Electrophysiology of Attention

  • Ronald A. Cohen


Advances in electrophysiology occurring in the middle of the twentieth century provided a nonintrusive means of studying the bioelectrical activity associated with behavior in humans and the first method for assessing the activity of the brain. Early psychophysiological research was typically crude and plagued with methodological problems related to various technical limitations (e.g., Angell and Thompson [1]). Nevertheless, a foundation was established for the investigation of the physiological manifestations of cognition. Although methodological complexities continue to present an interpretive problem in experiments, there is now abundant evidence that both central and peripheral bioelectrical activity reflect behavioral and cognitive processes. The observation of this physiological activity led to the concept of arousal, which became an important part of many theories of attention.


Skin Conductance Response Attention Deficit Disorder Attentional Allocation Orient Response Mismatch Negativity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Angell, J., & Thompson, H. B. (1899). A study of the relations between certain synaptic processes and consciousness. Psychological Review, 6, 32–39.Google Scholar
  2. 2.
    James, W. (1884). What is an emotion? Mind, 9, 188–204.Google Scholar
  3. 3.
    James, W. (1922). What is emotion? In K. Dunlap (Ed.), In the emotions. Baltimore: William and Wilkins.Google Scholar
  4. 4.
    Cannon, W. B. (1929). Bodily changes in pain, horror, fear and rage (2nd ed.). New York: Appleton.Google Scholar
  5. 5.
    Duffy, E. (1962). Activation and behavior. New York: Wiley.Google Scholar
  6. 6.
    Duffy, E. (1972). Activation. In N. S. Greenfield & R. A. Sternbach (Eds.), Handbook of psychophysiology. New York: Holt, Rhinehart & Winston.Google Scholar
  7. 7.
    Schachter, S., & Singer, J. E. (1962). Cognitive, social and physiological determinants of emotional state. Psychological Review, 69, 379–399.PubMedGoogle Scholar
  8. 8.
    Ax, A. F. (1953). The physiological differentiation between fear and anger in humans. Psychosomatic Medicine, 15, 433–442.PubMedGoogle Scholar
  9. 9.
    May, J. R., & Johnson, H. J. (1973). Physiological activity to internally elicited arousal and inhibitory thoughts. Journal of Abnormal Psychology, 82, 239–245.PubMedGoogle Scholar
  10. 10.
    Schwartz, G. E. (1988). Emotion and psychophysiological organization: A systems approach. In M. G. H. Coles, E. Donchin, & S. W. Porges (Eds.), Psychophysiology: Systems, processes, and applications (pp. 354–377). New York: The Guilford Press.Google Scholar
  11. 11.
    Schwartz, G. E., & Weinberger, D. A. (1980). Patterns of emotional responses to affective situations: Relations among happiness, sadness, anger, fear, depression and anxiety. Motivation and Emotion, 4, 175–191.Google Scholar
  12. 12.
    Roberts, R. J., & Weerts, T. C. (1982). Cardiovascular responding during anger and fear imagery. Psychological Reports, 50(1), 219–230.PubMedGoogle Scholar
  13. 13.
    Roberts, R. J., & Weerts, T. C. (1984). Forearm blood flow responding prior to voluntary isometric contraction. Psychophysiology, 21(4), 363–370.PubMedGoogle Scholar
  14. 14.
    LeDoux, J. (1996). Emotional networks and motor control: A fearful view. Progress in Brain Research, 107, 437–446.PubMedGoogle Scholar
  15. 15.
    LeDoux, J. (1998). Fear and the brain: Where have we been, and where are we going? Biological Psychiatry, 44(12), 1229–1238.PubMedGoogle Scholar
  16. 16.
    LeDoux, J. (2003). The emotional brain, fear, and the amygdala. Cellular and Molecular Neurobiology, 23(4–5), 727–738.PubMedGoogle Scholar
  17. 17.
    LeDoux, J. E., Thompson, M. E., Iadecola, C., Tucker, L. W., & Reis, D. J. (1983). Local cerebral blood flow increases during auditory and emotional processing in the conscious rat. Science, 221, 576–578.PubMedGoogle Scholar
  18. 18.
    LeDoux, J. E. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23, 155–184.PubMedGoogle Scholar
  19. 19.
    LeDoux, J. E., & Hirst, W. (1986). Mind and brain: Dialogues in cognitive neuroscience. Cambridge [Cambridgeshire]. New York: Cambridge University Press.Google Scholar
  20. 20.
    Ledoux, J. E., & Muller, J. (1997). Emotional memory and psychopathology. Philosophical Transactions of the Royal Society of London, 352(1362), 1719–1726.PubMedGoogle Scholar
  21. 21.
    Ledoux, J. E., Sakaguchi, A., & Reis, D. J. (1983). Strain differences in fear between spontaneously hypertensive and normotensive rats. Brain Research, 277(1), 137–143.PubMedGoogle Scholar
  22. 22.
    LeDoux, J. E., Sakaguchi, A., & Reis, D. J. (1984). Subcortical efferent projections of the medial geniculate nucleus mediate emotional responses conditioned to acoustic stimuli. The Journal of Neuroscience, 4(3), 683–698.PubMedGoogle Scholar
  23. 23.
    Cohen, R. A., Paul, R., Zawacki, T. M., Moser, D. J., Sweet, L., & Wilkinson, H. (2001). Emotional and personality changes following cingulotomy. Emotion, 1(1), 38–50.PubMedGoogle Scholar
  24. 24.
    Kerns, J. G., Cohen, J. D., MacDonald, A. W., III, Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303(5660), 1023–1026.PubMedGoogle Scholar
  25. 25.
    Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624–652.PubMedGoogle Scholar
  26. 26.
    Damasio, A. R. (1994). Descartes’ error. New York: Harper Collins.Google Scholar
  27. 27.
    Damasio, A. R. (2010). Self comes to mind: Constructing the conscious brain. New York: Random House.Google Scholar
  28. 28.
    Bosse, T., Jonker, C. M., & Treur, J. (2008). Formalization of Damasio’s theory of emotion, feeling and core consciousness. Consciousness and Cognition, 17(1), 94–113.PubMedGoogle Scholar
  29. 29.
    Moruzzi, G., & Magoun, H. W. (1949). Brain stem reticular formation and activation of the EEG. Electroencephalography and Clinical Neurophysiology, 1, 455–473.PubMedGoogle Scholar
  30. 30.
    Kotliar, B. E. (1983). Neural mechanism of conditioning. New York, NY: Pergamon Press.Google Scholar
  31. 31.
    Kotliar B.I., Eroshenko, T. (1971). Hypothalamic gluceroceptors: the phenomenon of plasticity. physiol Behav 1971, Vol.7.Google Scholar
  32. 32.
    Yerkes, R., & Dodson, J. D. (1908). he relation of strength of stimulus to rapidity of habit formation. Journal of Comparative Neurology and Psychology, 18, 459–482.Google Scholar
  33. 33.
    Easterbrook, J. A. (1959). The effect of emotion on cue utilization and the organization of behavior. Psychological Review, 66(3), 183–201.PubMedGoogle Scholar
  34. 34.
    Broadbent, D. E. (1958). Perception and communication. London: Pergamon Press.Google Scholar
  35. 35.
    Kempton, S., Vance, A., Maruff, P., Luk, E., Costin, J., & Pantelis, C. (1999). Executive function and attention deficit hyperactivity disorder: Stimulant medication and better executive function performance in children. Psychological Medicine, 29(3), 527–538.PubMedGoogle Scholar
  36. 36.
    Loo, S. K., Teale, P. D., & Reite, M. L. (1999). EEG correlates of methylphenidate response among children with ADHD: A preliminary report. Biological Psychiatry, 45(12), 1657–1660.PubMedGoogle Scholar
  37. 37.
    McKetin, R., & Solowij, N. (1999). Event-related potential indices of auditory selective attention in dependent amphetamine users. Biological Psychiatry, 45(11), 1488–1497.PubMedGoogle Scholar
  38. 38.
    Solanto, M. V. (1997). Does methylphenidate influence cognitive performance? Journal of the American Academy of Child and Adolescent Psychiatry, 36(10), 1323–1325.PubMedGoogle Scholar
  39. 39.
    Pelham, W. E., Hoza, B., Kipp, H. L., Gnagy, E. M., & Trane, S. T. (1997). Effects of methylphenidate and expectancy of ADHD children’s performance, self-evaluations, persistence, and attributions on a cognitive task. Experimental and Clinical Psychopharmacology, 5(1), 3–13.PubMedGoogle Scholar
  40. 40.
    Lufi, D., Parish-Plass, J., & Gai, E. (1997). The effect of methylphenidate on the cognitive and personality functioning of ADHD children. The Israel Journal of Psychiatry and Related Sciences, 34(3), 200–209.PubMedGoogle Scholar
  41. 41.
    Geisler, M. W., Sliwinski, M., Coyle, P. K., Masur, D. M., Doscher, C., & Krupp, L. B. (1996). The effects of amantadine and pemoline on cognitive functioning in multiple sclerosis. Archives of Neurology, 53(2), 185–188.PubMedGoogle Scholar
  42. 42.
    Vos, P. J., Folgering, H. T., & van Herwaarden, C. L. (1995). Visual attention in patients with chronic obstructive pulmonary disease. Biological Psychology, 41(3), 295–305.PubMedGoogle Scholar
  43. 43.
    Herning, R. I., Jones, R. T., Hooker, W. D., & Tulunay, F. C. (1985). Information processing components of the auditory event related potential are reduced by cocaine. Psychopharmacology, 87(2), 178–185.PubMedGoogle Scholar
  44. 44.
    Flacker, J. M., & Lipsitz, L. A. (1999). Serum anticholinergic activity changes with acute illness in elderly medical patients. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 54(1), M12–M16.PubMedGoogle Scholar
  45. 45.
    Liu, J. L., & Su, S. N. (1993). The role of acetylcholine in the cognitive function of frontal neurons in monkeys. Science in China, 36(12), 1510–1517.PubMedGoogle Scholar
  46. 46.
    Trzepacz, P. T., Leavitt, M., & Ciongoli, K. (1992). An animal model for delirium. Psychosomatics, 33(4), 404–415.PubMedGoogle Scholar
  47. 47.
    Callaway, E., & Band, R. I. (1958). Some psychopharmacological effects of atropine; preliminary investigation of broadened attention. A.M.A. Archives of Neurology and Psychiatry, 79(1), 91–102.PubMedGoogle Scholar
  48. 48.
    Hockey, G. R. J. (1970). Effect of loud noise on attentional selectivity. Quarterly Journal of Experimental Psychology, 22, 28–36.Google Scholar
  49. 49.
    Broadbent, D. E., & Gregory, M. (1965). Effects of noise and of signal rate upon vigilance analysed by means of decision theory. Human Factors, 7(2), 155–162.PubMedGoogle Scholar
  50. 50.
    Corcoran, D. W. J., Mullin, J., Rainey, M. T., & Frith, G. (1977). The effects of raised signal and noise amplitude during the course of vigilance tasks. New York: Academic Press.Google Scholar
  51. 51.
    Adams, R. D., & Victor, M. (1981). Principles of neurology (2nd ed.). New York: McGraw-Hill.Google Scholar
  52. 52.
    Ropper, A., & Samuels, M. (2009). Adams and victor’s principles of neurology (9th ed.). New York: McGraw-Hill.Google Scholar
  53. 53.
    Lacey, B. C., & Lacey, J. I. (1978). Two way communications between the heart and the brain. American Psychologist, 33, 99–113.PubMedGoogle Scholar
  54. 54.
    Kahneman, D. (1973). Attention and effort. Englewood Cliffs: Prentice-Hall.Google Scholar
  55. 55.
    Pribram, K., & McGuinness, D. (1975). Arousal, activation, and effort in the control of attention. Psychological Review, 82(2), 116–149.PubMedGoogle Scholar
  56. 56.
    Cohen, R. A., & Waters, W. (1985). Psychophysiological correlates of levels and states of cognitive processing. Neuropsychologia, 23(2), 243–256.PubMedGoogle Scholar
  57. 57.
    Ohman, A. (1979). The orienting response, attention, and learning: An information-processing perspective. In H. D. Kimmel, E. H. van Olst, & J. F. Orlebeke (Eds.), The orienting reflex in humans (pp. 443–471). The Hague: Mouton.Google Scholar
  58. 58.
    Pillsbury, W. B. (1908). Attention. New York: Macmillan.Google Scholar
  59. 59.
    Woodworth, R. S. (1938). Experimental psychology. New York: H. Holt and company.Google Scholar
  60. 60.
    Maltzman, I. (1955). Thinking: From a behavioristic point of view. Psychological Review, 62, 275–286.PubMedGoogle Scholar
  61. 61.
    Maltzman, I. (1968). Theoretical conceptions of semantic conditioning and generalization. In T. R. Dixon & D. L. Horton (Eds.), Verbal behavior and general behavior theory (pp. 291–339). Englewood Cliffs: Prentice-Hall.Google Scholar
  62. 62.
    Maltzman, I. (1979). Orienting reflexes and classical conditioning in humans. In H. D. Kimmel, E. H. van Olst, & J. F. Orlebeke (Eds.), The orienting reflex in humans (pp. 323–352). Hillsdale: Erlbaum.Google Scholar
  63. 63.
