Computational Approaches to Attention

  • Ronald A. Cohen


As the cognitive sciences have evolved, so has the proliferation of theoretical models to account for attention and other cognitive functions. Models are developed to operationalize the processes and mechanisms underlying particular functions and to formalize their properties so as to enable experimental validation. Models developed during the middle of the twentieth century often posited complex relationships among multiple modular processes in an effort to account for cognitive functions like attention but tended to be largely descriptive in nature. They lacked specificity with respect to how elements of the model work under different experimental conditions and tended not to be formalized mathematically. They provided starting points for conceptualizing and study cognitive functions, but generally were underspecified, making it difficult to test the validity of one model versus another. In an effort to overcome this problem, cognitive and behavioral scientists increasingly employed computational approaches. Although initially many of these models provided little more than a mathematical description of processes that could be characterized less formally at a purely conceptual level, they did provide a valuable way of identifying specific parameters and constraints that affect the and parameters underlying attentional operations.


Connectionist Model Statistical Learning Theory Manual Tracking Competitive Learning Adaptive Resonance Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Daugman, J. G. (1985). Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. Journal of the Optical Society of America, A, Optics, Image & Science., 2(7), 1160–1169.Google Scholar
  2. 2.
    Daugman, J. G., & Downing, C. J. (1995). Demodulation, predictive coding, and spatial vision. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 12(4), 641–660.PubMedGoogle Scholar
  3. 3.
    Daugman, J. (1990). Brain metaphor and brain theory. In E. L. Schwartz (Ed.), Compuational neuroscience. Boston: MIT Press.Google Scholar
  4. 4.
    Churchland, P. M., & Churchland, P. S. (1990). Could a machine think? Classical AI is unlikely to yield conscious machines; systems that mimic the brain might. Scientific American, 262, 32–37.PubMedGoogle Scholar
  5. 5.
    Pylyshyn, Z. W. (1973). What the mind’s eye tells the mind’s brain: A critique of mental imagery. Psychological Bulletin, 80, 1–24.Google Scholar
  6. 6.
    Hull, C. (1943). Principles of behavior. New York: Appleton-Century.Google Scholar
  7. 7.
    Spence, K. W. (1960). Behavior theory and learning, selected papers. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  8. 8.
    Spence, K. W., Kendler, H. H., & Spence, J. T. (1971). Essays in neobehaviorism; a memorial volume to Kenneth W. Spence. New York: Appleton-Century-Crofts.Google Scholar
  9. 9.
    Kendler, T. S. (1971). Continuity theory and cue-dominance. In H. H. Kendler & J. T. Spence (Eds.), Tenets of neurobehaviorism (pp. 237–264). New York: Appleton-Century-Crofts.Google Scholar
  10. 10.
    Karmonik, C., Dulay, M., Verma, A., Yen, C., & Grossman, R. G. (2010). Brain activation in complex partial ­seizures during switching from a the goal-directed task to a resting state: Comparison of fMRI maps to the default mode network. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2010, 5685–5688.Google Scholar
  11. 11.
    Kendler, H. H., & Kendler, T. S. (1966). Selective attention versus mediation: Some comments on Mackintosh’s analysis of two-stage models of discrimination learning. Psychological Bulletin, 66(4), 282–288.PubMedGoogle Scholar
  12. 12.
    Basden, B. H. (1969). A nonselective model of differential cue effectiveness in discrimination learning by rats. Santa Barbara: University of California.Google Scholar
  13. 13.
    Estes, W. K. (1950). Toward a statistical theory of learning. Psychological Review, 57, 94–107.Google Scholar
  14. 14.
    Estes, W. K. (1955). Statistical theory of spontaneous recovery and regression. Psychological Review, 62(3), 145–154.PubMedGoogle Scholar
  15. 15.
    Estes, W. K. (1959). The statistical approach to learning theory. In S. Koch (Ed.), Psychology: A study of a science (Vol. II, pp. 380–491). New York: McGraw-Hill.Google Scholar
  16. 16.
    Estes, W. K., & Burke, C. J. (1953). A theory of stimulus variability in learning. Psychological Review, 60(4), 276–286.PubMedGoogle Scholar
  17. 17.
    Atkinson, R. C., & Estes, W. K. (1963). Stimulus sampling theory. In R. D. Luce, R. R. Bush, & E. Galanter (Eds.), Handbook of mathematical psychology (pp. 121–268). New York: Wiley.Google Scholar
  18. 18.
    Bush, R. R., & Mosteller, F. (1951). A mathematical model for simple learning. Psychological Review, 58, 313–323.Google Scholar
  19. 19.
