in photobiology: Photosynthesis and photomorphogenesis. Narosa Publishing House, New Delhi, pp. 821–832.Google Scholar
  17. Boylan, M.T. and Quail, P. H. (1996) Are the phytochromes protein kinases? Protoplasma 195, 12–17.CrossRefGoogle Scholar
  18. Briggs, W.R., Beck, C.F., Cashmore, A.R. et al . (17 authors) (2001) The phototropin family of photoreceptors. Plant Cell 13, 993–997.PubMedCrossRefGoogle Scholar
  19. Brosché, M. 2001. Deconstruction of a plant UV-B stress response. Diss. Göteborg University. ISBN 91-628-4606-X.Google Scholar
  20. Butler, W.L. (1980) Remembrances of phytochrome twenty years ago. In: J. De Greef (Ed.), Photoreceptors and plant development. Proc. Annu. Europ. Photomorphogenesis Symp. pp. 3-7. Antwerp Univ. Press, Antwerp.Google Scholar
  21. Christie, J.M. and Briggs, W.R. (2001) Blue light sensing in higher plants. J. Biol. Chem. 276, 11457–11460.PubMedCrossRefGoogle Scholar
  22. Crosson, S. and Moffat, K. (2001) structure of a flavin-binding plant photoreceptor domain: Insights into light mediated signal transduction. Proc. Natl Acad. Sci. USA 98, 2995-3000.Google Scholar
  23. Davis, S.J., Vener, A.V. and Vierstra, R.D. (1999) Bacteriophytochromes: Photochrome-like photoreceptors from nonphotosynthetic eubacteria. Science 286, 2517–2520.PubMedCrossRefGoogle Scholar
  24. Diakoff, S. and Scheibe, J. (1973) Action spectra for chromatic adaptation in Tolypothrix tenuis. Plant Physiol. 51, 382–385.PubMedGoogle Scholar
  25. Etzold, H. (1965) Der Polarotropismus und Phototropismus der Chloronemen von Dryopteris filix-mas (L.) Schott. Planta 64, 254–280.CrossRefGoogle Scholar
  26. Fankhauser, C. (2001) The phytochromes, a family of Red/Far-red absorbing photoreceptors. J. Biol. Chem. 276, 11453–11456.PubMedCrossRefGoogle Scholar
  27. Folta, K.M. and Spalding, E.P. (2001) Unexpected roles for cryptochrome2 and phototropin revealed by high-resolution analysis of blue ligh-mediated hypocotyl growth inhibition. Plant J. 26, 471–478.PubMedCrossRefGoogle Scholar
  28. Foster, K.W., Saranak, J., Patel, N., Zarilli, G., Okabe, M., Kline, T. and Nakashini, K. (1984) A rhodopsin is the functioning photoreceptor for phototaxis in the unicellular eukaryote Chlamydomonas. Nature 311, 756–759.PubMedCrossRefGoogle Scholar
  29. Frechilla, S., Zhu, J.X., Talbott, L.D. and Zeiger, E. (1999) Stomata from npq1, a zeaxanthin-less Arabidopsis mutant lacking a specific response to blue light. Plant Cell Physiol. 40, 949–954.PubMedGoogle Scholar
  30. Frechilla, S., Talbott, L.D., Bogomolni, R.A. and Zeiger, E. (2000) Reversal of a blue-light stimulated stomatal opening by green light. Plant Cell Physiol. 41, 171–176.PubMedGoogle Scholar
  31. Frohnmeyer, H., Bowler, C. and Schäfer, E. (1997) Evidence for some signal transduction elements involved in UV-light-dependent responses in parsley protoplasts. J. Exp. Bot. 48, 739–750.CrossRefGoogle Scholar
  32. Frohnmeyer, H., Bowler, C., Zhu, J.-K., Yamagata, H., Schäfer, E. and Chua, N.-H. (1998) different roles for calcium and calmodulin in phytochrome- and UV-regulated expression of chalcone synthase. Plant J. 13, 763–77.CrossRefGoogle Scholar