    Darrow, C. W. (1929). Differences in the physiological reaction to sensory and ideational stimuli. Psychological Bulletin, 26, 185–201.Google Scholar
  64. 64.
    Lacey, J. I. (1959). Psychophysiological approaches to the evaluation of phsychotherapeutic process and outcome. In E. A. Rubinstein & M. B. Parloff (Eds.), Research in psychotherapy (pp. 160–208). Washington: American Psychological Association.Google Scholar
  65. 65.
    Lacey, J. I. (1967). Somatic response patterning and stress: Some revisions of activation theory. In M. H. Appley & R. Trumbull (Eds.), Psychological stress: Issues in research. New York: Appleton-Century-Crofts.Google Scholar
  66. 66.
    Lacey, J. I., & Lacey, B. C. (1958). Verification and extension of the principle of autonomic response-stereotypy. The American Journal of Psychology, 71(1), 50–73.PubMedGoogle Scholar
  67. 67.
    Graham, F. K., Clifton, R. K., & Hatton, H. M. (1968). Habituation of heart rate response to repeated auditory stimulation during the first five days of life. Child Development, 39(1), 35–52.PubMedGoogle Scholar
  68. 68.
    Graham, F. K., & Clifton, R. K. (1966). Heart-rate change as a component of the orienting response. Psychological Bulletin, 65, 305–320.PubMedGoogle Scholar
  69. 69.
    Jennings, J. R. (1986). Bodily changes during attending. In M. G. H. Coles, E. Donchin, & S. W. Porges (Eds.), Psychophysiology: Systems, processes, and applications (pp. 268–289). New York: The Guilford Press.Google Scholar
  70. 70.
    Jennings, J. R. (1986). Memory, thought, and bodily response. In M. G. H. Coles, E. Donchin, & S. Porges (Eds.), Psychophysiology: Systems, processes, and applications (pp. 290–308). New York: The Guilford Press.Google Scholar
  71. 71.
    Jennings, J. R., & Hall, S. W., Jr. (1980). Recall, recognition, and rate: Memory and the heart. Psychophysiology, 17, 37–46.PubMedGoogle Scholar
  72. 72.
    Jennings, J. R., Lawrence, B. E., & Kasper, P. (1978). Changes in alertness and processing capacity in a serial learning task. Memory and Cognition, 6, 45–63.Google Scholar
  73. 73.
    Graham, F. K. (1979). Distinguishing among orienting, defense, and startle reflexes. In H. D. Kimmel, E. H. van Olst, & J. F. Orlebeke (Eds.), The orienting reflex in humans. Hillsdale: Erlbaum.Google Scholar
  74. 74.
    Obrist, P. A. (1981). Cardiovascular psychophysiology: A perspective. New York: Plenum Press.Google Scholar
  75. 75.
    Obrist, P. A. (2008). Cardiovascular psychophysiology: Current issues in response mechanisms, biofeedback and methodology. New Brunswick: AldineTransaction.Google Scholar
  76. 76.
    Lacey, J. I., Kagan, J., Lacey, B. C., & Moss, H. A. (1963). The visceral level: Situational determinants and behavioural correlates of autonomic response patterns. In P. Knapp (Ed.), Expression of the emotions in man (pp. 161–196). New York: International Universities Press.Google Scholar
  77. 77.
    Jennings, J. R. (1971). Cardiac reactions and different developmental levels of cognitive functioning. Psychophysiology, 8(4), 433–450.PubMedGoogle Scholar
  78. 78.
    Kahneman, D., Tursky, B., Shapiro, D., & Crider, A. (1969). Pupillary, heart rate and skin resistance changes during a mental task. Journal of Experimental Psychology, 79, 164–167.PubMedGoogle Scholar
  79. 79.
    Tursky, B., Schwartz, G. E., & Crider, A. (1970). Differential patterns of heart rate and skin resistance during a digit-transformation task. Journal of Experimental Psychology, 83(3), 451–457.PubMedGoogle Scholar
  80. 80.
    Jennings, J. R., Averill, R. J., Opton, M. E., & Lazarus, R. S. (1980). Some parameters of heart rate change: Perceptual versus motor task requirements, noxiousness, and uncertainty. Psychophysiology, 7, 194–212.Google Scholar
  81. 81.
    Coles, M. G., & Duncan-Johnson, C. C. (1975). Cardiac activity and information processing: The effects of stimulus significance, and detection and response requirements. Journal of Experimental Psychology. Human Perception and Performance, 1(4), 418–428.PubMedGoogle Scholar
  82. 82.
    Schwartz, G. E., & Higgins, J. D. (1971). Cardiac activity preparatory to overt and covert behavior. Science, 173, 1144–1145.PubMedGoogle Scholar
  83. 83.
    Shangi, L. M., Das, J. P., & Mulcahy, R. (1978). Heart rate, recall, and reaction-time measures of levels of processing. Perceptual and Motor Skills, 46(1), 187–198.PubMedGoogle Scholar
  84. 84.
    Adan, A., & Sanchez-Turet, M. (1996). Cardiac reactivity during task performance: Influence of time of day. Neuroreport, 8(1), 129–132.PubMedGoogle Scholar
  85. 85.
    Spence, D. P., & Beyda, D. R. (1980). Heart-rate change as a measure of verbal storage and retrieval. British Journal of Psychology, 71(2), 283–293.PubMedGoogle Scholar
  86. 86.
    Somsen, R. J., Van der Molen, M. W., Jennings, J. R., & van Beek, B. (2000). Wisconsin Card Sorting in adolescents: Analysis of performance, response times and heart rate. Acta Psychologica, 104(2), 227–257.PubMedGoogle Scholar
  87. 87.
    Ramirez, I., Guerra, P., Munoz, M. A., Perakakis, P., Anllo-Vento, L., & Vila, J. (2010). The dynamics of cardiac defense: From attention to action. Psychophysiology, 47(5), 879–887.PubMedGoogle Scholar
  88. 88.
    Sosnowski, T., Krzywosz-Rynkiewicz, B., & Roguska, J. (2004). Program running versus problem solving: Mental task effect on tonic heart rate. Psychophysiology, 41(3), 467–475.PubMedGoogle Scholar
  89. 89.
    Sosnowski, T., & Rynkiewicz, A. (2008). RUN/EDIT information processing mode and phasic cardiac acceleration. Psychophysiology, 45(6), 1079–1085.PubMedGoogle Scholar
  90. 90.
    Kahneman, D., & Beatty, J. (1966). Pupil diameter and load on memory. Science, 154(756), 1583–1585.PubMedGoogle Scholar
  91. 91.
    Beatty, J. (1979). Pupillometric methods of workload evaluation: Present status and future possibilities. In R. Auffret (Ed.), Survey of methods to assess workload. Neuilly Sur Seine: Advisory Group for Aerospace Research and Development, North Atlantic Treaty Organization.Google Scholar
  92. 92.
    Beatty, J. (1982). Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychological Bulletin, 91(2), 276–292.PubMedGoogle Scholar
  93. 93.
    Beatty, J., & Wagoner, B. L. (1978). Pupillometric signs of brain activation vary with level of cognitive processing. Science, 199(4334), 1216–1218.PubMedGoogle Scholar
  94. 94.
    Beatty, J., & Wagoner, B. L. (1978). Pupillometric signs of brain activation vary with level of cognitive processing. Science, 199(4334), 1216–1218.Google Scholar
  95. 95.
    Kahneman, D., Beatty, J., & Pollack, I. (1967). Perceptual deficit during a mental task. Science, 157(3785), 218–219.PubMedGoogle Scholar
  96. 96.
    Watson, J. B. (1925). Behaviorism. New York: The People’s Institute.Google Scholar
  97. 97.
    Jacobsen, E. (1938). Progressive relaxation (revised edition). Chicago: University of Chicago Press.Google Scholar
  98. 98.
    Cacioppo, J. T., & Petty, R. E. (1981). Electromyograms as measures of extent and affectivity of information processing. American Psychologist, 36(5), 441–456.PubMedGoogle Scholar
  99. 99.
    Cacioppo, J. T., & Petty, R. E. (1981). Electromyographic specificity during covert information processing. Psychophysiology, 18(5), 518–523.PubMedGoogle Scholar
  100. 100.
    McGuigan, F. (1978). Imagery and thinking: Covert functioning of the motor system. In G. E. Schwartz & D. Shapiro (Eds.), Consciousness and self-regulation: Advances in research and theory (Vol. 2). New York: Plenum Press.Google Scholar
  101. 101.
    Taub, E., Williams, M., Barro, G., & Steiner, S. S. (1978). Comparison of the performance of deafferented and intact monkeys on continuous and fixed ration schedules of reinforcement. Experimental Neurology, 58(1), 1–13.PubMedGoogle Scholar
  102. 102.
    Locke, L. J., & Fehr, F. S. (1970). Young children’s use of the speech code in a recall task. Journal of Experimental Child Psychology, 10, 367–373.Google Scholar
  103. 103.
    Glassman, W. E. (1972). Subvocal activity and acoustic confusions in short-term memory. Journal of Experimental Psychology, 96(1), 164–169.PubMedGoogle Scholar
  104. 104.
    Kleinsmith, L. J., & Kaplan, S. (1963). Paired-associate learning as a function of arousal and interpolated interval. Journal of Experimental Psychology, 65, 190–193.PubMedGoogle Scholar
  105. 105.
    Craik, F. I. M., & Blankstein, K. R. (1975). Psychophysiology and human memory. In P. H. Venables & M. J. Christie (Eds.), Research in psychophysiology (pp. 388–417). London: Wiley.Google Scholar
  106. 106.
    Broadbent, D. E. (1971). Decision and stress. London: Academic.Google Scholar
  107. 107.
    Hamilton, P., Hockey, G. R. J., & Quinn, J. G. (1972). Information selection, arousal, and memory. The British Journal of Psychiatry, 63, 181–189.Google Scholar
  108. 108.
    Jones, D. M., Smith, A. P., & Broadbent, D. E. (1979). Effects of moderate intensity noise on the Bakan vigilance task. The Journal of Applied Psychology, 64(6), 627–634.PubMedGoogle Scholar
  109. 109.
    Smith, A., Jones, D. M., & Broadbent, D. E. (1981). The effects of noise on recall of categorized lists. British Journal of Psychology, 72, 299–316.Google Scholar
  110. 110.
    Poulton, E. C. (1979). Composite model for human performance in continuous noise. Psychological Review, 86, 361–375.PubMedGoogle Scholar
  111. 111.
    Hockey, G. R. J. (1970). Signal probability and spatial location as possible bases for increased selectivity in noise. Quarterly Journal of Experimental Psychology, 22, 37–42.Google Scholar
  112. 112.
    Hockey, G. R. J. (1979). Stress and the cognitive components of skilled performance. In V. Hamilton & D. M. Warburton (Eds.), Human stress and cognition. Chichester: Wiley.Google Scholar
  113. 113.
    Revelle, W., Humphreys, M. S., Simon, L., & Gilliland, K. (1980). The interactive effect of personality, time of day, and caffeine: A test of the arousal model. Journal of Experimental Psychology. General, 109(1), 1–31.PubMedGoogle Scholar
  114. 114.
    Humphreys, M. S., & Revelle, W. (1984). Personality, motivation, and performance: A theory of the relationship between individual differences and information processing. Psychological Review, 91(2), 153–184.PubMedGoogle Scholar
  115. 115.
    Cacioppo, J. T. (1979). Effects of exogenous changes in heart rate on facilitation of thought and resistance to persuasion. Journal of Personality and Social Psychology, 37(4), 489–498.PubMedGoogle Scholar
  116. 116.
    Hoth, K. F., Nash, J., Poppas, A., Ellison, K. E., Paul, R. H., & Cohen, R. A. (2008). Effects of cardiac resynchronization therapy on health-related quality of life in older adults with heart failure. Clinical Interventions in Aging, 3(3), 553–560.PubMedGoogle Scholar
  117. 117.
    Folkard, S., & Greeman, A. L. (1974). Salience induced muscle tension, and the ability to ignore irrelevant information. Quarterly Journal of Experimental Psychology, 26, 360–367.PubMedGoogle Scholar
  118. 118.
    Folkard, S. (1979). Changes in immediate memory strategy under induced muscle tension and with time of day. Quarterly Journal of Experimental Psychology, 31, 621–633.Google Scholar
  119. 119.
    Folkard, S. (1979). Time of day and level of processing. Memory and Cognition, 7, 247–252.Google Scholar
  120. 120.
    Starr, A., Amlie, R. N., Martin, W. H., & Sanders, S. (1977). Development of auditory function in newborn infants revealed by auditory brainstem potentials. Pediatrics, 60(6), 831–839.PubMedGoogle Scholar
  121. 121.
    Munson, R., Ruchkin, D. S., Ritter, W., Sutton, S., & Squires, N. K. (1984). The relation of P3b to prior events and future behavior. Biological Psychology, 19(1), 1–29.PubMedGoogle Scholar
  122. 122.
    Sutton, S., & Ruchkin, D. S. (1984). The late positive complex. Advances and new problems. Annals of the New York Academy of Sciences, 425, 1–23.PubMedGoogle Scholar
  123. 123.
