Skip to main content

Computational Approaches to Attention

  • Chapter
  • First Online:
  • 5292 Accesses

Abstract

As the cognitive sciences have evolved, so has the proliferation of theoretical models to account for attention and other cognitive functions. Models are developed to operationalize the processes and mechanisms underlying particular functions and to formalize their properties so as to enable experimental validation. Models developed during the middle of the twentieth century often posited complex relationships among multiple modular processes in an effort to account for cognitive functions like attention but tended to be largely descriptive in nature. They lacked specificity with respect to how elements of the model work under different experimental conditions and tended not to be formalized mathematically. They provided starting points for conceptualizing and study cognitive functions, but generally were underspecified, making it difficult to test the validity of one model versus another. In an effort to overcome this problem, cognitive and behavioral scientists increasingly employed computational approaches. Although initially many of these models provided little more than a mathematical description of processes that could be characterized less formally at a purely conceptual level, they did provide a valuable way of identifying specific parameters and constraints that affect the and parameters underlying attentional operations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Daugman, J. G. (1985). Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. Journal of the Optical Society of America, A, Optics, Image & Science., 2(7), 1160–1169.

    Google Scholar 

  2. Daugman, J. G., & Downing, C. J. (1995). Demodulation, predictive coding, and spatial vision. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 12(4), 641–660.

    PubMed  Google Scholar 

  3. Daugman, J. (1990). Brain metaphor and brain theory. In E. L. Schwartz (Ed.), Compuational neuroscience. Boston: MIT Press.

    Google Scholar 

  4. Churchland, P. M., & Churchland, P. S. (1990). Could a machine think? Classical AI is unlikely to yield conscious machines; systems that mimic the brain might. Scientific American, 262, 32–37.

    PubMed  Google Scholar 

  5. Pylyshyn, Z. W. (1973). What the mind’s eye tells the mind’s brain: A critique of mental imagery. Psychological Bulletin, 80, 1–24.

    Google Scholar 

  6. Hull, C. (1943). Principles of behavior. New York: Appleton-Century.

    Google Scholar 

  7. Spence, K. W. (1960). Behavior theory and learning, selected papers. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  8. Spence, K. W., Kendler, H. H., & Spence, J. T. (1971). Essays in neobehaviorism; a memorial volume to Kenneth W. Spence. New York: Appleton-Century-Crofts.

    Google Scholar 

  9. Kendler, T. S. (1971). Continuity theory and cue-dominance. In H. H. Kendler & J. T. Spence (Eds.), Tenets of neurobehaviorism (pp. 237–264). New York: Appleton-Century-Crofts.

    Google Scholar 

  10. Karmonik, C., Dulay, M., Verma, A., Yen, C., & Grossman, R. G. (2010). Brain activation in complex partial ­seizures during switching from a the goal-directed task to a resting state: Comparison of fMRI maps to the default mode network. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2010, 5685–5688.

    Google Scholar 

  11. Kendler, H. H., & Kendler, T. S. (1966). Selective attention versus mediation: Some comments on Mackintosh’s analysis of two-stage models of discrimination learning. Psychological Bulletin, 66(4), 282–288.

    PubMed  Google Scholar 

  12. Basden, B. H. (1969). A nonselective model of differential cue effectiveness in discrimination learning by rats. Santa Barbara: University of California.

    Google Scholar 

  13. Estes, W. K. (1950). Toward a statistical theory of learning. Psychological Review, 57, 94–107.

    Google Scholar 

  14. Estes, W. K. (1955). Statistical theory of spontaneous recovery and regression. Psychological Review, 62(3), 145–154.

    PubMed  Google Scholar 

  15. Estes, W. K. (1959). The statistical approach to learning theory. In S. Koch (Ed.), Psychology: A study of a science (Vol. II, pp. 380–491). New York: McGraw-Hill.

    Google Scholar 

  16. Estes, W. K., & Burke, C. J. (1953). A theory of stimulus variability in learning. Psychological Review, 60(4), 276–286.

    PubMed  Google Scholar 

  17. Atkinson, R. C., & Estes, W. K. (1963). Stimulus sampling theory. In R. D. Luce, R. R. Bush, & E. Galanter (Eds.), Handbook of mathematical psychology (pp. 121–268). New York: Wiley.

