Intention, Response Selection, and Executive-Attention

  • Ronald A. Cohen


As we discussed in previous chapters, attention was considered to be linked to sensory and processes in most early cognitive theories. When we attend, some information is selected for further processing, and other information is ignored. Because attentional selection involves choosing one stimulus from a set of possible stimuli, it is easy to see why sensory selection has been emphasized in most theories of attention. However, attentional selection is also a “behavioral act,” one that depends on motor activity or at least on response execution and control. As we attend to stimuli in our environment, we direct our focus by looking, orienting our bodies, or preparing to respond either overtly or covertly. Furthermore, response preparation and selection are effortful and are subject to fatigue. In this chapter, influence of response selection and control on attention will be discussed.


Selective Attention Attentional Control Response Demand Attentional Allocation Attentional Selection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Broadbent, D. E. (1958). Perception and communication. London: Pergamon Press.Google Scholar
  2. 2.
    Treisman, A., & Geffen, G. (1967). Selective attention: Perception or response? Quarterly Journal of Experimental Psychology, 19(1), 1–17.PubMedGoogle Scholar
  3. 3.
    Treisman, A. M. (1964). Selective attention in man. British Medical Bulletin, 20, 12–16.PubMedGoogle Scholar
  4. 4.
    Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136.PubMedGoogle Scholar
  5. 5.
    Treisman, A. M., & Riley, J. G. (1969). Is selective attention selective perception or selective response? A further test. Journal of Experimental Psychology, 79(1), 27–34.PubMedGoogle Scholar
  6. 6.
    Deutsch, J. A., & Deutsch, D. (1963). Some theoretical considerations. Psychological Review, 70, 80–90.PubMedGoogle Scholar
  7. 7.
    Norman, D. A. (1968). Toward a theory of memory and attention. Psychological Review, 75, 522–536.Google Scholar
  8. 8.
    Kahneman, D., Beatty, J., & Pollack, I. (1967). Perceptual deficit during a mental task. Science, 157, 218–219.PubMedGoogle Scholar
  9. 9.
    Neisser, U. (1967). Cognitive psychology. New York, NY: Appleton-Century-Crofts.Google Scholar
  10. 10.
    Hochberg, J. E. (1970). Attention, organization, and consciousness. In D. I. Mostofsky (Ed.), Attention, contemporary theory and analysis. New York, NY: Appleton-Century-Crofts.Google Scholar
  11. 11.
    Welford, A. (1967). Single channel operation in the brain. Acta Psychologia., 27, 5–22.Google Scholar
  12. 12.
    Hockey, G. (1970). Effect of loud noise on attentional selectivity. Quarterly Journal of Experimental Psychology, 22, 28–36.Google Scholar
  13. 13.
    Hockey, G. R. J. (1979). Stress and the cognitive components of skilled performance. In V. Hamilton & D. M. Warburton (Eds.), Human stress and cognition. Chichester: Wiley.Google Scholar
  14. 14.
    Revelle, W. (1993). Individual differences in personality and motivation: “Non-cognitive” determinants of cognitive performance. In A. Baddeley & L. Weiskrantz (Eds.), Attention, awareness, selection and control. A tribute to Donald Broadbent. New York: Oxford University Press.Google Scholar
  15. 15.
    Bourke, P., Duncan, J., & Nimmo-Smith, I. (1996). A general factor involved in dual task performance decrement. Quarterly Journal of Experimental Psychology, 49A, 525–545.Google Scholar
  16. 16.
    Hasher, L., & Zacks, R. T. (1979). Automatic and effortful processes in memory. Journal of Experimental Psychology. General, 108, 356–388.Google Scholar
  17. 17.
    Hasher, L., & Zacks, R. T. (1984). Automatic processing of fundamental information: The case of frequency of occurrence. American Psychologist, 39, 1372–1388.PubMedGoogle Scholar
  18. 18.
    Schneider, W., & Fisk, A. D. (1984). Automatic category search and its transfer. Journal of Experimental Psychology. Learning, Memory, and Cognition, 10(1), 1–15.PubMedGoogle Scholar
  19. 19.
    Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review, 84, 1–66.Google Scholar
  20. 20.
    Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. Psychological Review, 84, 127–190.Google Scholar
  21. 21.
    Fisk, A. D., & Schneider, W. (1984). Memory as a function of attention, level of processing, and automatization. Journal of Experimental Psychology. Learning, Memory, and Cognition, 10(2), 181–197.PubMedGoogle Scholar
  22. 22.
    MacLeod, P., & Posner, M. I. (1984). Privledged loops from percept to act. In H. Bouma & D. G. Bouwhuis (Eds.), Attention and performance X. Hillsdale: Lawrence Erlbaum, Assoc.Google Scholar
  23. 23.
    Shaffer, L. H. (1975). Multiple attention in continuous verbal tasks. In P. Rabbitt & S. Dornic (Eds.), Attention and performance V (pp. 157–167). New York: Academic.Google Scholar
  24. 24.
    Cohen, R. A., Barnes, H. J., Jenkins, M., & Albers, H. E. (1997). Disruption of short-duration timing associated with damage to the suprachiasmatic region of the hypothalamus. Neurology, 48(6), 1533–1539.PubMedGoogle Scholar
  25. 25.
    James, W. (1890). Principles of psychology. New York: Holt.Google Scholar
  26. 26.
    James, W. (1892). Attention. In W. James (Ed.), Psychology (pp. 217–238). NY: Henry Holt and Company.Google Scholar
  27. 27.
    James, W. (1922). What is emotion? In K. Dunlap (Ed.), In the emotions. Baltimore: William and Wilkins.Google Scholar
  28. 28.
    Leuba, C., Birch, L., & Appleton, J. (1968). Human problem solving during complete paralysis of the voluntary musculature. Psychological Reports, 22, 849–855.PubMedGoogle Scholar
  29. 29.
    McGuigan, F. (1978). Imagery and thinking: Covert functioning of the motor system. In G. E. Schwartz, D. Shapiro, & R. J. Davidson (Eds.), Consciousness and self-regulation: Advances in research and theory (Vol. 2). New York: Plenum Press.Google Scholar
  30. 30.
    Lawrence, A. B., Terlouw, E. M., & Kyriazakis, I. (1993). The behavioural effects of undernutrition in confined farm animals. Proceedings of the Nutrition Society, 52(1), 219–229.PubMedGoogle Scholar
  31. 31.
    Sperry, R. (1952). Neurology and the mind-brain problem. American Scientist, 40, 291–312.Google Scholar
  32. 32.
    McGuigan, F. J., & Rodier, W. I., III. (1968). Effects of auditory stimulation on covert oral behavior during silent reading. Journal of Experimental Psychology, 76, 649–655.PubMedGoogle Scholar
  33. 33.
    Cohen, R. A., & Waters, W. (1985). Psychophysiological correlates of levels and states of cognitive processing. Neuropsychologia, 23, 243–256.PubMedGoogle Scholar
  34. 34.
    Cacioppo, J. T., & Petty, R. E. (1981). Electromyograms as measures of extent and affectivity of information processing. American Psychologist, 36(5), 441–456.PubMedGoogle Scholar
  35. 35.
    Cacioppo, J. T., & Petty, R. E. (1981). Electromyographic specificity during covert information processing. Psychophysiology, 18(5), 518–523.PubMedGoogle Scholar
  36. 36.
    Alpern, M. (1971). Effector mechanisms in vision. In J. W. Kling & L. A. Riggs (Eds.), Experimental psychology. New York: Holt, Rinehart & Winston.Google Scholar
  37. 37.
    Yarbus, A. (1965). The role of eye movements in the perception of pictures. Moscow: Nauka.Google Scholar
  38. 38.
    Theeuwes, J., Olivers, C. N., & Chizk, C. L. (2005). Remembering a location makes the eyes curve away. Psychological Science, 16(3), 196–199.PubMedGoogle Scholar
  39. 39.
    Peterson, M. S., Kramer, A. F., & Irwin, D. E. (2004). Covert shifts of attention precede involuntary eye movements. Perception & Psychophysics, 66(3), 398–405.Google Scholar
  40. 40.