    Hillyard, S. A., Hink, R. F., Schwent, V. L., & Picton, T. W. (1973). Electrical signs of selective attention in the human brain. Science, 182, 177–180.PubMedGoogle Scholar
  124. 124.
    Hillyard, S. A., & Hansen, J. C. (1986). Attention: Electrophysiological approaches. In M. G. H. Coles, E. Donchin, & S. W. Porges (Eds.), Psychophysiology; systems, processes and applications. New York: Guilford.Google Scholar
  125. 125.
    Hillyard, S. A., & Hansen, J. C. (1986). Attention: Electrophysiological approaches. In M. G. H. Coles, E. Donchin, & S. W. Porges (Eds.), Psychophysiology: Systems, processes, and applications (pp. 227–243). New York: The Guilford Press.Google Scholar
  126. 126.
    Naatanen, R. (1982). Processing negativity: An evoked potential reflection of selective attention. Psychological Bulletin, 92, 605–640.PubMedGoogle Scholar
  127. 127.
    Deutsch, J. A., & Deutsch, D. (1963). Attention: Some theoretical considerations. Psychological Review, 70, 80–90.PubMedGoogle Scholar
  128. 128.
    Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology. General, 109, 160–174.Google Scholar
  129. 129.
    Downing, C. J., & Pinker, S. (1975). The spatial structure of visual attention. In M. I. Posner & O. S. A. M. Martin (Eds.), Mechanisms of attention: Attention and performance (Vol. xi, pp. 171–187). Hillsdale: Erlbaum.Google Scholar
  130. 130.
    Magnun, G. R., & Hillyard, S. A. (1987). The spatial allocation of visual attention as indexed by event-related brain potentials. Human Factors, 29, 195–212.Google Scholar
  131. 131.
    Magnun, G. R., & Hillyard, S. A. (1988). Spatial gradients of visual attention: Behavioral and electrophysiological evidence. Electroencephalography and Clinical Neurophysiology, 70, 417–428.Google Scholar
  132. 132.
    Hillyard, S. A., & Minnte, T. F. (1984). Selective attention to color and location: An analysis with event-related potentials. Perception & Psychophysics, 36, 185–198.Google Scholar
  133. 133.
    Harter, M. R., Aine, C., & Schroeder, C. (1982). Hemispheric differences in the neural processing of stimulus location and type: Effects of selective attention on visual evoked potentials. Neuropsychologia, 20, 42–438.Google Scholar
  134. 134.
    Zouridakis, G., & Boutros, N. N. (1992). Stimulus parameter effects on the P50 evoked response. Biological Psychiatry, 32(9), 839–841.PubMedGoogle Scholar
  135. 135.
    Guterman, Y., Josiassen, R. C., & Bashore, T. R., Jr. (1992). Attentional influence on the P50 component of the auditory event-related brain potential. International Journal of Psychophysiology, 12(2), 197–209.PubMedGoogle Scholar
  136. 136.
    Waldo, M. C., & Freedman, R. (1986). Gating of auditory evoked responses in normal college students. Psychiatry Research, 19(3), 233–239.PubMedGoogle Scholar
  137. 137.
    Freedman, R., Adler, L. E., Gerhardt, G. A., et al. (1987). Neurobiological studies of sensory gating in schizophrenia. Schizophrenia Bulletin, 13(4), 669–678.PubMedGoogle Scholar
  138. 138.
    Kathmann, N., & Engel, R. R. (1990). Sensory gating in normals and schizophrenics: A failure to find strong P50 suppression in normals. Biological Psychiatry, 27(11), 1216–1226.PubMedGoogle Scholar
  139. 139.
    Boutros, N., Zouridakis, G., Rustin, T., Peabody, C., & Warner, D. (1993). The P50 component of the auditory evoked potential and subtypes of schizophrenia. Psychiatry Research, 47(3), 243–254.PubMedGoogle Scholar
  140. 140.
    Clementz, B. A., Geyer, M. A., & Braff, D. L. (1997). P50 suppression among schizophrenia and normal comparison subjects: A methodological analysis. Biological Psychiatry, 41(10), 1035–1044.PubMedGoogle Scholar
  141. 141.
    Olincy, A., Ross, R. G., Harris, J. G., et al. (2000). The P50 auditory event-evoked potential in adult attention-deficit disorder: Comparison with schizophrenia. Biological Psychiatry, 47(11), 969–977.PubMedGoogle Scholar
  142. 142.
    Jessen, F., Kucharski, C., Fries, T., et al. (2001). Sensory gating deficit expressed by a disturbed suppression of the P50 event-related potential in patients with Alzheimer’s disease. The American Journal of Psychiatry, 158(8), 1319–1321.PubMedGoogle Scholar
  143. 143.
    Bender, S., Schall, U., Wolstein, J., Grzella, I., Zerbin, D., & Oades, R. D. (1999). A topographic event-related potential follow-up study on ‘prepulse inhibition’ in first and second episode patients with schizophrenia. Psychiatry Research, 90(1), 41–53.PubMedGoogle Scholar
  144. 144.
    Woods, A. J., Mennemeier, M., Garcia-Rill, E., et al. (2012). Improvement in arousal, visual neglect, and perception of stimulus intensity following cold pressor stimulation. Neurocase, 18(2), 115–122.PubMedGoogle Scholar
  145. 145.
    Rauss, K. S., Pourtois, G., Vuilleumier, P., & Schwartz, S. (2009). Attentional load modifies early activity in human primary visual cortex. Human Brain Mapping, 30(5), 1723–1733.PubMedGoogle Scholar
  146. 146.
    Miller, J. M., Dobie, R. A., Pfingst, B. E., & Hienz, R. D. (1980). Electrophysiologic studies of the auditory cortex in the awake monkey. American Journal of Otolaryngology, 1(2), 119–130.PubMedGoogle Scholar
  147. 147.
    Alho, K., Woods, D. L., Algazi, A., & Naatanen, R. (1992). Intermodal selective attention. II. Effects of attentional load on processing of auditory and visual stimuli in central space. Electroencephalography and Clinical Neurophysiology, 82(5), 356–368.PubMedGoogle Scholar
  148. 148.
    Berman, R. A., & Colby, C. L. (2002). Auditory and visual attention modulate motion processing in area MT+. Brain Research, 14(1), 64–74.PubMedGoogle Scholar
  149. 149.
    Bundesen, C., Larsen, A., Kyllingsbaek, S., Paulson, O. B., & Law, I. (2002). Attentional effects in the visual pathways: A whole-brain PET study. Experimental Brain Research. Experimentelle Hirnforschung, 147(3), 394–406.Google Scholar
  150. 150.
    Ghose, G. M. (2009). Attentional modulation of visual responses by flexible input gain. Journal of Neurophysiology, 101(4), 2089–2106.PubMedGoogle Scholar
  151. 151.
    Ito, M., & Gilbert, C. D. (1999). Attention modulates contextual influences in the primary visual cortex of alert monkeys. Neuron, 22(3), 593–604.PubMedGoogle Scholar
  152. 152.
    Lee, J., & Maunsell, J. H. (2010). Attentional modulation of MT neurons with single or multiple stimuli in their receptive fields. The Journal of Neuroscience, 30(8), 3058–3066.PubMedGoogle Scholar
  153. 153.
    Montero, V. M. (2000). Attentional activation of the visual thalamic reticular nucleus depends on ‘top-down’ inputs from the primary visual cortex via corticogeniculate pathways. Brain Research, 864(1), 95–104.PubMedGoogle Scholar
  154. 154.
    Neri, P. (2004). Attentional effects on sensory tuning for single-feature detection and double-feature conjunction. Vision Research, 44(26), 3053–3064.PubMedGoogle Scholar
  155. 155.
    Reynolds, J. H., & Chelazzi, L. (2004). Attentional modulation of visual processing. Annual Review of Neuroscience, 27, 611–647.PubMedGoogle Scholar
  156. 156.
    Reynolds, J. H., Chelazzi, L., & Desimone, R. (1999). Competitive mechanisms subserve attention in macaque areas V2 and V4. The Journal of Neuroscience, 19(5), 1736–1753.PubMedGoogle Scholar
  157. 157.
    Rinne, T., Stecker, G. C., Kang, X., Yund, E. W., Herron, T. J., & Woods, D. L. (2007). Attention modulates sound processing in human auditory cortex but not the inferior colliculus. Neuroreport, 18(13), 1311–1314.PubMedGoogle Scholar
  158. 158.
    Safford, A. S., Hussey, E. A., Parasuraman, R., & Thompson, J. C. (2010). Object-based attentional modulation of biological motion processing: Spatiotemporal dynamics using functional magnetic resonance imaging and electroencephalography. The Journal of Neuroscience, 30(27), 9064–9073.PubMedGoogle Scholar
  159. 159.
    Schwartz, S., Vuilleumier, P., Hutton, C., Maravita, A., Dolan, R. J., & Driver, J. (2005). Attentional load and sensory competition in human vision: Modulation of fMRI responses by load at fixation during task-irrelevant stimulation in the peripheral visual field. Cerebral Cortex, 15(6), 770–786.PubMedGoogle Scholar
  160. 160.
    Treue, S., & Maunsell, J. H. (1999). Effects of attention on the processing of motion in macaque middle temporal and medial superior temporal visual cortical areas. The Journal of Neuroscience, 19(17), 7591–7602.PubMedGoogle Scholar
  161. 161.
    Vidyasagar, T. R. (2005). Attentional gating in primary visual cortex: A physiological basis for dyslexia. Perception, 34(8), 903–911.PubMedGoogle Scholar
  162. 162.
    Yamagishi, N., Callan, D. E., Anderson, S. J., & Kawato, M. (2008). Attentional changes in pre-stimulus oscillatory activity within early visual cortex are predictive of human visual performance. Brain Research, 1197, 115–122.PubMedGoogle Scholar
  163. 163.
    Yamagishi, N., Callan, D. E., Goda, N., Anderson, S. J., Yoshida, Y., & Kawato, M. (2003). Attentional modulation of oscillatory activity in human visual cortex. NeuroImage, 20(1), 98–113.PubMedGoogle Scholar
  164. 164.
    Sutton, S., Braren, M., Zubin, J., & John, E. R. (1965). Evoked-potential correlates of stimulus uncertainty. Science, 150(700), 1187–1188.PubMedGoogle Scholar
  165. 165.
    Squires, K. C., Squires, N. K., & Hillyard, S. A. (1975). Decision-related cortical potentials during an auditory signal detection task with cued observation intervals. Journal of Experimental Psychology. Human Perception and Performance, 1(3), 268–279.PubMedGoogle Scholar
  166. 166.
    Simson, R., Vaughan, H. G., & Ritter, W. (1976). The scalp topography of potentials associated with missing visual or auditory stimuli. Electroencephalography and Clinical Neurophysiology, 40, 33–42.PubMedGoogle Scholar
  167. 167.
    Simson, R., Vaughan, H. G., & Ritter, W. (1977). The scalp topography of potentials in auditory and visual discrimination tasks. Electroencephalography and Clinical Neurophysiology, 42, 528–535.PubMedGoogle Scholar
  168. 168.
    Okada, Y. C., Kaufman, L., & Williamson, S. J. (1983). The hippocampal formation as a source of the slow endogenous potentials. Electroencephalography and Clinical Neurophysiology, 55, 417–426.PubMedGoogle Scholar
  169. 169.
    Goodin, D. S., & Aminoff, M. J. (1984). The relationship between the evoked potential and brain events in sensory discrimination and motor response. Brain, 107, 241–251.PubMedGoogle Scholar
  170. 170.
    Halgren, E., Stapleton, J. M., Smith, M., & Altafullah, I. (1986). Generators of the human scalp P3(s). In R. Q. Cracco & I. Bodis-Wollner (Eds.), Evoked potentials (pp. 269–284). New York: Alan Liss.Google Scholar
  171. 171.
    Paller, K. A., Zola-Morgan, S., Squire, L. R., & Hillyard, S. A. (1988). P3-like brain waves in normal monkeys and in monkeys with medial temporal lesions. Behavioral Neuroscience, 102, 714–725.PubMedGoogle Scholar
  172. 172.
    Stapleton, J. M., & Halgren, E. (1987). Endogenous potentials evoked in simple cognitive tasks: Depth components and task correlates. Electroencephalography and Clinical Neurophysiology, 67(1), 44–52.PubMedGoogle Scholar
  173. 173.
    Stapleton, J. M., Halgren, E., & Moreno, K. A. (1987). Endogenous potentials after anterior temporal lobectomy. Neuropsychologia, 25(3), 549–557.PubMedGoogle Scholar
  174. 174.
    O’Donnell, B. F., Cohen, R. A., Hokama, H., et al. (1993). Electrical source analysis of auditory ERPs in medial temporal lobe amnestic syndrome. Electroencephalography and Clinical Neurophysiology, 87(6), 394–402.PubMedGoogle Scholar
  175. 175.
    Sutton, S., Tueting, P., Zubin, J., & John, E. R. (1967). Information delivery and the sensory evoked potential. Science, 155(768), 1436–1439.PubMedGoogle Scholar
  176. 176.
    Duncan-Johnson, C., & Donchin, E. (1977). On quantifying surprise: The variation of event-related potentials with subjective probability. Psychophysiology, 14, 456–467.PubMedGoogle Scholar
  177. 177.