    Bower, G. H. (1961). Application of a model to paired-associate learning. Psychometrika, 26, 255–280.Google Scholar
  20. 20.
    Bower, G. H. (1962). An association model for response and training variables in paired-associate learning. Psychological Review, 69(1), 34–53.PubMedGoogle Scholar
  21. 21.
    Bower, G. H. (1966). Probability learning of response patterns. Psychonomic Science, 4(6), 215–216.Google Scholar
  22. 22.
    Restle, F. (1955). A theory of discrimination learning. Psychological Review, 62, 11–19.Google Scholar
  23. 23.
    Restle, F. (1967). Linear theory of performance. Psychological Review, 74, 63–70.Google Scholar
  24. 24.
    Lou, H. C., Luber, B., Stanford, A., & Lisanby, S. H. (2010). Self-specific processing in the default network: A single-pulse TMS study. Experimental Brain Research. Experimentelle Hirnforschung, 207(1–2), 27–38.Google Scholar
  25. 25.
    Li, Z., Santhanam, P., Coles, C. D., et al. (2011). Increased “default mode” activity in adolescents prenatally exposed to cocaine. Human Brain Mapping, 32(5), 759–770.PubMedGoogle Scholar
  26. 26.
    Cherry, E. C. (1953). Some experiments on the recognition of speech, with one and with two ears. Journal of the Acoustical Society of America, 26, 975–979.Google Scholar
  27. 27.
    Jolles, D. D., van Buchem, M. A., Crone, E. A., & Rombouts, S. A. (2011). A comprehensive study of whole-brain functional connectivity in children and young adults. Cerebral Cortex, 21(2), 385–391.PubMedGoogle Scholar
  28. 28.
    Wiener, N. (1961). Cybernetics; or, control and communication in the animal and the machine. New York: MIT Press.Google Scholar
  29. 29.
    Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Urbana: University of Illinois Press.Google Scholar
  30. 30.
    Luce, R. D., Bush, R. R., Licklider, J. C. R., Columbia University, & Bureau of Applied Social Research. (1980). Developments in mathematical psychology: Information, learning, and tracking. Westport, CT: Greenwood Press.Google Scholar
  31. 31.
    Sweet, L. H., Jerskey, B. A., & Aloia, M. S. (2010). Default network response to a working memory challenge after withdrawal of continuous positive airway pressure treatment for obstructive sleep apnea. Brain Imaging and Behavior, 4(2), 155–163.PubMedGoogle Scholar
  32. 32.
    Sokolov, E. N. (1963). Perception and the conditioned reflex. Oxford, New York: Pergamon Press.Google Scholar
  33. 33.
    Miller, G. A., & Frick, F. C. (1949). Statistical dehavioristics and sequences of responses. Psychology Review, 56, 311–324.Google Scholar
  34. 34.
    Skudlarski, P., Jagannathan, K., Anderson, K., et al. (2010). Brain connectivity is not only lower but different in schizophrenia: A combined anatomical and functional approach. Biological Psychiatry, 68(1), 61–69.PubMedGoogle Scholar
  35. 35.
    Luce, R. D., Bush, R. R., & Licklider, J. C. R. (Eds.). (1960). Developments in mathematical psychology: Information, learning, and tracking. Glencoe, IL: The Free Press.PubMedGoogle Scholar
  36. 36.
    Chang, C., & Glover, G. H. (2010). Time-frequency dynamics of resting-state brain connectivity measured with fMRI. NeuroImage, 50(1), 81–98.PubMedGoogle Scholar
  37. 37.
    Hick, W. E. (1952). On the rate of gain of information. Quarterly Journal of Experimental Psychology, 4, 11–26.Google Scholar
  38. 38.
    Hyman, R. (1953). Stimulus information as a determinant of reaction times. Journal of Experimental Psychology, 45, 188–196.PubMedGoogle Scholar
  39. 39.
    Posner, M. I. (1986). Chronometric explorations of the mind. New York: Oxford University Press.Google Scholar
  40. 40.
    Swets, J. (1984). Mathematical models of attention. In R. Parasuraman & D. Davies (Eds.), Varieties of attention (pp. 183–242). New York: Academic Press.Google Scholar
  41. 41.
    Swets, J. A. (1964). Signal detection and recognition by human observers; contemporary readings. New York: Wiley.Google Scholar
  42. 42.
    Swets, J. A., & Birdsall, T. G. (1978). Repeated observation of an uncertain signal. Perception & Psychophysics, 23(4), 269–274.Google Scholar
  43. 43.
