Advertisement

Cognitive Science of Attention: Current Concepts and Approaches

  • Ronald A. Cohen
Chapter

Abstract

The cognitive science of attention has evolved over the past 2 decades to the point that there are now many well-accepted concepts and methodological approaches available for use in studying attentional processes. Equally important is the fact that attention is now widely accepted as essential to cognition and there is little debate about whether it is a valid topic of scientific study. Various theories and attentional constructs developed over the past 2 decades have been formalized with clear operational definitions and predictions about how attention performance should vary under different conditions, such that it is possible to test their validity and consistency. Accordingly, there is now a relatively vast and rich body of cognitive research on attention. Several of these lines of research that are particularly relevant to the neuropsychology of attention will be considered.

Keywords

Selective Attention Attentional Bias Attentional Blink Rapid Series Visual Presentation Perceptual Load 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Schvaneveldt, R., & Meyer, D. E. (1973). Retrieval and comparison processes in semantic memory. In S. Kornblum (Ed.), Attentional and performance IV. New York: Academic.Google Scholar
  2. 2.
    Tulving, E. (1983). Elements of episodic memory. Oxford: Clarendon.Google Scholar
  3. 3.
    Posner, M. I. (1986). Chronometric explorations of the mind. New York: Oxford University Press.Google Scholar
  4. 4.
    Posner, M. I. (2004). Cognitive neuroscience of attention. New York: Guilford Press.Google Scholar
  5. 5.
    Kirsner, K., & Smith, M. C. (1974). Modality effects in word recognition. Memory and Cognition, 2, 637–640.PubMedGoogle Scholar
  6. 6.
    Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology. General, 109, 160–174.Google Scholar
  7. 7.
    Posner, M. I. (1978). Chronometric explorations of mind. Hillsdale: Erlbaum.Google Scholar
  8. 8.
    Posner, M. I. (1980). Orienting of attention: The VIIth Sir Frederic Bartlett Lecture. Quarterly Journal of Experimental Psychology, 32, 3–25.PubMedGoogle Scholar
  9. 9.
    Navon, D. (1981). Do attention and decision follow perception Comment on Miller. Journal of Experimental Psychology. Human Perception and Performance, 7(6), 1175–1182.PubMedGoogle Scholar
  10. 10.
    Navon, D., & Norman, J. (1983). Does global precedence really depend on visual angle? Journal of Experimental Psychology. Human Perception and Performance, 9(6), 955–965.PubMedGoogle Scholar
  11. 11.
    Pomerantz, J. R. (1983). Global and local precedence: Selective attention in form and motion perception. Journal of Experimental Psychology. General, 112(4), 516–540.PubMedGoogle Scholar
  12. 12.
    Navon, D. (1977). Forest before trees: The precedence of global features in visual perception. Cognitive Psychology, 9(3), 353–383.Google Scholar
  13. 13.
    Martin, M. (1979). Local and global processing: The role of sparcity. Memory and Cognition, 7, 479–484.Google Scholar
  14. 14.
    Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136.PubMedGoogle Scholar
  15. 15.
    Fink, G. R., Halligan, P. W., Marshall, J. C., Frith, C. D., Frackowiak, R. S., & Dolan, R. J. (1996). Where in the brain does visual attention select the forest and the trees? Nature, 382(6592), 626–628.PubMedGoogle Scholar
  16. 16.
    Fink, G. R., Halligan, P. W., Marshall, J. C., Frith, C. D., Frackowiak, R. S., & Dolan, R. J. (1997). Neural mechanisms involved in the processing of global and local aspects of hierarchically organized visual stimuli. Brain, 120(Pt 10), 1779–1791.PubMedGoogle Scholar
  17. 17.
    Oliveri, M., & Vallar, G. (2009). Parietal versus temporal lobe components in spatial cognition: Setting the mid-point of a horizontal line. Journal of Neuropsychology, 3(Pt 2), 201–211.PubMedGoogle Scholar
  18. 18.
    Eriksen, B., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16, 143–149.Google Scholar
  19. 19.
    Bjork, E. M. J. (1977). On the nature of input channels in visual attention. Psychological Review, 84, 472–484.PubMedGoogle Scholar
  20. 20.
    Eriksen, C. (1995). The Flankers Task and response competition: A useful tool for investigating a variety of cognitive problems. Visual Cognition, 2, 101–118.Google Scholar
  21. 21.
    Miller, J. (1991). The flanker compatibility effect as a function of visual angle, attentional focus, visual transients, and perceptual load: A search for boundary conditions. Perception & Psychophysics, 49(3), 270–288.Google Scholar
  22. 22.
    Paquet, L., & Lortie, C. (1990). Evidence for early selection: Precuing target location reduces interference from same-category distractors. Perception & Psychophysics, 48(4), 382–388.Google Scholar
  23. 23.
    Eriksen, C. W., Pan, K., & Botella, J. (1993). Attentional distribution in visual space. Psychological Research, 56(1), 5–13.PubMedGoogle Scholar
  24. 24.
    Pan, K., & Eriksen, C. W. (1993). Attentional distribution in the visual field during same-different judgments as assessed by response competition. Perception & Psychophysics, 53(2), 134–144.Google Scholar
  25. 25.
    LaBerge, D., Brown, V., Carter, M., Bash, D., & Hartley, A. (1991). Reducing the effects of adjacent distractors by narrowing attention. Journal of Experimental Psychology. Human Perception and Performance, 17(1), 65–76.PubMedGoogle Scholar
  26. 26.