    Google Scholar 

  18. Bush, R. R., & Mosteller, F. (1951). A mathematical model for simple learning. Psychological Review, 58, 313–323.

    Google Scholar 

  19. Bower, G. H. (1961). Application of a model to paired-associate learning. Psychometrika, 26, 255–280.

    Google Scholar 

  20. Bower, G. H. (1962). An association model for response and training variables in paired-associate learning. Psychological Review, 69(1), 34–53.

    PubMed  Google Scholar 

  21. Bower, G. H. (1966). Probability learning of response patterns. Psychonomic Science, 4(6), 215–216.

    Google Scholar 

  22. Restle, F. (1955). A theory of discrimination learning. Psychological Review, 62, 11–19.

    Google Scholar 

  23. Restle, F. (1967). Linear theory of performance. Psychological Review, 74, 63–70.

    Google Scholar 

  24. Lou, H. C., Luber, B., Stanford, A., & Lisanby, S. H. (2010). Self-specific processing in the default network: A single-pulse TMS study. Experimental Brain Research. Experimentelle Hirnforschung, 207(1–2), 27–38.

    Google Scholar 

  25. Li, Z., Santhanam, P., Coles, C. D., et al. (2011). Increased “default mode” activity in adolescents prenatally exposed to cocaine. Human Brain Mapping, 32(5), 759–770.

    PubMed  Google Scholar 

  26. Cherry, E. C. (1953). Some experiments on the recognition of speech, with one and with two ears. Journal of the Acoustical Society of America, 26, 975–979.

    Google Scholar 

  27. Jolles, D. D., van Buchem, M. A., Crone, E. A., & Rombouts, S. A. (2011). A comprehensive study of whole-brain functional connectivity in children and young adults. Cerebral Cortex, 21(2), 385–391.

    PubMed  Google Scholar 

  28. Wiener, N. (1961). Cybernetics; or, control and communication in the animal and the machine. New York: MIT Press.

    Google Scholar 

  29. Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Urbana: University of Illinois Press.

    Google Scholar 

  30. Luce, R. D., Bush, R. R., Licklider, J. C. R., Columbia University, & Bureau of Applied Social Research. (1980). Developments in mathematical psychology: Information, learning, and tracking. Westport, CT: Greenwood Press.

    Google Scholar 

  31. Sweet, L. H., Jerskey, B. A., & Aloia, M. S. (2010). Default network response to a working memory challenge after withdrawal of continuous positive airway pressure treatment for obstructive sleep apnea. Brain Imaging and Behavior, 4(2), 155–163.

    PubMed  Google Scholar 

  32. Sokolov, E. N. (1963). Perception and the conditioned reflex. Oxford, New York: Pergamon Press.

    Google Scholar 

  33. Miller, G. A., & Frick, F. C. (1949). Statistical dehavioristics and sequences of responses. Psychology Review, 56, 311–324.

    Google Scholar 

  34. Skudlarski, P., Jagannathan, K., Anderson, K., et al. (2010). Brain connectivity is not only lower but different in schizophrenia: A combined anatomical and functional approach. Biological Psychiatry, 68(1), 61–69.

    PubMed  Google Scholar 

  35. Luce, R. D., Bush, R. R., & Licklider, J. C. R. (Eds.). (1960). Developments in mathematical psychology: Information, learning, and tracking. Glencoe, IL: The Free Press.

    PubMed  Google Scholar 

  36. Chang, C., & Glover, G. H. (2010). Time-frequency dynamics of resting-state brain connectivity measured with fMRI. NeuroImage, 50(1), 81–98.

    PubMed  Google Scholar 

  37. Hick, W. E. (1952). On the rate of gain of information. Quarterly Journal of Experimental Psychology, 4, 11–26.

    Google Scholar 

  38. Hyman, R. (1953). Stimulus information as a determinant of reaction times. Journal of Experimental Psychology, 45, 188–196.

    PubMed  Google Scholar 

  39. Posner, M. I. (1986). Chronometric explorations of the mind. New York: Oxford University Press.

    Google Scholar 

  40. Swets, J. (1984). Mathematical models of attention. In R. Parasuraman & D. Davies (Eds.), Varieties of attention (pp. 183–242). New York: Academic Press.

    Google Scholar 

  41. Swets, J. A. (1964). Signal detection and recognition by human observers; contemporary readings. New York: Wiley.

    Google Scholar 

  42. Swets, J. A., & Birdsall, T. G. (1978). Repeated observation of an uncertain signal. Perception & Psychophysics, 23(4), 269–274.