    Swets, J. A., Green, D. M., Getty, D. J., & Swets, J. B. (1978). Signal detection and identification at successive stages of observation. Perception & Psychophysics, 23(4), 275–289.Google Scholar
  44. 44.
    Swets, J. A., & Kristofferson, A. B. (1970). Attention. Annual Review of Psychology, 21, 339–366.PubMedGoogle Scholar
  45. 45.
    Licklider, J. C. R. (1960). Quasi-linear operator models in the study of manual tracking. Glencoe, IL: The Free Press.Google Scholar
  46. 46.
    Starck, T., Remes, J., Nikkinen, J., Tervonen, O., & Kiviniemi, V. (2010). Correction of low-frequency physiological noise from the resting state BOLD fMRI—Effect on ICA default mode analysis at 1.5 T. Journal of Neuroscience Methods, 186(2), 179–185.PubMedGoogle Scholar
  47. 47.
    McClelland, J. L., & Rumelhart, D. E. (1988). Explorations in parallel distributed processing : A handbook of models, programs, and exercises. Cambridge, MA: MIT Press.Google Scholar
  48. 48.
    Grossberg, S. (1976). Adaptive pattern classification and universal recoding, II: Feedback, expectation, olfaction, and illusions. Biological Cybernetics, 23, 187–202.PubMedGoogle Scholar
  49. 49.
    Grossberg, S. (1988). Neural networks and natural intelligence. Cambridge: MIT Press.Google Scholar
  50. 50.
    Grossberg, S. (1991). A neural network architecture for Pavlovian conditioning: Reinforcement, attention, forgetting, timing. In M. L. Commons, S. Grossberg, & J. E. R. Staddon (Eds.), Neural network models of conditioning and action (pp. 69–122). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  51. 51.
    Grossberg, S., & Kuperstein, M. (1989). Neural dynamics of adaptive sensory-motor control (Expandedth ed.). New York: Pergamon Press.Google Scholar
  52. 52.
    Grossberg, S., & Merrill, J. W. (1992). A neural network model of adaptively timed reinforcement learning and hippocampal dynamics. Brain Research. Cognitive Brain Research, 1(1), 3–38.PubMedGoogle Scholar
  53. 53.
    Grossberg, S., Mingolla, E., & Ross, W. D. (1994). A neural theory of attentive visual search: Interactions of boundary, surface, spatial, and object representations. Psychological Review, 101(3), 470–489.PubMedGoogle Scholar
  54. 54.
    Rosenblatt, F. (1962). Principles of neurodynamics; perceptrons and the theory of brain mechanisms. Washington: Spartan Books.Google Scholar
  55. 55.
    Minsky, M. L., & Papert, S. (1988). Perceptrons: An introduction to computational geometry (Expandedth ed.). Cambridge, MA: MIT Press.Google Scholar
  56. 56.
    Minsky, M. P., & Papert, S. (1969). Perceptrons. Cambridge, MA: MIT Press.Google Scholar
  57. 57.
    Feldman, J. A. (1982). Dynamic connections in neural networks. Biological Cybernetics, 46(1), 27–39.PubMedGoogle Scholar
  58. 58.
    Feldman, J. A., & Ballard, D. H. (1982). Connectionist models and their properties. Cognitive Sciences., 6, 205–254.Google Scholar
  59. 59.
    Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition (Vol. 1, pp. 194–224). Cambridge, MA: MIT Press.Google Scholar
  60. 60.
    Ballard, D. H., Hinton, G. E., & Sejnowski, T. J. (1983). Parallel visual computation. Nature, 306(5938), 21–26.PubMedGoogle Scholar
  61. 61.
    Martuzzi, R., Ramani, R., Qiu, M., Rajeevan, N., & Constable, R. T. (2010). Functional connectivity and alterations in baseline brain state in humans. NeuroImage, 49(1), 823–834.PubMedGoogle Scholar
  62. 62.
    Norman, D., & Bobrow, D. A. (1975). On data-limited and resource-limited processes. Cognitive Psychology, 7, 44–64.Google Scholar
  63. 63.
    Norman, D. A. (1968). Toward a theory of memory and attention. Psychological Review, 75(6), 522–536.Google Scholar
  64. 64.
    Buckner, R. L., Sepulcre, J., Talukdar, T., et al. (2009). Cortical hubs revealed by intrinsic functional connectivity: Mapping, assessment of stability, and relation to Alzheimer’s disease. Journal of Neuroscience, 29(6), 1860–1873.PubMedGoogle Scholar
  65. 65.
    Hebb, D. O. (1949). The organization of behavior. New York: Wiley.Google Scholar
  66. 66.
