Focused and Sustained Attention

  • Ronald A. Cohen


The selection of stimuli and responses for cognitive processing is an essential element of attention. As we have discussed in the preceding chapters, the processes underlying selective attention has been a primary emphasis. Yet, as the cognitive science of attention evolved, it became evident that it was necessary to account for other important aspects of attentional phenomena. Kahneman’s capacity theory of attention was an early effort to address constraints on the amount of information that can be processed at any given point in time and the type of attentional limitations that emerge on concurrent task conditions [1]. Studies that demonstrated a distinction between controlled and automatic attentional processes [2–6] laid the groundwork for moving the cognitive science beyond its focus on attentional selection. The distinction between automatic and controlled attention provided an entrée into consideration of the neurophysiological underpinning of attention as measured by arousal and activation and their relationship to effort [7]. The fact that controlled attentional processes were fundamentally different from automatic processes with respect to capacity limitation constraints, performance characteristics over time, as well as demands for attentional focus, led to more directed study of focused attention and the notion that besides being tuned to certain information over others (selectivity), attention typically has an intensity. Furthermore, tasks with high demands for focused attention are often effortful and difficult to sustain for long periods of time, provided a foundation for expanding the concept of sustained attention beyond the simple vigilance paradigms of the information-processing approaches of the 1950s and 1960s.


Selective Attention Attentional Focus Sustained Attention Divided Attention Response Demand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kahneman, D. (1973). Attention and effort. Englewood Cliffs: Prentice-Hall.Google Scholar
  2. 2.
    Hasher, L., & Zacks, R. T. (1979). Automatic and effortful processes in memory. Journal of Experimental Psychology. General, 108, 356–388.Google Scholar
  3. 3.
    Kahneman, D., & Treisman, A. (1984). Changing views of attention and automaticity. In R. Parasuraman, D. R. Davies, & J. Beatty (Eds.), Varieties of attention. New York: Academic.Google Scholar
  4. 4.
    Schneider, W., Dumais, S. T., & Shriffrin, R. M. (1984). Automatic and control processing and attention. In R. Parasuraman, R. Davies, & R. J. Beatty (Eds.), Varieties of attention (pp. 1–27). New York: Academic.Google Scholar
  5. 5.
    Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review, 84, 1–66.Google Scholar
  6. 6.
    Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. Psychological Review, 84, 127–190.Google Scholar
  7. 7.
    Pribram, K., & McGuinness, D. (1975). Arousal, activation, and effort in the control of attention. Psychological Review, 82(2), 116–149.PubMedGoogle Scholar
  8. 8.
    James, W. (1892). Attention. In W. James (Ed.), Psychology (pp. 217–238). New York: Henry Holt and Company.Google Scholar
  9. 9.
    Wundt, W. (1902). Outlines of psychology (Trans., 2nd ed.). Oxford: Engelmann.Google Scholar
  10. 10.
    Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology. General, 109, 160–174.Google Scholar
  11. 11.
    Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25–42.PubMedGoogle Scholar
  12. 12.
    Posner, M. I. (2004). Cognitive neuroscience of attention. New York: Guilford Press.Google Scholar
  13. 13.
    Driver, J., & Baylis, G. C. (1998). Attention and visual object segmentation. In R. Parasuraman (Ed.), The attentive brain (pp. 299–327). Cambridge: MIT Press.Google Scholar
  14. 14.
    LaBerge, D. (1983). Spatial extent of attention to letters and words. Journal of Experimental Psychology. Human Perception and Performance, 9(3), 371–379.PubMedGoogle Scholar
  15. 15.
    Tipper, S. P., & Driver, J. (1988). Negative priming between pictures and words in a selective attention task: Evidence for semantic processing of ignored stimuli. Memory & Cognition, 16(1), 64–70.Google Scholar
  16. 16.
    Pylyshyn, Z. W. (2001). Visual indexes, preconceptual objects, and situated vision. Cognition, 80(1–2), 127–158.PubMedGoogle Scholar
  17. 17.
    Robertson, L. (1998). Visual spatial attention and parietal function: Their role in object perception. In R. Parasuraman (Ed.), The attentive brain (pp. 257–278). Cambridge: MIT Press.Google Scholar
  18. 18.
    Neisser, U. (1967). Cognitive psychology. New York: Appleton.Google Scholar
  19. 19.
    O’Grady, R. B., & Muller, H. J. (2000). Object-based selection operates on a grouped array of locations. Perception & Psychophysics, 62(8), 1655–1667.Google Scholar
  20. 20.
    Czigler, I., & Balazs, L. (1998). Object-related attention: An event-related potential study. Brain and Cognition, 38(2), 113–124.PubMedGoogle Scholar
  21. 21.
    Vecera, S. P., & Farah, M. J. (1997). Is visual image segmentation a bottom-up or an interactive process? Perception & Psychophysics, 59(8), 1280–1296.Google Scholar
  22. 22.
    Kramer, A. F., Weber, T. A., & Watson, S. E. (1997). Object-based attentional selection—Grouped arrays or spatially invariant representations?: Comment on vecera and Farah (1994). Journal of Experimental Psychology, 126(1), 3–13.PubMedGoogle Scholar
  23. 23.
    Schweinberger, S. R., Klos, T., & Sommer, W. (1995). Covert face recognition in prosopagnosia: A dissociable function? Cortex, 31(3), 517–529.PubMedGoogle Scholar
  24. 24.
    Vecera, S. P., & Farah, M. J. (1994). Does visual attention select objects or locations? Journal of Experimental Psychology, 123(2), 146–160.PubMedGoogle Scholar
  25. 25.
    Finke, K., Schneider, W. X., Redel, P., et al. (2007). The capacity of attention and simultaneous perception of objects: A group study of Huntington’s disease patients. Neuropsychologia, 45(14), 3272–3284.PubMedGoogle Scholar
  26. 26.