    Courchesne, E., Hillyard, S. A., & Galambos, R. (1975). Stimulus novelty, task relevance and the visual evoked potentials in man. Electroencephalography and Clinical Neurophysiology, 39, 131–143.PubMedGoogle Scholar
  178. 178.
    Campbell, K. B., Courchesne, E., Picton, T. W., & Squires, K. C. (1979). Evoked potential correlates of human information processing. Biological Psychology, 8(1), 45–68.PubMedGoogle Scholar
  179. 179.
    Friedman, D., Cycowicz, Y. M., & Gaeta, H. (2001). The novelty P3: An event-related brain potential (ERP) sign of the brain’s evaluation of novelty. Neuroscience and Biobehavioral Reviews, 25(4), 355–373.PubMedGoogle Scholar
  180. 180.
    Friedman, D. B., Hakaarem, G., Sutton, S., & Fleiss, J. L. (1973). Effect of stimulus uncertainty on the pupillary dilatation response and the vertex evoked potential. Electroencephalography and Clinical Neurophysiology, 34, 475–484.PubMedGoogle Scholar
  181. 181.
    Rohrbaugh, J. W., Varner, J. L., Paige, S. R., Eckardt, M. J., & Ellingson, R. J. (1989). Event-related perturbations in an electrophysiological measure of auditory function: A measure of sensitivity during orienting? Biological Psychology, 29(3), 247–271.PubMedGoogle Scholar
  182. 182.
    Rohrbaugh, J. W., Varner, J. L., Paige, S. R., Eckardt, M. J., & Ellingson, R. J. (1990). Event-related perturbations in an electrophysiological measure of auditory sensitivity: Effects of probability, intensity and repeated sessions. International Journal of Psychophysiology, 10(1), 17–32.PubMedGoogle Scholar
  183. 183.
    Squires, K. C., Wickens, C., Squires, N. K., & Donchin, E. (1976). The effect of stimulus sequence on the waveform of the cortical event-related potential. Science, 193(4258), 1142–1146.PubMedGoogle Scholar
  184. 184.
    Duncan, C. C. (1988). Event-related brain potentials: A window on information processing in schizophrenia. Schizophrenia Bulletin, 14(2), 199–203.PubMedGoogle Scholar
  185. 185.
    Pourtois, G., De Pretto, M., Hauert, C. A., & Vuilleumier, P. (2006). Time course of brain activity during change blindness and change awareness: Performance is predicted by neural events before change onset. Journal of Cognitive Neuroscience, 18(12), 2108–2129.PubMedGoogle Scholar
  186. 186.
    Sessa, P., Luria, R., Verleger, R., & Dell’Acqua, R. (2007). P3 latency shifts in the attentional blink: Further evidence for second target processing postponement. Brain Research, 1137(1), 131–139.PubMedGoogle Scholar
  187. 187.
    Smith, J. L., Smith, E. A., Provost, A. L., & Heathcote, A. (2010). Sequence effects support the conflict theory of N2 and P3 in the Go/NoGo task. International Journal of Psychophysiology, 75(3), 217–226.PubMedGoogle Scholar
  188. 188.
    Verleger, R., & Berg, P. (1991). The waltzing oddball. Psychophysiology, 28(4), 468–477.PubMedGoogle Scholar
  189. 189.
    Dimoska, A., & Johnstone, S. J. (2008). Effects of varying stop-signal probability on ERPs in the stop-signal task: Do they reflect variations in inhibitory processing or simply novelty effects? Biological Psychology, 77(3), 324–336.PubMedGoogle Scholar
  190. 190.
    Martens, S., Elmallah, K., London, R., & Johnson, A. (2006). Cuing and stimulus probability effects on the P3 and the AB. Acta Psychologica, 123(3), 204–218.PubMedGoogle Scholar
  191. 191.
    Ehlers, C. L., & Somes, C. (2002). Long latency event-related potentials in mice: Effects of stimulus characteristics and strain. Brain Research, 957(1), 117–128.PubMedGoogle Scholar
  192. 192.
    O’Donnell, B. F., Hokama, H., McCarley, R. W., et al. (1994). Auditory ERPs to non-target stimuli in schizophrenia: Relationship to probability, task-demands, and target ERPs. International Journal of Psychophysiology, 17(3), 219–231.PubMedGoogle Scholar
  193. 193.
    Polich, J., Eischen, S. E., & Collins, G. E. (1994). P300 from a single auditory stimulus. Electroencephalography and Clinical Neurophysiology, 92(3), 253–261.PubMedGoogle Scholar
  194. 194.
    Polich, J. (1990). P300, probability, and interstimulus interval. Psychophysiology, 27(4), 396–403.PubMedGoogle Scholar
  195. 195.
    Sandman, C. A., Donnelly, J. F., O’Halloran, J. P., & Isenhart, R. (1990). Age-related change in P3 amplitude as a function of predictable and unpredictable rare events. The International Journal of Neuroscience, 52(3–4), 189–199.PubMedGoogle Scholar
  196. 196.
    Papanicolaou, A. C., Loring, D. W., Raz, N., & Eisenberg, H. M. (1985). Relationship between stimulus intensity and the P300. Psychophysiology, 22, 326–329.PubMedGoogle Scholar
  197. 197.
    McCarthy, G., & Donchin, E. (1981). A comparison of P300 latency and reaction time. Science, 211, 77–80.PubMedGoogle Scholar
  198. 198.
    Squires, N. K., Donchin, E., Squires, K. C., & Grossberg, S. (1977). Bisensory stimulation: Inferring decision-related processes from P300 component. Journal of Experimental Psychology, 3(2), 299–315.PubMedGoogle Scholar
  199. 199.
    Walton, P., Callaway, E., Halliday, R., & Naylor, H. (1987). Stimulus intensity, contrast, and complexity have additive effects on P300 latency. Electroencephalography and Clinical Neurophysiology. Supplement, 40, 284–292.PubMedGoogle Scholar
  200. 200.
    Ilan, A. B., & Polich, J. (1999). P300 and response time from a manual Stroop task. Clinical Neurophysiology, 110(2), 367–373.PubMedGoogle Scholar
  201. 201.
    Atkinson, C. M., Drysdale, K. A., & Fulham, W. R. (2003). Event-related potentials to Stroop and reverse Stroop stimuli. International Journal of Psychophysiology, 47(1), 1–21.PubMedGoogle Scholar
  202. 202.
    Rosenfeld, J. P., & Skogsberg, K. R. (2006). P300-based Stroop study with low probability and target Stroop oddballs: The evidence still favors the response selection hypothesis. International Journal of Psychophysiology, 60(3), 240–250.PubMedGoogle Scholar
  203. 203.
    Kutas, M., McCarthy, G., & Donchin, E. (1977). Augmenting mental chronometry: The P300 as a measure of stimulus evaluation time. Science, 197, 792–795.PubMedGoogle Scholar
  204. 204.
    Ritter, W., Simson, R., Vaughan, H. G., Jr., & Friedman, D. (1979). A brain event related to the making of a sensory discrimination. Science, 203(4387), 1358–1361.PubMedGoogle Scholar
  205. 205.
    Squires, K. C., Donchin, E., Herning, R. I., & McCarthy, G. (1977). On the influence of task relevance and stimulus probability on event-related-potential components. Electroencephalography and Clinical Neurophysiology, 42(1), 1–14.PubMedGoogle Scholar
  206. 206.
    Sutton, S., Ruchkin, D. S., Munson, R., Kietzman, M. L., & Hammer, M. (1982). Event-related potentials in a two-interval forced-choice detection task. Perception & Psychophysics, 32(4), 360–374.Google Scholar
  207. 207.
    Larson, M. J., Kelly, K. G., Stigge-Kaufman, D. A., Schmalfuss, I. M., & Perlstein, W. M. (2007). Reward context sensitivity impairment following severe TBI: An event-related potential investigation. Journal of the International Neuropsychological Society, 13(4), 615–625.PubMedGoogle Scholar
  208. 208.
    Bakay, E. P., Marton, M., Rigo, P., & Balazs, L. (1998). Responses to irrelevant probes during task-induced negative and positive shifts. International Journal of Psychophysiology, 28(3), 249–261.PubMedGoogle Scholar
  209. 209.
    Gratton, G., Coles, M. G., Sirevaag, E. J., Eriksen, C. W., & Donchin, E. (1988). Pre- and poststimulus activation of response channels: A psychophysiological analysis. Journal of Experimental Psychology, 14(3), 331–344.PubMedGoogle Scholar
  210. 210.
    Dunning, J. P., & Hajcak, G. (2007). Error-related negativities elicited by monetary loss and cues that predict loss. Neuroreport, 18(17), 1875–1878.PubMedGoogle Scholar
  211. 211.
    Fukushima, H., & Hiraki, K. (2006). Perceiving an opponent’s loss: Gender-related differences in the medial-frontal negativity. Social Cognitive and Affective Neuroscience, 1(2), 149–157.PubMedGoogle Scholar
  212. 212.
    Goyer, J. P., Woldorff, M. G., & Huettel, S. A. (2008). Rapid electrophysiological brain responses are influenced by both valence and magnitude of monetary rewards. Journal of Cognitive Neuroscience, 20(11), 2058–2069.PubMedGoogle Scholar
  213. 213.
    Holroyd, C. B., Hajcak, G., & Larsen, J. T. (2006). The good, the bad and the neutral: Electrophysiological responses to feedback stimuli. Brain Research, 1105(1), 93–101.PubMedGoogle Scholar
  214. 214.
    Mennes, M., Wouters, H., van den Bergh, B., Lagae, L., & Stiers, P. (2008). ERP correlates of complex human decision making in a gambling paradigm: Detection and resolution of conflict. Psychophysiology, 45(5), 714–720.PubMedGoogle Scholar
  215. 215.
    Toyomaki, A., & Murohashi, H. (2005). Discrepancy between feedback negativity and subjective evaluation in gambling. Neuroreport, 16(16), 1865–1868.PubMedGoogle Scholar
  216. 216.
    Yang, J., Li, H., Zhang, Y., Qiu, J., & Zhang, Q. (2007). The neural basis of risky decision-making in a blackjack task. Neuroreport, 18(14), 1507–1510.PubMedGoogle Scholar
  217. 217.
    Posner, M. I., & Snyder, C. R. R. (1975). Attention and cognitive control. In R. L. Solso (Ed.), Information processing and cognition: The Loyola Symposium (pp. 55–84). Hillsdale: Erlbaum.Google Scholar
  218. 218.
    Kramer, A. F., Wickens, C. D., & Donchin, E. (1983). An analysis of the processing requirements of a complex perceptual-motor task. Human Factors, 25(6), 597–621.PubMedGoogle Scholar
  219. 219.
    Kramer, A. F., Wickens, C. D., & Donchin, E. (1985). Processing of stimulus properties: Evidence for dual-task integrality. Journal of Experimental Psychology. Human Perception and Performance, 11(4), 393–408.PubMedGoogle Scholar
  220. 220.
    Wickens, C., Kramer, A., Vanasse, L., & Donchin, E. (1983). Performance of concurrent tasks: A psychophysiological analysis of the reciprocity of information-processing resources. Science, 221(4615), 1080–1082.PubMedGoogle Scholar
  221. 221.
    Wickens, C. D., Kramer, A. F., & Donchin, E. (1984). The event-related potential as an index of the processing demands of a complex target acquisition task. Annals of the New York Academy of Sciences, 425, 295–299.PubMedGoogle Scholar
  222. 222.
    Israel, J. B., Chesney, G. L., Wickens, C. D., & Donchin, E. (1980). P300 and tracking difficulty: Evidence for multiple resources in dual-task performance. Psychophysiology, 17, 259–273.Google Scholar
  223. 223.
    Israel, J. B., Wickens, C. D., Chesney, G. L., & Donchin, E. (1980). The event-related brain potential as an index of display-monitoring workload. Human Factors, 22, 211–224.Google Scholar
  224. 224.
    Schneider, W. S., & Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review, 84, 1–66.Google Scholar
  225. 225.
    Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. Psychological Review, 84, 127–190.Google Scholar
  226. 226.
    Kramer, A., Schneiderf, W., Fisk, A., & Donchin, E. (1986). The effects of practice and task structure on the components of the event-related brain potential. Psychophysiology, 23, 33–47.PubMedGoogle Scholar
  227. 227.
    Praamstra, P., Kourtis, D., & Nazarpour, K. (2009). Simultaneous preparation of multiple potential movements: Opposing effects of spatial proximity mediated by premotor and parietal cortex. Journal of Neurophysiology, 102(4), 2084–2095.PubMedGoogle Scholar
  228. 228.
    Song, W., Ramakrishnan, A., Udoekwere, U. I., & Giszter, S. F. (2009). Multiple types of movement-related information encoded in hindlimb/trunk cortex in rats and potentially available for brain-machine interface controls. IEEE Transactions on Biomedical Engineering, 56(11 Pt 2), 2712–2716.PubMedGoogle Scholar
  229. 229.
    Hill, H. (2009). An event-related potential evoked by movement planning is modulated by performance and learning in visuomotor control. Experimental Brain Research. Experimentelle Hirnforschung, 195(4), 519–529.Google Scholar
  230. 230.