    Rumelhart, D., & Zipser, D. (1986). Feature discovery by competitive learning. In J. Mcclelland & D. E. Rumelhart (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition. Cambridge, MA: MIT Press.PubMedGoogle Scholar
  67. 67.
    Anderson, J., Silverstein, J. W., Ritz, S. A., & Jones, R. S. (1977). Brain-State-in-a-Box (BSB) neural model. Psychological Review, 84, 413–451.Google Scholar
  68. 68.
    Anderson, J. R., & Bower, G. H. (1979). Human associative memory. Hillsdale, NJ: L. Erlbaum Associates.Google Scholar
  69. 69.
    Hinton, G. E., Sijnowski, T. J., & Ackley, D. H. (1984). Boltzmann machines: Constraint satisfaction networks that learn. Pittsburgh: Carnegie-Mellon University, Department of Computer Science.Google Scholar
  70. 70.
    Hinton, G. E., & Sejnowski, T. J. (1986). Learning and relearning in Boltzmann machines in parallel distributed processing: Explorations in the microstructure of cognition. Cambridge, MA: MIT Press.Google Scholar
  71. 71.
    Zhang, Z., Liao, W., Chen, H., et al. (2011). Altered functional-structural coupling of large-scale brain networks in idiopathic generalized epilepsy. Brain, 134(Pt 10), 2912–2928.PubMedGoogle Scholar
  72. 72.
    Hinton, G. E. (1981). Implementing semantic networks in parallel hardware. In G. E. Hinton & J. A. Anderson (Eds.), Parallel model sof associative memory (pp. 161–188). Hillsdale: Erlbaum.Google Scholar
  73. 73.
    Kohonen, T. (1984). Self-organization and associative memory. Berlin: Springer-Verlag.Google Scholar
  74. 74.
    Wu, J. T., Wu, H. Z., Yan, C. G., et al. (2011). Aging-related changes in the default mode network and its anti-correlated networks: A resting-state fMRI study. Neuroscience Letters, 504(1), 62–67.PubMedGoogle Scholar
  75. 75.
    Jones, D. T., Machulda, M. M., Vemuri, P., et al. (2011). Age-related changes in the default mode network are more advanced in Alzheimer disease. Neurology, 77(16), 1524–1531.PubMedGoogle Scholar
  76. 76.
    Kendler, T. S., Basden, B. H., & Bruckner, J. B. (1970). Dimensional dominance and continuity theory. Journal of Experimental Psychology, 83(2), 309–318.PubMedGoogle Scholar
  77. 77.
    Mehta, M. A. (2011). Commentary: The only way is down. Augmented deactivation of the default mode network by increased catecholamine transmission—A general mechanism? Reflections on Liddle et al. (2011). Journal of Child Psychology and Psychiatry, and Allied Disciplines, 52(7), 772–773.PubMedGoogle Scholar
  78. 78.
    Palaniyappan, L., Mallikarjun, P., Joseph, V., White, T. P., & Liddle, P. F. (2011). Regional contraction of brain surface area involves three large-scale networks in schizophrenia. Schizophrenia Research, 129(2–3), 163–168.PubMedGoogle Scholar
  79. 79.
    Gordon, E. M., Lee, P. S., Maisog, J. M., et al. (2011). Strength of default mode resting-state connectivity relates to white matter integrity in children. Developmental Science, 14(4), 738–751.PubMedGoogle Scholar
  80. 80.
    Doucet, G., Naveau, M., Petit, L., et al. (2011). Brain activity at rest: A multiscale hierarchical functional organization. Journal of Neurophysiology, 105(6), 2753–2763.PubMedGoogle Scholar
  81. 81.
    Carpenter, G. A., & Grossberg, S. (1991). A massively parallel architecture for a self-organizing neural pattern recognition machine. In G. A. Carpenter & S. Grossberg (Eds.), Pattern recognition by self-organizing neural networks (pp. 316–382). Cambridge: The MIT Press.Google Scholar
  82. 82.
    Carpenter, G. A., Grossberg, S., Markuzon, N., et al. (1992). Attentive supervised learning and recognition by an adaptive resonance system. In G. A. Carpenter & S. Grossberg (Eds.), Neural networks for vision and image processing (pp. 365–384). Cambridge: The MIT Press.Google Scholar
  83. 83.
    Agosta, F., Pievani, M., Geroldi, C., Copetti, M., Frisoni, G. B., & Filippi, M. (2012). Resting state fMRI in Alzheimer’s disease: Beyond the default mode network. Neurobiology of Aging, 33, 1564–1578.PubMedGoogle Scholar
  84. 84.