    Binsted, G., Chua, R., Helsen, W., & Elliott, D. (2001). Eye-hand coordination in goal-directed aiming. Human Movement Science, 20(4–5), 563–585.PubMedGoogle Scholar
  41. 41.
    van der Geest, J. N., Kemner, C., Camfferman, G., Verbaten, M. N., & van Engeland, H. (2001). Eye movements, visual attention, and autism: A saccadic reaction time study using the gap and overlap paradigm. Biological Psychiatry, 50(8), 614–619.PubMedGoogle Scholar
  42. 42.
    Latimer, C., Stevens, C., Irish, M., & Webber, L. (2000). Attentional biases in geometric form perception. The Quarterly Journal of Experimental Psychology. A, 53(3), 765–791.Google Scholar
  43. 43.
    Pollatsek, A., Tan, L. H., & Rayner, K. (2000). The role of phonological codes in integrating information across saccadic eye movements in Chinese character identification. Journal of Experimental Psychology. Human Perception and Performance, 26(2), 607–633.PubMedGoogle Scholar
  44. 44.
    Nobre, A. C., Gitelman, D. R., Dias, E. C., & Mesulam, M. M. (2000). Covert visual spatial orienting and saccades: Overlapping neural systems. NeuroImage, 11(3), 210–216.PubMedGoogle Scholar
  45. 45.
    McPeek, R. M., Maljkovic, V., & Nakayama, K. (1999). Saccades require focal attention and are facilitated by a short-term memory system. Vision Research, 39(8), 1555–1566.PubMedGoogle Scholar
  46. 46.
    Clark, J. J. (1999). Spatial attention and latencies of saccadic eye movements. Vision Research, 39(3), 585–602.PubMedGoogle Scholar
  47. 47.
    Scialfa, C. T., & Joffe, K. M. (1998). Response times and eye movements in feature and conjunction search as a function of target eccentricity. Perception & Psychophysics, 60(6), 1067–1082.Google Scholar
  48. 48.
    Moore, T., Tolias, A. S., & Schiller, P. H. (1998). Visual representations during saccadic eye movements. Proceedings of the National Academy of Sciences of the United States of America, 95(15), 8981–8984.PubMedGoogle Scholar
  49. 49.
    Deubel, H., & Schneider, W. X. (1996). Saccade target selection and object recognition: Evidence for a common attentional mechanism. Vision Research, 36(12), 1827–1837.PubMedGoogle Scholar
  50. 50.
    Zangemeister, W. H., Sherman, K., & Stark, L. (1995). Evidence for a global scanpath strategy in viewing abstract compared with realistic images. Neuropsychologia, 33(8), 1009–1025.PubMedGoogle Scholar
  51. 51.
    Hoffman, J. E., & Subramaniam, B. (1995). The role of visual attention in saccadic eye movements. Perception & Psychophysics, 57(6), 787–795.Google Scholar
  52. 52.
    Jordan, J. S., & Hershberger, W. A. (1994). Timing the shift in retinal local signs that accompanies a saccadic eye movement. Perception & Psychophysics, 55(6), 657–666.Google Scholar
  53. 53.
    Juttner, M., & Rohler, R. (1993). Lateral information transfer across saccadic eye movements. Perception & Psychophysics, 53(2), 210–220.Google Scholar
  54. 54.
    Scotto, M. A., Oliva, G. A., & Tuccio, M. T. (1990). Eye movements and reversal rates of ambiguous patterns. Perceptual and Motor Skills, 70(3 Pt 2), 1059–1073.PubMedGoogle Scholar
  55. 55.
    Abrams, R. A., Meyer, D. E., & Kornblum, S. (1990). Eye-hand coordination: Oculomotor control in rapid aimed limb movements. Journal of Experimental Psychology. Human Perception and Performance, 16(2), 248–267.PubMedGoogle Scholar
  56. 56.
    Masciocchi, C. M., Mihalas, S., Parkhurst, D., & Niebur, E. (2009). Everyone knows what is interesting: Salient locations which should be fixated. Journal of Vision, 9(11), 25.21–22.Google Scholar
  57. 57.
    Hutton, S. B. (2008). Cognitive control of saccadic eye movements. Brain and Cognition, 68(3), 327–340.PubMedGoogle Scholar
  58. 58.