    Lau, H., Rogers, R. D., & Passingham, R. E. (2006). Dissociating response selection and conflict in the medial frontal surface. NeuroImage, 29(2), 446–451.PubMedGoogle Scholar
  27. 27.
    Castellanos, F. X., Sonuga-Barke, E. J., Scheres, A., Di Martino, A., Hyde, C., & Walters, J. R. (2005). Varieties of attention-deficit/hyperactivity disorder-related intra-individual variability. Biological Psychiatry, 57(11), 1416–1423.PubMedGoogle Scholar
  28. 28.
    Ruchsow, M., Herrnberger, B., Beschoner, P., Gron, G., Spitzer, M., & Kiefer, M. (2006). Error processing in major depressive disorder: Evidence from event-related potentials. Journal of Psychiatric Research, 40(1), 37–46.PubMedGoogle Scholar
  29. 29.
    Wylie, S. A., Stout, J. C., & Bashore, T. R. (2005). Activation of conflicting responses in Parkinson’s disease: Evidence for degrading and facilitating effects on response time. Neuropsychologia, 43(7), 1033–1043.PubMedGoogle Scholar
  30. 30.
    Stins, J. F., van Baal, G. C., Polderman, T. J., Verhulst, F. C., & Boomsma, D. I. (2004). Heritability of Stroop and flanker performance in 12-year old children. BMC Neuroscience, 5, 49.PubMedGoogle Scholar
  31. 31.
    Herrmann, M. J., Rommler, J., Ehlis, A. C., Heidrich, A., & Fallgatter, A. J. (2004). Source localization (LORETA) of the error-related-negativity (ERN/Ne) and positivity (Pe). Brain Research. Cognitive Brain Research, 20(2), 294–299.PubMedGoogle Scholar
  32. 32.
    Starreveld, P. A., Theeuwes, J., & Mortier, K. (2004). Response selection in visual search: The influence of response compatibility of nontargets. Journal of Experimental Psychology. Human Perception and Performance, 30(1), 56–78.PubMedGoogle Scholar
  33. 33.
    Rollnik, J. D., Schroder, C., Rodriguez-Fornells, A., et al. (2004). Functional lesions and human action monitoring: Combining repetitive transcranial magnetic stimulation and event-related brain potentials. Clinical Neurophysiology, 115(1), 145–153.PubMedGoogle Scholar
  34. 34.
    Russeler, J., Kuhlicke, D., & Munte, T. F. (2003). Human error monitoring during implicit and explicit learning of a sensorimotor sequence. Neuroscience Research, 47(2), 233–240.PubMedGoogle Scholar
  35. 35.
    Rouder, J. N., & King, J. W. (2003). Flanker and negative flanker effects in letter identification. Perception & Psychophysics, 65(2), 287–297.Google Scholar
  36. 36.
    Sanders, A. F., & Lamers, J. M. (2002). The Eriksen flanker effect revisited. Acta Psychologica, 109(1), 41–56.PubMedGoogle Scholar
  37. 37.
    Hazeltine, E., Poldrack, R., & Gabrieli, J. D. (2000). Neural activation during response competition. Journal of Cognitive Neuroscience, 12(Suppl 2), 118–129.PubMedGoogle Scholar
  38. 38.
    Jonkman, L. M., Kemner, C., Verbaten, M. N., et al. (1999). Perceptual and response interference in children with attention-deficit hyperactivity disorder, and the effects of methylphenidate. Psychophysiology, 36(4), 419–429.PubMedGoogle Scholar
  39. 39.
    Zhang, H. H., Zhang, J., & Kornblum, S. (1999). A parallel distributed processing model of stimulus-stimulus and stimulus–response compatibility. Cognitive Psychology, 38(3), 386–432.PubMedGoogle Scholar
  40. 40.
    Cohen, A., Fuchs, A., Bar-Sela, A., Brumberg, Y., & Magen, H. (1999). Correlational cuing as a function of target complexity and target-flanker similarity. Perception & Psychophysics, 61(2), 275–290.Google Scholar
  41. 41.
    Zeef, E. J., Sonke, C. J., Kok, A., Buiten, M. M., & Kenemans, J. L. (1996). Perceptual factors affecting age-related differences in focused attention: Performance and psychophysiological analyses. Psychophysiology, 33(5), 555–565.PubMedGoogle Scholar
  42. 42.
    Danielmeier, C., Wessel, J. R., Steinhauser, M., & Ullsperger, M. (2009). Modulation of the error-related negativity by response conflict. Psychophysiology, 46(6), 1288–1298.PubMedGoogle Scholar
  43. 43.
    Yu, A. J., Dayan, P., & Cohen, J. D. (2009). Dynamics of attentional selection under conflict: Toward a rational Bayesian account. Journal of Experimental Psychology. Human Perception and Performance, 35(3), 700–717.PubMedGoogle Scholar
  44. 44.
    Wylie, S. A., van den Wildenberg, W. P., Ridderinkhof, K. R., et al. (2009). The effect of speed-accuracy strategy on response interference control in Parkinson’s disease. Neuropsychologia, 47(8–9), 1844–1853.PubMedGoogle Scholar
  45. 45.
    Brown, J. W. (2009). Conflict effects without conflict in anterior cingulate cortex: Multiple response effects and context specific representations. NeuroImage, 47(1), 334–341.PubMedGoogle Scholar
  46. 46.