  33. Frohnmeyer, H., Loyall, L., Blatt, M.R. and Grabov, A. (1999) Millisecond UV-B irradiation evokes prolonged elevation of cytosolic-free Ca2+and stimulates gene expression in transgenic parsley cell cultures. Plant J. 20, 109–117.PubMedCrossRefGoogle Scholar
  34. Fujita, Y. and Hattori, A. (1962) Photochemical interconversion between precursors of phycobilin chromoprotein in Tolypothrix tenuis. Plant Cell Physiol. 3, 209–220.Google Scholar
  35. Galland, P. (2001) Phototropism in Phycomyces. In: D.-P. Häder and M. Lebert (eds.), Photomovement. Elsevier, Amsterdam, pp. 621–657.CrossRefGoogle Scholar
  36. Genick, U.K., Borgstrahl, G.E.O., Kingman, N., Ren, Z., Pradervand, C., Burke, P.M., Srajer, V., Teng, T.-Y., Schildkamp, W., McRee, D.E., Moffat, K. and Getzoff, E.D. (1997) Structure of a protein cycle intermediate by millisecond time-resolved crystallography. Science 275, 1471–1475.PubMedCrossRefGoogle Scholar
  37. Genick, U.K., Soltis, S.M., Kuhn, P., Canestrelli, I.L. and Getzoff, E.D. (1998) Structure at 0.85 Å resolution of an early protein photocycle intermediate. Nature 392, 206–209.PubMedCrossRefGoogle Scholar
  38. Gilroy, S. and Trewavas, A. (2001) Signal processing and transduction in plant cells: The end of a beginning? Nature Rev. Mol. Cell. Biol. 2, 307–314.CrossRefGoogle Scholar
  39. Grossman, A.R., Bhaya, D. 6 He, Q. (2001) Tracking the light environment by cyanobacteria and the dynamic nature of light harvesting. J. Biol. Chem. 276, 11449–11452.PubMedCrossRefGoogle Scholar
  40. Gualtieri, P. 2001. Rhodopsin-like proteins: Light detection pigments in Leptolyngbya, Euglena, Ochromonas, Pelvetia. In: D.-P. Häder and M. Lebert (eds.) Photomovement. Elsevier, Amsterdam, pp. 281–295.CrossRefGoogle Scholar
  41. Hansson, K.M., Li, B. and Simon, J.D. (1997) A spectroscopic study of the epidermal ultraviolet chromophore trans-urocanic acid. J. Am. Chem. Soc. 119, 2715–2721.CrossRefGoogle Scholar
  42. Hanzawa, H., Shinomura, T., Inomata, K., Kakiuchi, T., Kinoshita, H., Wada, K., and Furuya, M. (2002) Structural requirements of bilin chromophore for the photosensory specificity of phytochromes A and B. Proc. Natl Acad. Sci. USA 99, 4725–4729.Google Scholar
  43. Hartmann, U., Valentine, W.J., Christie, J.M., Hays, J., Jenkins, G.I. and Weisshaar, B. (1998) Identification of UV/blue light-responsive elements in the Arabidopsis thaliana chalcone synthasepromoter using a homologous protoplast transient expression system. Plant Molecul. Biol. 36, 741–754.CrossRefGoogle Scholar
  44. Hattar, S., Liao, H.-W., Takao, M., Berson, D.M. and Yau, K.-W. (2002) Melanopsin-containing retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science 295, 1065–1070.PubMedCrossRefGoogle Scholar
  45. Haupt, W. (1970) Localization of phytochrome in the cell. Physiol. Vég. 8, 551–563.Google Scholar
  46. Hegemann, P. and Deininger, W. (2001) Algal eyes and their rhodopsin photoreceptors. In: D.-P. Häder and M. Lebert (eds.), Photomovement. Elsevier, Amsterdam, pp. 475–503.Google Scholar