    Google Scholar 

  43. Swets, J. A., Green, D. M., Getty, D. J., & Swets, J. B. (1978). Signal detection and identification at successive stages of observation. Perception & Psychophysics, 23(4), 275–289.

    Google Scholar 

  44. Swets, J. A., & Kristofferson, A. B. (1970). Attention. Annual Review of Psychology, 21, 339–366.

    PubMed  Google Scholar 

  45. Licklider, J. C. R. (1960). Quasi-linear operator models in the study of manual tracking. Glencoe, IL: The Free Press.

    Google Scholar 

  46. Starck, T., Remes, J., Nikkinen, J., Tervonen, O., & Kiviniemi, V. (2010). Correction of low-frequency physiological noise from the resting state BOLD fMRI—Effect on ICA default mode analysis at 1.5 T. Journal of Neuroscience Methods, 186(2), 179–185.

    PubMed  Google Scholar 

  47. McClelland, J. L., & Rumelhart, D. E. (1988). Explorations in parallel distributed processing : A handbook of models, programs, and exercises. Cambridge, MA: MIT Press.

    Google Scholar 

  48. Grossberg, S. (1976). Adaptive pattern classification and universal recoding, II: Feedback, expectation, olfaction, and illusions. Biological Cybernetics, 23, 187–202.

    PubMed  Google Scholar 

  49. Grossberg, S. (1988). Neural networks and natural intelligence. Cambridge: MIT Press.

    Google Scholar 

  50. Grossberg, S. (1991). A neural network architecture for Pavlovian conditioning: Reinforcement, attention, forgetting, timing. In M. L. Commons, S. Grossberg, & J. E. R. Staddon (Eds.), Neural network models of conditioning and action (pp. 69–122). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  51. Grossberg, S., & Kuperstein, M. (1989). Neural dynamics of adaptive sensory-motor control (Expandedth ed.). New York: Pergamon Press.

    Google Scholar 

  52. Grossberg, S., & Merrill, J. W. (1992). A neural network model of adaptively timed reinforcement learning and hippocampal dynamics. Brain Research. Cognitive Brain Research, 1(1), 3–38.

    PubMed  Google Scholar 

  53. Grossberg, S., Mingolla, E., & Ross, W. D. (1994). A neural theory of attentive visual search: Interactions of boundary, surface, spatial, and object representations. Psychological Review, 101(3), 470–489.

    PubMed  Google Scholar 

  54. Rosenblatt, F. (1962). Principles of neurodynamics; perceptrons and the theory of brain mechanisms. Washington: Spartan Books.

    Google Scholar 

  55. Minsky, M. L., & Papert, S. (1988). Perceptrons: An introduction to computational geometry (Expandedth ed.). Cambridge, MA: MIT Press.

    Google Scholar 

  56. Minsky, M. P., & Papert, S. (1969). Perceptrons. Cambridge, MA: MIT Press.

    Google Scholar 

  57. Feldman, J. A. (1982). Dynamic connections in neural networks. Biological Cybernetics, 46(1), 27–39.

    PubMed  Google Scholar 

  58. Feldman, J. A., & Ballard, D. H. (1982). Connectionist models and their properties. Cognitive Sciences., 6, 205–254.

    Google Scholar 

  59. Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition (Vol. 1, pp. 194–224). Cambridge, MA: MIT Press.

    Google Scholar 

  60. Ballard, D. H., Hinton, G. E., & Sejnowski, T. J. (1983). Parallel visual computation. Nature, 306(5938), 21–26.

    PubMed  Google Scholar 

  61. Martuzzi, R., Ramani, R., Qiu, M., Rajeevan, N., & Constable, R. T. (2010). Functional connectivity and alterations in baseline brain state in humans. NeuroImage, 49(1), 823–834.

    PubMed  Google Scholar 

  62. Norman, D., & Bobrow, D. A. (1975). On data-limited and resource-limited processes. Cognitive Psychology, 7, 44–64.

    Google Scholar 

  63. Norman, D. A. (1968). Toward a theory of memory and attention. Psychological Review, 75(6), 522–536.

    Google Scholar 

  64. Buckner, R. L., Sepulcre, J., Talukdar, T., et al. (2009). Cortical hubs revealed by intrinsic functional connectivity: Mapping, assessment of stability, and relation to Alzheimer’s disease. Journal of Neuroscience, 29(6), 1860–1873.