    Wendt, M., & Luna-Rodriguez, A. (2009). Conflict-frequency affects flanker interference: Role of stimulus-ensemble-specific practice and flanker-response contingencies. Experimental Psychology, 56(3), 206–217.PubMedGoogle Scholar
  47. 47.
    Weaver, B., Bedard, M., McAuliffe, J., & Parkkari, M. (2009). Using the Attention Network Test to predict driving test scores. Accident Analysis and Prevention, 41(1), 76–83.PubMedGoogle Scholar
  48. 48.
    Ochsner, K. N., Hughes, B., Robertson, E. R., Cooper, J. C., & Gabrieli, J. D. (2009). Neural systems supporting the control of affective and cognitive conflicts. Journal of Cognitive Neuroscience, 21(9), 1842–1855.PubMedGoogle Scholar
  49. 49.
    Brazil, I. A., de Bruijn, E. R., Bulten, B. H., et al. (2009). Early and late components of error monitoring in violent offenders with psychopathy. Biological Psychiatry, 65(2), 137–143.PubMedGoogle Scholar
  50. 50.
    Wylie, S. A., van den Wildenberg, W. P., Ridderinkhof, K. R., et al. (2009). The effect of Parkinson’s disease on interference control during action selection. Neuropsychologia, 47(1), 145–157.PubMedGoogle Scholar
  51. 51.
    Di Martino, A., Ghaffari, M., Curchack, J., et al. (2008). Decomposing intra-subject variability in children with attention-deficit/hyperactivity disorder. Biological Psychiatry, 64(7), 607–614.PubMedGoogle Scholar
  52. 52.
    Lavie, N., & Driver, J. (1996). On the spatial extent of attention in object-based visual selection. Perception & Psychophysics, 58(8), 1238–1251.Google Scholar
  53. 53.
    Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology. Human Perception and Performance, 21(3), 451–468.PubMedGoogle Scholar
  54. 54.
    Lavie, N., & Tsal, Y. (1994). Perceptual load as a major determinant of the locus of selection in visual attention. Perception & Psychophysics, 56(2), 183–197.Google Scholar
  55. 55.
    Tsal, Y., Meiran, N., & Lavie, N. (1994). The role of attention in illusory conjunctions. Perception & Psychophysics, 55(3), 350–358.Google Scholar
  56. 56.
    de Fockert, J. W., Rees, G., Frith, C. D., & Lavie, N. (2001). The role of working memory in visual selective attention. Science, 291(5509), 1803–1806.PubMedGoogle Scholar
  57. 57.
    Conway, A. R., Cowan, N., & Bunting, M. F. (2001). The cocktail party phenomenon revisited: The importance of working memory capacity. Psychonomic Bulletin and Review, 8(2), 331–335.PubMedGoogle Scholar
  58. 58.
    Maylor, E. A., & Hockey, R. (1985). Inhibitory component of externally controlled covert orienting in visual space. Journal of Experimental Psychology. Human Perception and Performance, 11(6), 777–787.PubMedGoogle Scholar
  59. 59.
    Klein, R. M. (2000). Inhibition of return. Trends in Cognitive Sciences, 4(4), 138–147.PubMedGoogle Scholar
  60. 60.
    Tipper, S. P., Weaver, B., Jerreat, L. M., & Burak, A. L. (1994). Object-based and environment-based inhibition of return of visual attention. Journal of Experimental Psychology. Human Perception and Performance, 20(3), 478–499.PubMedGoogle Scholar
  61. 61.
    Braun, D., & Breitmeyer, B. G. (1990). Effects of reappearance of fixated and attended stimuli upon saccadic reaction time. Experimental Brain Research, 81(2), 318–324.PubMedGoogle Scholar
  62. 62.
    Posner, M. I., Cohen, Y., & Rafal, R. D. (1982). Neural systems control of spatial orienting. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 298(1089), 187–198.PubMedGoogle Scholar
  63. 63.
    Wilson, D. E., Castel, A. D., & Pratt, J. (2006). Long-term inhibition of return for spatial locations: Evidence for a memory retrieval account. Quarterly Journal of Experimental Psychology, 59(12), 2135–2147.Google Scholar
  64. 64.
    Tipper, C., & Kingstone, A. (2005). Is inhibition of return a reflexive effect? Cognition, 97(3), B55–B62.PubMedGoogle Scholar
  65. 65.
    Leek, E. C., Reppa, L., & Tipper, S. P. (2003). Inhibition of return for objects and locations in static displays. Perception & Psychophysics, 65(3), 388–395.Google Scholar
  66. 66.
    Tipper, S. P., Grison, S., & Kessler, K. (2003). Long-term inhibition of return of attention. Psychological Science, 14(1), 19–25.PubMedGoogle Scholar
  67. 67.
    Snyder, J. J., & Kingstone, A. (2001). Inhibition of return at multiple locations in visual search: When you see it and when you don’t. The Quarterly Journal of Experimental Psychology. A, 54(4), 1221–1237.Google Scholar
  68. 68.
    Howard, L. A., Lupianez, J., & Tipper, S. P. (1999). Inhibition of return in a selective reaching task: An investigation of reference frames. The Journal of General Psychology, 126(4), 421–442.PubMedGoogle Scholar
  69. 69.
    Tipper, S. P., Jordan, H., & Weaver, B. (1999). Scene-based and object-centered inhibition of return: Evidence for dual orienting mechanisms. Perception & Psychophysics, 61(1), 50–60.Google Scholar
  70. 70.