    Shinar, D. (2008). Looks are (almost) everything: Where drivers look to get information. Human Factors, 50(3), 380–384.PubMedGoogle Scholar
  59. 59.
    Ba, S. O., & Odobez, J. M. (2009). Recognizing visual focus of attention from head pose in natural meetings. IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics, 39(1), 16–33.Google Scholar
  60. 60.
    Findlay, J. M. (2009). Saccadic eye movement programming: Sensory and attentional factors. Psychological Research, 73(2), 127–135.PubMedGoogle Scholar
  61. 61.
    Pashler, H., Carrier, M., & Hoffman, J. (1993). Saccadic eye movements and dual-task interference. The Quarterly Journal of Experimental Psychology. A, 46(1), 51–82.Google Scholar
  62. 62.
    Wurtz, R. H., & Mohler, C. W. (1976). Organization of monkey superior colliculus: Enhanced visual response of superficial layer cells. Journal of Neurophysiology, 39(4), 745–765.PubMedGoogle Scholar
  63. 63.
    Deubel, H. (1989). Sensory and motor aspects of saccade control. European Archives of Psychiatry and Neurological Sciences, 239(1), 17–22.PubMedGoogle Scholar
  64. 64.
    Robinson, D. L., & McClurkin, J. W. (1989). The visual superior colliculus and pulvinar. Reviews of Oculomotor Research, 3, 337–360.PubMedGoogle Scholar
  65. 65.
    Fischer, B., & Boch, R. (1981). Selection of visual targets activates prelunate cortical cells in trained rhesus monkey. Experimental Brain Research, 41(3–4), 431–433.PubMedGoogle Scholar
  66. 66.
    Gitelman, D. R., Parrish, T. B., Friston, K. J., & Mesulam, M. M. (2002). Functional anatomy of visual search: Regional segregations within the frontal eye fields and effective connectivity of the superior colliculus. NeuroImage, 15(4), 970–982.PubMedGoogle Scholar
  67. 67.
    Goldberg, M. E., & Bruce, C. J. (1986). The role of the arcuate frontal eye fields in the generation of saccadic eye movements. Progress in Brain Research, 64, 143–154.PubMedGoogle Scholar
  68. 68.
    Goldberg, M. E., & Bruce, C. J. (1990). Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal. Journal of Neurophysiology, 64(2), 489–508.PubMedGoogle Scholar
  69. 69.
    Goldberg, M. E., Bushnell, M. C., & Bruce, C. J. (1986). The effect of attentive fixation on eye movements evoked by electrical stimulation of the frontal eye fields. Experimental Brain Research, 61(3), 579–584.PubMedGoogle Scholar
  70. 70.
    Woestenburg, J. C., Verbaten, M. N., & Slangen, J. L. (1983). The removal of the eye-movement artifact from the EEG by regression analysis in the frequency domain. Biological Psychology, 16(1–2), 127–147.PubMedGoogle Scholar
  71. 71.
    Gitelman, D. R., Parrish, T. B., LaBar, K. S., & Mesulam, M. M. (2000). Real-time monitoring of eye movements using infrared video-oculography during functional magnetic resonance imaging of the frontal eye fields. NeuroImage, 11(1), 58–65.PubMedGoogle Scholar
  72. 72.
    Kaplan, R. F., Cohen, R. A., Rosengart, A., Elsner, A. E., Hedges, T. R., III, & Caplan, L. R. (1995). Extinction during time controlled direct retinal stimulation after recovery from right hemispheric stroke. Journal of Neurology, Neurosurgery, and Psychiatry, 59(5), 534–536.PubMedGoogle Scholar
  73. 73.
    Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology, 109(2), 160–174.PubMedGoogle Scholar
  74. 74.
    Remington, R. W. (1980). Attention and saccadic eye movements. Journal of Experimental Psychology. Human Perception and Performance, 6(4), 726–744.PubMedGoogle Scholar
  75. 75.
    Melcher, D. (2009). Selective attention and the active remapping of object features in trans-saccadic perception. Vision Research, 49(10), 1249–1255.PubMedGoogle Scholar
  76. 76.