    PubMed  Google Scholar 

  65. Hebb, D. O. (1949). The organization of behavior. New York: Wiley.

    Google Scholar 

  66. Rumelhart, D., & Zipser, D. (1986). Feature discovery by competitive learning. In J. Mcclelland & D. E. Rumelhart (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition. Cambridge, MA: MIT Press.

    PubMed  Google Scholar 

  67. Anderson, J., Silverstein, J. W., Ritz, S. A., & Jones, R. S. (1977). Brain-State-in-a-Box (BSB) neural model. Psychological Review, 84, 413–451.

    Google Scholar 

  68. Anderson, J. R., & Bower, G. H. (1979). Human associative memory. Hillsdale, NJ: L. Erlbaum Associates.

    Google Scholar 

  69. Hinton, G. E., Sijnowski, T. J., & Ackley, D. H. (1984). Boltzmann machines: Constraint satisfaction networks that learn. Pittsburgh: Carnegie-Mellon University, Department of Computer Science.

    Google Scholar 

  70. Hinton, G. E., & Sejnowski, T. J. (1986). Learning and relearning in Boltzmann machines in parallel distributed processing: Explorations in the microstructure of cognition. Cambridge, MA: MIT Press.

    Google Scholar 

  71. Zhang, Z., Liao, W., Chen, H., et al. (2011). Altered functional-structural coupling of large-scale brain networks in idiopathic generalized epilepsy. Brain, 134(Pt 10), 2912–2928.

    PubMed  Google Scholar 

  72. Hinton, G. E. (1981). Implementing semantic networks in parallel hardware. In G. E. Hinton & J. A. Anderson (Eds.), Parallel model sof associative memory (pp. 161–188). Hillsdale: Erlbaum.

    Google Scholar 

  73. Kohonen, T. (1984). Self-organization and associative memory. Berlin: Springer-Verlag.

    Google Scholar 

  74. Wu, J. T., Wu, H. Z., Yan, C. G., et al. (2011). Aging-related changes in the default mode network and its anti-correlated networks: A resting-state fMRI study. Neuroscience Letters, 504(1), 62–67.

    PubMed  Google Scholar 

  75. Jones, D. T., Machulda, M. M., Vemuri, P., et al. (2011). Age-related changes in the default mode network are more advanced in Alzheimer disease. Neurology, 77(16), 1524–1531.

    PubMed  Google Scholar 

  76. Kendler, T. S., Basden, B. H., & Bruckner, J. B. (1970). Dimensional dominance and continuity theory. Journal of Experimental Psychology, 83(2), 309–318.

    PubMed  Google Scholar 

  77. Mehta, M. A. (2011). Commentary: The only way is down. Augmented deactivation of the default mode network by increased catecholamine transmission—A general mechanism? Reflections on Liddle et al. (2011). Journal of Child Psychology and Psychiatry, and Allied Disciplines, 52(7), 772–773.

    PubMed  Google Scholar 

  78. Palaniyappan, L., Mallikarjun, P., Joseph, V., White, T. P., & Liddle, P. F. (2011). Regional contraction of brain surface area involves three large-scale networks in schizophrenia. Schizophrenia Research, 129(2–3), 163–168.

    PubMed  Google Scholar 

  79. Gordon, E. M., Lee, P. S., Maisog, J. M., et al. (2011). Strength of default mode resting-state connectivity relates to white matter integrity in children. Developmental Science, 14(4), 738–751.

    PubMed  Google Scholar 

  80. Doucet, G., Naveau, M., Petit, L., et al. (2011). Brain activity at rest: A multiscale hierarchical functional organization. Journal of Neurophysiology, 105(6), 2753–2763.

    PubMed  Google Scholar 

  81. Carpenter, G. A., & Grossberg, S. (1991). A massively parallel architecture for a self-organizing neural pattern recognition machine. In G. A. Carpenter & S. Grossberg (Eds.), Pattern recognition by self-organizing neural networks (pp. 316–382). Cambridge: The MIT Press.

    Google Scholar 

  82. Carpenter, G. A., Grossberg, S., Markuzon, N., et al. (1992). Attentive supervised learning and recognition by an adaptive resonance system. In G. A. Carpenter & S. Grossberg (Eds.), Neural networks for vision and image processing (pp. 365–384). Cambridge: The MIT Press.

    Google Scholar 

  83. Agosta, F., Pievani, M., Geroldi, C., Copetti, M., Frisoni, G. B., & Filippi, M. (2012). Resting state fMRI in Alzheimer’s disease: Beyond the default mode network. Neurobiology of Aging, 33, 1564–1578.