    Tipper, S. P., Weaver, B., & Watson, F. L. (1996). Inhibition of return to successively cued spatial locations: Commentary on Pratt and Abrams (1995). Journal of Experimental Psychology. Human Perception and Performance, 22(5), 1289–1293.PubMedGoogle Scholar
  71. 71.
    Abrams, R. A., & Pratt, J. (1996). Spatially diffuse inhibition affects multiple locations: A reply to Tipper, Weaver, and Watson (1996). Journal of Experimental Psychology. Human Perception and Performance, 22(5), 1294–1298.PubMedGoogle Scholar
  72. 72.
    Muller, H. J., & von Muhlenen, A. (1996). Attentional tracking and inhibition of return in dynamic displays. Perception & Psychophysics, 58(2), 224–249.Google Scholar
  73. 73.
    Fox, E., & de Fockert, J. W. (2001). Inhibitory effects of repeating color and shape: Inhibition of return or repetition blindness? Journal of Experimental Psychology. Human Perception and Performance, 27(4), 798–812.PubMedGoogle Scholar
  74. 74.
    Abrams, R. A., & Pratt, J. (2000). Oculocentric coding of inhibited eye movements to recently attended locations. Journal of Experimental Psychology. Human Perception and Performance, 26(2), 776–788.PubMedGoogle Scholar
  75. 75.
    Pratt, J., & Abrams, R. A. (1999). Inhibition of return in discrimination tasks. Journal of Experimental Psychology. Human Perception and Performance, 25(1), 229–242.PubMedGoogle Scholar
  76. 76.
    Pratt, J., Abrams, R. A., & Chasteen, A. L. (1997). Initiation and inhibition of saccadic eye movements in younger and older adults: An analysis of the gap effect. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 52(2), P103–P107.PubMedGoogle Scholar
  77. 77.
    Pratt, J., & Abrams, R. A. (1995). Inhibition of return to successively cued spatial locations. Journal of Experimental Psychology. Human Perception and Performance, 21(6), 1343–1353.PubMedGoogle Scholar
  78. 78.
    Law, M. B., Pratt, J., & Abrams, R. A. (1995). Color-based inhibition of return. Perception & Psychophysics, 57(3), 402–408.Google Scholar
  79. 79.
    Welford, A. (1952). The psychological refractory period and the timing of high speed performance. British Journal of Psychology, 43, 2–19.Google Scholar
  80. 80.
    Pashler, H. (1992). Dual task interference and elementary mental mechanisms. In D. E. Meyer & S. Kornblum (Eds.), Attention and performance XIV. Cambridge: MIT Press.Google Scholar
  81. 81.
    Allport, D., Antonis, B., & Reynolds, P. (1972). On the division of attention: A disproof of the single-channel hypothesis. Quarterly Journal of Experimental Psychology, 24, 225–235.PubMedGoogle Scholar
  82. 82.
    Bourke, P., Duncan, J., & Nimmo-Smith, I. (1996). A general factor involved in dual task performance decrement. Quarterly Journal of Experimental Psychology, 49A, 525–545.Google Scholar
  83. 83.
    Posner, M., & Boies, S. J. (1971). Components of attention. Psychological Review, 78, 391–408.Google Scholar
  84. 84.
    MacLeod, P. (1977). A dual task response modality effect: Support for the multi-processor models of attention. Quarterly Journal of Experimental Psychology, 29, 651–667.Google Scholar
  85. 85.
    MacLeod, P. (1978). Does probe RT measure central processing demand? Quarterly Journal of Experimental Psychology, 30, 83–89.Google Scholar
  86. 86.
    MacLeod, P., & Posner, M. I. (1984). Privledged loops from percept to act. In H. Bouma & D. G. Bouwhuis (Eds.), Attention and performance X. Hillsdale: Lawrence Erlbaum, Assoc.Google Scholar
  87. 87.
    Vallesi, A., Binns, M. A., & Shallice, T. (2008). An effect of spatial-temporal association of response codes: Understanding the cognitive representations of time. Cognition, 107(2), 501–527.PubMedGoogle Scholar
  88. 88.
    Lien, M. C., & Proctor, R. W. (2002). Stimulus–response compatibility and psychological refractory period effects: Implications for response selection. Psychonomic Bulletin and Review, 9(2), 212–238.PubMedGoogle Scholar
  89. 89.
    Valle-Inclan, F., Hackley, S. A., & De Labra, C. (2003). Stimulus–response compatibility between stimulated eye and response location: Implications for attentional accounts of the Simon effect. Psychological Research, 67(4), 240–243.PubMedGoogle Scholar
  90. 90.
    Sato, T. R., & Schall, J. D. (2003). Effects of stimulus–response compatibility on neural selection in frontal eye field. Neuron, 38(4), 637–648.PubMedGoogle Scholar
  91. 91.
    Rakitin, B. C. (2005). The effects of spatial stimulus–response compatibility on choice time production accuracy and variability. Journal of Experimental Psychology. Human Perception and Performance, 31(4), 685–702.PubMedGoogle Scholar
  92. 92.
    Mattson, P. S., & Fournier, L. R. (2008). An action sequence held in memory can interfere with response selection of a target stimulus, but does not interfere with response activation of noise stimuli. Memory and Cognition, 36(7), 1236–1247.PubMedGoogle Scholar
  93. 93.