  47. Herdman, M., Coursin, T., Rippka, R., Houmard, J. and Tandeau de Marsac, N. (2000) A new appraisal of the prokaryotic origin on eukaryotic phytochromes. J. Mol. Evol. 51, 205–213.PubMedGoogle Scholar
  48. Hoff, W.D., Jung, K.-H. and Spudich (1997. Molecular mechanism of photosignaling by archaeal sensory rhodopsins. Annu. Rev. Biophys. Biomol. Struct. 26, 223–258.Google Scholar
  49. Hubschmann, T., Borner, T., Hartmann, E. and Lamparter, T. (2001) Characterization of the Cph1 holo-phytochrome from Synechocystis sp. PCC 6803. Eur. J. Biochem. 268, 2055–2063.PubMedCrossRefGoogle Scholar
  50. Iino, M., Ogawa, T., and Zeiger, E. (1985) Kinetic properties of the blue-light response of stomata. Proc. Natl Acad. Sci. USA 82, 8019–8023.Google Scholar
  51. Iino, M. (2001) Phototropism in higher plants. In: D.-P. Häder and M. Lebert (eds.), Photomovement. Elsevier, Amsterdam, pp. 659–812.CrossRefGoogle Scholar
  52. Jarillo, J.A., Gabrys, H., Capel, J., Alonso, J.M., Ecker, J.R., and Cashmore, A.R. (2001) Phototropin-related NPL1 controls chloroplast relocation induced by blue light. Nature 410, 952–954.PubMedCrossRefGoogle Scholar
  53. Jiang, Z.Y., Swem, L.R., Rushing, B.G., Devanathan, S., Tollin, G. and Bauer, C.E. (1999) Bacterial photoreceptor with similarity to photoactive yellow protein and plant phytochromes. Science 285, 406–409.PubMedCrossRefGoogle Scholar
  54. Jones, A.M. and Quail, P. (1986) Quaternary structure of 124-kilodalton phytochrome from Avena sativa L. Biochemistry 25, 2987–2995.CrossRefGoogle Scholar
  55. Kadota, A., Wada, M., and Furuya, M. (1982) Phytochrome-mediated phototropism and different dichroic orientation of Pr and Pfr in protonemata of the fern Adiantum capillus-veneris. Photochem. Photobiol. 35, 533–536.Google Scholar
  56. Kagawa, T., Sakai, T., Suetsugu, N., Oikawa, K., Ishiguru, S., Kato, T., Tabata, S., Okada, K. and Wada, M. (2001) Arabidopsis NPL1: A phototropin homolog controlling the chloroplast high-light avoidance response. Science 291, 2138–2141.PubMedCrossRefGoogle Scholar
  57. Kalbin, G. (2001) Towards the understanding of biochemical plant responses to UV-B. Diss. Göteborg University. ISBN 91-628-4627-2.Google Scholar
  58. Kehoe, D.M. and Grossman, A.R. (1996) Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors. Science 273, 1409–1412.PubMedCrossRefGoogle Scholar
  59. Kehoe, D.M. and Gutu, A. (2006) responding to color: The regulation of complementary chromatic adaptation. Annu. Rev. Plant Biol. 57, 127–150.PubMedCrossRefGoogle Scholar
  60. Lamparter, T. and Marwan, W. (2001) Spectroscopic detection of a phytochrome-like photoreceptor in the myxomycete Physarum polycephalum and the kinetic mechanism for the photocontrol of sporulation by Pfr. Photochem. Photobiol. 73, 697–702.PubMedCrossRefGoogle Scholar
  61. Laudet, V. (1997) Evolution of the nuclear receptor superfamily: early diversification from an ancestral orphan receptor. J. Mol. Biol. 19, 207–226.Google Scholar
  62. Lazaroff, N. (1973) Photomorphogenesis and Nostocacean development. In: N.G. Carr and B.A. Whitton (eds.), Biology of blue-green algae (Botanical Monographs, vol. 9). Blackwell Scientific Publications, Oxford.Google Scholar