    Schubo, A., Wykowska, A., & Muller, H. J. (2007). Detecting pop-out targets in contexts of varying homogeneity: Investigating homogeneity coding with event-related brain potentials (ERPs). Brain Research, 1138, 136–147.PubMedGoogle Scholar
  27. 27.
    Linnell, K. J., Humphreys, G. W., McIntyre, D. B., Laitinen, S., & Wing, A. M. (2005). Action modulates object-based selection. Vision Research, 45(17), 2268–2286.PubMedGoogle Scholar
  28. 28.
    von Muhlenen, A., & Muller, H. J. (2000). Perceptual integration of motion and form information: Evidence of parallel-continuous processing. Perception & Psychophysics, 62(3), 517–531.Google Scholar
  29. 29.
    Duncan, J., Humphreys, G., & Ward, R. (1997). Competitive brain activity in visual attention. Current Opinion in Neurobiology, 7(2), 255–261.PubMedGoogle Scholar
  30. 30.
    Humphreys, G. W., Romani, C., Olson, A., Riddoch, M. J., & Duncan, J. (1994). Non-spatial extinction following lesions of the parietal lobe in humans. Nature, 372(6504), 357–359.PubMedGoogle Scholar
  31. 31.
    Heathcote, A., & Mewhort, D. J. (1993). Representation and selection of relative position. Journal of Experimental Psychology. Human Perception and Performance, 19(3), 488–516.PubMedGoogle Scholar
  32. 32.
    Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96(3), 433–458.PubMedGoogle Scholar
  33. 33.
    Egly, R., Driver, J., & Rafal, R. D. (1994). Shifting visual attention between objects and locations: Evidence from normal and parietal lesion subjects. Journal of Experimental Psychology. General, 123(2), 161–177.PubMedGoogle Scholar
  34. 34.
    Ho, M. C., & Yeh, S. L. (2009). Effects of instantaneous object input and past experience on object-based attention. Acta Psychologica, 132(1), 31–39.PubMedGoogle Scholar
  35. 35.
    Lamy, D. (2000). Object-based selection under focused attention: A failure to replicate. Perception & Psychophysics, 62(6), 1272–1279.Google Scholar
  36. 36.
    Lamy, D., & Tsal, Y. (2000). Object features, object locations, and object files: Which does selective attention activate and when? Journal of Experimental Psychology. Human Perception and Performance, 26(4), 1387–1400.PubMedGoogle Scholar
  37. 37.
    Martinez, A., Teder-Salejarvi, W., Vazquez, M., et al. (2006). Objects are highlighted by spatial attention. Journal of Cognitive Neuroscience, 18(2), 298–310.PubMedGoogle Scholar
  38. 38.
    Martinez, A., Teder-Salejarvi, W., & Hillyard, S. A. (2007). Spatial attention facilitates selection of illusory objects: Evidence from event-related brain potentials. Brain Research, 1139, 143–152.PubMedGoogle Scholar
  39. 39.
    Duncan, J. (1993). Similarity between concurrent visual discriminations: Dimensions and objects. Perception & Psychophysics, 54(4), 425–430.Google Scholar
  40. 40.
    Duncan, J. (1993). Coordination of what and where in visual attention. Perception, 22(11), 1261–1270.PubMedGoogle Scholar
  41. 41.
    Baylis, G. C., & Driver, J. (1993). Visual attention and objects: Evidence for hierarchical coding of location. Journal of Experimental Psychology. Human Perception and Performance, 19(3), 451–470.PubMedGoogle Scholar
  42. 42.
    Botvinick, M. M., Buxbaum, L. J., Bylsma, L. M., & Jax, S. A. (2009). Toward an integrated account of object and action selection: A computational analysis and empirical findings from reaching-to-grasp and tool-use. Neuropsychologia, 47(3), 671–683.PubMedGoogle Scholar
  43. 43.
    Hasher, L., & Zacks, R. T. (1984). Automatic processing of fundamental information: The case of frequency of occurrence. American Psychologist, 39, 1372–1388.PubMedGoogle Scholar
  44. 44.
    Neuman, O. (1984). Automatic processing: A review of recent findings and a plea for an old theory. In W. Prinz & A. F. Sanders (Eds.), Cogntion and motor processes. Berlin: Springer.Google Scholar
  45. 45.
    Spelke, E., Hirst, W. C., & Neisser, U. (1976). Skills of divided attention. Cognition, 4, 215–230.Google Scholar
  46. 46.
    Kahneman, D., & Henik, A. (1981). Perceptual organization and attention. In M. Kubovy & J. R. Pomerantz (Eds.), Perceptual organization. Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  47. 47.
    Cohen, J., & Huston, T. A. (1994). Progress in the use of interactive models for understanding attention and performance. In C. Umiltà & M. Moscovitch (Eds.), Attention and performance XV: Conscious and nonconscious information processing. Cambridge: Bradford.Google Scholar
  48. 48.
    Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990). On the control of automatic processes: A parallel distributed processing account of the Stroop effect. Psychological Review, 97(3), 332–361.PubMedGoogle Scholar
  49. 49.
    Mewhort, D. J., Braun, J. G., & Heathcote, A. (1992). Response time distributions and the Stroop Task: A test of the Cohen, Dunbar, and McClelland (1990) model. Journal of Experimental Psychology. Human Perception and Performance, 18(3), 872–882.PubMedGoogle Scholar
  50. 50.
    Stafford, T., & Gurney, K. N. (2004). The role of response mechanisms in determining reaction time performance: Pieron’s law revisited. Psychonomic Bulletin & Review, 11(6), 975–987.Google Scholar
  51. 51.
    Hirst, W. (1986). The psychology of attention. In J. E. LeDoux & W. Hirst (Eds.), Mind and brain: Dialogues in cognitive neuroscience (pp. 105–141). New York: Cambridge University.Google Scholar
  52. 52.