    PubMed  Google Scholar 

  84. Sandon, P. A. (1990). Simulating visual attention. Journal of Cognitive Neuroscience, 2, 213–231.

    PubMed  Google Scholar 

  85. Mozer, M. C. (1989). A focused back-propagation algorithm for temporal sequence recognition. Complex Systems, 3, 349–381.

    PubMed  Google Scholar 

  86. Mozer, M. C. (1993). Neural network architectures for temporal pattern processing. In A. S. Weigend & N. A. Gershenfeld (Eds.), Time series prediction: Forecasting the future and understanding the past (pp. 243–264). Redwood City, CA: Santa Fe Institute Studies in the Sciences of Complexity, Proceedings Volume XVII, Addison-Wesley.

    PubMed  Google Scholar 

  87. Helps, S. K., Broyd, S. J., James, C. J., Karl, A., Chen, W., & Sonuga-Barke, E. J. (2010). Altered spontaneous low frequency brain activity in attention deficit/hyperactivity disorder. Brain Research, 1322, 134–143.

    PubMed  Google Scholar 

  88. Zhou, H., Lu, W., Shi, Y., et al. (2010). Impairments in cognition and resting-state connectivity of the hippocampus in elderly subjects with type 2 diabetes. Neuroscience Letters, 473(1), 5–10.

    PubMed  Google Scholar 

  89. Poudel, G. R., Jones, R. D., Innes, C. R., Watts, R., Davidson, P. R., & Bones, P. J. (2010). Measurement of BOLD changes due to cued eye-closure and stopping during a continuous visuomotor task via model-based and model-free approaches. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(5), 479–488.

    PubMed  Google Scholar 

  90. Wang, L., Laviolette, P., O’Keefe, K., et al. (2010). Intrinsic connectivity between the hippocampus and ­posteromedial cortex predicts memory performance in cognitively intact older individuals. NeuroImage, 51(2), 910–917.

    PubMed  Google Scholar 

  91. Hou, B., & Xu, L. (2010). Values of default mode network to Alzheimer’s disease call for consilience of ­multimodal neuroimaging and genetics. Journal of Neuroscience, 30(10), 3553–3554.

    PubMed  Google Scholar 

  92. Majeed, W., Magnuson, M., Hasenkamp, W., et al. (2011). Spatiotemporal dynamics of low frequency BOLD fluctuations in rats and humans. NeuroImage, 54(2), 1140–1150.

    PubMed  Google Scholar 

  93. Samann, P. G., Tully, C., Spoormaker, V. I., et al. (2010). Increased sleep pressure reduces resting state functional connectivity. Magma (New York, NY), 23(5–6), 375–389.

    Google Scholar 

  94. Esposito, F., Aragri, A., Latorre, V., et al. (2009). Does the default-mode functional connectivity of the brain correlate with working-memory performances? Archives Italiennes de Biologie, 147(1–2), 11–20.

    PubMed  Google Scholar 

  95. Phaf, R. H., Christoffels, I. K., Waldorp, L. J., & den Dulk, P. (1998). Connectionist investigations of individual differences in Stroop performance. Perceptual and Motor Skills, 87(3 Pt 1), 899–914.

    PubMed  Google Scholar 

  96. Liu, P., Zhang, Y., Zhou, G., et al. (2009). Partial correlation investigation on the default mode network involved in acupuncture: An fMRI study. Neuroscience Letters, 462(3), 183–187.

    PubMed  Google Scholar 

  97. Rothenstein, J., & Tsotsos, A. (2011). Computational models of visual attention. Scholarpedia., 6, 6201.

    Google Scholar 

  98. Kobayashi, E., Grova, C., Tyvaert, L., Dubeau, F., & Gotman, J. (2009). Structures involved at the time of temporal lobe spikes revealed by interindividual group analysis of EEG/fMRI data. Epilepsia, 50(12), 2549–2556.

    PubMed  Google Scholar 

  99. Beason-Held, L. L., Kraut, M. A., & Resnick, S. M. (2009). Stability of default-mode network activity in the aging brain. Brain Imaging and Behavior, 3(2), 123–131.

    PubMed  Google Scholar 

  100. Gentili, C., Ricciardi, E., Gobbini, M. I., et al. (2009). Beyond amygdala: Default Mode Network activity differs between patients with social phobia and healthy controls. Brain Research Bulletin, 79(6), 409–413.