  63. Lazaroff, N. and Schiff, J. (1962) Action spectrum for developmental photoinduction of the blue-green alga Nostoc muscorum. Science 137, 603–604.PubMedCrossRefGoogle Scholar
  64. Lenci, F. Ghetti, F. and Song, P.-S. (2001) Photomovement in ciliates. In: D.-P. Häder and M. Lebert (eds.) Photomovement. Elsevier, Amsterdam, pp. 281–295.Google Scholar
  65. Li, B., Hanson, K.M. and Simon, J.D. (1997) Primary processes of the electronic excited states of trans-urocanic acid. Phys. Chem. A. 101, 969–972.CrossRefGoogle Scholar
  66. Lin, C., Robertson, D.E., Ahmad, M., Raibekas, A.A., Schuman Jorns, M., Dutton, P.L. and Cashmore, A.R. (1995) Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1. Science 269, 968–970.PubMedCrossRefGoogle Scholar
  67. Lin, C. (2000) Plant blue-light receptors. Trends Plant Sci. 5, 337–342.PubMedCrossRefGoogle Scholar
  68. Merrow. M. and Roenneberg, T. (2001) Circadian clocks: Running on redox. Cell, 106, 141–143.PubMedCrossRefGoogle Scholar
  69. Mohr, H. (1994) Coaction between pigment systems. In: R.-E. Kendrick and G.H.M. Kronenberg (Eds.) Photomorphogenesis in plants, 2nd ed. Kluwer Acad. Publ., Dordrecht, pp. 545–564.Google Scholar
  70. Montgomery, B.L. (2007) Sensing the light: photoreceptive systems and signal transduction in cyanobacteria. Molec. Microbiol. 64, 16–27.CrossRefGoogle Scholar
  71. Morrison, H., Avnir, D., Bernasconi, C. and Fagan, G. (1980) Z/E photoisomerization of urocanic acid. Photochem. Photobiol. 32, 711–714.Google Scholar
  72. Morrison, H., Bernasconi, C. and Pandey, G. (1984) A wavelength effect on urocanic acid E/Z photoisomerization. Photochem. Photobiol. 40, 549–550.PubMedGoogle Scholar
  73. Neff, M.M. and Chory, J. (1998) Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during Arabidopsis development. Plant Physiol. 118, 27–35.Google Scholar
  74. Nozue, K., Kanegae, T., Imaizumi, T., Fukuda, S., Okamoto, H., Yeah, K.-C., Lagarias, J.C. and Wada, M. (1998) A phytochrome from the fern Adiantum with features of the putative photoreceptor NPH1. Proc. Natl Acad. Sci. USA, 95, 15826–15830.Google Scholar
  75. Okada, T., Ernst, O.P., Palczewski, K. and Hofmann, K.P. (2001) Activation of rhodopsin: new insights from structural and biochemical studies. Trends Bioch. Sci. 26, 318–324.CrossRefGoogle Scholar
  76. Page, C.S., Merchán, M. and Serrano-Andrés, L. (1999) A theoretical study of the low-lying excited states of trans- and cis-urocanic acid. J. Phys. Chem. A 103, 9864–9871.CrossRefGoogle Scholar
  77. Parks, B.M., Folta, K.M. 6 Spalding, E.P. (2001) Photocontrol of stem growth. Curr. Opinion Plant Biol. 2001, 436–440.Google Scholar
  78. Pellequeler, J.-L., Wagner-Smith, K.A., Kay, S.A. and Getzoff, E.D. (1998) Photoactive yellow protein: A structural prototype for the three-dimensional fold o the PAS domain superfamily. Proc. Natl. Acad. Sci. USA 95, 5884–5890.Google Scholar
  79. Portwich, A. and Garcia-Pichel, F. (2000) A novel prokaryotic UVB photoreceptor in the cyanobacterium Chlorogloeopsis PCC 6912. Photochem. Photobiol. 71, 493–498.PubMedCrossRefGoogle Scholar