    Bien, N., Roebroeck, A., Goebel, R., & Sack, A. T. (2009). The brain’s intention to imitate: The neurobiology of intentional versus automatic imitation. Cerebral Cortex, 19(10), 2338–2351.PubMedGoogle Scholar
  94. 94.
    Bratzke, D., Rolke, B., & Ulrich, R. (2009). The source of execution-related dual-task interference: Motor bottleneck or response monitoring? Journal of Experimental Psychology. Human Perception and Performance, 35(5), 1413–1426.PubMedGoogle Scholar
  95. 95.
    Yong-Liang, G., Robaey, P., Karayanidis, F., Bourassa, M., Pelletier, G., & Geoffroy, G. (2000). Stimulus–response incompatibility effects on event-related potentials in children with attention-deficit hyperactivity disorder. Brain and Cognition, 43(1–3), 211–215.PubMedGoogle Scholar
  96. 96.
    Shiu, L. P., & Kornblum, S. (1999). Stimulus–response compatibility effects in go-no-go tasks: A dimensional overlap account. Perception & Psychophysics, 61(8), 1613–1623.Google Scholar
  97. 97.
    Eimer, M. (1995). Stimulus–response compatibility and automatic response activation: Evidence from psychophysiological studies. Journal of Experimental Psychology. Human Perception and Performance, 21(4), 837–854.PubMedGoogle Scholar
  98. 98.
    Weeks, D. J., Proctor, R. W., & Beyak, B. (1995). Stimulus–response compatibility for vertically oriented stimuli and horizontally oriented responses: Evidence for spatial coding. The Quarterly Journal of Experimental Psychology. A, 48(2), 367–383.Google Scholar
  99. 99.
    Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: Cognitive basis for stimulus–response compatibility—a model and taxonomy. Psychological Review, 97(2), 253–270.PubMedGoogle Scholar
  100. 100.
    Ehrenstein, W. H., Schroeder-Heister, P., & Heister, G. (1989). Spatial S-R compatibility with orthogonal stimulus–response relationship. Perception & Psychophysics, 45(3), 215–220.Google Scholar
  101. 101.
    Heister, G., & Schroeder-Heister, P. (1985). S-R compatibility effect or cerebral laterality effect? Comments on a controversy. Neuropsychologia, 23(3), 427–430.PubMedGoogle Scholar
  102. 102.
    Yong-Liang, G., Robaey, P., Karayanidis, F., Bourassa, M., Pelletier, G., & Geoffroy, G. (2000). ERPs and behavioral inhibition in a Go/No-go task in children with attention-deficit hyperactivity disorder. Brain and Cognition, 43(1–3), 215–220.PubMedGoogle Scholar
  103. 103.
    Beste, C., Saft, C., Andrich, J., Gold, R., & Falkenstein, M. (2008). Stimulus–response compatibility in Huntington’s disease: A cognitive-neurophysiological analysis. Journal of Neurophysiology, 99(3), 1213–1223.PubMedGoogle Scholar
  104. 104.
    Huizenga, H. M., van Bers, B. M., Plat, J., van den Wildenberg, W. P., & van der Molen, M. W. (2009). Task complexity enhances response inhibition deficits in childhood and adolescent attention-deficit/hyperactivity disorder: A meta-regression analysis. Biological Psychiatry, 65(1), 39–45.PubMedGoogle Scholar
  105. 105.
    Elvevag, B., Weinberger, D. R., Suter, J. C., & Goldberg, T. E. (2000). Continuous performance test and schizophrenia: A test of stimulus–response compatibility, working memory, response readiness, or none of the above? The American Journal of Psychiatry, 157(5), 772–780.PubMedGoogle Scholar
  106. 106.
    Verfaellie, M., Bowers, D., & Heilman, K. M. (1988). Attentional factors in the occurrence of stimulus–response compatibility effects. Neuropsychologia, 26(3), 435–444.PubMedGoogle Scholar
  107. 107.
    Broadbent, D. E. (1958). Perception and communication. London: Pergamon Press.Google Scholar
  108. 108.
    Welford, A. (1967). Single channel operation in the brain. Acta Psychologia., 27, 5–22.Google Scholar
  109. 109.
    Broadbent, D. E., & Broadbent, M. H. (1987). From detection to identification: Response to multiple targets in rapid serial visual presentation. Perception & Psychophysics, 42(2), 105–113.Google Scholar
  110. 110.
    Raymond, J. E., Shapiro, K. L., & Arnell, K. M. (1992). Temporary suppression of visual processing in an RSVP task: An attentional blink? Journal of Experimental Psychology. Human Perception and Performance, 18(3), 849–860.PubMedGoogle Scholar
  111. 111.
    Shapiro, K. L., Raymond, J. E., & Arnell, K. M. (1994). Attention to visual pattern information produces the attentional blink in rapid serial visual presentation. Journal of Experimental Psychology. Human Perception and Performance, 20(2), 357–371.PubMedGoogle Scholar
  112. 112.
    Chun, M. M. (1997). Temporal binding errors are redistributed by the attentional blink. Perception & Psychophysics, 59(8), 1191–1199.Google Scholar
  113. 113.
    Chun, M. M., & Potter, M. C. (1995). A two-stage model for multiple target detection in rapid serial visual presentation. Journal of Experimental Psychology. Human Perception and Performance, 21(1), 109–127.PubMedGoogle Scholar
  114. 114.