    Collins, T., & Dore-Mazars, K. (2006). Eye movement signals influence perception: Evidence from the adaptation of reactive and volitional saccades. Vision Research, 46(21), 3659–3673.PubMedGoogle Scholar
  77. 77.
    May, J. G., Kennedy, R. S., Williams, M. C., Dunlap, W. P., & Brannan, J. R. (1990). Eye movement indices of mental workload. Acta Psychologica, 75(1), 75–89.PubMedGoogle Scholar
  78. 78.
    Keating, E. G., & Gooley, S. G. (1988). Disconnection of parietal and occipital access to the saccadic oculomotor system. Experimental Brain Research, 70(2), 385–398.PubMedGoogle Scholar
  79. 79.
    Bahring, R., Meier, R. K., & Dieringer, N. (1994). Unilateral ablation of the frontal eye field of the rat affects the beating field of ocular nystagmus. Experimental Brain Research, 98(3), 391–400.PubMedGoogle Scholar
  80. 80.
    Vuilleumier, P., Hester, D., Assal, G., & Regli, F. (1996). Unilateral spatial neglect recovery after sequential strokes. Neurology, 46(1), 184–189.PubMedGoogle Scholar
  81. 81.
    Scalaidhe, S. P., Rodman, H. R., Albright, T. D., & Gross, C. G. (1997). The effects of combined superior temporal polysensory area and frontal eye field lesions on eye movements in the macaque monkey. Behavioural Brain Research, 84(1–2), 31–46.PubMedGoogle Scholar
  82. 82.
    Heide, W., & Kompf, D. (1998). Combined deficits of saccades and visuo-spatial orientation after cortical lesions. Experimental Brain Research, 123(1–2), 164–171.PubMedGoogle Scholar
  83. 83.
    Broerse, A., Crawford, T. J., & den Boer, J. A. (2001). Parsing cognition in schizophrenia using saccadic eye movements: A selective overview. Neuropsychologia, 39(7), 742–756.PubMedGoogle Scholar
  84. 84.
    Pierrot-Deseilligny, C., Ploner, C. J., Muri, R. M., Gaymard, B., & Rivaud-Pechoux, S. (2002). Effects of cortical lesions on saccadic: Eye movements in humans. Annals of the New York Academy of Sciences, 956, 216–229.PubMedGoogle Scholar
  85. 85.
    Pierrot-Deseilligny, C., Muri, R. M., Ploner, C. J., Gaymard, B., & Rivaud-Pechoux, S. (2003). Cortical control of ocular saccades in humans: A model for motricity. Progress in Brain Research, 142, 3–17.PubMedGoogle Scholar
  86. 86.
    Pierrot-Deseilligny, C., Muri, R. M., Nyffeler, T., & Milea, D. (2005). The role of the human dorsolateral prefrontal cortex in ocular motor behavior. Annals of the New York Academy of Sciences, 1039, 239–251.PubMedGoogle Scholar
  87. 87.
    Walker, R., Husain, M., Hodgson, T. L., Harrison, J., & Kennard, C. (1998). Saccadic eye movement and working memory deficits following damage to human prefrontal cortex. Neuropsychologia, 36(11), 1141–1159.PubMedGoogle Scholar
  88. 88.
    Luria, A. R., Karpov, B. A., & Yarbuss, A. L. (1966). Disturbances of active visual perception with lesions of the frontal lobes. Cortex, 2, 202–212.Google Scholar
  89. 89.
    Baloh, R. W., Honrubia, V., & Sills, A. (1977). Eye-tracking and optokinetic nystagmus. Results of quantitative testing in patients with well-defined nervous system lesions. Annals of Otology, Rhinology and Laryngology, 86(1 Pt 1), 108–114.Google Scholar
  90. 90.
    Schiller, P. H., Sandell, J. H., & Maunsell, J. H. (1987). The effect of frontal eye field and superior colliculus lesions on saccadic latencies in the rhesus monkey. Journal of Neurophysiology, 57(4), 1033–1049.PubMedGoogle Scholar
  91. 91.
    Duhamel, J. R., Goldberg, M. E., Fitzgibbon, E. J., Sirigu, A., & Grafman, J. (1992). Saccadic dysmetria in a patient with a right frontoparietal lesion. The importance of corollary discharge for accurate spatial behaviour. Brain, 115(Pt 5), 1387–1402.PubMedGoogle Scholar
  92. 92.
    Yan, Y. J., Cui, D. M., & Lynch, J. C. (2001). Overlap of saccadic and pursuit eye movement systems in the brain stem reticular formation. Journal of Neurophysiology, 86(6), 3056–3060.PubMedGoogle Scholar
  93. 93.
    Gawryszewski, L. D. G., Riggio, L., Rizzolatti, G., & Umilta, C. (1987). Movements of attention in the three spatial dimensions and the meaning of “neutral” cues. Neuropsychologia, 25(IA), 19–29.Google Scholar
  94. 94.
    Gawryszewski, L. G., & Carreiro, L. R. (1996). Interaction between facilitatory and inhibitory effects due to voluntary and automatic covert orienting of attention. Revista brasileira de biologia, 56 Su 1 Pt 2, 281–291.Google Scholar
  95. 95.
    Jonides, J. (1981). Voluntary versus automatic control over the mind’s eye movements. In J. L. A. Baddeley (Ed.), Attention and performance (IXth ed.). Hillsdale, NJ: Erlbaum.Google Scholar
  96. 96.
    Rizzolatti, G., Riggio, L., Dascola, I., & Umiltá, C. (1987). Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention. Neuropsychologia, 25, 31–40.PubMedGoogle Scholar
  97. 97.
    Hughes, H. C., & Zimba, L. D. (1987). Natural boundaries for the spatial spread of directed visual attention. Neuropsychologia, 25(IA), 5–18.PubMedGoogle Scholar
  98. 98.
    Rizzolatti, G., & Camarda, R. (1975). Inhibition of visual responses of single units in the cat visual area of the lateral suprasylvian gyrus (Clare-Bishop area) by the introduction of a second visual stimulus. Brain Research, 88, 357–361.PubMedGoogle Scholar
  99. 99.
    Posner, M. I., Cohen, Y., & Rafal, R. D. (1982). Neural systems control of spatial orienting. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 298, 187–198.PubMedGoogle Scholar
  100. 100.
    Petersen, S. E., Robinson, D. L., & Morris, J. D. (1987). Contributions of the pulvinar to visual spatial attention. Neuropsychologia, 25, 97–105.PubMedGoogle Scholar
  101. 101.
    Petersen, S. E., Robinson, D. L., & Keys, W. (1985). Pulvinar nuclei of the behaving rhesus monkey: Visual responses and their modulation. Journal of Neurophysiology, 54, 207–226.Google Scholar
  102. 102.
    Goldberg, M. E., & Segraves, M. A. (1987). Visuospatial and motor attention in the monkey. Neuropsychologia, 25(1A), 107–118.PubMedGoogle Scholar
  103. 103.
    Goldberg, M. E., & Wurtz, R. H. (1972). Activity of superior colliculus in behaving monkey. Visual receptive fields of single neurons. Journal of Neurophysiology, 35, 542–559.PubMedGoogle Scholar
  104. 104.
    Wurtz, R. H., Goldberg, M. E., & Robinson, D. L. (1982). Brain mechanisms of visual attention. Scientific American, 246(6), 124–135.PubMedGoogle Scholar
  105. 105.
    Bushnell, M. C., Goldberg, M. E., & Robinson, D. L. (1981). Behavioral enhancement of visual responses in monkey cerebral cortex: I. Modulation in posterior parietal cortex related to selective visual attention. Neurophysiology, 46, 755–772.PubMedGoogle Scholar
  106. 106.
    Bruce, C., Desimone, R., & Gross, C. G. (1981). Visual properties of neurons in a polysensory area in superior temporal sulvus of the macaque. Journal of Neurophysiology, 46, 369–384.PubMedGoogle Scholar
  107. 107.
    Bruce, C. J., & Goldberg, M. E. (1985). Primate frontal eye fields. I. Single neurons discharging before saccades. Journal of Neurophysiology, 53(3), 603–635.PubMedGoogle Scholar
  108. 108.