  80. Prêle, C.M., Finlay-Jone, J.J. and Hart, P.H. (2006) The receptor for cis-urocanic acid remains elusive. J.Investig. Dermatol. 126, 1191–1193.PubMedCrossRefGoogle Scholar
  81. Provencio, I., Jiang, G., De Grip, W.J., Hayes, W.P. and Rollag, M.D. (1998) Melanopsin: An opsin in melanophores, brain, and eye. Proc. Natl. Acad. Sci. USA 95, 340–345.Google Scholar
  82. Rospendowski, B.N., Farrens, D.L., Cotton, T.M. and Song, P.-S. (1989) Surface enhanced resonance Raman scattering (SERRS) as a probe of the structural differences between the Pr and Pfr forms of phytochrome. FEBS Lett. 258, 1–4.PubMedCrossRefGoogle Scholar
  83. Ryan, W. and Levy, D.H. (2001) Electronic spectroscopy and photoisomerization of trans-urocanic acid in a supersonic jet. J. Am. Chem. Soc. 123, 961–966.PubMedCrossRefGoogle Scholar
  84. Sage, L.C. (1992) Pigment of the imagination: A history of phytochrome research. Academic Press, San Diego.Google Scholar
  85. Salomon, M., Christie, J.M., Knieb, E., Lempert, U. and Briggs, W.R. (2000) Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin. Biochemistry 39, 9401–9410.PubMedCrossRefGoogle Scholar
  86. Sakai, T., Kagawa, T., Kasahara, M., Swartz, T.E., Christie, J.M., Briggs, W.R., Wada, M., and Okada, K. (2001) Arabidopsis nph1 and npl1: Blue-light receptors that mediate both phototropism and chloroplast relocation. Proc. Natl Acad. Sci. USA 98, 6969–6974.Google Scholar
  87. Sarkar, H.K. and Song, P.S. Nature of phototransformation of phytochrome as probed by intrinsic tryptophan residues. Biochemistry 21, 1967–1972.Google Scholar
  88. Scheibe, J. (1962) Photoreversible pigment: occurence in a blue-green alga. Science 176, 1037–1039.CrossRefGoogle Scholar
  89. Schmid, G.H. (1970) The effect of blue light on some flavine enzymes. Hoppe Seylers Z. Physiol. Chem. 351, 575–578.PubMedGoogle Scholar
  90. Schmid, G.H. and Schwarze, P. (1969) Blue light enhanced respiration in a colorless Chlorella mutant. Hoppe Seylers Z. Physiol. Chem. 350, 1513–1520.PubMedGoogle Scholar
  91. Schneider-Poetsch, H.A.W., Kolukisaoglu, U., Clapham, D.H., Hughes, J. and Lamparter, T. (1998) Non-angiosperm phytochromes and the evolution of vascular plants. Physiol. Plant. 102, 612–622.CrossRefGoogle Scholar
  92. Shropshire, W. and Withrow, R.B. (1958) Action spectrum of phototropic tip-curvature of Avena. Plant Physiol. 33, 360–366.PubMedGoogle Scholar
  93. Sineshchekov, V.A. (1995) Photobiophysics and photobiochemistry of the heterogeneous phytochrome system. Biochim. Biophys. Acta 1228, 125–164.CrossRefGoogle Scholar
  94. Spudich, J.L. (2001) Color-sensitive vision by halobacteria. In: D.-P. Häder and M. Lebert (eds.), Photomovement . Elsevier, Amsterdam, pp. 151–178.Google Scholar
  95. Sundqvist, D. and Björn, L.O. (1983a) Light-induced linear dichroism in photoreversibly photochromic sensor pigments. II. Chromophore rotation in immobilized phytochrome. Photochem. Photobiol. 37, 69–75.Google Scholar
  96. Sundqvist, D. and Björn, L.O. (1983b) Light-induced linear dichroism in photoreversibly photochromic sensor pigments. III. Chromophore rotation estimated by polarized light reversal of dichroism. Physiol. Plant. 59, 263–269.CrossRefGoogle Scholar