    Sandon, P. A. (1990). Simulating visual attention. Journal of Cognitive Neuroscience, 2, 213–231.PubMedGoogle Scholar
  85. 85.
    Mozer, M. C. (1989). A focused back-propagation algorithm for temporal sequence recognition. Complex Systems, 3, 349–381.PubMedGoogle Scholar
  86. 86.
    Mozer, M. C. (1993). Neural network architectures for temporal pattern processing. In A. S. Weigend & N. A. Gershenfeld (Eds.), Time series prediction: Forecasting the future and understanding the past (pp. 243–264). Redwood City, CA: Santa Fe Institute Studies in the Sciences of Complexity, Proceedings Volume XVII, Addison-Wesley.PubMedGoogle Scholar
  87. 87.
    Helps, S. K., Broyd, S. J., James, C. J., Karl, A., Chen, W., & Sonuga-Barke, E. J. (2010). Altered spontaneous low frequency brain activity in attention deficit/hyperactivity disorder. Brain Research, 1322, 134–143.PubMedGoogle Scholar
  88. 88.
    Zhou, H., Lu, W., Shi, Y., et al. (2010). Impairments in cognition and resting-state connectivity of the hippocampus in elderly subjects with type 2 diabetes. Neuroscience Letters, 473(1), 5–10.PubMedGoogle Scholar
  89. 89.
    Poudel, G. R., Jones, R. D., Innes, C. R., Watts, R., Davidson, P. R., & Bones, P. J. (2010). Measurement of BOLD changes due to cued eye-closure and stopping during a continuous visuomotor task via model-based and model-free approaches. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(5), 479–488.PubMedGoogle Scholar
  90. 90.
    Wang, L., Laviolette, P., O’Keefe, K., et al. (2010). Intrinsic connectivity between the hippocampus and ­posteromedial cortex predicts memory performance in cognitively intact older individuals. NeuroImage, 51(2), 910–917.PubMedGoogle Scholar
  91. 91.
    Hou, B., & Xu, L. (2010). Values of default mode network to Alzheimer’s disease call for consilience of ­multimodal neuroimaging and genetics. Journal of Neuroscience, 30(10), 3553–3554.PubMedGoogle Scholar
  92. 92.
    Majeed, W., Magnuson, M., Hasenkamp, W., et al. (2011). Spatiotemporal dynamics of low frequency BOLD fluctuations in rats and humans. NeuroImage, 54(2), 1140–1150.PubMedGoogle Scholar
  93. 93.
    Samann, P. G., Tully, C., Spoormaker, V. I., et al. (2010). Increased sleep pressure reduces resting state functional connectivity. Magma (New York, NY), 23(5–6), 375–389.Google Scholar
  94. 94.
    Esposito, F., Aragri, A., Latorre, V., et al. (2009). Does the default-mode functional connectivity of the brain correlate with working-memory performances? Archives Italiennes de Biologie, 147(1–2), 11–20.PubMedGoogle Scholar
  95. 95.
    Phaf, R. H., Christoffels, I. K., Waldorp, L. J., & den Dulk, P. (1998). Connectionist investigations of individual differences in Stroop performance. Perceptual and Motor Skills, 87(3 Pt 1), 899–914.PubMedGoogle Scholar
  96. 96.
    Liu, P., Zhang, Y., Zhou, G., et al. (2009). Partial correlation investigation on the default mode network involved in acupuncture: An fMRI study. Neuroscience Letters, 462(3), 183–187.PubMedGoogle Scholar
  97. 97.
    Rothenstein, J., & Tsotsos, A. (2011). Computational models of visual attention. Scholarpedia., 6, 6201.Google Scholar
  98. 98.
    Kobayashi, E., Grova, C., Tyvaert, L., Dubeau, F., & Gotman, J. (2009). Structures involved at the time of temporal lobe spikes revealed by interindividual group analysis of EEG/fMRI data. Epilepsia, 50(12), 2549–2556.PubMedGoogle Scholar
  99. 99.
    Beason-Held, L. L., Kraut, M. A., & Resnick, S. M. (2009). Stability of default-mode network activity in the aging brain. Brain Imaging and Behavior, 3(2), 123–131.PubMedGoogle Scholar
  100. 100.
    Gentili, C., Ricciardi, E., Gobbini, M. I., et al. (2009). Beyond amygdala: Default Mode Network activity differs between patients with social phobia and healthy controls. Brain Research Bulletin, 79(6), 409–413.PubMedGoogle Scholar
  101. 101.