    Awh, E., Serences, J., Laurey, P., Dhaliwal, H., van der Jagt, T., & Dassonville, P. (2004). Evidence against a central bottleneck during the attentional blink: Multiple channels for configural and featural processing. Cognitive Psychology, 48(1), 95–126.PubMedGoogle Scholar
  115. 115.
    Landau, A. N., & Bentin, S. (2008). Attentional and perceptual factors affecting the attentional blink for faces and objects. Journal of Experimental Psychology. Human Perception and Performance, 34(4), 818–830.PubMedGoogle Scholar
  116. 116.
    Arnell, K. M., & Duncan, J. (2002). Separate and shared sources of dual-task cost in stimulus identification and response selection. Cognitive Psychology, 44(2), 105–147.PubMedGoogle Scholar
  117. 117.
    Pratt, J., & Hommel, B. (2003). Symbolic control of visual attention: The role of working memory and attentional control settings. Journal of Experimental Psychology. Human Perception and Performance, 29(5), 835–845.PubMedGoogle Scholar
  118. 118.
    Hommel, B., Pratt, J., Colzato, L., & Godijn, R. (2001). Symbolic control of visual attention. Psychological Science, 12(5), 360–365.PubMedGoogle Scholar
  119. 119.
    Gibson, B. S., Scheutz, M., & Davis, G. J. (2009). Symbolic control of visual attention: Semantic constraints on the spatial distribution of attention. Attention, Perception, & Psychophysics, 71(2), 363–374.Google Scholar
  120. 120.
    Herrera, A., & Macizo, P. (2008). Cross-notational semantic priming between symbolic and nonsymbolic numerosity. Quarterly Journal of Experimental Psychology, 61(10), 1538–1552.Google Scholar
  121. 121.
    Roelofs, A. (2008). Dynamics of the attentional control of word retrieval: Analyses of response time distributions. Journal of Experimental Psychology. General, 137(2), 303–323.PubMedGoogle Scholar
  122. 122.
    Shaki, S., & Algom, D. (2002). The locus and nature of semantic congruity in symbolic comparison: Evidence from the Stroop effect. Memory and Cognition, 30(1), 3–17.PubMedGoogle Scholar
  123. 123.
    Petrusic, W. M. (1992). Semantic congruity effects and theories of the comparison process. Journal of Experimental Psychology. Human Perception and Performance, 18(4), 962–986.PubMedGoogle Scholar
  124. 124.
    Kingstone, A. (2009). Taking a real look at social attention. Current Opinion in Neurobiology, 19(1), 52–56.PubMedGoogle Scholar
  125. 125.
    Kuhn, G., & Kingstone, A. (2009). Look away! Eyes and arrows engage oculomotor responses automatically. Attention, Perception, & Psychophysics, 71(2), 314–327.Google Scholar
  126. 126.
    Kingstone, A., Tipper, C., Ristic, J., & Ngan, E. (2004). The eyes have it!: An fMRI investigation. Brain and Cognition, 55(2), 269–271.PubMedGoogle Scholar
  127. 127.
    Friesen, C. K., & Kingstone, A. (2003). Covert and overt orienting to gaze direction cues and the effects of fixation offset. Neuroreport, 14(3), 489–493.PubMedGoogle Scholar
  128. 128.
    Friesen, C. K., & Kingstone, A. (2003). Abrupt onsets and gaze direction cues trigger independent reflexive attentional effects. Cognition, 87(1), B1–B10.PubMedGoogle Scholar
  129. 129.
    Broadbent, D. E. (1952). Listening to one of two synchronous messages. Journal of Experimental Psychology., 44, 51–55.PubMedGoogle Scholar
  130. 130.
    Broadbent, D. E. (1971). Decision and stress. London: Academic.Google Scholar
  131. 131.
    Scharf, B. (1998). Auditory attention. In H. Pashler (Ed.), Attention. Hove: Psychology Press.Google Scholar
  132. 132.
    Tanner, W., & Norman, R. Z. (1954). The human use of information: Signal detection for the case of unknown signal parameters. New York: Institute of Radio Engineers.Google Scholar
  133. 133.
    Scharf, B., Quigley, S., Aoki, C., Peachey, N., & Reeves, A. (1987). Focused auditory attention and frequency selectivity. Perception & Psychophysics, 42(3), 215–223.Google Scholar
  134. 134.
    Dai, H. P., Scharf, B., & Buus, S. (1991). Effective attenuation of signals in noise under focused attention. Journal of the Acoustical Society of America, 89(6), 2837–2842.PubMedGoogle Scholar
  135. 135.
    Dai, H., & Wright, B. A. (1999). Predicting the detectability of tones with unexpected durations. Journal of the Acoustical Society of America, 105(3), 2043–2046.PubMedGoogle Scholar
  136. 136.
    White, L. J., & Carlyon, R. P. (1997). Detection of signals having expected and unexpected temporal structures. Hearing Research, 112(1–2), 141–146.PubMedGoogle Scholar
  137. 137.
    Wright, B. A., & Dai, H. (1994). Detection of unexpected tones in gated and continuous maskers. Journal of the Acoustical Society of America, 95(2), 939–948.PubMedGoogle Scholar
  138. 138.
    Wright, B. A., & Dai, H. (1994). Detection of unexpected tones with short and long durations. Journal of the Acoustical Society of America, 95(2), 931–938.PubMedGoogle Scholar
  139. 139.
    Wright, B. A., & Dai, H. (1998). Detection of sinusoidal amplitude modulation at unexpected rates. Journal of the Acoustical Society of America, 104(5), 2991–2996.PubMedGoogle Scholar
  140. 140.
    Bregman, A. S., Levitan, R., & Liao, C. (1990). Fusion of auditory components: Effects of the frequency of amplitude modulation. Perception & Psychophysics, 47(1), 68–73.Google Scholar
  141. 141.
    Bregman, A. S., Liao, C., & Levitan, R. (1990). Auditory grouping based on fundamental frequency and formant peak frequency. Canadian Journal of Psychology, 44(3), 400–413.PubMedGoogle Scholar
  142. 142.
    Tougas, Y., & Bregman, A. S. (1990). Auditory streaming and the continuity illusion. Perception & Psychophysics, 47(2), 121–126.Google Scholar
  143. 143.
    Carlyon, R. P., Cusack, R., Foxton, J. M., & Robertson, I. H. (2001). Effects of attention and unilateral neglect on auditory stream segregation. Journal of Experimental Psychology. Human Perception and Performance, 27(1), 115–127.PubMedGoogle Scholar
  144. 144.
    Macken, W. J., Tremblay, S., Houghton, R. J., Nicholls, A. P., & Jones, D. M. (2003). Does auditory streaming require attention? Evidence from attentional selectivity in short-term memory. Journal of Experimental Psychology. Human Perception and Performance, 29(1), 43–51.PubMedGoogle Scholar
  145. 145.
    Macken, W. J., Phelps, F. G., & Jones, D. M. (2009). What causes auditory distraction? Psychonomic Bulletin and Review, 16(1), 139–144.PubMedGoogle Scholar
  146. 146.
    Driver, J., & Spence, C. J. (1994). Spatial synergies between auditory and visual attention. In C. Umilto & M. Moscovitch (Eds.), Attention and performance XV (pp. 311–331). Cambridge: MIT Press.Google Scholar
  147. 147.
    Buchtel, H. A., & Butter, C. M. (1988). Spatial attentional shifts: Implications for the role of polysensory mechanisms. Neuropsychologia, 26(4), 499–509.PubMedGoogle Scholar
  148. 148.
    Buchtel, H. A., Butter, C. M., & Ayvasik, B. (1996). Effects of stimulus source and intensity on covert orientation to auditory stimuli. Neuropsychologia, 34(10), 979–985.PubMedGoogle Scholar
  149. 149.
    Butter, C. M., Buchtel, H. A., & Santucci, R. (1989). Spatial attentional shifts: Further evidence for the role of polysensory mechanisms using visual and tactile stimuli. Neuropsychologia, 27(10), 1231–1240.PubMedGoogle Scholar
  150. 150.
    Luh, K. E., Butter, C. M., & Buchtel, H. A. (1986). Impairments in orienting to visual stimuli in monkeys following unilateral lesions of the superior sulcal polysensory cortex. Neuropsychologia, 24(4), 461–470.PubMedGoogle Scholar
  151. 151.
    Quinlan, P. T., & Bailey, P. J. (1995). An examination of attentional control in the auditory modality: Further evidence for auditory orienting. Perception & Psychophysics, 57(5), 614–628.Google Scholar
  152. 152.
    Arbogast, T. L., & Kidd, G., Jr. (2000). Evidence for spatial tuning in informational masking using the probe-signal method. Journal of the Acoustical Society of America, 108(4), 1803–1810.PubMedGoogle Scholar
  153. 153.
    Arbogast, T. L., Mason, C. R., & Kidd, G., Jr. (2002). The effect of spatial separation on informational and energetic masking of speech. Journal of the Acoustical Society of America, 112(5 Pt 1), 2086–2098.PubMedGoogle Scholar
  154. 154.
    Arbogast, T. L., Mason, C. R., & Kidd, G., Jr. (2005). The effect of spatial separation on informational masking of speech in normal-hearing and hearing-impaired listeners. Journal of the Acoustical Society of America, 117(4 Pt 1), 2169–2180.PubMedGoogle Scholar
  155. 155.
    Durlach, N. I., Mason, C. R., Kidd, G., Jr., Arbogast, T. L., Colburn, H. S., & Shinn-Cunningham, B. G. (2003). Note on informational masking. Journal of the Acoustical Society of America, 113(6), 2984–2987.PubMedGoogle Scholar
  156. 156.
    Kidd, G., Jr., Arbogast, T. L., Mason, C. R., & Walsh, M. (2002). Informational masking in listeners with sensorineural hearing loss. Journal of the Association for Research in Otolaryngology, 3(2), 107–119.PubMedGoogle Scholar
  157. 157.
    Kidd, G., Jr., Mason, C. R., & Arbogast, T. L. (2002). Similarity, uncertainty, and masking in the identification of nonspeech auditory patterns. Journal of the Acoustical Society of America, 111(3), 1367–1376.PubMedGoogle Scholar
  158. 158.
    Kidd, G., Jr., Mason, C. R., Brughera, A., & Chiu, C. Y. (2003). Discriminating harmonicity. Journal of the Acoustical Society of America, 114(2), 967–977.PubMedGoogle Scholar
  159. 159.
    Kidd, G., Jr., Mason, C. R., & Richards, V. M. (2003). Multiple bursts, multiple looks, and stream coherence in the release from informational masking. Journal of the Acoustical Society of America, 114(5), 2835–2845.PubMedGoogle Scholar
  160. 160.
    Oxenham, A. J., Fligor, B. J., Mason, C. R., & Kidd, G., Jr. (2003). Informational masking and musical training. Journal of the Acoustical Society of America, 114(3), 1543–1549.PubMedGoogle Scholar
  161. 161.
    Richards, V. M., Huang, R., & Kidd, G., Jr. (2004). Masker-first advantage for cues in informational masking. Journal of the Acoustical Society of America, 116(4 Pt 1), 2278–2288.PubMedGoogle Scholar
  162. 162.
    Richards, V. M., Tang, Z., & Kidd, G. D., Jr. (2002). Informational masking with small set sizes. Journal of the Acoustical Society of America, 111(3), 1359–1366.PubMedGoogle Scholar
  163. 163.
    Soto-Faraco, S., Morein-Zamir, S., & Kingstone, A. (2005). On audiovisual spatial synergy: The fragility of the phenomenon. Perception & Psychophysics, 67(3), 444–457.Google Scholar
  164. 164.
    Spence, C., Pavani, F., & Driver, J. (2004). Spatial constraints on visual-tactile cross-modal distractor congruency effects. Cognitive, Affective, & Behavioral Neuroscience, 4(2), 148–169.Google Scholar
  165. 165.
    Macaluso, E., George, N., Dolan, R., Spence, C., & Driver, J. (2004). Spatial and temporal factors during processing of audiovisual speech: A PET study. NeuroImage, 21(2), 725–732.PubMedGoogle Scholar
  166. 166.
    Kennett, S., Spence, C., & Driver, J. (2002). Visuo-tactile links in covert exogenous spatial attention remap across changes in unseen hand posture. Perception & Psychophysics, 64(7), 1083–1094.Google Scholar
  167. 167.
    Amlot, R., Walker, R., Driver, J., & Spence, C. (2003). Multimodal visual-somatosensory integration in saccade generation. Neuropsychologia, 41(1), 1–15.PubMedGoogle Scholar
  168. 168.
    Maravita, A., Spence, C., Kennett, S., & Driver, J. (2002). Tool-use changes multimodal spatial interactions between vision and touch in normal humans. Cognition, 83(2), B25–B34.PubMedGoogle Scholar
  169. 169.
    Spence, C., Kettenmann, B., Kobal, G., & McGlone, F. P. (2000). Selective attention to the chemosensory modality. Perception & Psychophysics, 62(6), 1265–1271.Google Scholar
  170. 170.
    Ward, L. M., McDonald, J. J., & Lin, D. (2000). On asymmetries in cross-modal spatial attention orienting. Perception & Psychophysics, 62(6), 1258–1264.Google Scholar
  171. 171.
    Spence, C., Pavani, F., & Driver, J. (2000). Crossmodal links between vision and touch in covert endogenous spatial attention. Journal of Experimental Psychology. Human Perception and Performance, 26(4), 1298–1319.PubMedGoogle Scholar
  172. 172.
    Spence, C., Ranson, J., & Driver, J. (2000). Cross-modal selective attention: On the difficulty of ignoring sounds at the locus of visual attention. Perception & Psychophysics, 62(2), 410–424.Google Scholar
  173. 173.
    Driver, J., & Spence, C. (1998). Cross-modal links in spatial attention. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 353(1373), 1319–1331.PubMedGoogle Scholar
  174. 174.
    Driver, J., & Spence, C. (1998). Crossmodal attention. Current Opinion in Neurobiology, 8(2), 245–253.PubMedGoogle Scholar
  175. 175.
    Posner, M. I. (1989). Foundations of cognitive science. Cambridge: MIT Press.Google Scholar
  176. 176.
    Norman, D., & Shallice, T. (1986). Attention to action: Willed and automatic control of behaviour. In R. J. Davidson, G. E. Schwartz, & D. Shapiro (Eds.), Consciousness and self-regulation. Advances in research and theory (pp. 1–18). New York: Plenum Press.Google Scholar
  177. 177.
    Norman, D., & Shallice, T. (1984). Attention to action: Willed and automatic control of behavior. In R. J. Davidson, G. E. Schwartz, & D. Shapiro (Eds.), Consciousness and self-regulation (Vol. 4, pp. 3–16). New York: Plenum.Google Scholar
  178. 178.
    Bouquet, C. A., Bonnaud, V., & Gil, R. (2003). Investigation of supervisory attentional system functions in patients with Parkinson’s disease using the Hayling task. Journal of Clinical and Experimental Neuropsychology, 25(6), 751–760.PubMedGoogle Scholar
  179. 179.
    Shallice, T., & Burgess, P. (1996). The domain of supervisory processes and temporal organization of behaviour. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 351(1346), 1405–1411; discussion 1411–1402.PubMedGoogle Scholar
  180. 180.
    Fimm, B., Bartl, G., Zimmermann, P., & Wallesch, C. W. (1994). Different mechanisms underly shifting set on external and internal cues in Parkinson’s disease. Brain and Cognition, 25(2), 287–304.PubMedGoogle Scholar
  181. 181.
    Brown, R. G., & Marsden, C. D. (1988). Internal versus external cues and the control of attention in Parkinson’s disease. Brain, 111(Pt 2), 323–345.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ronald A. Cohen
    • 1
    • 2
    • 3
  1. 1.Departments of Neurology, Psychiatry and AgingGainesvilleUSA
  2. 2.Center for Cognitive Aging and MemoryUniversity of Florida College of MedicineGainesvilleUSA
  3. 3.Department of Psychiatry and Human Behavior Warren Alpert School of MedicineBrown UniversityProvidenceUSA

Personalised recommendations