  97. Takeda, J., Ozeki, Y. and Yoshida, K. (1997) An action spectrum for induction of promoter activity of phenylammonia lyase gene by UV in carrot suspension cells. Photochem. Photobiol. 66, 464–470.Google Scholar
  98. Taylor, R.R. and Zhulin, I.B. (1999) PAS domains: Internal sensors of oxygen, redox potential, and light. Microbiol. Mol. Biol. Revs. 63, 479–506.Google Scholar
  99. Thimann, K.V. and Curry, G.M. (1961) Phototropism. In: W.D. McElroy and B. Glass (eds.), Light and life. Johns Hopkins Press, Baltimore, pp. 646–672.Google Scholar
  100. Todo, T., Ryo, H., Yamamoto, K., Toh, H., Inui, T., Ayaki, H., Nomura, T. and Ikenaga, M. (1996) Drosophila (6-4)photolyase, a human photolyase homolog, and the blue-light photoreceptor family. Science 272, 109–112.PubMedCrossRefGoogle Scholar
  101. Tokutomi, S. and Mimuro, M. (1989) Orientation of the chromophore transition moment in the 4-leaved shape model for pea phytochrome molecule in red-light absorbing form and its rotation induced by the phototranstransformation to the far-red-light absorbing form. FEBS Lett. 255, 350–353.CrossRefGoogle Scholar
  102. Vogelmann, T.C. and Scheibe, J. (1978) Action spectra for chromatic adaptation in blue-green Fremyella diplosiphon. Planta 143, 233–239.CrossRefGoogle Scholar
  103. Walterscheid, J.P., Nghiem, D.X., Kazimi, N., Nutt, L.K., McConkey, D.J., Norval, M. and Ullrich, S.E. (2006) Cis-urocanic acid, a sunlight-induced immunosuppressive factor, activates immune supression via the 2A 5-HT receptor. Proc. Natl. Acad. Sci. USA 103, 17420–17425.Google Scholar
  104. Wade, H.K., Bibikova, T.N., Valentine, W.J. and Jenkins, G.I. (2001) Interactions within a network of phytochrome, cryptochrome and UV-B transduction pathways regulate chalcone synthase gene expression in Arabidopsis leaf tissue. Plant. J. 25, 675–685.PubMedCrossRefGoogle Scholar
  105. Wang, H., Ma, L.G., Li, J.M., Zhao, H.Y. and Deng, W.W. (2001) Direct interaction of Arabidopsis cryptochromes with COP1 in mediation of photomorphogenic development. Science 294, 154–158.PubMedCrossRefGoogle Scholar
  106. Watson, J.C. (2000) Light and protein kinases. Adv. Botanical Res. Incorporating Adv. Plant Pathol. 32, 149–184.Google Scholar
  107. Wellmann, E. (1975) Der Einfluss physiologischer UV-Dosen auf Wachstum und Pigmentierung von Umbelliferenkeimlingen. In: E. Bacher (ed.), Industrieller Pflanzenbau. Tech. Univ. Wien Selbstverlag, pp. 229–239Google Scholar
  108. Wellmann, E. (1983) UV radiation in Photomorphogenesis. In: W. Shropshire Jr. and H. Mohr (eds.), Enc. Plant Physiol., New Series 16B. Springer Verlag, Berlin, pp. 745–756.Google Scholar
  109. Yatsuhashi, H., Hashimoto, T. and Shimizu, S. (1982) Ultraviolet action spectrum for anthocyanin formation in broom Sorghum first internodes. Plant Physiol. 70, 735–741.PubMedCrossRefGoogle Scholar
  110. Zeiger, E. (2000) Sensory transduction of blue light in guard cells. Trends Plant Sci. 5, 183–185.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Lars Olof Björn

There are no affiliations available

Personalised recommendations