    Gopher, D. (1993). The skill of attention control: Acquisition and execution of attention strategies. In D. Meyer & S. Kornblum (Eds.), Attention and performance XIV: Synergies in experimental psychology. Cambridge: Bradford.Google Scholar
  53. 53.
    Peck, A. C., & Detweiler, M. C. (2000). Training concurrent multistep procedural tasks. Human Factors, 42(3), 379–389.PubMedGoogle Scholar
  54. 54.
    Wulf, G., & Lewthwaite, R. (2009). Conceptions of ability affect motor learning. Journal of Motor Behavior, 41(5), 461–467.PubMedGoogle Scholar
  55. 55.
    Wulf, G., & Shea, C. H. (2002). Principles derived from the study of simple skills do not generalize to complex skill learning. Psychonomic Bulletin & Review, 9(2), 185–211.Google Scholar
  56. 56.
    Wulf, G., & Prinz, W. (2001). Directing attention to movement effects enhances learning: A review. Psychonomic Bulletin & Review, 8(4), 648–660.Google Scholar
  57. 57.
    Wulf, G., McNevin, N., & Shea, C. H. (2001). The automaticity of complex motor skill learning as a function of attentional focus. Quarterly Journal of Experimental Psychology, 54(4), 1143–1154.PubMedGoogle Scholar
  58. 58.
    Wulf, G., Lauterbach, B., & Toole, T. (1999). The learning advantages of an external focus of attention in golf. Research Quarterly for Exercise and Sport, 70(2), 120–126.PubMedGoogle Scholar
  59. 59.
    Schmidt, R. A., & Wulf, G. (1997). Continuous concurrent feedback degrades skill learning: Implications for training and simulation. Human Factors, 39(4), 509–525.PubMedGoogle Scholar
  60. 60.
    Fink, G. R., Halligan, P. W., Marshall, J. C., Frith, C. D., Frackowiak, R. S., & Dolan, R. J. (1996). Where in the brain does visual attention select the forest and the trees? Nature, 382(6592), 626–628.PubMedGoogle Scholar
  61. 61.
    Gould, J. D., & Schaffer, A. (1967). The effects of divided attention on visual monitoring of multi-channel displays. Human Factors, 9(3), 191–202.PubMedGoogle Scholar
  62. 62.
    Hiscock, M., Inch, R., & Kinsbourne, M. (1999). Allocation of attention in dichotic listening: Differential effects on the detection and localization of signals. Neuropsychology, 13(3), 404–414.PubMedGoogle Scholar
  63. 63.
    Brouwer, W., Verzendaal, M., van der Naalt, J., Smit, J., & van Zomeren, E. (2001). Divided attention years after severe closed head injury: The effect of dependencies between the subtasks. Brain and Cognition, 46(1–2), 54–56.PubMedGoogle Scholar
  64. 64.
    Mangels, J. A., Craik, F. I., Levine, B., Schwartz, M. L., & Stuss, D. T. (2002). Effects of divided attention on episodic memory in chronic traumatic brain injury: A function of severity and strategy. Neuropsychologia, 40(13), 2369–2385.PubMedGoogle Scholar
  65. 65.
    Emmanouil, T. A., & Treisman, A. (2008). Dividing attention across feature dimensions in statistical processing of perceptual groups. Perception & Psychophysics, 70(6), 946–954.Google Scholar
  66. 66.
    Treisman, A., & Souther, J. (1986). Illusory words: The roles of attention and of top-down constraints in conjoining letters to form words. Journal of Experimental Psychology. Human Perception and Performance, 12(1), 3–17.PubMedGoogle Scholar
  67. 67.
    Treisman, A., & Paterson, R. (1984). Emergent features, attention, and object perception. Journal of Experimental Psychology. Human Perception and Performance, 10(1), 12–31.PubMedGoogle Scholar
  68. 68.
    Shiffrin, R. M., & Schneider, W. (1984). Automatic and controlled processing revisited. Psychological Review, 91(2), 269–276.PubMedGoogle Scholar
  69. 69.
    Sperling, G. (1967). Successive approximations to a model for short term memory. Acta Psychologica, 27, 285–292.PubMedGoogle Scholar
  70. 70.
    Jonides, J., Smith, E. E., Koeppe, R. A., Awh, E., Minoshima, S., & Mintun, M. A. (1993). Spatial working memory in humans as revealed by PET. Nature, 363(6430), 623–625.PubMedGoogle Scholar
  71. 71.
    Baddeley, A. (1992). Working memory. Science, 255(5044), 556–559.PubMedGoogle Scholar
  72. 72.
    Kahneman, D., Tursky, B., Shapiro, D., & Crider, A. (1969). Pupillary, heart rate and skin resistance changes during a mental task. Journal of Experimental Psychology, 79, 164–167.PubMedGoogle Scholar
  73. 73.
    Kahneman, D., & Beatty, J. (1966). Pupil diameter and load on memory. Science, 154, 1583–1585.PubMedGoogle Scholar
  74. 74.
    Tursky, B., Shapiro, D., Crider, A., & Kahneman, D. (1969). Pupillary, heart rate, and skin resistance changes during a mental task. Journal of Experimental Psychology, 79(1), 164–167.PubMedGoogle Scholar
  75. 75.
    Dalton, P., Santangelo, V., & Spence, C. (2009). The role of working memory in auditory selective attention. Quarterly Journal of Experimental Psychology (2006), 62(11), 2126–2132.Google Scholar
  76. 76.
    Dalton, P., Lavie, N., & Spence, C. (2009). The role of working memory in tactile selective attention. Quarterly Journal of Experimental Psychology (2006), 62(4), 635–644.Google Scholar
  77. 77.