    Yang, J., Weng, X., Zang, Y., Xu, M., & Xu, X. (2010). Sustained activity within the default mode network during an implicit memory task. Cortex; a journal devoted to the study of the nervous system and behavior, 46(3), 354–366.PubMedGoogle Scholar
  102. 102.
    van den Heuvel, M. P., Mandl, R. C., Kahn, R. S., & Hulshoff Pol, H. E. (2009). Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Human Brain Mapping, 30(10), 3127–3141.PubMedGoogle Scholar
  103. 103.
    Sheline, Y. I., Barch, D. M., Price, J. L., et al. (2009). The default mode network and self-referential processes in depression. Proceedings of the National Academy of Sciences of the United States of America, 106(6), 1942–1947.PubMedGoogle Scholar
  104. 104.
    Keller, K., & Menon, V. (2009). Gender differences in the functional and structural neuroanatomy of mathematical cognition. NeuroImage, 47(1), 342–352.PubMedGoogle Scholar
  105. 105.
    Israel, S. L., Seibert, T. M., Black, M. L., & Brewer, J. B. (2010). Going their separate ways: Dissociation of hippocampal and dorsolateral prefrontal activation during episodic retrieval and post-retrieval processing. Journal of Cognitive Neuroscience, 22(3), 513–525.PubMedGoogle Scholar
  106. 106.
    Hayden, B. Y., Smith, D. V., & Platt, M. L. (2009). Electrophysiological correlates of default-mode processing in macaque posterior cingulate cortex. Proceedings of the National Academy of Sciences of the United States of America, 106(14), 5948–5953.PubMedGoogle Scholar
  107. 107.
    Rutter, L., Carver, F. W., Holroyd, T., et al. (2009). Magnetoencephalographic gamma power reduction in patients with schizophrenia during resting condition. Human Brain Mapping, 30(10), 3254–3264.PubMedGoogle Scholar
  108. 108.
    Liu, P., Qin, W., Zhang, Y., et al. (2009). Combining spatial and temporal information to explore function-guide action of acupuncture using fMRI. Journal of Magnetic Resonance Imaging, 30(1), 41–46.PubMedGoogle Scholar
  109. 109.
    Hamker, F. H., & Wiltschut, J. (2007). Hebbian learning in a model with dynamic rate-coded neurons: An alternative to the generative model approach for learning receptive fields from natural scenes. Network, 18(3), 249–266.PubMedGoogle Scholar
  110. 110.
    Hamker, F. H. (2006). Modeling feature-based attention as an active top-down inference process. Bio Systems, 86(1–3), 91–99.PubMedGoogle Scholar
  111. 111.
    Hamker, F. H. (2004). A dynamic model of how feature cues guide spatial attention. Vision Research, 44(5), 501–521.PubMedGoogle Scholar
  112. 112.
    Lanyon, L. J., & Denham, S. L. (2004). A model of active visual search with object-based attention guiding scan paths. Neural Networks, 17(5–6), 873–897.PubMedGoogle Scholar
  113. 113.
    Deco, G., & Rolls, E. T. (2005). Neurodynamics of biased competition and cooperation for attention: A model with spiking neurons. Journal of Neurophysiology, 94(1), 295–313.PubMedGoogle Scholar
  114. 114.
    Corchs, S., & Deco, G. (2002). Large-scale neural model for visual attention: Integration of experimental single-cell and fMRI data. Cerebral Cortex, 12(4), 339–348.PubMedGoogle Scholar
  115. 115.
    Corchs, S., & Deco, G. (2001). A neurodynamical model for selective visual attention using oscillators. Neural Networks, 14(8), 981–990.PubMedGoogle Scholar
  116. 116.
    Deco, G., & Zihl, J. (2001). A neurodynamical model of visual attention: Feedback enhancement of spatial ­resolution in a hierarchical system. Journal of Computational Neuroscience, 10(3), 231–253.PubMedGoogle Scholar
  117. 117.
    Sejnowski, T. J., & Paulsen, O. (2006). Network oscillations: Emerging computational principles. Journal of Neuroscience, 26(6), 1673–1676.PubMedGoogle Scholar
  118. 118.
    Hummel, J. E., & Biederman, I. (1992). Dynamic binding in a neural network for shape recognition. Psychological Review, 99(3), 480–517.PubMedGoogle Scholar
  119. 119.
    Niebur, E., & Koch, C. (1994). A model for the neuronal implementation of selective visual attention based on temporal correlation among neurons. Journal of Computational Neuroscience, 1(1–2), 141–158.PubMedGoogle Scholar
  120. 120.