    PubMed  Google Scholar 

  101. Yang, J., Weng, X., Zang, Y., Xu, M., & Xu, X. (2010). Sustained activity within the default mode network during an implicit memory task. Cortex; a journal devoted to the study of the nervous system and behavior, 46(3), 354–366.

    PubMed  Google Scholar 

  102. van den Heuvel, M. P., Mandl, R. C., Kahn, R. S., & Hulshoff Pol, H. E. (2009). Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Human Brain Mapping, 30(10), 3127–3141.

    PubMed  Google Scholar 

  103. Sheline, Y. I., Barch, D. M., Price, J. L., et al. (2009). The default mode network and self-referential processes in depression. Proceedings of the National Academy of Sciences of the United States of America, 106(6), 1942–1947.

    PubMed  Google Scholar 

  104. Keller, K., & Menon, V. (2009). Gender differences in the functional and structural neuroanatomy of mathematical cognition. NeuroImage, 47(1), 342–352.

    PubMed  Google Scholar 

  105. Israel, S. L., Seibert, T. M., Black, M. L., & Brewer, J. B. (2010). Going their separate ways: Dissociation of hippocampal and dorsolateral prefrontal activation during episodic retrieval and post-retrieval processing. Journal of Cognitive Neuroscience, 22(3), 513–525.

    PubMed  Google Scholar 

  106. Hayden, B. Y., Smith, D. V., & Platt, M. L. (2009). Electrophysiological correlates of default-mode processing in macaque posterior cingulate cortex. Proceedings of the National Academy of Sciences of the United States of America, 106(14), 5948–5953.

    PubMed  Google Scholar 

  107. Rutter, L., Carver, F. W., Holroyd, T., et al. (2009). Magnetoencephalographic gamma power reduction in patients with schizophrenia during resting condition. Human Brain Mapping, 30(10), 3254–3264.

    PubMed  Google Scholar 

  108. Liu, P., Qin, W., Zhang, Y., et al. (2009). Combining spatial and temporal information to explore function-guide action of acupuncture using fMRI. Journal of Magnetic Resonance Imaging, 30(1), 41–46.

    PubMed  Google Scholar 

  109. Hamker, F. H., & Wiltschut, J. (2007). Hebbian learning in a model with dynamic rate-coded neurons: An alternative to the generative model approach for learning receptive fields from natural scenes. Network, 18(3), 249–266.

    PubMed  Google Scholar 

  110. Hamker, F. H. (2006). Modeling feature-based attention as an active top-down inference process. Bio Systems, 86(1–3), 91–99.

    PubMed  Google Scholar 

  111. Hamker, F. H. (2004). A dynamic model of how feature cues guide spatial attention. Vision Research, 44(5), 501–521.

    PubMed  Google Scholar 

  112. Lanyon, L. J., & Denham, S. L. (2004). A model of active visual search with object-based attention guiding scan paths. Neural Networks, 17(5–6), 873–897.

    PubMed  Google Scholar 

  113. Deco, G., & Rolls, E. T. (2005). Neurodynamics of biased competition and cooperation for attention: A model with spiking neurons. Journal of Neurophysiology, 94(1), 295–313.

    PubMed  Google Scholar 

  114. Corchs, S., & Deco, G. (2002). Large-scale neural model for visual attention: Integration of experimental single-cell and fMRI data. Cerebral Cortex, 12(4), 339–348.

    PubMed  Google Scholar 

  115. Corchs, S., & Deco, G. (2001). A neurodynamical model for selective visual attention using oscillators. Neural Networks, 14(8), 981–990.

    PubMed  Google Scholar 

  116. Deco, G., & Zihl, J. (2001). A neurodynamical model of visual attention: Feedback enhancement of spatial ­resolution in a hierarchical system. Journal of Computational Neuroscience, 10(3), 231–253.

    PubMed  Google Scholar 

  117. Sejnowski, T. J., & Paulsen, O. (2006). Network oscillations: Emerging computational principles. Journal of Neuroscience, 26(6), 1673–1676.

    PubMed  Google Scholar 

  118. Hummel, J. E., & Biederman, I. (1992). Dynamic binding in a neural network for shape recognition. Psychological Review, 99(3), 480–517.