    Lavie, N., & De Fockert, J. (2005). The role of working memory in attentional capture. Psychonomic Bulletin & Review, 12(4), 669–674.Google Scholar
  78. 78.
    Lavie, N., Hirst, A., de Fockert, J. W., & Viding, E. (2004). Load theory of selective attention and cognitive control. Journal of Experimental Psychology, 133(3), 339–354.PubMedGoogle Scholar
  79. 79.
    Verrel, J., Lovden, M., Schellenbach, M., Schaefer, S., & Lindenberger, U. (2009). Interacting effects of cognitive load and adult age on the regularity of whole-body motion during treadmill walking. Psychology and Aging, 24(1), 75–81.PubMedGoogle Scholar
  80. 80.
    Oberauer, K., & Bialkova, S. (2009). Accessing information in working memory: Can the focus of attention grasp two elements at the same time? Journal of Experimental Psychology, 138(1), 64–87.PubMedGoogle Scholar
  81. 81.
    Poole, B. J., & Kane, M. J. (2009). Working-memory capacity predicts the executive control of visual search among distractors: The influences of sustained and selective attention. Quarterly Journal of Experimental Psychology (2006), 62(7), 1430–1454.Google Scholar
  82. 82.
    Oberauer, K. (2003). Selective attention to elements in working memory. Experimental Psychology, 50(4), 257–269.PubMedGoogle Scholar
  83. 83.
    Berti, S., & Schroger, E. (2003). Working memory controls involuntary attention switching: Evidence from an auditory distraction paradigm. The European Journal of Neuroscience, 17(5), 1119–1122.PubMedGoogle Scholar
  84. 84.
    Simon, S. R., Meunier, M., Piettre, L., Berardi, A. M., Segebarth, C. M., & Boussaoud, D. (2002). Spatial attention and memory versus motor preparation: Premotor cortex involvement as revealed by fMRI. Journal of Neurophysiology, 88(4), 2047–2057.PubMedGoogle Scholar
  85. 85.
    Badecker, W., & Straub, K. (2002). The processing role of structural constraints on the interpretation of pronouns and anaphors. Journal of Experimental Psychology. Learning, Memory, and Cognition, 28(4), 748–769.PubMedGoogle Scholar
  86. 86.
    Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. Journal of Experimental Psychology. Learning, Memory, and Cognition, 28(3), 411–421.PubMedGoogle Scholar
  87. 87.
    Vasterling, J. J., Duke, L. M., Brailey, K., Constans, J. I., Allain, A. N., Jr., & Sutker, P. B. (2002). Attention, learning, and memory performances and intellectual resources in Vietnam veterans: PTSD and no disorder comparisons. Neuropsychology, 16(1), 5–14.PubMedGoogle Scholar
  88. 88.
    Barnard, P. J., Scott, S. K., & May, J. (2001). When the central executive lets us down: Schemas, attention, and load in a generative working memory task. Memory, 9(4–6), 209–221.Google Scholar
  89. 89.
    McElree, B. (2001). Working memory and focal attention. Journal of Experimental Psychology. Learning, Memory, and Cognition, 27(3), 817–835.PubMedGoogle Scholar
  90. 90.
    Wickelgren, I. (2001). Neurobiology. Working memory helps the mind focus. Science, 291(5509), 1684–1685.PubMedGoogle Scholar
  91. 91.
    Garavan, H. (1998). Serial attention within working memory. Memory & Cognition, 26(2), 263–276.Google Scholar
  92. 92.
    Sanford, A. J., Moxey, L. M., & Paterson, K. B. (1996). Attentional focusing with quantifiers in production and comprehension. Memory & Cognition, 24(2), 144–155.Google Scholar
  93. 93.
    Postal, V. (2004). Expertise in cognitive psychology: Testing the hypothesis of long-term working memory in a study of soccer players. Perceptual and Motor Skills, 99(2), 403–420.PubMedGoogle Scholar
  94. 94.
    Kellogg, R. T. (2001). Long-term working memory in text production. Memory & Cognition, 29(1), 43–52.Google Scholar
  95. 95.
    Schultetus, R. S., & Charness, N. (1999). Recall or evaluation of chess positions revisited: The relationship between memory and evaluation in chess skill. The American Journal of Psychology, 112(4), 555–569.PubMedGoogle Scholar
  96. 96.
    Gobet, F. (1998). Expert memory: A comparison of four theories. Cognition, 66(2), 115–152.PubMedGoogle Scholar
  97. 97.
    Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102(2), 211–245.PubMedGoogle Scholar
  98. 98.
    Posner, M. I. (1986). Chronometric explorations of the mind. New York: Oxford University Press.Google Scholar
  99. 99.
    Cohen, R. A., Sparling-Cohen, Y. A., & O’Donnell, B. F. (1993). The neuropsychology of attention. New York: Plenum Press.Google Scholar
  100. 100.
    Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103(3), 403–428.PubMedGoogle Scholar
  101. 101.
    Salthouse, T. A., Babcock, R. L., & Shaw, R. J. (1991). Effects of adult age on structural and operational capacities in working memory. Psychology and Aging, 6(1), 118–127.PubMedGoogle Scholar
  102. 102.
    Salthouse, T. A., Fristoe, N., McGuthry, K. E., & Hambrick, D. Z. (1998). Relation of task switching to speed, age, and fluid intelligence. Psychology and Aging, 13(3), 445–461.PubMedGoogle Scholar
  103. 103.
    Salthouse, T. A., Fristoe, N. M., Lineweaver, T. T., & Coon, V. E. (1995). Aging of attention: Does the ability to divide decline? Memory & Cognition, 23(1), 59–71.Google Scholar
  104. 104.
    Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47(10), 2015–2028.PubMedGoogle Scholar
  105. 105.