    Dirnberger, G., Reumann, M., Endl, W., Lindinger, G., Lang, W., & Rothwell, J. C. (2000). Dissociation of motor preparation from memory and attentional processes using movement-related cortical potentials. Experimental Brain Research. Experimentelle Hirnforschung, 135(2), 231–240.Google Scholar
  231. 231.
    Fallgatter, A. J., Esienack, S. S., Neuhauser, B., Aranda, D., Scheuerpflug, P., & Herrmann, M. J. (2000). Stability of late event-related potentials: Topographical descriptors of motor control compared with the P300 amplitude. Brain Topography, 12(4), 255–261.PubMedGoogle Scholar
  232. 232.
    Chen, R., & Hallett, M. (1999). The time course of changes in motor cortex excitability associated with voluntary movement. The Canadian Journal of Neurological Sciences, 26(3), 163–169.PubMedGoogle Scholar
  233. 233.
    Terada, K., Ikeda, A., Yazawa, S., Nagamine, T., & Shibasaki, H. (1999). Movement-related cortical potentials associated with voluntary relaxation of foot muscles. Clinical Neurophysiology, 110(3), 397–403.PubMedGoogle Scholar
  234. 234.
    Ikeda, A., Yazawa, S., Kunieda, T., et al. (1999). Cognitive motor control in human pre-supplementary motor area studied by subdural recording of discrimination/selection-related potentials. Brain, 122(Pt 5), 915–931.PubMedGoogle Scholar
  235. 235.
    Lehtokoski, A., Kujala, T., Naatanen, R., & Alho, K. (1998). Enhanced brain activity preceding voluntary movement in early blind humans. Neuroscience Letters, 253(3), 155–158.PubMedGoogle Scholar
  236. 236.
    Flor, H., Birbaumer, N., Roberts, L. E., et al. (1996). Slow potentials, event-related potentials, “gamma-band” activity, and motor responses during aversive conditioning in humans. Experimental Brain Research. Experimentelle Hirnforschung, 112(2), 298–312.Google Scholar
  237. 237.
    Tarkka, I. M., Massaquoi, S., & Hallett, M. (1993). Movement-related cortical potentials in patients with cerebellar degeneration. Acta Neurologica Scandinavica, 88(2), 129–135.PubMedGoogle Scholar
  238. 238.
    Cheron, G., & Borenstein, S. (1992). Mental movement simulation affects the N30 frontal component of the somatosensory evoked potential. Electroencephalography and Clinical Neurophysiology, 84(3), 288–292.PubMedGoogle Scholar
  239. 239.
    Nativ, A. (1991). Brain potentials associated with movement in traumatic brain injury. Physical Therapy, 71(1), 48–59.PubMedGoogle Scholar
  240. 240.
    Singh, J., & Knight, R. T. (1990). Frontal lobe contribution to voluntary movements in humans. Brain Research, 531(1–2), 45–54.PubMedGoogle Scholar
  241. 241.
    Adler, L. E., Pecevich, M., & Nagamoto, H. (1989). Bereitschaftspotential in tardive dyskinesia. Movement Disorders, 4(2), 105–112.PubMedGoogle Scholar
  242. 242.
    Neshige, R., Luders, H., Friedman, L., & Shibasaki, H. (1988). Recording of movement-related potentials from the human cortex. Annals of Neurology, 24(3), 439–445.PubMedGoogle Scholar
  243. 243.
    Leung, L. W., & Borst, J. G. (1987). Electrical activity of the cingulate cortex. I. Generating mechanisms and relations to behavior. Brain Research, 407(1), 68–80.PubMedGoogle Scholar
  244. 244.
    Bromm, B., & Treede, R. D. (1987). Human cerebral potentials evoked by CO2 laser stimuli causing pain. Experimental Brain Research. Experimentelle Hirnforschung., 67(1), 153–162.Google Scholar
  245. 245.
    Lee, B. I., Luders, H., Lesser, R. P., Dinner, D. S., & Morris, H. H., III. (1986). Cortical potentials related to voluntary and passive finger movements recorded from subdural electrodes in humans. Annals of Neurology, 20(1), 32–37.PubMedGoogle Scholar
  246. 246.
    Haagh, S. A., & Brunia, C. H. (1985). Anticipatory response-relevant muscle activity, CNV amplitude and simple reaction time. Electroencephalography and Clinical Neurophysiology, 61(1), 30–39.PubMedGoogle Scholar
  247. 247.
    Thickbroom, G. W., Mastaglia, F. L., Carroll, W. M., & Davies, H. D. (1985). Cerebral potentials accompanying visually triggered finger movement in man. Electroencephalography and Clinical Neurophysiology, 62(3), 209–218.PubMedGoogle Scholar
  248. 248.
    Dietz, V., Quintern, J., Berger, W., & Schenck, E. (1985). Cerebral potentials and leg muscle e.m.g. responses associated with stance perturbation. Experimental Brain Research. Experimentelle Hirnforschung., 57(2), 348–354.Google Scholar
  249. 249.
    Woodward, S. H., Ford, J. M., & Hammett, S. C. (1993). N4 to spoken sentences in young and older subjects. Electroencephalography and Clinical Neurophysiology, 87(5), 306–320.PubMedGoogle Scholar
  250. 250.
    Halgren, E., Baudena, P., Heit, G., et al. (1994). Spatio-temporal stages in face and word processing. 2. Depth-recorded potentials in the human frontal and Rolandic cortices. Journal of Physiology, Paris, 88(1), 51–80.PubMedGoogle Scholar
  251. 251.
    Kirsch, W., & Hennighausen, E. (2010). ERP correlates of linear hand movements: Distance dependent changes. Clinical Neurophysiology, 121(8), 1285–1292.PubMedGoogle Scholar
  252. 252.
    Kirsch, W., Hennighausen, E., & Rosler, F. (2010). ERP correlates of linear hand movements in a motor reproduction task. Psychophysiology, 47(3), 486–500.PubMedGoogle Scholar
  253. 253.
    Qiu, J., Li, H., Luo, Y., Zhang, Q., & Tu, S. (2009). The neural basis of syllogistic reasoning: An event-related potential study. Brain Research, 1273, 106–113.PubMedGoogle Scholar
  254. 254.
    Roopesh, B. N., Rangaswamy, M., Kamarajan, C., et al. (2009). Priming deficiency in male subjects at risk for alcoholism: The N4 during a lexical decision task. Alcoholism, Clinical and Experimental Research, 33(12), 2027–2036.PubMedGoogle Scholar
  255. 255.
    Ceponiene, R., Torki, M., Alku, P., Koyama, A., & Townsend, J. (2008). Event-related potentials reflect spectral differences in speech and non-speech stimuli in children and adults. Clinical Neurophysiology, 119(7), 1560–1577.PubMedGoogle Scholar
  256. 256.
    Ceponiene, R., Lepisto, T., Alku, P., Aro, H., & Naatanen, R. (2003). Event-related potential indices of auditory vowel processing in 3-year-old children. Clinical Neurophysiology, 114(4), 652–661.PubMedGoogle Scholar
  257. 257.
    Schapkin, S. A., Gusev, A. N., & Kuhl, J. (2000). Categorization of unilaterally presented emotional words: An ERP analysis. Acta Neurobiologiae Experimentalis, 60(1), 17–28.PubMedGoogle Scholar
  258. 258.
    Chao, L. L., & Knight, R. T. (1997). Age-related prefrontal alterations during auditory memory. Neurobiology of Aging, 18(1), 87–95.PubMedGoogle Scholar
  259. 259.
    Chao, L. L., Nielsen-Bohlman, L., & Knight, R. T. (1995). Auditory event-related potentials dissociate early and late memory processes. Electroencephalography and Clinical Neurophysiology, 96(2), 157–168.PubMedGoogle Scholar
  260. 260.
    Frund, I., Busch, N. A., Schadow, J., Korner, U., & Herrmann, C. S. (2007). From perception to action: Phase-locked gamma oscillations correlate with reaction times in a speeded response task. BMC Neuroscience, 8, 27.PubMedGoogle Scholar
  261. 261.
    Pourtois, G., Delplanque, S., Michel, C., & Vuilleumier, P. (2008). Beyond conventional event-related brain potential (ERP): Exploring the time-course of visual emotion processing using topographic and principal component analyses. Brain Topography, 20(4), 265–277.PubMedGoogle Scholar
  262. 262.
    Lee, W. H., Liu, Z., Mueller, B. A., Lim, K., & He, B. (2009). Influence of white matter anisotropic conductivity on EEG source localization: Comparison to fMRI in human primary visual cortex. Clinical Neurophysiology, 120(12), 2071–2081.Google Scholar
  263. 263.
    Lelic, D., Gratkowski, M., Valeriani, M., Arendt-Nielsen, L., & Drewes, A. M. (2009). Inverse modeling on decomposed electroencephalographic data: A way forward? Journal of Clinical Neurophysiology, 26(4), 227–235.PubMedGoogle Scholar
  264. 264.
    Lew, S., Wolters, C. H., Anwander, A., Makeig, S., & MacLeod, R. S. (2009). Improved EEG source analysis using low-resolution conductivity estimation in a four-compartment finite element head model. Human Brain Mapping, 30(9), 2862–2878.PubMedGoogle Scholar
  265. 265.
    Genetti, M., Khateb, A., Heinzer, S., Michel, C. M., & Pegna, A. J. (2009). Temporal dynamics of awareness for facial identity revealed with ERP. Brain and Cognition, 69(2), 296–305.PubMedGoogle Scholar
  266. 266.
    Bobes, M. A., Garcia, Y. F., Lopera, F., et al. (2010). ERP generator anomalies in presymptomatic carriers of the Alzheimer’s disease E280A PS-1 mutation. Human Brain Mapping, 31(2), 247–265.PubMedGoogle Scholar
  267. 267.
    De Pascalis, V., Varriale, V., & D’Antuono, L. (2010). Event-related components of the punishment and reward sensitivity. Clinical Neurophysiology, 121(1), 60–76.PubMedGoogle Scholar
  268. 268.
    Kayser, J., Tenke, C. E., Gil, R., & Bruder, G. E. (2010). ERP generator patterns in schizophrenia during tonal and phonetic oddball tasks: Effects of response hand and silent count. Clinical EEG and Neuroscience, 41(4), 184–195.PubMedGoogle Scholar
  269. 269.
    Lee, P. S., Chen, Y. S., Hsieh, J. C., Su, T. P., & Chen, L. F. (2010). Distinct neuronal oscillatory responses between patients with bipolar and unipolar disorders: A magnetoencephalographic study. Journal of Affective Disorders, 123(1–3), 270–275.PubMedGoogle Scholar
  270. 270.
    Stancak, A., Polacek, H., & Bukovsky, S. (2010). Bursts of 15–30 Hz oscillations following noxious laser stimulus originate in posterior cingulate cortex. Brain Research, 1317, 69–79.PubMedGoogle Scholar
  271. 271.
    Wibral, M., Turi, G., Linden, D. E., Kaiser, J., & Bledowski, C. (2008). Decomposition of working memory-related scalp ERPs: Crossvalidation of fMRI-constrained source analysis and ICA. International Journal of Psychophysiology, 67(3), 200–211.PubMedGoogle Scholar
  272. 272.
    Baumgartner, U., Vogel, H., Ellrich, J., Gawehn, J., Stoeter, P., & Treede, R. D. (1998). Brain electrical source analysis of primary cortical components of the tibial nerve somatosensory evoked potential using regional sources. Electroencephalography and Clinical Neurophysiology, 108(6), 588–599.PubMedGoogle Scholar
  273. 273.
    Tarkka, I. M., Stokic, D. S., Basile, L. F., & Papanicolaou, A. C. (1995). Electric source localization of the auditory P300 agrees with magnetic source localization. Electroencephalography and Clinical Neurophysiology, 96(6), 538–545.PubMedGoogle Scholar
  274. 274.
    Pantev, C., Bertrand, O., Eulitz, C., et al. (1995). Specific tonotopic organizations of different areas of the human auditory cortex revealed by simultaneous magnetic and electric recordings. Electroencephalography and Clinical Neurophysiology, 94(1), 26–40.PubMedGoogle Scholar
  275. 275.
    Bayle, D. J., & Taylor, M. J. (2010). Attention inhibition of early cortical activation to fearful faces. Brain Research, 1313, 113–123.PubMedGoogle Scholar
  276. 276.
    Chait, M., de Cheveigne, A., Poeppel, D., & Simon, J. Z. (2010). Neural dynamics of attending and ignoring in human auditory cortex. Neuropsychologia, 48(11), 3262–3271.PubMedGoogle Scholar
  277. 277.
    Dale, C. L., Findlay, A. M., Adcock, R. A., et al. (2010). Timing is everything: Neural response dynamics during syllable processing and its relation to higher-order cognition in schizophrenia and healthy comparison subjects. International Journal of Psychophysiology, 75(2), 183–193.PubMedGoogle Scholar
  278. 278.
    Haegens, S., Osipova, D., Oostenveld, R., & Jensen, O. (2010). Somatosensory working memory performance in humans depends on both engagement and disengagement of regions in a distributed network. Human Brain Mapping, 31(1), 26–35.PubMedGoogle Scholar
  279. 279.
    Henaff, M. A., Bayle, D., Krolak-Salmon, P., & Fonlupt, P. (2010). Cortical dynamics of a self driven choice: A MEG study during a card sorting task. Clinical Neurophysiology, 121(4), 508–515.PubMedGoogle Scholar
  280. 280.
    Luo, H., Liu, Z., & Poeppel, D. (2010). Auditory cortex tracks both auditory and visual stimulus dynamics using low-frequency neuronal phase modulation. PLoS Biology, 8(8), e1000445.PubMedGoogle Scholar
  281. 281.
    Xiang, J., Simon, J., & Elhilali, M. (2010). Competing streams at the cocktail party: Exploring the mechanisms of attention and temporal integration. The Journal of Neuroscience, 30(36), 12084–12093.PubMedGoogle Scholar
  282. 282.
    Luo, Q., Mitchell, D., Cheng, X., et al. (2009). Visual awareness, emotion, and gamma band synchronization. Cerebral Cortex, 19(8), 1896–1904.PubMedGoogle Scholar
  283. 283.
    Milde, T., Haueisen, J., Witte, H., & Leistritz, L. (2009). Modelling of cortical and thalamic 600 Hz activity by means of oscillatory networks. Journal of Physiology, Paris, 103(6), 342–347.PubMedGoogle Scholar
  284. 284.
    Nahum, M., Renvall, H., & Ahissar, M. (2009). Dynamics of cortical responses to tone pairs in relation to task difficulty: A MEG study. Human Brain Mapping, 30(5), 1592–1604.PubMedGoogle Scholar
  285. 285.
    van Gerven, M., & Jensen, O. (2009). Attention modulations of posterior alpha as a control signal for two-dimensional brain-computer interfaces. Journal of Neuroscience Methods, 179(1), 78–84.PubMedGoogle Scholar
  286. 286.
    Talvitie, S. S., Matilainen, L. E., Pekkonen, E., Alku, P., May, P. J., & Tiitinen, H. (2010). The effects of cortical ischemic stroke on auditory processing in humans as indexed by transient brain responses. Clinical Neurophysiology, 121(6), 912–920.PubMedGoogle Scholar
  287. 287.
    de Pasquale, F., Della Penna, S., Snyder, A. Z., et al. (2010). Temporal dynamics of spontaneous MEG activity in brain networks. Proceedings of the National Academy of Sciences of the United States of America, 107(13), 6040–6045.PubMedGoogle Scholar
  288. 288.
    Draganova, R., Wollbrink, A., Schulz, M., Okamoto, H., & Pantev, C. (2009). Modulation of auditory evoked responses to spectral and temporal changes by behavioral discrimination training. BMC Neuroscience, 10, 143.PubMedGoogle Scholar
  289. 289.
    Lee, L. C., Andrews, T. J., Johnson, S. J., et al. (2010). Neural responses to rigidly moving faces displaying shifts in social attention investigated with fMRI and MEG. Neuropsychologia, 48(2), 477–490.PubMedGoogle Scholar
  290. 290.
    Garagnani, M., Shtyrov, Y., & Pulvermuller, F. (2009). Effects of attention on what is known and what is not: MEG evidence for functionally discrete memory circuits. Frontiers in Human Neuroscience, 3, 10.PubMedGoogle Scholar
  291. 291.
    Tanaka, E., Kida, T., Inui, K., & Kakigi, R. (2009). Change-driven cortical activation in multisensory environments: An MEG study. NeuroImage, 48(2), 464–474.PubMedGoogle Scholar
  292. 292.
    Itier, R. J., & Batty, M. (2009). Neural bases of eye and gaze processing: The core of social cognition. Neuroscience and Biobehavioral Reviews, 33(6), 843–863.PubMedGoogle Scholar
  293. 293.
    Klimesch, W. (1996). Memory processes, brain oscillations and EEG synchronization. International Journal of Psychophysiology, 24(1–2), 61–100.PubMedGoogle Scholar
  294. 294.
    Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research. Brain Research Reviews, 29(2–3), 169–195.PubMedGoogle Scholar
  295. 295.
    Landfield, P. W., McGaugh, J. L., & Tusa, R. J. (1972). Theta rhythm: A temporal correlate of memory storage processes in the rat. Science, 175(17), 87–89.PubMedGoogle Scholar
  296. 296.
    Nitz, D. A., & McNaughton, B. L. (1999). Hippocampal EEG and unit activity responses to modulation of serotonergic median raphe neurons in the freely behaving rat. Learning & Memory, 6(2), 153–167.Google Scholar
  297. 297.
    O’Keefe, J. (1993). Hippocampus, theta, and spatial memory. Current Opinion in Neurobiology, 3(6), 917–924.PubMedGoogle Scholar
  298. 298.
    Schacter, D. L. (1977). EEG theta waves and psychological phenomena: A review and analysis. Biological Psychology, 5(1), 47–82.PubMedGoogle Scholar
  299. 299.
    Staubli, U., & Lynch, G. (1987). Stable hippocampal long-term potentiation elicited by ‘theta’ pattern stimulation. Brain Research, 435(1–2), 227–234.PubMedGoogle Scholar
  300. 300.
    Cartling, B. (1994). Generation of associative processes in a neural network with realistic features of architecture and units. International Journal of Neural Systems, 5(3), 181–194.PubMedGoogle Scholar
  301. 301.
    Skrebitsky, V. G., & Chepkova, A. N. (1998). Hebbian synapses in cortical and hippocampal pathways. Reviews in the Neurosciences, 9(4), 243–264.PubMedGoogle Scholar
  302. 302.
    Bush, D., Philippides, A., Husbands, P., & O’Shea, M. (2010). Dual coding with STDP in a spiking recurrent neural network model of the hippocampus. PLoS Computational Biology, 6, e1000839.PubMedGoogle Scholar
  303. 303.
    Etevenon, P., Tortrat, D., & Benkelfat, C. (1985). Electroencephalographic cartography. II. By means of statistical group studies-activation by visual attention. Neuropsychobiology, 13(3), 141–146.PubMedGoogle Scholar
  304. 304.
    Saletu, B., & Grunberger, J. (1985). Memory dysfunction and vigilance: Neurophysiological and psychopharmacological aspects. Annals of the New York Academy of Sciences, 444, 406–427.PubMedGoogle Scholar
  305. 305.
    Koenig, L. J., & Gustafson, J. W. (1979). Hippocampal function in distractibility: An electroencephalographic investigation. Physiology & Behavior, 22(2), 305–310.Google Scholar
  306. 306.
    Halgren, E., Babb, T. L., & Crandall, P. H. (1978). Human hippocampal formation EEG desynchronizes during attentiveness and movement. Electroencephalography and Clinical Neurophysiology, 44(6), 778–781.PubMedGoogle Scholar
  307. 307.
    Klemm, W. R. (1976). Hippocampal EEG, and information processing: A special role for theta rhythm. Progress in Neurobiology, 7(3), 197–214.PubMedGoogle Scholar
  308. 308.
    Bennett, T. L., Hebert, P. N., & Moss, D. E. (1973). Hippocampal theta activity and the attention component of discrimination learning. Behavioral Biology, 8(2), 173–181.PubMedGoogle Scholar
  309. 309.
    Daniel, R. S. (1967). Alpha and theta EEG in vigilance. Perceptual and Motor Skills, 25(3), 697–703.PubMedGoogle Scholar
  310. 310.
    Sainsbury, R. S. (1998). Hippocampal theta: A sensory-inhibition theory of function. Neuroscience and Biobehavioral Reviews, 22(2), 237–241.PubMedGoogle Scholar
  311. 311.
    Liberman, T., Velluti, R. A., & Pedemonte, M. (2009). Temporal correlation between auditory neurons and the hippocampal theta rhythm induced by novel stimulations in awake guinea pigs. Brain Research, 1298, 70–77.PubMedGoogle Scholar
  312. 312.
    Palva, J. M., Monto, S., Kulashekhar, S., & Palva, S. (2010). Neuronal synchrony reveals working memory networks and predicts individual memory capacity. Proceedings of the National Academy of Sciences of the United States of America, 107(16), 7580–7585.PubMedGoogle Scholar
  313. 313.
    Palva, J. M., Palva, S., & Kaila, K. (2005). Phase synchrony among neuronal oscillations in the human cortex. Journal of Neuroscience, 25, 3962–3972.PubMedGoogle Scholar
  314. 314.
    Paul, R. H., Clark, C. R., Lawrence, J., Goldberg, E., Williams, L. M., Cooper, N., et al. (2005). Age-dependent change in executive function and gamma 40 Hz phase synchrony. Journal of Integrative Neuroscience, 4, 63–76.PubMedGoogle Scholar
  315. 315.
    Pfefferbaum, A., Ford, J. M., Roth, W. T., & Kopell, B. S. (1980). Age differences in P3-reaction time associations. Electroencephalography and Clinical Neurophysiology, 49, 257–265.PubMedGoogle Scholar
  316. 316.
    Pfefferbaum, A., Wenegrat, B. G., Ford, J. M., Roth, W. T., & Kopell, B. S. (1984). Clinical application of the P3 component of the event-related potentials. II. Dementia, Depression and Schizophrenia. Electroencephalography and Clinical Neurophysiology, 59, 104–124.PubMedGoogle Scholar
  317. 317.
    Syndulko, K., Hansch, E. C., Cohen, S. N., et al. (1982). Long-latency event-related potentials in normal aging and dementia. Advances in Neurology, 32, 279–285.PubMedGoogle Scholar
  318. 318.
    Goodin, D. S., Squires, K. C., Henderson, B. H., & Starr, A. (1978). An early event-related cortical potential. Psychophysiology, 15(4), 360–365.PubMedGoogle Scholar
  319. 319.
    Squires, N. K., & Ollo, C. (1999). Comparison of endogenous event-related potentials in attend and non-attend conditions: Latency changes with normal aging. Clinical Neurophysiology, 110(3), 564–574.PubMedGoogle Scholar
  320. 320.
    Loring, D. W., Levin, H. S., Papanicolaou, A. C., Larrabee, G. J., & Eisenberg, H. M. (1984). Auditory evoked potentials in senescent forgetfulness. The International Journal of Neuroscience, 24(2), 133–141.PubMedGoogle Scholar
  321. 321.
    Van der Wal, E. A., & Sandman, C. A. (1992). Evidence for terminal decline in the event-related potential of the brain. Electroencephalography and Clinical Neurophysiology, 83(3), 211–216.PubMedGoogle Scholar
  322. 322.
    Friedman, D., Kazmerski, V., & Fabiani, M. (1997). An overview of age-related changes in the scalp distribution of P3b. Electroencephalography and Clinical Neurophysiology, 104(6), 498–513.PubMedGoogle Scholar
  323. 323.
    O’Donnell, B. F., Friedman, S., Swearer, J. M., & Drachman, D. A. (1992). Active and passive P3 latency and psychometric performance: Influence of age and individual differences. International Journal of Psychophysiology, 12(2), 187–195.PubMedGoogle Scholar
  324. 324.
    Pollock, V. E., & Schneider, L. S. (1992). P3 from auditory stimuli in healthy elderly subjects: Hearing threshold and tone stimulus frequency. International Journal of Psychophysiology, 12(3), 237–241.PubMedGoogle Scholar
  325. 325.
    Woods, D. L. (1992). Auditory selective attention in middle-aged and elderly subjects: An event-related brain potential study. Electroencephalography and Clinical Neurophysiology, 84(5), 456–468.PubMedGoogle Scholar
  326. 326.
    Naatanen, R., Pakarinen, S., Rinne, T., & Takegata, R. (2004). The mismatch negativity (MMN): Towards the optimal paradigm. Clinical Neurophysiology, 115(1), 140–144.PubMedGoogle Scholar
  327. 327.
    Naatanen, R., & Winkler, I. (1999). The concept of auditory stimulus representation in cognitive neuroscience. Psychological Bulletin, 125(6), 826–859.PubMedGoogle Scholar
  328. 328.
    Kok, A. (2000). Age-related changes in involuntary and voluntary attention as reflected in components of the event-related potential (ERP). Biological Psychology, 54(1–3), 107–143.PubMedGoogle Scholar
  329. 329.
    McEvoy, L. K., Pellouchoud, E., Smith, M. E., & Gevins, A. (2001). Neurophysiological signals of working memory in normal aging. Brain Research. Cognitive Brain Research, 11(3), 363–376.PubMedGoogle Scholar
  330. 330.
    West, R., & Travers, S. (2008). Differential effects of aging on processes underlying task switching. Brain and Cognition, 68(1), 67–80.PubMedGoogle Scholar
  331. 331.
    Gazzaley, A., Cooney, J. W., McEvoy, K., Knight, R. T., & D’Esposito, M. (2005). Top-down enhancement and suppression of the magnitude and speed of neural activity. Journal of Cognitive Neuroscience, 17(3), 507–517.PubMedGoogle Scholar
  332. 332.
    Goodin, D. S., Squires, K. C., & Starr, A. (1978). Long latency event-related components of the auditory evoked potential in dementia. Brain, 101, 635–648.PubMedGoogle Scholar
  333. 333.
    Hansch, E. C., Syndulko, K., Cohen, S. N., Goldberg, Z. I., Potvin, A. R., & Tourtellotte, W. W. (1982). Cognition in Parkinson disease: An event-related potential perspective. Annals of Neurology, 11(6), 599–607.PubMedGoogle Scholar
  334. 334.
    O’Donnell, B. F., Squires, N. K., Martz, M. J., Chen, J. R., & Phay, A. J. (1987). Evoked potential changes and neuropsychological performance in Parkinson’s disease. Biological Psychology, 24, 23–37.PubMedGoogle Scholar
  335. 335.
    Polich, J., Ehlers, C. L., Otis, S., Mandell, A. J., & Bloom, F. E. (1986). P300 latency reflects the degree of cognitive decline in dementing illness. Electroencephalography and Clinical Neurophysiology, 63(2), 138–144.PubMedGoogle Scholar
  336. 336.
    Polich, J., Ladish, C., & Bloom, F. E. (1990). P300 assessment of early Alzheimer’s disease. Electroencephalography and Clinical Neurophysiology, 77(3), 179–189.PubMedGoogle Scholar
  337. 337.
    de Brionne, M. H., Gueguen, B., Bourdel, M. C., et al. (1991). [Topographical analysis of endogenous evoked potentials in depressed old people and in patients with Alzheimer’s type dementia]. Neurophysiologie Clinique = Clinical Neurophysiology, 21(5–6), 449–458.PubMedGoogle Scholar
  338. 338.
    Naatanen, R. (2003). Mismatch negativity: Clinical research and possible applications. International Journal of Psychophysiology, 48(2), 179–188.PubMedGoogle Scholar
  339. 339.
    Kazmerski, V. A., Friedman, D., & Ritter, W. (1997). Mismatch negativity during attend and ignore conditions in Alzheimer’s disease. Biological Psychiatry, 42(5), 382–402.PubMedGoogle Scholar
  340. 340.
    Sumi, N., Nan’no, H., Fujimoto, O., Ohta, Y., & Takeda, M. (2000). Interpeak latency of auditory event-related potentials (P300) in senile depression and dementia of the Alzheimer type. Psychiatry and Clinical Neurosciences, 54(6), 679–684.PubMedGoogle Scholar
  341. 341.
    Cohen, R. A., O’Donnell, B. F., Meadows, M. E., Moonis, M., Stone, W. F., & Drachman, D. A. (1995). ERP indices and neuropsychological performance as predictors of functional outcome in dementia. Journal of Geriatric Psychiatry and Neurology, 8(4), 217–225.PubMedGoogle Scholar
  342. 342.
    Yamaguchi, S., Tsuchiya, H., Yamagata, S., Toyoda, G., & Kobayashi, S. (2000). Event-related brain potentials in response to novel sounds in dementia. Clinical Neurophysiology, 111(2), 195–203.PubMedGoogle Scholar
  343. 343.
    Munte, T. F., Ridao-Alonso, M. E., Preinfalk, J., et al. (1997). An electrophysiological analysis of altered cognitive functions in Huntington disease. Archives of Neurology, 54(9), 1089–1098.PubMedGoogle Scholar
  344. 344.
    Syndulko, K., Gilden, E. R., Hansch, E. C., Potvin, A. R., Tourtellotte, W. W., & Potvin, J. H. (1981). Decreased verbal memory associated with anticholinergic treatment in Parkinson’s disease patients. The International Journal of Neuroscience, 14(1–2), 61–66.PubMedGoogle Scholar
  345. 345.
    Tsuchiya, H., Yamaguchi, S., & Kobayashi, S. (2000). Impaired novelty detection and frontal lobe dysfunction in Parkinson’s disease. Neuropsychologia, 38(5), 645–654.PubMedGoogle Scholar
  346. 346.
    Lopez-Azcarate, J., Tainta, M., Rodriguez-Oroz, M. C., et al. (2010). Coupling between beta and high-frequency activity in the human subthalamic nucleus may be a pathophysiological mechanism in Parkinson’s disease. The Journal of Neuroscience, 30(19), 6667–6677.PubMedGoogle Scholar
  347. 347.
    Sannita, W. G., Carozzo, S., Orsini, P., et al. (2009). ‘Gamma’ band oscillatory response to chromatic stimuli in volunteers and patients with idiopathic Parkinson’s disease. Vision Research, 49(7), 726–734.PubMedGoogle Scholar
  348. 348.
    Colloca, L., Benedetti, F., Bergamasco, B., et al. (2006). Electroencephalographic responses to intraoperative subthalamic stimulation. Neuroreport, 17(14), 1465–1468.PubMedGoogle Scholar
  349. 349.
    Marsden, J. F., Limousin-Dowsey, P., Ashby, P., Pollak, P., & Brown, P. (2001). Subthalamic nucleus, sensorimotor cortex and muscle interrelationships in Parkinson’s disease. Brain, 124(Pt 2), 378–388.PubMedGoogle Scholar
  350. 350.
    Mima, T., & Hallett, M. (1999). Corticomuscular coherence: A review. Journal of Clinical Neurophysiology, 16(6), 501–511.PubMedGoogle Scholar
  351. 351.
    Spencer, K. M., Niznikiewicz, M. A., Nestor, P. G., Shenton, M. E., & McCarley, R. W. (2009). Left auditory cortex gamma synchronization and auditory hallucination symptoms in schizophrenia. BMC Neuroscience, 10, 85.PubMedGoogle Scholar
  352. 352.
    Beste, C., Konrad, C., Saft, C., et al. (2009). Alterations in voluntary movement execution in Huntington’s disease are related to the dominant motor system: Evidence from event-related potentials. Experimental Neurology, 216(1), 148–157.PubMedGoogle Scholar
  353. 353.
    Beste, C., Saft, C., Andrich, J., Gold, R., & Falkenstein, M. (2008). Response inhibition in Huntington’s disease-a study using ERPs and sLORETA. Neuropsychologia, 46(5), 1290–1297.PubMedGoogle Scholar
  354. 354.
    Beste, C., Saft, C., Andrich, J., Gold, R., & Falkenstein, M. (2008). Stimulus–response compatibility in Huntington’s disease: A cognitive-neurophysiological analysis. Journal of Neurophysiology, 99(3), 1213–1223.PubMedGoogle Scholar
  355. 355.
    Uc, E. Y., Skinner, R. D., Rodnitzky, R. L., & Garcia-Rill, E. (2003). The midlatency auditory evoked potential P50 is abnormal in Huntington’s disease. Journal of Neurological Sciences, 212(1–2), 1–5.Google Scholar
  356. 356.
    Jackson, C. E., & Snyder, P. J. (2008). Electroencephalography and event-related potentials as biomarkers of mild cognitive impairment and mild Alzheimer’s disease. Alzheimer’s & Dementia, 4(1 Suppl 1), S137–S143.Google Scholar
  357. 357.
    Callaway, E., & Halliday, R. (1982). The effect of attentional effort on visual evoked potential N1 latency. Psychiatry Research, 7(3), 299–308.PubMedGoogle Scholar
  358. 358.
    Halliday, R., Callaway, E., & Naylor, H. (1983). Visual evoked potential changes induced by methylphenidate in hyperactive children: Dose/response effects. Electroencephalography and Clinical Neurophysiology, 55(3), 258–267.PubMedGoogle Scholar
  359. 359.
    Satterfield, J. H., Schell, A. M., Nicholas, T. W., Satterfield, B. T., & Freese, T. E. (1990). Ontogeny of selective attention effects on event-related potentials in attention-deficit hyperactivity disorder and normal boys. Biological Psychiatry, 28(10), 879–903.PubMedGoogle Scholar
  360. 360.
    Duncan, C. C., Rumsey, J. M., Wilkniss, S. M., Denckla, M. B., Hamburger, S. D., & Odou-Potkin, M. (1994). Developmental dyslexia and attention dysfunction in adults: Brain potential indices of information processing. Psychophysiology, 31(4), 386–401.PubMedGoogle Scholar
  361. 361.
    Harter, M. R., Anllo-Vento, L., Wood, F. B., & Schroeder, M. M. (1988). Separate brain potential characteristics in children with reading disability and attention deficit disorder: Color and letter relevance effects. Brain and Cognition, 7(1), 115–140.PubMedGoogle Scholar
  362. 362.
    Harter, M. R., Diering, S., & Wood, F. B. (1988). Separate brain potential characteristics in children with reading disability and attention deficit disorder: Relevance-independent effects. Brain and Cognition, 7(1), 54–86.PubMedGoogle Scholar
  363. 363.
    Novak, G. P., Solanto, M., & Abikoff, H. (1995). Spatial orienting and focused attention in attention deficit hyperactivity disorder. Psychophysiology, 32(6), 546–559.PubMedGoogle Scholar
  364. 364.
    Strandburg, R. J., Marsh, J. T., Brown, W. S., et al. (1996). Continuous-processing—Related event-related potentials in children with attention deficit hyperactivity disorder. Biological Psychiatry, 40(10), 964–980.PubMedGoogle Scholar
  365. 365.
    Perchet, C., Revol, O., Fourneret, P., Mauguiere, F., & Garcia-Larrea, L. (2001). Attention shifts and anticipatory mechanisms in hyperactive children: An ERP study using the Posner paradigm. Biological Psychiatry, 50(1), 44–57.PubMedGoogle Scholar
  366. 366.
    Jonkman, L. M., Kemner, C., Verbaten, M. N., et al. (1997). Effects of methylphenidate on event-related potentials and performance of attention-deficit hyperactivity disorder children in auditory and visual selective attention tasks. Biological Psychiatry, 41(6), 690–702.PubMedGoogle Scholar
  367. 367.
    Jonkman, L. M., Kemner, C., Verbaten, M. N., et al. (1997). Event-related potentials and performance of attention-deficit hyperactivity disorder: Children and normal controls in auditory and visual selective attention tasks. Biological Psychiatry, 41(5), 595–611.PubMedGoogle Scholar
  368. 368.
    Winsberg, B. G., Javitt, D. C., & Silipo, G. S. (1997). Electrophysiological indices of information processing in methylphenidate responders. Biological Psychiatry, 42(6), 434–445.PubMedGoogle Scholar
  369. 369.
    Hermens, D. F., Cooper, N. J., Kohn, M., Clarke, S., & Gordon, E. (2005). Predicting stimulant medication response in ADHD: Evidence from an integrated profile of neuropsychological, psychophysiological and clinical factors. Journal of Integrative Neuroscience, 4(1), 107–121.PubMedGoogle Scholar
  370. 370.
    Hermens, D. F., Williams, L. M., Clarke, S., Kohn, M., Cooper, N., & Gordon, E. (2005). Responses to methylphenidate in adolescent AD/HD: evidence from concurrently recorded autonomic (EDA) and central (EEG and ERP) measures. International Journal of Psychophysiology, 58(1), 21–33.PubMedGoogle Scholar
  371. 371.
    Steger, J., Imhof, K., Steinhausen, H., & Brandeis, D. (2000). Brain mapping of bilateral interactions in attention deficit hyperactivity disorder and control boys. Clinical Neurophysiology, 111(7), 1141–1156.PubMedGoogle Scholar
  372. 372.
    Dimoska, A., Johnstone, S. J., Barry, R. J., & Clarke, A. R. (2003). Inhibitory motor control in children with attention-deficit/hyperactivity disorder: Event-related potentials in the stop-signal paradigm. Biological Psychiatry, 54(12), 1345–1354.PubMedGoogle Scholar
  373. 373.
    Smith, J. L., Johnstone, S. J., & Barry, R. J. (2004). Inhibitory processing during the Go/NoGo task: An ERP analysis of children with attention-deficit/hyperactivity disorder. Clinical Neurophysiology, 115(6), 1320–1331.PubMedGoogle Scholar
  374. 374.
    Johnstone, S. J., Barry, R. J., Markovska, V., Dimoska, A., & Clarke, A. R. (2009). Response inhibition and interference control in children with AD/HD: A visual ERP investigation. International Journal of Psychophysiology, 72(2), 145–153.PubMedGoogle Scholar
  375. 375.
    Liotti, M., Pliszka, S. R., Higgins, K., Perez, R., III, & Semrud-Clikeman, M. (2010). Evidence for specificity of ERP abnormalities during response inhibition in ADHD children: A comparison with reading disorder children without ADHD. Brain and Cognition, 72(2), 228–237.PubMedGoogle Scholar
  376. 376.
    Wiersema, J. R., van der Meere, J. J., & Roeyers, H. (2009). ERP correlates of error monitoring in adult ADHD. Journal of Neural Transmission, 116(3), 371–379.PubMedGoogle Scholar
  377. 377.
    Brown, C. R., Clarke, A. R., Barry, R. J., McCarthy, R., Selikowitz, M., & Magee, C. (2005). Event-related potentials in attention-deficit/hyperactivity disorder of the predominantly inattentive type: An investigation of EEG-defined subtypes. International Journal of Psychophysiology, 58(1), 94–107.PubMedGoogle Scholar
  378. 378.
    Levit, R. A., Sutton, S., & Zubin, J. (1973). Evoked potential correlates of information processing in psychiatric patients. Psychological Medicine, 3, 487–494.PubMedGoogle Scholar
  379. 379.
    Roth, W. T., & Kopell, B. S. (1973). P 300—An orienting reaction in the human auditory evoked response. Perceptual and Motor Skills, 36(1), 219–225.PubMedGoogle Scholar
  380. 380.
    Baribeau-Braun, J., Picton, T. W., & Gosselin, J. Y. (1983). Schizophrenia: A neurophysiological evaluation of abnormal information processing. Science, 219(4586), 874–876.PubMedGoogle Scholar
  381. 381.
    Brecher, M., Porjesz, B., & Begleiter, H. (1987). The N2 component of the event-related potential in schizophrenic patients. Electroencephalography and Clinical Neurophysiology, 66, 369–375.PubMedGoogle Scholar
  382. 382.
    Duncan-Johnson, C. C., Roth, W., & Koppell, B. S. (1984). Effects of stimulus sequence on P300 and reaction time in schizophrenics. In R. Karrer, J. Cohen, & P. Tueting (Eds.), Brain and information: Event-related potentials (Vol. 425, pp. 570–577). New York: Annals of the New York Academy of Sciences.Google Scholar
  383. 383.
    O’Donnell, B. F., Hetrick, W. P., Vohs, J. L., Krishnan, G. P., Carroll, C. A., & Shekhar, A. (2004). Neural synchronization deficits to auditory stimulation in bipolar disorder. Neuroreport, 15(8), 1369–1372.PubMedGoogle Scholar
  384. 384.
    O’Donnell, B. F., Faux, S. F., McCarley, R. W., et al. (1995). Increased rate of P300 latency prolongation with age in schizophrenia. Electrophysiological evidence for a neurodegenerative process. Archives of General Psychiatry, 52(7), 544–549.PubMedGoogle Scholar
  385. 385.
    Kayser, J., Tenke, C. E., Gates, N. A., Kroppmann, C. J., Gil, R. B., & Bruder, G. E. (2006). ERP/CSD indices of impaired verbal working memory subprocesses in schizophrenia. Psychophysiology, 43(3), 237–252.PubMedGoogle Scholar
  386. 386.
    McCarley, R. W., Shenton, M. E., O’Donnell, B. F., & Nestor, P. G. (1993). Uniting Kraepelin and Bleuler: The psychology of schizophrenia and the biology of temporal lobe abnormalities. Harvard Review of Psychiatry, 1(1), 36–56.PubMedGoogle Scholar
  387. 387.
    Polich, J., Howard, L., & Starr, A. (1983). P300 latency correlates with digit span. Psychophysiology, 20(6), 665–669.PubMedGoogle Scholar
  388. 388.
    Kraiuhin, C., Gordon, E., Meares, R., & Howson, A. (1986). Psychometrics and event-related potentials in the diagnosis of dementia. Journal of Gerontology, 41, 154–162.PubMedGoogle Scholar
  389. 389.
    Ritter, W., Vaughan, H. G., Jr., & Costa, L. D. (1968). Orienting and habituation to auditory stimuli: A study of short term changes in average evoked responses. Electroencephalography and Clinical Neurophysiology, 25(6), 550–556.PubMedGoogle Scholar
  390. 390.
    Ruchkin, D. S., Munson, R., & Sutton, S. (1982). P300 and slow wave in a message consisting of two events. Psychophysiology, 19(6), 629–642.PubMedGoogle Scholar
  391. 391.
    Ruchkin, D. S., & Sutton, S. (1978). Emmitted P300 potentials and temporal uncertainty. Electroencephalography and Clinical Neurophysiology, 45(2), 268–277.PubMedGoogle Scholar
  392. 392.
    Donchin, E. (1981). Presidential address, 1980. Surprise!…Surprise? Psychophysiology, 18(5), 493–513.PubMedGoogle Scholar
  393. 393.
    Grossberg, S. (1988). Neural networks and natural intelligence. Cambridge: MIT Press.Google Scholar
  394. 394.
    Galletly, C., Clark, C. R., McFarlane, A. C., & Weber, D. L. (2001). Working memory in posttraumatic stress disorder—An event-related potential study. Journal of Traumatic Stress, 14(2), 295–309.PubMedGoogle Scholar
  395. 395.
    Kok, A. (2001). On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology, 38(3), 557–577.PubMedGoogle Scholar
  396. 396.
    Kranczioch, C., Debener, S., & Engel, A. K. (2003). Event-related potential correlates of the attentional blink phenomenon. Brain Research. Cognitive Brain Research, 17(1), 177–187.PubMedGoogle Scholar
  397. 397.
    Serrien, D. J., Pogosyan, A. H., & Brown, P. (2004). Influence of working memory on patterns of motor related cortico-cortical coupling. Experimental Brain Research. Experimentelle Hirnforschung, 155(2), 204–210.Google Scholar
  398. 398.
    Smolnik, R., Perras, B., Molle, M., Fehm, H. L., & Born, J. (2000). Event-related brain potentials and working memory function in healthy humans after single-dose and prolonged intranasal administration of adrenocorticotropin 4–10 and desacetyl-alpha-melanocyte stimulating hormone. Journal of Clinical Psychopharmacology, 20(4), 445–454.PubMedGoogle Scholar
  399. 399.
    Vogel, E. K., & Luck, S. J. (2002). Delayed working memory consolidation during the attentional blink. Psychonomic Bulletin & Review, 9(4), 739–743.Google Scholar
  400. 400.
    Courchesne, E., Courchesne, R. Y., & Hillyard, S. A. (1978). The effect of stimulus deviation on P3 waves to easily recognized stimuli. The International Journal of Neuroscience, 29, 199–204.Google Scholar
  401. 401.
    Polich, J. (1989). P300 from a passive auditory paradigm. Electroencephalography and Clinical Neurophysiology, 74(4), 312–320.PubMedGoogle Scholar
  402. 402.
    James, W. (1892). Attention. In W. James (Ed.), Psychology (pp. 217–238). New York: Henry Holt and Company.Google Scholar
  403. 403.
    Meador, K. J., Loring, D. W., Gallagher, B. B., et al. (1992). Differential effects of left versus right seizure focus on human hippocampal evoked responses. The International Journal of Neuroscience, 66(1–2), 87–91.PubMedGoogle Scholar
  404. 404.
    Meador, K. J., Loring, D. W., Huh, K., King, D. W., & Gallagher, B. B. (1990). Long-latency evoked potentials during aura of temporal lobe origin. The International Journal of Neuroscience, 50(1–2), 127–130.PubMedGoogle Scholar
  405. 405.
    Meador, K. J., Loring, D. W., Huh, K., et al. (1988). Spectral analysis of sphenoidal evoked potentials predicts epileptic focus. Epilepsia, 29(4), 434–439.PubMedGoogle Scholar
  406. 406.
    Meador, K. J., Loring, D. W., King, D. W., et al. (1988). Spectral power of human limbic evoked potentials: Relationship to seizure onset. Annals of Neurology, 23(2), 145–151.PubMedGoogle Scholar
  407. 407.
    Meador, K. J., Loring, D. W., King, D. W., et al. (1988). Cholinergic modulation of human limbic evoked potentials. The International Journal of Neuroscience, 38(3–4), 407–414.PubMedGoogle Scholar
  408. 408.
    Meador, K. J., Loring, D. W., King, D. W., et al. (1987). Limbic evoked potentials predict site of epileptic focus. Neurology, 37(3), 494–497.PubMedGoogle Scholar
  409. 409.
    Garcia-Marin, V., & Gonzalez-Feria, L. (2000). Depth electroencephalography in selection of refractory epilepsy for surgery. Our experience with the suboccipital approach. Neurologia i Neurochirurgia Polska, 34(Suppl 8), 31–39.PubMedGoogle Scholar
  410. 410.
    Marossero, F., Ettorre, G., Franzini, A., & Motti, D. F. (1978). Chronic depth electrodes study of one case of bitemporal epilepsy due to glial tumour. Some physiopathological considerations. Acta Neurochirurgica, 45(1–2), 123–131.PubMedGoogle Scholar
  411. 411.
    Laitinen, L., & Toivakka, E. (1972). Locating brain tumours through depth EEG probes. Confinia Neurologica, 34(2), 101–105.Google Scholar
  412. 412.
    Miatton, M., Van Roost, D., Thiery, E., et al. (2011). The cognitive effects of amygdalohippocampal deep brain stimulation in patients with temporal lobe epilepsy. Epilepsy & Behavior, 22(4), 759–764.Google Scholar
  413. 413.
    Bollimunta, A., Mo, J., Schroeder, C. E., & Ding, M. (2011). Neuronal mechanisms and attentional modulation of corticothalamic alpha oscillations. The Journal of Neuroscience, 31(13), 4935–4943.PubMedGoogle Scholar
  414. 414.
    Hajcak, G., Anderson, B. S., Arana, A., et al. (2010). Dorsolateral prefrontal cortex stimulation modulates electrocortical measures of visual attention: Evidence from direct bilateral epidural cortical stimulation in treatment-resistant mood disorder. Neuroscience, 170(1), 281–288.PubMedGoogle Scholar
  415. 415.
    Nikulin, V. V., Marzinzik, F., Wahl, M., et al. (2008). Anticipatory activity in the human thalamus is predictive of reaction times. Neuroscience, 155(4), 1275–1283.PubMedGoogle Scholar
  416. 416.
    Klostermann, F., Wahl, M., Marzinzik, F., Schneider, G. H., Kupsch, A., & Curio, G. (2006). Mental chronometry of target detection: Human thalamus leads cortex. Brain, 129(Pt 4), 923–931.PubMedGoogle Scholar
  417. 417.
    Lado, F. A. (2006). Chronic bilateral stimulation of the anterior thalamus of kainate-treated rats increases seizure frequency. Epilepsia, 47(1), 27–32.PubMedGoogle Scholar
  418. 418.
    Gobbele, R., Waberski, T. D., Kuelkens, S., Sturm, W., Curio, G., & Buchner, H. (2000). Thalamic and cortical high-frequency (600 Hz) somatosensory-evoked potential (SEP) components are modulated by slight arousal changes in awake subjects. Experimental Brain Research. Experimentelle Hirnforschung, 133(4), 506–513.Google Scholar
  419. 419.
    Bruin, K. J., Kenemans, J. L., Verbaten, M. N., & Van der Heijden, A. H. (1998). Localization of spatial attention processes with the aid of a probe technique. Electroencephalography and Clinical Neurophysiology, 108(2), 110–122.PubMedGoogle Scholar
  420. 420.
    Feindel, W. (1982). The contributions of Wilder Penfield to the functional anatomy of the human brain. Human Neurobiology, 1(4), 231–234.PubMedGoogle Scholar
  421. 421.
    Penfield, W. (1958). Some mechanisms of consciousness discovered during electrical stimulation of the brain. Proceedings of the National Academy of Sciences of the United States of America, 44(2), 51–66.PubMedGoogle Scholar
  422. 422.
    Sochurkova, D., Rektor, I., Jurak, P., & Stancak, A. (2006). Intracerebral recording of cortical activity related to self-paced voluntary movements: A Bereitschaftspotential and event-related desynchronization/synchronization. SEEG study. Experimental Brain Research. Experimentelle Hirnforschung, 173(4), 637–649.Google Scholar
  423. 423.
    Rusnakova, S., Daniel, P., Chladek, J., Jurak, P., & Rektor, I. (2011). The executive functions in frontal and temporal lobes: A flanker task intracerebral recording study. Journal of Clinical Neurophysiology, 28(1), 30–35.PubMedGoogle Scholar
  424. 424.
    Nager, W., Munte, T. F., Bohrer, I., et al. (2007). Automatic and attentive processing of sounds in cochlear implant patients—Electrophysiological evidence. Restorative Neurology and Neuroscience, 25(3–4), 391–396.PubMedGoogle Scholar
  425. 425.
    Bidet-Caulet, A., Fischer, C., Besle, J., Aguera, P. E., Giard, M. H., & Bertrand, O. (2007). Effects of selective attention on the electrophysiological representation of concurrent sounds in the human auditory cortex. The Journal of Neuroscience, 27(35), 9252–9261.PubMedGoogle Scholar
  426. 426.
    Ekstrom, A. D., Caplan, J. B., Ho, E., Shattuck, K., Fried, I., & Kahana, M. J. (2005). Human hippocampal theta activity during virtual navigation. Hippocampus, 15(7), 881–889.PubMedGoogle Scholar
  427. 427.
    Ding, L., Lai, Y., & He, B. (2005). Low resolution brain electromagnetic tomography in a realistic geometry head model: A simulation study. Physics in Medicine and Biology, 50(1), 45–56.PubMedGoogle Scholar
  428. 428.
    Kukleta, M., Brazdil, M., Roman, R., & Jurak, P. (2003). Identical event-related potentials to target and frequent stimuli of visual oddball task recorded by intracerebral electrodes. Clinical Neurophysiology, 114(7), 1292–1297.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ronald A. Cohen
    • 1
    • 2
    • 3
  1. 1.Departments of Neurology, Psychiatry and AgingGainesvilleUSA
  2. 2.Center for Cognitive Aging and MemoryUniversity of Florida College of MedicineGainesvilleUSA
  3. 3.Department of Psychiatry and Human Behavior Warren Alpert School of MedicineBrown UniversityProvidenceUSA

Personalised recommendations