    Niebur, E., Koch, C., & Rosin, C. (1993). An oscillation-based model for the neuronal basis of attention. Vision Research, 33(18), 2789–2802.PubMedGoogle Scholar
  121. 121.
    Borisyuk, R., Kazanovich, Y., Chik, D., Tikhanoff, V., & Cangelosi, A. (2009). A neural model of selective attention and object segmentation in the visual scene: An approach based on partial synchronization and star-like architecture of connections. Neural Networks, 22(5–6), 707–719.PubMedGoogle Scholar
  122. 122.
    Borisyuk, R. M., & Kazanovich, Y. B. (2003). Oscillatory neural network model of attention focus formation and control. Bio Systems, 71(1–2), 29–38.PubMedGoogle Scholar
  123. 123.
    Borisyuk, R. M., & Kazanovich, Y. B. (2004). Oscillatory model of attention-guided object selection and novelty detection. Neural Networks, 17(7), 899–915.PubMedGoogle Scholar
  124. 124.
    Kazanovich, Y., & Borisyuk, R. (2006). An oscillatory neural model of multiple object tracking. Neural Computation, 18(6), 1413–1440.PubMedGoogle Scholar
  125. 125.
    Kazanovich, Y. B., & Borisyuk, R. M. (1999). Dynamics of neural networks with a central element. Neural Networks, 12(3), 441–454.PubMedGoogle Scholar
  126. 126.
    Bauer, F., Usher, M., & Muller, H. J. (2009). Interaction of attention and temporal object priming. Psychological Research, 73(2), 287–301.PubMedGoogle Scholar
  127. 127.
    Usher, M., Davelaar, E. J., Haarmann, H. J., & Goshen-Gottstein, Y. (2008). Short-term memory after all: Comment on Sederberg, Howard, and Kahana (2008). Psychological Review, 115(4), 1108–1118; discussion 1119–1126.PubMedGoogle Scholar
  128. 128.
    Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nature Reviews Neuroscience, 2(3), 194–203.PubMedGoogle Scholar
  129. 129.
    Itti, L., & Koch, C. (2000). A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research, 40(10–12), 1489–1506.PubMedGoogle Scholar
  130. 130.
    Lee, D. K., Itti, L., Koch, C., & Braun, J. (1999). Attention activates winner-take-all competition among visual filters. Nature Neuroscience, 2(4), 375–381.PubMedGoogle Scholar
  131. 131.
    Bruce, N. D., & Tsotsos, J. K. (2011). Visual representation determines search difficulty: Explaining visual search asymmetries. Frontiers in Computational Neuroscience, 5, 33.PubMedGoogle Scholar
  132. 132.
    Bruce, N. D., & Tsotsos, J. K. (2009). Saliency, attention, and visual search: An information theoretic approach. Journal of Vision, 9(3), 5.1–24.Google Scholar
  133. 133.
    Loach, D., Frischen, A., Bruce, N., & Tsotsos, J. K. (2008). An attentional mechanism for selecting appropriate actions afforded by graspable objects. Psychological Science, 19(12), 1253–1257.PubMedGoogle Scholar
  134. 134.
    Zhang, J., Berridge, K. C., Tindell, A. J., Smith, K. S., & Aldridge, J. W. (2009). A neural computational model of incentive salience. PLoS Computational Biology, 5(7), e1000437.PubMedGoogle Scholar
  135. 135.
    Zhang, Y., & Proctor, R. W. (2008). Influence of intermixed emotion-relevant trials on the affective Simon effect. Experimental Psychology, 55(6), 409–416.PubMedGoogle Scholar
  136. 136.
    Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136.PubMedGoogle Scholar
  137. 137.
    Koch, C., & Ullman, S. (1985). Shifts in selective visual attention: Towards the underlying neural circuitry. Human Neurobiology, 4(4), 219–227.PubMedGoogle Scholar
  138. 138.
    Cutzu, F., & Tsotsos, J. K. (2003). The selective tuning model of attention: Psychophysical evidence for a suppressive annulus around an attended item. Vision Research, 43(2), 205–219.PubMedGoogle Scholar
  139. 139.
    Fukushima, K., & Kikuchi, M. (1996). Neural network model of the visual system: Binding form and motion. Neural Networks, 9(8), 1417–1427.PubMedGoogle Scholar
  140. 140.
    Postma, E. O., van den Herik, H. J., & Hudson, P. T. (1996). Robust feedforward processing in synfire chains. International Journal of Neural Systems, 7(4), 537–542.PubMedGoogle Scholar
  141. 141.
    Hernandez-Mesa, N., Anton, M., Arza-Marques, M., Aneiros-Riba, R., & Groning-Roque, E. (1996). Laboratory of Caribbean Brain Research Organization in the decade of the brain midpoint. Results in reaching behavior—Interferences of subcortical motor centers, neurotransmitter blocking and brain function modeling. Molecular and Chemical Neuropathology, 28(1–3), 253–258.PubMedGoogle Scholar
  142. 142.
    Fukushima, K. (1987). Neural network model for selective attention in visual pattern recognition and associative recall. Applied Optics, 26(23), 4985–4992.PubMedGoogle Scholar
  143. 143.
    Fukushima, K. (1980). Neocognitron: A self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4), 193–202.PubMedGoogle Scholar
  144. 144.
    Tsotsos, J., Culhane, S. M., Wai, W. Y., Lai, Y., Davis, N., & Nuflo, F. (1995). Modeling visual-attention via ­selective tuning. Artificial Intelligence, 78(1–2), 507–545.Google Scholar
  145. 145.
    Fukushima, K. (1984). A hierarchical neural network model for associative memory. Biological Cybernetics, 50(2), 105–113.PubMedGoogle Scholar
  146. 146.
    Fukushima, K. (1986). A neural network model for selective attention in visual pattern recognition. Biological Cybernetics, 55(1), 5–15.PubMedGoogle Scholar
  147. 147.
    Fukushima, K. (1987). Self-organizing neural network models for visual pattern recognition. Acta Neurochirurgica Supplement (Wien)., 41, 51–67.Google Scholar
  148. 148.
    Fukushima, K. (2010). Neural network model for completing occluded contours. Neural Networks, 23(4), 528–540.PubMedGoogle Scholar
  149. 149.
    Postma, A., Kessels, R. P., & van Asselen, M. (2008). How the brain remembers and forgets where things are: The neurocognition of object-location memory. Neuroscience and Biobehavioral Reviews, 32(8), 1339–1345.PubMedGoogle Scholar
  150. 150.
    Tsotsos, J. K., Rodriguez-Sanchez, A. J., Rothenstein, A. L., & Simine, E. (2008). The different stages of visual recognition need different attentional binding strategies. Brain Research, 1225, 119–132.PubMedGoogle Scholar
  151. 151.
    Olshausen, B. A., Anderson, C. H., & Van Essen, D. C. (1995). A multiscale dynamic routing circuit for forming size- and position-invariant object representations. Journal of Computational Neuroscience, 2(1), 45–62.PubMedGoogle Scholar
  152. 152.
    Olshausen, B. A., Anderson, C. H., & Van Essen, D. C. (1993). A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. Journal of Neuroscience, 13(11), 4700–4719.PubMedGoogle Scholar
  153. 153.
    Tsotsos, J. K. (1997). Limited capacity of any realizable perceptual system is a sufficient reason for attentive behavior. Consciousness and Cognition, 6(2–3), 429–436.Google Scholar
  154. 154.
    Anderson, C., Van Essen, D. C., & Olshausen, B. A. (2005). Directed visual attention and the dynamic control of information flow. In L. Itti, G. Rees, & J. Tsotsos (Eds.), Neurobiology of attention. San Diego: Elsevier.Google Scholar
  155. 155.
    Han, S., & Humphreys, G. W. (2002). Segmentation and selection contribute to local processing in hierarchical analysis. The Quarterly Journal of Experimental Psychology, 55(1), 5–21.PubMedGoogle Scholar
  156. 156.
    Adler, S. A., & Orprecio, J. (2006). The eyes have it: Visual pop-out in infants and adults. Developmental Science, 9(2), 189–206.PubMedGoogle Scholar
  157. 157.
    Lamy, D., Antebi, C., Aviani, N., & Carmel, T. (2008). Priming of pop-out provides reliable measures of target activation and distractor inhibition in selective attention. Vision Research, 48(1), 30–41.PubMedGoogle Scholar
  158. 158.
    Eimer, M., Kiss, M., & Cheung, T. (2010). Priming of pop-out modulates attentional target selection in visual search: Behavioural and electrophysiological evidence. Vision Research, 50(14), 1353–1361.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ronald A. Cohen
    • 1
    • 2
    • 3
  1. 1.Departments of Neurology, Psychiatry and AgingGainesvilleUSA
  2. 2.Center for Cognitive Aging and MemoryUniversity of Florida College of MedicineGainesvilleUSA
  3. 3.Department of Psychiatry and Human Behavior Warren Alpert School of MedicineBrown UniversityProvidenceUSA

Personalised recommendations