    Bruce, C. J., Goldberg, M. E., Bushnell, M. C., & Stanton, G. B. (1985). Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. Journal of Neurophysiology, 54(3), 714–734.PubMedGoogle Scholar
  109. 109.
    Goldberg, M. E., & Bushnell, M. D. (1981). Behavioral enhancement of visual response in monkey cerebral cortex. II. Modulation in frontal eye fields specifically related to saccades. Journal of Neurophysiology, 46, 773–787.PubMedGoogle Scholar
  110. 110.
    Goldberg, M. E., & Bruce, C. J. (1985). Cerebral cortical activity associated with the orientation of visual attention in the rhesus monkey. Vision Research, 25(3), 471–481.PubMedGoogle Scholar
  111. 111.
    Goldberg, M. E., Bisley, J. W., Powell, K. D., & Gottlieb, J. (2006). Saccades, salience and attention: The role of the lateral intraparietal area in visual behavior. Progress in Brain Research, 155, 157–175.PubMedGoogle Scholar
  112. 112.
    Fischer, B., & Breitmeyer, B. (1987). Mechanisms of visual attention revealed by saccadic eye movements. Neuropsychologia, 25(1A), 73–83.PubMedGoogle Scholar
  113. 113.
    Guitton, D., Buchtel, H. A., & Douglas, R. M. (1985). Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal-directed saccades. Experimental Brain Research, 58, 455–472.PubMedGoogle Scholar
  114. 114.
    Heilman, K. M., Valenstein, E., & Watson, R. T. (1983). Localization of neglect. In A. Kertesz (Ed.), Localization in neuropsychology (pp. 471–492). New York: Academic.Google Scholar
  115. 115.
    Heilman, K. M., Bowers, D., Coslett, H. B., Whelan, H., & Watson, R. T. (1985). Directional hypokinesia: Prolonged reaction times for leftward movements in patients with right hemisphere lesions and neglect. Neurology, 35(6), 855–859.PubMedGoogle Scholar
  116. 116.
    Heilman, K. M., & Valenstein, E. (1972). Frontal lobe neglect in man. Neurology, 22(6), 660–664.PubMedGoogle Scholar
  117. 117.
    Heilman, K. M., Watson, R. T., Valenstein, E., & Goldberg, M. E. (1988). Attention: Behavior and neural mechanisms. Attention., II, 461–481.Google Scholar
  118. 118.
    Berlucchi, G., & Rizzolatti, G. (1987). Selective visual attention. Neuropsychologia, 25, 1–3.PubMedGoogle Scholar
  119. 119.
    Cohen, R. A., & Fisher, M. (l988). Neuropsychological correlates of fatigue associated with multiple sclerosis. Journal of Clinical and Experimental Neuropsychology, 10, 48.Google Scholar
  120. 120.
    Cohen, R. A., & Fisher, M. (1989). Amantadine treatment of fatigue associated with multiple sclerosis. Archives of Neurology, 46, 676–680.PubMedGoogle Scholar
  121. 121.
    Colquhoun, W. P., & Baddeley, A. D. (1967). Influence of signal probability during pretraining on vigilance decrement. Journal of Experimental Psychology, 73, 153–155.PubMedGoogle Scholar
  122. 122.
    Kahneman, D., & Beatty, J. (1966). Pupil diameter and load on memory. Science, 154, 1583–1585.PubMedGoogle Scholar
  123. 123.
    Neisser, U. B. (1975). Selective looking: Attending to visually-specified events. Cognitive Psychology, 7, 480–494.Google Scholar
  124. 124.
    Rizzolatti, G., Riggio, L., Sheliga, B. M., Umiltà, C., & Moscovitch, M. (1994). Space and selective attention. Attention and performance 15: Conscious and nonconscious information processing. Cambridge, MA: The MIT Press.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ronald A. Cohen
    • 1
    • 2
    • 3
  1. 1.Departments of Neurology, Psychiatry and AgingGainesvilleUSA
  2. 2.Center for Cognitive Aging and MemoryUniversity of Florida College of MedicineGainesvilleUSA
  3. 3.Department of Psychiatry and Human Behavior Warren Alpert School of MedicineBrown UniversityProvidenceUSA

Personalised recommendations