    PubMed  Google Scholar 

  119. Niebur, E., & Koch, C. (1994). A model for the neuronal implementation of selective visual attention based on temporal correlation among neurons. Journal of Computational Neuroscience, 1(1–2), 141–158.

    PubMed  Google Scholar 

  120. Niebur, E., Koch, C., & Rosin, C. (1993). An oscillation-based model for the neuronal basis of attention. Vision Research, 33(18), 2789–2802.

    PubMed  Google Scholar 

  121. Borisyuk, R., Kazanovich, Y., Chik, D., Tikhanoff, V., & Cangelosi, A. (2009). A neural model of selective attention and object segmentation in the visual scene: An approach based on partial synchronization and star-like architecture of connections. Neural Networks, 22(5–6), 707–719.

    PubMed  Google Scholar 

  122. Borisyuk, R. M., & Kazanovich, Y. B. (2003). Oscillatory neural network model of attention focus formation and control. Bio Systems, 71(1–2), 29–38.

    PubMed  Google Scholar 

  123. Borisyuk, R. M., & Kazanovich, Y. B. (2004). Oscillatory model of attention-guided object selection and novelty detection. Neural Networks, 17(7), 899–915.

    PubMed  Google Scholar 

  124. Kazanovich, Y., & Borisyuk, R. (2006). An oscillatory neural model of multiple object tracking. Neural Computation, 18(6), 1413–1440.

    PubMed  Google Scholar 

  125. Kazanovich, Y. B., & Borisyuk, R. M. (1999). Dynamics of neural networks with a central element. Neural Networks, 12(3), 441–454.

    PubMed  Google Scholar 

  126. Bauer, F., Usher, M., & Muller, H. J. (2009). Interaction of attention and temporal object priming. Psychological Research, 73(2), 287–301.

    PubMed  Google Scholar 

  127. Usher, M., Davelaar, E. J., Haarmann, H. J., & Goshen-Gottstein, Y. (2008). Short-term memory after all: Comment on Sederberg, Howard, and Kahana (2008). Psychological Review, 115(4), 1108–1118; discussion 1119–1126.

    PubMed  Google Scholar 

  128. Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nature Reviews Neuroscience, 2(3), 194–203.

    PubMed  Google Scholar 

  129. Itti, L., & Koch, C. (2000). A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research, 40(10–12), 1489–1506.

    PubMed  Google Scholar 

  130. Lee, D. K., Itti, L., Koch, C., & Braun, J. (1999). Attention activates winner-take-all competition among visual filters. Nature Neuroscience, 2(4), 375–381.

    PubMed  Google Scholar 

  131. Bruce, N. D., & Tsotsos, J. K. (2011). Visual representation determines search difficulty: Explaining visual search asymmetries. Frontiers in Computational Neuroscience, 5, 33.

    PubMed  Google Scholar 

  132. Bruce, N. D., & Tsotsos, J. K. (2009). Saliency, attention, and visual search: An information theoretic approach. Journal of Vision, 9(3), 5.1–24.

    Google Scholar 

  133. Loach, D., Frischen, A., Bruce, N., & Tsotsos, J. K. (2008). An attentional mechanism for selecting appropriate actions afforded by graspable objects. Psychological Science, 19(12), 1253–1257.

    PubMed  Google Scholar 

  134. Zhang, J., Berridge, K. C., Tindell, A. J., Smith, K. S., & Aldridge, J. W. (2009). A neural computational model of incentive salience. PLoS Computational Biology, 5(7), e1000437.

    PubMed  Google Scholar 

  135. Zhang, Y., & Proctor, R. W. (2008). Influence of intermixed emotion-relevant trials on the affective Simon effect. Experimental Psychology, 55(6), 409–416.

    PubMed  Google Scholar 

  136. Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136.

    PubMed  Google Scholar 

  137. Koch, C., & Ullman, S. (1985). Shifts in selective visual attention: Towards the underlying neural circuitry. Human Neurobiology, 4(4), 219–227.

    PubMed  Google Scholar 

  138. Cutzu, F., & Tsotsos, J. K. (2003). The selective tuning model of attention: Psychophysical evidence for a suppressive annulus around an attended item. Vision Research, 43(2), 205–219.

    PubMed  Google Scholar 

  139. Fukushima, K., & Kikuchi, M. (1996). Neural network model of the visual system: Binding form and motion. Neural Networks, 9(8), 1417–1427.

    PubMed  Google Scholar 

  140. Postma, E. O., van den Herik, H. J., & Hudson, P. T. (1996). Robust feedforward processing in synfire chains. International Journal of Neural Systems, 7(4), 537–542.