    Stern, Y., Habeck, C., Moeller, J., et al. (2005). Brain networks associated with cognitive reserve in healthy young and old adults. Cerebral Cortex, 15(4), 394–402.PubMedGoogle Scholar
  106. 106.
    Silverthorn, D. (2009). Human physiology: An integrated approach. Upper Saddle River: Benjamin Cummings, Pearson.Google Scholar
  107. 107.
    Mackworth, N. H. (1950). Researches in the measurement of human performance. MRC Special Report Series No. 268, H. M. Stationery Office.Google Scholar
  108. 108.
    Mackworth, J. F. (1969). Vigilance and habituation: A neuropsychological approach. Harmondsworth: Penguin.Google Scholar
  109. 109.
    Colquhoun, W. P. (1961). The effect of unwanted signals on performance on a vigilance task. Ergonomics, 4, 41–51.Google Scholar
  110. 110.
    Colquhoun, W. P., & Baddeley, A. D. (1964). Role of pretest expectancy in vigilance decrement. Journal of Experimental Psychology, 68, 156–160.PubMedGoogle Scholar
  111. 111.
    Colquhoun, W. P., & Baddeley, A. D. (1967). Influence of signal probability during pretraining on vigilance decrement. Journal of Experimental Psychology, 73(1), 153–155.PubMedGoogle Scholar
  112. 112.
    Jerison, H. J. (1959). Effects of noise on human performance. Journal of Applied Psychology, 43, 96–101.Google Scholar
  113. 113.
    Jerison, H. J. (1967). Signal detection theory in the analysis of human vigilance. Human Factors, 9, 285–288.PubMedGoogle Scholar
  114. 114.
    Jerison, H. J., & Wallis, R. A. (1957). Performance on a simple vigilance task in noise and quiet. Journal of the Acoustical Society of America, 29, 1163–1165.Google Scholar
  115. 115.
    Broadbent, D. E. (1963). Some recent research from the Applied Psychological Research Unit, Cambridge. In D. N. Buckner & J. J. McGrath (Eds.), Vigilance: A symposium. New York: McGraw-Hill.Google Scholar
  116. 116.
    Baddeley, A. D., & Colquhoun, W. P. (1969). Signal probability and vigilance: A reappraisal of the ‘signal-rate’ effect. British Journal of Psychology, 60(2), 169–178.PubMedGoogle Scholar
  117. 117.
    Broadbent, D. E., & Gregory, M. (1963). Vigilance considered as a statistical decision. British Journal of Psychology, 54, 309–323.PubMedGoogle Scholar
  118. 118.
    Broadbent, D. E., & Gregory, M. (1965). Effects of noise and of signal rate upon vigilance analysed by means of decision theory. Human Factors, 7(2), 155–162.PubMedGoogle Scholar
  119. 119.
    Colquhoun, W. P. (1966). Training for vigilance: A comparison of different techniques. Human Factors, 8, 7–12.PubMedGoogle Scholar
  120. 120.
    Mackworth, J. F., & Taylor, M. M. (1963). The d′ measure of signal detectability in vigilance-like situations. Canadian Journal of Psychology, 17, 302–325.PubMedGoogle Scholar
  121. 121.
    Mackworth, J. F. (1965). Deterioration of signal detectability during a vigilance task as a function of background event rate. Psychonomic Sciences., 3, 421–422.Google Scholar
  122. 122.
    Corcoran, D. W., & Houston, T. G. (1977). Is the lemon test an index of arousal level? British Journal of Psychology, 68(3), 361–364.PubMedGoogle Scholar
  123. 123.
    Corcoran, D. W. J., Mullin, J., Rainey, M. T., & Frith, G. (1977). The effects of raised signal and noise amplitude during the course of vigilance tasks. New York: Academic.Google Scholar
  124. 124.
    Corcoran, D. W., & Houston, T. G. (1977). Is the lemon test an index of arousal level? The British Journal of Psychiatry, 68, 361–364.Google Scholar
  125. 125.
    McGrath, J. J. (1963). Irrelevant stimulation and vigilance performance. In D. N. Buckner & J. J. McGrath (Eds.), In “Vigilance: A Symposium”. New York: McGraw-Hill.Google Scholar
  126. 126.
    McGrath, J. J. (1965). Performance sharing in an audio-visual vigilance task. Human Factors, 7, 141–153.PubMedGoogle Scholar
  127. 127.
    Broadbent, D. E. (1971). Decision and stress. London: Academic.Google Scholar
  128. 128.
    Parasuraman, R. (1984). Sustained attention in detection and discrimination. In R. Parasuraman, R. Davies, & R. J. Beatty (Eds.), Varieties of attention (pp. 243–289). New York: Academic.Google Scholar
  129. 129.
    Parasuraman, R., Warm, J. S., & See, J. E. (1998). Brain systems of vigilance. In R. Parasuraman (Ed.), The attentive brain (pp. 221–256). Cambridge: MIT Press.Google Scholar
  130. 130.
    Warm, J. S., & Warm, J. S. (1979). Psychology of perception. New York: Holt, Rineheart, Winston.Google Scholar
  131. 131.
    Brouwer, W. H., & van Wolffelaar, P. C. (1985). Sustained attention and sustained effort after closed head injury: Detection and 0.10 Hz heart rate variability in a low event rate vigilance task. Cortex, 21(1), 111–119.PubMedGoogle Scholar
  132. 132.
    Whyte, J., Polansky, M., Fleming, M., Coslett, H. B., & Cavallucci, C. (1995). Sustained arousal and attention after traumatic brain injury. Neuropsychologia, 33(7), 797–813.PubMedGoogle Scholar
  133. 133.
    Cohen, R., Lohr, I., Paul, R., & Boland, R. (2001). Impairments of attention and effort among patients with major affective disorders. The Journal of Neuropsychiatry and Clinical Neurosciences, 13(3), 385–395.PubMedGoogle Scholar
  134. 134.
    Robbins, T. W. (2000). From arousal to cognition: The integrative position of the prefrontal cortex. Progress in Brain Research, 126, 469–483.PubMedGoogle Scholar
  135. 135.
    Robbins, T. W., Granon, S., Muir, J. L., Durantou, F., Harrison, A., & Everitt, B. J. (1998). Neural systems underlying arousal and attention. Implications for drug abuse. Annals of the New York Academy of Sciences, 846, 222–237.PubMedGoogle Scholar
  136. 136.
    Beatty, J. (1982). Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychological Bulletin, 91(2), 276–292.PubMedGoogle Scholar
  137. 137.
    Kahneman, D., Beatty, J., & Pollack, I. (1967). Perceptual deficit during a mental task. Science, 157(3785), 218–219.PubMedGoogle Scholar
  138. 138.
    Porges, S. W. (1972). Heart rate variability and deceleration as indexes of reaction time. Journal of Experimental Psychology, 92(1), 103–110.PubMedGoogle Scholar
  139. 139.
    Thackray, R. I. (1968). Patterns of physiological activity accompanying performance on a perceptual-motor task (pp. 1–11). AM 69–8. AM [reports]. United States.Google Scholar
  140. 140.
    Doussard-Roosevelt, J. A., McClenny, B. D., & Porges, S. W. (2001). Neonatal cardiac vagal tone and school-age developmental outcome in very low birth weight infants. Developmental Psychobiology, 38(1), 56–66.PubMedGoogle Scholar
  141. 141.
    Fox, N. A., & Porges, S. W. (1985). The relation between neonatal heart period patterns and developmental outcome. Child Development, 56(1), 28–37.PubMedGoogle Scholar
  142. 142.
    Bazhenova, O. V., Stroganova, T. A., Doussard-Roosevelt, J. A., Posikera, I. A., & Porges, S. W. (2007). Physiological responses of 5-month-old infants to smiling and blank faces. International Journal of Psychophysiology, 63(1), 64–76.PubMedGoogle Scholar
  143. 143.
    Suess, P. E., Porges, S. W., & Plude, D. J. (1994). Cardiac vagal tone and sustained attention in school-age children. Psychophysiology, 31(1), 17–22.PubMedGoogle Scholar
  144. 144.
    Porges, S. W. (1984). Physiologic correlates of attention: A core process underlying learning disorders. Pediatric Clinics of North America, 31(2), 371–385.PubMedGoogle Scholar
  145. 145.
    Porges, S. W., & Humphrey, M. M. (1977). Cardiac and respiratory responses during visual search in nonretarded children and retarded adolescents. American Journal of Mental Deficiency, 82(2), 162–169.PubMedGoogle Scholar
  146. 146.
    Cacioppo, J. T., & Petty, R. E. (1981). Electromyograms as measures of extent and affectivity of information processing. American Psychologist, 36(5), 441–456.PubMedGoogle Scholar
  147. 147.
    Cacioppo, J. T., & Petty, R. E. (1981). Electromyographic specificity during covert information processing. Psychophysiology, 18(5), 518–523.PubMedGoogle Scholar
  148. 148.
    Cohen, R. A., & Waters, W. (1985). Psychophysiological correlates of levels and states of cognitive processing. Neuropsychologia, 23, 243–256.PubMedGoogle Scholar
  149. 149.
    Diehr, M. C., Heaton, R. K., Miller, W., & Grant, I. (1998). The Paced Auditory Serial Addition Task (PASAT): Norms for age, education, and ethnicity. Assessment, 5(4), 375–387.PubMedGoogle Scholar
  150. 150.
    Gonzalez, R., Grant, I., Miller, S. W., et al. (2006). Demographically adjusted normative standards for new indices of performance on the Paced Auditory Serial Addition Task (PASAT). The Clinical Neuropsychologist, 20(3), 396–413.PubMedGoogle Scholar
  151. 151.
    Wiens, A. N., Fuller, K. H., & Crossen, J. R. (1997). Paced Auditory Serial Addition Test: Adult norms and moderator variables. Journal of Clinical and Experimental Neuropsychology, 19(4), 473–483.PubMedGoogle Scholar
  152. 152.
    Wingenfeld, S. A., Holdwick, D. J., Jr., Davis, J. L., & Hunter, B. B. (1999). Normative data on computerized paced auditory serial addition task performance. The Clinical Neuropsychologist, 13(3), 268–273.PubMedGoogle Scholar
  153. 153.
    Movius, H. L., & Allen, J. J. (2005). Cardiac Vagal Tone, defensiveness, and motivational style. Biological Psychology, 68(2), 147–162.PubMedGoogle Scholar
  154. 154.
    Bazhenova, O. V., Plonskaia, O., & Porges, S. W. (2001). Vagal reactivity and affective adjustment in infants during interaction challenges. Child Development, 72(5), 1314–1326.PubMedGoogle Scholar
  155. 155.
    Porges, S. W. (1995). Orienting in a defensive world: Mammalian modifications of our evolutionary heritage. A Polyvagal Theory. Psychophysiology, 32(4), 301–318.PubMedGoogle Scholar
  156. 156.
    Hockey, G. R. J. (1970). Effect of loud noise on attentional selectivity. Quarterly Journal of Experimental Psychology, 22, 28–36.Google Scholar
  157. 157.
    Hockey, G. R. J. (1970). Signal probability and spatial location as possible bases for increased selectivity in noise. Quarterly Journal of Experimental Psychology, 22, 37–42.Google Scholar
  158. 158.
    Hockey, G. R. J. (1978). Attentional selectivity and the problems of replication: A reply to Forster and Grierson. The British Journal of Psychiatry, 69, 499–503.Google Scholar
  159. 159.
    Hockey, G. R. J. (1979). Stress and the cognitive components of skilled performance. In V. Hamilton & D. M. Warburton (Eds.), Human stress and cognition. Chichester: Wiley.Google Scholar
  160. 160.
    Haier, R., Siegel, B. J., Nuechterlein, K. H., Hazlett, E., et al. (1988). Cortical glucose metabolic rate correlates of abstract reasoning and attention studied with positron emission tomography. Intelligence, 12(2), 199–217.Google Scholar
  161. 161.
    Craik, F. I. M., & Lockhart, R. S. (1972). Levels of processing: A framework for memory research. Journal of Verbal Learning & Verbal Behavior., 11, 671–684.Google Scholar
  162. 162.
    McArdle, W., Katch, F. I., & Katch, V. L. (2009). Exercise physiology: Nutrition, energy, and human performance (7th ed.). Philadelphia: Lippincott Williams & Wilkins: Wolters Kluwer Health.Google Scholar
  163. 163.
    Broadbent, D. E. (1979). Is a fatigue test now possible? Ergonomics, 22, 1277–1290.PubMedGoogle Scholar
  164. 164.
    Broadbent, D. E. (1957). Effects of noise of high and low frequency on behavior. Ergonomics, 1, 21–29.Google Scholar
  165. 165.
    Bartley, S. H. (1981). Fatigue. Perceptual and Motor Skills, 53, 958.PubMedGoogle Scholar
  166. 166.
    Cohen, R. A., & Fisher, M. (1989). Amantadine treatment of fatigue associated with multiple sclerosis. Arch Neurol, 46, 676–680.PubMedGoogle Scholar
  167. 167.
    Cohen, R. A., & Fisher, M. (1988). Neuropsychological correlates of fatigue associated with multiple sclerosis. Journal of Clinical and Experimental Neuropsychology, 10(1), 48.Google Scholar
  168. 168.
    Krupp, L. B., Alvarez, L. A., LaRocca, N. G., & Scheinberg, L. C. (1988). Fatigue in multiple sclerosis. Archives of Neurology, 45, 435–437.PubMedGoogle Scholar
  169. 169.
    DeLuca, J., Genova, H. M., Hillary, F. G., & Wylie, G. (2008). Neural correlates of cognitive fatigue in multiple sclerosis using functional MRI. Journal of Neurological Sciences, 270(1–2), 28–39.Google Scholar
  170. 170.
    DeLuca, J., Johnson, S. K., Beldowicz, D., & Natelson, B. H. (1995). Neuropsychological impairments in chronic fatigue syndrome, multiple sclerosis, and depression. Journal of Neurology, Neurosurgery, and Psychiatry, 58(1), 38–43.PubMedGoogle Scholar
  171. 171.
    DeLuca, J., Johnson, S. K., & Natelson, B. H. (1993). Information processing efficiency in chronic fatigue syndrome and multiple sclerosis. Archives of Neurology, 50(3), 301–304.PubMedGoogle Scholar
  172. 172.
    Deluca, J., Johnson, S. K., & Natelson, B. H. (1994). Neuropsychiatric status of patients with chronic fatigue syndrome: An overview. Toxicology and Industrial Health, 10(4–5), 513–522.PubMedGoogle Scholar
  173. 173.
    Johnson, S. K., Lange, G., DeLuca, J., Korn, L. R., & Natelson, B. (1997). The effects of fatigue on neuropsychological performance in patients with chronic fatigue syndrome, multiple sclerosis, and depression. Applied Neuropsychology, 4(3), 145–153.PubMedGoogle Scholar
  174. 174.
    Lange, G., Wang, S., DeLuca, J., & Natelson, B. H. (1998). Neuroimaging in chronic fatigue syndrome. The American Journal of Medicine, 105(3A), 50S–53S.PubMedGoogle Scholar
  175. 175.
    Hull, C. L. (1943). Principles of behavior. New York: Appleton-Century.Google Scholar
  176. 176.
    Wilkinson, R. T. (1962). Muscle tension during mental work under sleep deprivation. Journal of Experimental Psychology, 64, 565–571.PubMedGoogle Scholar
  177. 177.
    Malmo, R. B., & Surwillo, W. W. (1960). Sleep deprivation: Changes in performance and physiological indicants of activation. Psychological Monograph, 74 (Whole No. 502).Google Scholar
  178. 178.
    Kahol, K., Leyba, M. J., Deka, M., et al. (2008). Effect of fatigue on psychomotor and cognitive skills. American Journal of Surgery, 195(2), 195–204.PubMedGoogle Scholar
  179. 179.
    Roach, G. D., Dawson, D., & Lamond, N. (2006). Can a shorter psychomotor vigilance task be used as a reasonable substitute for the ten-minute psychomotor vigilance task? Chronobiology International, 23(6), 1379–1387.PubMedGoogle Scholar
  180. 180.
    Petrilli, R. M., Roach, G. D., Dawson, D., & Lamond, N. (2006). The sleep, subjective fatigue, and sustained attention of commercial airline pilots during an international pattern. Chronobiology International, 23(6), 1357–1362.PubMedGoogle Scholar
  181. 181.
    Dufour, A., Touzalin, P., & Candas, V. (2007). Time-on-task effect in pseudoneglect. Experimental Brain Research. Experimentelle Hirnforschung, 176(3), 532–537.Google Scholar
  182. 182.
    Arnedt, J. T., Owens, J., Crouch, M., Stahl, J., & Carskadon, M. A. (2005). Neurobehavioral performance of residents after heavy night call vs after alcohol ingestion. Journal of the American Medical Association, 294(9), 1025–1033.PubMedGoogle Scholar
  183. 183.
    Thorne, D. R., Johnson, D. E., Redmond, D. P., Sing, H. C., Belenky, G., & Shapiro, J. M. (2005). The Walter Reed palm-held psychomotor vigilance test. Behavior Research Methods, 37(1), 111–118.PubMedGoogle Scholar
  184. 184.
    Bourgeois-Bougrine, S., Carbon, P., Gounelle, C., Mollard, R., & Coblentz, A. (2003). Perceived fatigue for short- and long-haul flights: A survey of 739 airline pilots. Aviation, Space, and Environmental Medicine, 74(10), 1072–1077.PubMedGoogle Scholar
  185. 185.
    van der Hulst, M. (2003). Long workhours and health. Scandinavian Journal of Work, Environment & Health, 29(3), 171–188.Google Scholar
  186. 186.
    Weinger, M. B. (1999). Vigilance, boredom, and sleepiness. Journal of Clinical Monitoring and Computing, 15(7–8), 549–552.PubMedGoogle Scholar
  187. 187.
    Fell, D. L., & Black, B. (1997). Driver fatigue in the city. Accident; Analysis and Prevention, 29(4), 463–469.PubMedGoogle Scholar
  188. 188.
    Horne, J. A. (1988). Sleep loss and “divergent” thinking ability. Sleep, 11(6), 528–536.PubMedGoogle Scholar
  189. 189.
    Lauber, J. K., & Kayten, P. J. (1988). Sleepiness, circadian dysrhythmia, and fatigue in transportation system accidents. Sleep, 11(6), 503–512.PubMedGoogle Scholar
  190. 190.
    De Renzi, E., & Faglioni, P. (1966). [Influence of sleep deprivation and work on performance in vigilance tests]. Archivio di Psicologia, Neurologia e Psichiatria, 27(6), 552–566.PubMedGoogle Scholar
  191. 191.
    Lowden, A., Anund, A., Kecklund, G., Peters, B., & Akerstedt, T. (2009). Wakefulness in young and elderly subjects driving at night in a car simulator. Accident; Analysis and Prevention, 41(5), 1001–1007.PubMedGoogle Scholar
  192. 192.
    Jackson, M. L., Croft, R. J., Owens, K., et al. (2008). The effect of acute sleep deprivation on visual evoked potentials in professional drivers. Sleep, 31(9), 1261–1269.PubMedGoogle Scholar
  193. 193.
    Otmani, S., Pebayle, T., Roge, J., & Muzet, A. (2005). Effect of driving duration and partial sleep deprivation on subsequent alertness and performance of car drivers. Physiology & Behavior, 84(5), 715–724.Google Scholar
  194. 194.
    Iudice, A., Bonanni, E., Gelli, A., et al. (2005). Effects of prolonged wakefulness combined with alcohol and hands-free cell phone divided attention tasks on simulated driving. Human Psychopharmacology, 20(2), 125–132.PubMedGoogle Scholar
  195. 195.
    Hockey, G. R. J., & Colquhoun, W. P. (1972). Diurnal variation in human performance: A review. In W. P. Colquhoun (Ed.), Aspects of human efficiency: Diurnal rhythm and loss of sleep. London: English Universities Press.Google Scholar
  196. 196.
    Folkard, S., & Greeman, A. L. (1974). Salience induced muscle tension, and the ability to ignore irrelevant information. Quarterly Journal of Experimental Psychology, 26, 360–367.PubMedGoogle Scholar
  197. 197.
    Folkard, S. (1975). Diurnal variation in logical reasoning. British Journal of Psychology, 66(1), 1–8.PubMedGoogle Scholar
  198. 198.
    Folkard, S. (1979). Changes in immediate memory strategy under induced muscle tension and with time of day. Quarterly Journal of Experimental Psychology, 31, 621–633.Google Scholar
  199. 199.
    Folkard, S. (1979). Time of day and level of processing. Memory & Cognition, 7, 247–252.Google Scholar
  200. 200.
    Folkard, S., Marks, M., Minors, D. S., & Waterhouse, J. M. (1985). Circadian rhythms in human performance and affective state. Acta Psychiatrica Belgica, 85(5), 568–581.PubMedGoogle Scholar
  201. 201.
    Folkard, S., Totterdell, P., Minors, D., & Waterhouse, J. (1993). Dissecting circadian performance rhythms: Implications for shiftwork. Ergonomics, 36(1–3), 283–288.PubMedGoogle Scholar
  202. 202.
    Folkard, S., & Monk, T. H. (1980). Circadian rhythms in human memory. British Journal of Psychology, 71, 295–307.Google Scholar
  203. 203.
    Lydic, R., Albers, H. E., Tepper, B., & Moore-Ede, M. C. (1982). Three- dimensional structure of the mammalian suprachiasmatic nuclei: A comparative study of five species. The Journal of Comparative Neurology, 204, 225–237.PubMedGoogle Scholar
  204. 204.
    Albers, H. E., Lydic, R., Gander, P. H., & Moore-Ede, M. C. (1984). Role of the suprachiasmatic nuclei in the circadian timing system of the squirrel monkey. I. The generation of rhythmicity. Brain Research, 300, 275–284.PubMedGoogle Scholar
  205. 205.
    Cohen, R. A., & Albers, H. E. (1991). Disruption of human circadian and cognitive regulation following a discrete hypothalamic lesion: A case study. Neurology, 41(5), 726–729.PubMedGoogle Scholar
  206. 206.
    Cohen, R. A., Barnes, H. J., Jenkins, M., & Albers, H. E. (1997). Disruption of short-duration timing associated with damage to the suprachiasmatic region of the hypothalamus. Neurology, 48(6), 1533–1539.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ronald A. Cohen
    • 1
    • 2
    • 3
  1. 1.Departments of Neurology, Psychiatry and AgingGainesvilleUSA
  2. 2.Center for Cognitive Aging and MemoryUniversity of Florida College of MedicineGainesvilleUSA
  3. 3.Department of Psychiatry and Human Behavior Warren Alpert School of MedicineBrown UniversityProvidenceUSA

Personalised recommendations