    PubMed  Google Scholar 

  141. Hernandez-Mesa, N., Anton, M., Arza-Marques, M., Aneiros-Riba, R., & Groning-Roque, E. (1996). Laboratory of Caribbean Brain Research Organization in the decade of the brain midpoint. Results in reaching behavior—Interferences of subcortical motor centers, neurotransmitter blocking and brain function modeling. Molecular and Chemical Neuropathology, 28(1–3), 253–258.

    PubMed  Google Scholar 

  142. Fukushima, K. (1987). Neural network model for selective attention in visual pattern recognition and associative recall. Applied Optics, 26(23), 4985–4992.

    PubMed  Google Scholar 

  143. Fukushima, K. (1980). Neocognitron: A self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4), 193–202.

    PubMed  Google Scholar 

  144. Tsotsos, J., Culhane, S. M., Wai, W. Y., Lai, Y., Davis, N., & Nuflo, F. (1995). Modeling visual-attention via ­selective tuning. Artificial Intelligence, 78(1–2), 507–545.

    Google Scholar 

  145. Fukushima, K. (1984). A hierarchical neural network model for associative memory. Biological Cybernetics, 50(2), 105–113.

    PubMed  Google Scholar 

  146. Fukushima, K. (1986). A neural network model for selective attention in visual pattern recognition. Biological Cybernetics, 55(1), 5–15.

    PubMed  Google Scholar 

  147. Fukushima, K. (1987). Self-organizing neural network models for visual pattern recognition. Acta Neurochirurgica Supplement (Wien)., 41, 51–67.

    Google Scholar 

  148. Fukushima, K. (2010). Neural network model for completing occluded contours. Neural Networks, 23(4), 528–540.

    PubMed  Google Scholar 

  149. Postma, A., Kessels, R. P., & van Asselen, M. (2008). How the brain remembers and forgets where things are: The neurocognition of object-location memory. Neuroscience and Biobehavioral Reviews, 32(8), 1339–1345.

    PubMed  Google Scholar 

  150. Tsotsos, J. K., Rodriguez-Sanchez, A. J., Rothenstein, A. L., & Simine, E. (2008). The different stages of visual recognition need different attentional binding strategies. Brain Research, 1225, 119–132.

    PubMed  Google Scholar 

  151. Olshausen, B. A., Anderson, C. H., & Van Essen, D. C. (1995). A multiscale dynamic routing circuit for forming size- and position-invariant object representations. Journal of Computational Neuroscience, 2(1), 45–62.

    PubMed  Google Scholar 

  152. Olshausen, B. A., Anderson, C. H., & Van Essen, D. C. (1993). A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. Journal of Neuroscience, 13(11), 4700–4719.

    PubMed  Google Scholar 

  153. Tsotsos, J. K. (1997). Limited capacity of any realizable perceptual system is a sufficient reason for attentive behavior. Consciousness and Cognition, 6(2–3), 429–436.

    Google Scholar 

  154. Anderson, C., Van Essen, D. C., & Olshausen, B. A. (2005). Directed visual attention and the dynamic control of information flow. In L. Itti, G. Rees, & J. Tsotsos (Eds.), Neurobiology of attention. San Diego: Elsevier.

    Google Scholar 

  155. Han, S., & Humphreys, G. W. (2002). Segmentation and selection contribute to local processing in hierarchical analysis. The Quarterly Journal of Experimental Psychology, 55(1), 5–21.

    PubMed  Google Scholar 

  156. Adler, S. A., & Orprecio, J. (2006). The eyes have it: Visual pop-out in infants and adults. Developmental Science, 9(2), 189–206.

    PubMed  Google Scholar 

  157. Lamy, D., Antebi, C., Aviani, N., & Carmel, T. (2008). Priming of pop-out provides reliable measures of target activation and distractor inhibition in selective attention. Vision Research, 48(1), 30–41.

    PubMed  Google Scholar 

  158. Eimer, M., Kiss, M., & Cheung, T. (2010). Priming of pop-out modulates attentional target selection in visual search: Behavioural and electrophysiological evidence. Vision Research, 50(14), 1353–1361.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cohen, R.A. (2014). Computational Approaches to Attention. In: The Neuropsychology of Attention. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-72639-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-72639-7_27

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-72638-0

  • Online ISBN: 978-0-387-72639-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics