Spatial and Temporal Dynamics of Attention

  • Ronald A. Cohen


All natural environments have an inherent spatial and temporal organization. Spatial experience can be mapped onto a Cartesian coordinate system. Furthermore, there is a natural temporal order to all physical events and human experience. Though these tenets are intuitively evident and seem obvious today, the basis for people’s experience of space and time has been one of the enduring problems for philosophers and scientists throughout the ages.


Selective Attention Circadian Clock Superior Colliculus Time Perception Duration Judgment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bauer, J., & Held, R. (1975). Comparison of visually guided reaching in normal and deprived infant monkeys. Journal of Experimental Psychology. Animal Behavior Processes, 1(4), 298–308.PubMedGoogle Scholar
  2. 2.
    Daw, N. W., & Wyatt, H. J. (1974). Raising rabbits in a moving visual environment: An attempt to modify directional sensitivity in the retina. The Journal of Physiology, 240(2), 309–330.PubMedGoogle Scholar
  3. 3.
    Held, R., & Bossom, J. (1961). Neonatal deprivation and adult rearrangement: Complementary techniques for analyzing plastic sensory-motor coordinations. Journal of Comparative and Physiological Psychology, 54, 33–37.PubMedGoogle Scholar
  4. 4.
    Held, R., & White, B. (1959). Sensory deprivation and visual speed: An analysis. Science, 130(3379), 861–862.PubMedGoogle Scholar
  5. 5.
    Hubel, D. H. (1978). Effects of deprivation on the visual cortex of cat and monkey. Harvey Lectures, 72, 1–51.PubMedGoogle Scholar
  6. 6.
    Wiesel, T. N., & Hubel, D. H. (1974). Ordered arrangement of orientation columns in monkeys lacking visual experience. The Journal of Comparative Neurology, 158(3), 307–318.PubMedGoogle Scholar
  7. 7.
    Li, Y., Van Hooser, S. D., Mazurek, M., White, L. E., & Fitzpatrick, D. (2008). Experience with moving visual stimuli drives the early development of cortical direction selectivity. Nature, 456(7224), 952–956.PubMedGoogle Scholar
  8. 8.
    Razak, K. A., & Pallas, S. L. (2007). Inhibitory plasticity facilitates recovery of stimulus velocity tuning in the superior colliculus after chronic NMDA receptor blockade. Journal of Neuroscience, 27(27), 7275–7283.PubMedGoogle Scholar
  9. 9.
    Forster, B., Eardley, A. F., & Eimer, M. (2007). Altered tactile spatial attention in the early blind. Brain Research, 1131(1), 149–154.PubMedGoogle Scholar
  10. 10.
    Li, Y., Fitzpatrick, D., & White, L. E. (2006). The development of direction selectivity in ferret visual cortex requires early visual experience. Nature Neuroscience, 9(5), 676–681.PubMedGoogle Scholar
  11. 11.
    Motter, B. C., & Mountcastle, V. B. (1981). The functional properties of the light-sensitive neurons of the posterior parietal cortex studied in waking monkeys: Foveal sparing and opponent vector organization. Journal of Neuroscience, 1, 3–26.PubMedGoogle Scholar
  12. 12.
    Mountcastle, V. (1978). Brain mechanisms for directed attention. Journal of the Royal Society of Medicine, 71, 14–27.PubMedGoogle Scholar
  13. 13.
    Mountcastle, V., Motter, B. C., Steinmetz, M. A., & Duffy, C. J. (1984). Looking and seeing: Visual functions of the parietal lobe. In G. M. Edelman, W. M. Cowan, & W. E. Gall (Eds.), Dynamic aspects of neocortical functions (pp. 159–193). New York: Wiley.Google Scholar
  14. 14.
    Mountcastle, V. B., Lynch, J. C., Georgopoulos, A., Sakata, H., & Acuna, C. (1975). Posterior parietal association cortex of the monkey: Command function from operations within extrapersonal space. Journal of Neurophysiology, 38, 871–908.PubMedGoogle Scholar
  15. 15.
    Mountcastle, V. B. (1979). An organizing principle for cerebral function: The unit module and the distributed system. In F. O. Schmitt & F. G. Worden (Eds.), The neurosciences (pp. 21–42). Cambridge, MA: MIT Press.Google Scholar
  16. 16.
    Jeannerod, M. (1983). How do we direct our actions in space? In A. Hein & M. Jeannerod (Eds.), Spatially oriented behavior (pp. 1–14). New York: Springer.Google Scholar
  17. 17.
    Perenin, M. T., & Jeannerod, M. (1978). Visual function within the hemianopic field following early cerebral hemidecortication in man—I. Spatial localization. Neuropsychologia, 16(1), 1–13.PubMedGoogle Scholar
  18. 18.
    Perenin, M. T., Jeannerod, M., & Prablanc, C. (1977). Spatial localization with paralyzed eye muscles. Ophthalmologica, 175(4), 206–214.PubMedGoogle Scholar
  19. 19.
    Hallett, P. E., & Lightstone, A. D. (1976). Saccadic eye movement towards stimuli triggered by prior saccades. Vision Research, 16, 99–106.PubMedGoogle Scholar
  20. 20.
    Held, R., & Hein, A. (1963). Movement-produced stimulation in the development of visually guided behavior. Journal of Comparative and Physiological Psychology, 56, 872–876.PubMedGoogle Scholar
  21. 21.
    Hein, A., & Diamond, R. M. (1971). Contrasting development of visually triggered and guided movements in kittens with respect to interocular and interlimb equivalence. Journal of Comparative and Physiological Psychology, 76(2), 219–224.PubMedGoogle Scholar
  22. 22.
    Hein, A., Vital-Durand, F., Salinger, W., & Diamond, R. (1979). Eye movements initiate visual-motor development in the cat. Science, 204(4399), 1321–1322.PubMedGoogle Scholar
  23. 23.
    Grusser, O.-J. (1983). Multimodal structure of the extrapersonal space. In A. Hein & M. Jeannerod (Eds.), Spatially oriented behavior (pp. 327–352). New York: Springer.Google Scholar
  24. 24.
    Hein, A., Held, R., & Gower, E. C. (1970). Development and segmentation of visually controlled movement by selective exposure during rearing. Journal of Comparative and Physiological Psychology, 73(2), 181–187.PubMedGoogle Scholar
  25. 25.
    Hein, A., & Held, R. (1967). Dissociation of the visual placing response into elicited and guided components. Science, 158(3799), 390–392.PubMedGoogle Scholar
  26. 26.
    Hein, A., & Diamond, R. M. (1972). Locomotory space as a prerequisite for acquiring visually guided reaching in kittens. Journal of Comparative and Physiological Psychology, 81(3), 394–398.PubMedGoogle Scholar
  27. 27.
    Miles, F. A., & Evarts, E. V. (1979). Concepts of motor organization. Annual Review of Psychology, 43, 327–362.Google Scholar
  28. 28.
    Gottschalk, C., Grusser, O.-J., & Lindau, M. (1978). Tracking movement of the eyes elicited by auditory stimuli at a constant angular velocity. Pflugers Archiv European Journal of Physiology, 377, 46.Google Scholar
  29. 29.
    Neisser, U., & Becklen, R. (1975). Selective looking: Attending to visually-specified events. Cognitive Psychology, 7, 480–494.Google Scholar
  30. 30.
    Stoffregen, T. A., Baldwin, C. A., & Flynn, S. B. (1993). Noticing of unexpected events by adults with and without mental retardation. American Journal on Mental Retardation, 98(2), 273–284.PubMedGoogle Scholar
  31. 31.
    Stoffregen, T. A., & Becklen, R. C. (1989). Dual attention to dynamically structured naturalistic events. Perceptual and Motor Skills, 69(3 Pt 2), 1187–1201.PubMedGoogle Scholar
  32. 32.
    Becklen, R., & Cervone, D. (1983). Selective looking and the noticing of unexpected events. Memory and Cognition, 11(6), 601–608.PubMedGoogle Scholar
  33. 33.
    Bahrick, L. E., Walker, A. S., & Neisser, U. (1981). Selective looking by infants. Cognitive Psychology, 13(3), 377–390.PubMedGoogle Scholar
  34. 34.
    Sperling, G., & Melchner, M. J. (1978). Visual search, visual attention, and the attention operating characteristic. In J. Requin (Ed.), Attention and performance VII (pp. 675–686). Hillsdale, NJ: Erlbaum.Google Scholar
  35. 35.
    Hughes, H. C., & Zimba, L. D. (1987). Natural boundaries for the spatial spread of directed visual attention. Neuropsychologia, 25(IA), 5–18.PubMedGoogle Scholar
  36. 36.
    Gawryszewski, L. D. G., Riggio, L., Rizzolatti, G., & Umilta, C. (1987). Movements of attention in the three spatial dimensions and the meaning of “neutral” cues. Neuropsychologia, 25IA, 19–29.Google Scholar
  37. 37.
    Posner, M. I. (1978). Chronometric explorations of mind. Hillsdale, NJ: Erlbaum.Google Scholar
  38. 38.
    Mountcastle, V. B., Anderson, R. A., & Motter, B. C. (1981). The influence of attentive fixation upon the excitability of the light sensitive neurons of the posterior parietal cortex. Journal of Neuroscience, 1, 1218–1235.PubMedGoogle Scholar
  39. 39.
    Tassinari, G., Aglioti, S., Chelazzi, L., Marzi, C. A., & Berlucchi, G. (1987). Distribution in the visual field of the costs of voluntarily allocated attention and of the inhibitory after-effects of covert orienting. Neuropsychologia, 25(1A), 55–71.PubMedGoogle Scholar
  40. 40.
    Tassinari, G., Aglioti, S., Pallini, R., Berlucchi, G., & Rossi, G. F. (1994). Interhemispheric integration of simple visuomotor responses in patients with partial callosal defects. Behavioural Brain Research, 64(1–2), 141–149.PubMedGoogle Scholar
  41. 41.
    Tassinari, G., & Berlucchi, G. (1993). Sensory and attentional components of slowing of manual reaction time to non-fixated visual targets by ipsilateral primes. Vision Research, 33(11), 1525–1534.PubMedGoogle Scholar
  42. 42.
    Tassinari, G., & Berlucchi, G. (1995). Covert orienting to non-informative cues: Reaction time studies. Behavioural Brain Research, 71(1–2), 101–112.PubMedGoogle Scholar
  43. 43.
    Tassinari, G., Biscaldi, M., Marzi, C. A., & Berlucchi, G. (1989). Ipsilateral inhibition and contralateral facilitation of simple reaction time to non-foveal visual targets from non-informative visual cues. Acta Psychologica, 70(3), 267–291.PubMedGoogle Scholar
  44. 44.
    Tassinari, G., & Campara, D. (1996). Consequences of covert orienting to non-informative stimuli of different modalities: A unitary mechanism? Neuropsychologia, 34(3), 235–245.PubMedGoogle Scholar
  45. 45.
    Rizzolatti, G., Riggio, L., Dascola, I., & Umiltá, C. (1987). Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention. Neuropsychologia, 25(1-A), 31–40.PubMedGoogle Scholar
  46. 46.
    Rizzolatti, G., Riggio, L., & Sheliga, B. M. (1994). Space and selective attention. In C. Umiltà & M. Moscovitch (Eds.), Attention and performance 15: Conscious and nonconscious information processing (pp. 232–265). Cambridge: The MIT Press.Google Scholar
  47. 47.
    Kumada, T. (2001). Feature-based control of attention: Evidence for two forms of dimension weighting. Perception & Psychophysics, 63(4), 698–708.Google Scholar
  48. 48.
    Viswanathan, L., & Mingolla, E. (2002). Dynamics of attention in depth: Evidence from multi-element tracking. Perception, 31(12), 1415–1437.PubMedGoogle Scholar
  49. 49.
    Weger, U. W., & Pratt, J. (2008). Time flies like an arrow: Space-time compatibility effects suggest the use of a mental timeline. Psychonomic Bulletin and Review, 15(2), 426–430.PubMedGoogle Scholar
  50. 50.
    Kristjansson, A. (2006). Simultaneous priming along multiple feature dimensions in a visual search task. Vision Research, 46(16), 2554–2570.PubMedGoogle Scholar
  51. 51.
    Lachter, J., Remington, R. W., & Ruthruff, E. (2009). Space, object, and task selection. Attention, Perception, & Psychophysics, 71(5), 995–1014.Google Scholar
  52. 52.
    Sally, S. L., Vidnyansky, Z., & Papathomas, T. V. (2009). Feature-based attentional modulation increases with stimulus separation in divided-attention tasks. Spatial Vision, 22(6), 529–553.PubMedGoogle Scholar
  53. 53.
    Wolfe, B., Rushmore, R. J., & Valero-Cabre, A. (2010). Coping with spatial attention in real space: A low-cost portable testing system for the investigation of visuo-spatial processing in the human brain. Journal of Neuroscience Methods, 187(2), 190–198.PubMedGoogle Scholar
  54. 54.
    Chiu, Y. C., Esterman, M., Han, Y., Rosen, H., & Yantis, S. (2011). Decoding task-based attentional modulation during face categorization. Journal of Cognitive Neuroscience, 23(5), 1198–1204.PubMedGoogle Scholar
  55. 55.
    Hilhorst, J., van Schooneveld, M. M., Wang, J., et al. (2012). Three-dimensional structure and defects in colloidal photonic crystals revealed by tomographic scanning transmission X-ray microscopy. Langmuir, 28(7), 3614–3620.PubMedGoogle Scholar
  56. 56.
    Mennemeier, M., Wertman, E., & Heilman, K. M. (1992). Neglect of near peripersonal space. Evidence for multidirectional attentional systems in humans. Brain, 115(Pt 1), 37–50.PubMedGoogle Scholar
  57. 57.
    Maylor, E., & Hockey, R. (1987). Effects of repetition on the facilitatory and inhibitory components of orienting in visual space. Neuropsychologia, 25(1), 41–54.PubMedGoogle Scholar
  58. 58.
    Maylor, E. A., & Hockey, R. (1985). Inhibitory component of externally controlled covert orienting in visual space. Journal of Experimental Psychology. Human Perception and Performance, 11(6), 777–787.PubMedGoogle Scholar
  59. 59.
    Lambert, A., Spencer, M., & Hockey, R. (1991). Peripheral visual changes and spatial attention. Acta Psychologica, 76(2), 149–163.PubMedGoogle Scholar
  60. 60.
    Maylor, E. A., Allison, S., & Wing, A. M. (2001). Effects of spatial and nonspatial cognitive activity on postural stability. British Journal of Psychology, 92(Pt 2), 319–338.Google Scholar
  61. 61.
    Dodd, M. D., & Shumborski, S. (2009). Examining the influence of action on spatial working memory: The importance of selection. Quarterly Journal of Experimental Psychology, 62(6), 1236–1247.Google Scholar
  62. 62.
    Dodd, M. D., & Pratt, J. (2007). Rapid onset and long-term inhibition of return in the multiple cuing paradigm. Psychological Research, 71(5), 576–582.PubMedGoogle Scholar
  63. 63.
    Dodd, M. D., & Pratt, J. (2007). The effect of previous trial type on inhibition of return. Psychological Research, 71(4), 411–417.PubMedGoogle Scholar
  64. 64.
    Dodd, M. D., Castel, A. D., & Pratt, J. (2003). Inhibition of return with rapid serial shifts of attention: Implications for memory and visual search. Perception & Psychophysics, 65(7), 1126–1135.Google Scholar
  65. 65.
    Simmons, J. A. (1989). A view of the world through the bat’s ear: The formation of acoustic images in echolocation. Cognition, 33(1–2), 155–199.PubMedGoogle Scholar
  66. 66.
    Simmons, J. A., Lavender, W. A., Lavender, B. A., et al. (1974). Target structure and echo spectral discrimination by echolocating bats. Science, 186(4169), 1130–1132.PubMedGoogle Scholar
  67. 67.
    Simmons, J. A. (1971). Echolocation in bats: Signal processing of echoes for target range. Science, 171(3974), 925–928.PubMedGoogle Scholar
  68. 68.
    Bermúdez, J. (1998). The body and the self. Cambridge, MA: MIT Press.Google Scholar
  69. 69.
    Hubel, D. H. (1963). The visual cortex of the brain. Scientific American, 209, 54–62.PubMedGoogle Scholar
  70. 70.
    Hubel, D. H. (1963). Integrative processes in central visual pathways of the cat. Journal of the Optical Society of America, 53, 58–66.PubMedGoogle Scholar
  71. 71.
    Hubel, D., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. The Journal of Physiology, 195, 215–243.PubMedGoogle Scholar
  72. 72.
    Mishkin, M., Ungerleiter, L. G., & Macko, K. A. (1983). Object vision and spatial vision: Two cortical pathways. Trends in Neuroscience, 6, 414–417.Google Scholar
  73. 73.
    Ungerleider, L., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behaviour (pp. 549–586). Cambridge, MA: MIT Press.Google Scholar
  74. 74.
    Steinmetz, M. A., Motter, B. C., Duffy, C. J., & Mountcastle, V. B. (1987). Functional properties of parietal visual neurons: Radial organization of directionalities within the visual field. Journal of Neuroscience, 7(1), 177–191.PubMedGoogle Scholar
  75. 75.
    Motter, B. C., Steinmetz, M. A., Duffy, C. J., & Mountcastle, V. B. (1987). Functional properties of parietal visual neurons: Mechanisms of directionality along a single axis. Journal of Neuroscience, 7(1), 154–176.PubMedGoogle Scholar
  76. 76.
    Mountcastle, V. B., Motter, B. C., Steinmetz, M. A., & Sestokas, A. K. (1987). Common and differential effects of attentive fixation on the excitability of parietal and prestriate (V4) cortical visual neurons in the macaque monkey. Journal of Neuroscience, 7(7), 2239–2255.PubMedGoogle Scholar
  77. 77.
    Kusunoki, M., & Goldberg, M. E. (2003). The time course of perisaccadic receptive field shifts in the lateral intraparietal area of the monkey. Journal of Neurophysiology, 89(3), 1519–1527.PubMedGoogle Scholar
  78. 78.
    Zhang, T., & Britten, K. H. (2011). Parietal area VIP causally influences heading perception during pursuit eye movements. Journal of Neuroscience, 31(7), 2569–2575.PubMedGoogle Scholar
  79. 79.
    Zhang, T., & Britten, K. H. (2010). The responses of VIP neurons are sufficiently sensitive to support heading judgments. Journal of Neurophysiology, 103(4), 1865–1873.PubMedGoogle Scholar
  80. 80.
    Zhang, T., & Britten, K. H. (2004). Clustering of selectivity for optic flow in the ventral intraparietal area. Neuroreport, 15(12), 1941–1945.PubMedGoogle Scholar
  81. 81.
    Zhang, T., Heuer, H. W., & Britten, K. H. (2004). Parietal area VIP neuronal responses to heading stimuli are encoded in head-centered coordinates. Neuron, 42(6), 993–1001.PubMedGoogle Scholar
  82. 82.
    Gobbini, M. I., & Haxby, J. V. (2006). Neural response to the visual familiarity of faces. Brain Research Bulletin, 71(1–3), 76–82.PubMedGoogle Scholar
  83. 83.
    Murata, A., Gallese, V., Luppino, G., Kaseda, M., & Sakata, H. (2000). Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. Journal of Neurophysiology, 83(5), 2580–2601.PubMedGoogle Scholar
  84. 84.
    Sakata, H., Taira, M., Kusunoki, M., Murata, A., Tanaka, Y., & Tsutsui, K. (1998). Neural coding of 3D features of objects for hand action in the parietal cortex of the monkey. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 353(1373), 1363–1373.PubMedGoogle Scholar
  85. 85.
    Murata, A., Gallese, V., Kaseda, M., & Sakata, H. (1996). Parietal neurons related to memory-guided hand manipulation. Journal of Neurophysiology, 75(5), 2180–2186.PubMedGoogle Scholar
  86. 86.
    Gallese, V., Murata, A., Kaseda, M., Niki, N., & Sakata, H. (1994). Deficit of hand preshaping after muscimol injection in monkey parietal cortex. Neuroreport, 5(12), 1525–1529.PubMedGoogle Scholar
  87. 87.
    Pesaran, B., Nelson, M. J., & Andersen, R. A. (2010). A relative position code for saccades in dorsal premotor cortex. Journal of Neuroscience, 30(19), 6527–6537.PubMedGoogle Scholar
  88. 88.
    Pesaran, B., Nelson, M. J., & Andersen, R. A. (2008). Free choice activates a decision circuit between frontal and parietal cortex. Nature, 453(7193), 406–409.PubMedGoogle Scholar
  89. 89.
    Pesaran, B., Nelson, M. J., & Andersen, R. A. (2006). Dorsal premotor neurons encode the relative position of the hand, eye, and goal during reach planning. Neuron, 51(1), 125–134.PubMedGoogle Scholar
  90. 90.
    Avillac, M., Deneve, S., Olivier, E., Pouget, A., & Duhamel, J. R. (2005). Reference frames for representing visual and tactile locations in parietal cortex. Nature Neuroscience, 8(7), 941–949.PubMedGoogle Scholar
  91. 91.
    Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F., & Rizzolatti, G. (2005). Parietal lobe: From action organization to intention understanding. Science, 308(5722), 662–667.PubMedGoogle Scholar
  92. 92.
    Fogassi, L., Gallese, V., Buccino, G., Craighero, L., Fadiga, L., & Rizzolatti, G. (2001). Cortical mechanism for the visual guidance of hand grasping movements in the monkey: A reversible inactivation study. Brain, 124(Pt 3), 571–586.PubMedGoogle Scholar
  93. 93.
    Buccino, G., Binkofski, F., Fink, G. R., et al. (2001). Action observation activates premotor and parietal areas in a somatotopic manner: An fMRI study. European Journal of Neuroscience, 13(2), 400–404.PubMedGoogle Scholar
  94. 94.
    Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (2000). Visuomotor neurons: Ambiguity of the discharge or ‘motor’ perception? International Journal of Psychophysiology, 35(2–3), 165–177.PubMedGoogle Scholar
  95. 95.
    Rizzolatti, G., Fogassi, L., & Gallese, V. (1997). Parietal cortex: From sight to action. Current Opinion in Neurobiology, 7(4), 562–567.PubMedGoogle Scholar
  96. 96.
    Gallivan, J. P., McLean, D. A., Smith, F. W., & Culham, J. C. (2011). Decoding effector-dependent and effector-independent movement intentions from human parieto-frontal brain activity. Journal of Neuroscience, 31(47), 17149–17168.PubMedGoogle Scholar
  97. 97.
    Gallivan, J. P., McLean, A., & Culham, J. C. (2011). Neuroimaging reveals enhanced activation in a reach-selective brain area for objects located within participants’ typical hand workspaces. Neuropsychologia, 49(13), 3710–3721.PubMedGoogle Scholar
  98. 98.
    Gallivan, J. P., McLean, D. A., Valyear, K. F., Pettypiece, C. E., & Culham, J. C. (2011). Decoding action intentions from preparatory brain activity in human parieto-frontal networks. Journal of Neuroscience, 31(26), 9599–9610.PubMedGoogle Scholar
  99. 99.
    Gallivan, J. P., Cavina-Pratesi, C., & Culham, J. C. (2009). Is that within reach? fMRI reveals that the human superior parieto-occipital cortex encodes objects reachable by the hand. Journal of Neuroscience, 29(14), 4381–4391.PubMedGoogle Scholar
  100. 100.
    Culham, J. C., & Valyear, K. F. (2006). Human parietal cortex in action. Current Opinion in Neurobiology, 16(2), 205–212.PubMedGoogle Scholar
  101. 101.
    Culham, J. C., Cavina-Pratesi, C., & Singhal, A. (2006). The role of parietal cortex in visuomotor control: What have we learned from neuroimaging? Neuropsychologia, 44(13), 2668–2684.PubMedGoogle Scholar
  102. 102.
    Medendorp, W. P., Goltz, H. C., Crawford, J. D., & Vilis, T. (2005). Integration of target and effector information in human posterior parietal cortex for the planning of action. Journal of Neurophysiology, 93(2), 954–962.PubMedGoogle Scholar
  103. 103.
    Medendorp, W. P., Goltz, H. C., Vilis, T., & Crawford, J. D. (2003). Gaze-centered updating of visual space in human parietal cortex. Journal of Neuroscience, 23(15), 6209–6214.PubMedGoogle Scholar
  104. 104.
    Heilman, K. M., Schwartz, H. D., & Watson, R. T. (1978). Hypoarousal in patients with the neglect syndrome and emotional indifference. Neurology, 28(3), 229–232.PubMedGoogle Scholar
  105. 105.
    Heilman, K. M., & Valenstein, E. (1979). Mechanisms underlying hemispatial neglect. Annals of Neurology, 5(2), 166–170.PubMedGoogle Scholar
  106. 106.
    Heilman, K. M., Valenstein, E., & Watson, R. T. (2000). Neglect and related disorders. Seminars in Neurology, 20(4), 463–470.PubMedGoogle Scholar
  107. 107.
    Heilman, K. M., & Watson, R. T. (1977). Mechanisms underlying the unilateral neglect syndrome. Advances in Neurology, 18, 93–106.PubMedGoogle Scholar
  108. 108.
    Heilman, K. M., & Valenstein, E. (Eds.). (1985). Clinical neuropsychology (2nd ed.). New York, Oxford: Oxford University Press.Google Scholar
  109. 109.
    Hoffmann, K. P., & Schoppmann, A. (1981). A quantitative analysis of the direction-specific response of neurons in the cat’s nucleus of the optic tract. Experimental Brain Research, 42(2), 146–157.PubMedGoogle Scholar
  110. 110.
    Montarolo, P. G., Precht, W., & Strata, P. (1981). Functional organization of the mechanisms subserving the optokinetic nystagmus in the cat. Neuroscience, 6(2), 231–246.PubMedGoogle Scholar
  111. 111.
    Precht, W., Montarolo, P. G., & Strata, P. (1980). The role of the crossed and uncrossed retinal fibres in mediating the horizontal optokinetic nystagmus in the cat. Neuroscience Letters, 17(1–2), 39–42.PubMedGoogle Scholar
  112. 112.
    Mustari, M. J., Fuchs, A. F., & Pong, M. (1997). Response properties of pretectal omnidirectional pause neurons in the behaving primate. Journal of Neurophysiology, 77(1), 116–125.PubMedGoogle Scholar
  113. 113.
    Fuchs, A. F., Mustari, M. J., Robinson, F. R., & Kaneko, C. R. (1992). Visual signals in the nucleus of the optic tract and their brain stem destinations. Annals of the New York Academy of Sciences, 656, 266–276.PubMedGoogle Scholar
  114. 114.
    Mustari, M. J., & Fuchs, A. F. (1990). Discharge patterns of neurons in the pretectal nucleus of the optic tract (NOT) in the behaving primate. Journal of Neurophysiology, 64(1), 77–90.PubMedGoogle Scholar
  115. 115.
    Miller, A. M., Miller, R. B., Obermeyer, W. H., Behan, M., & Benca, R. M. (1999). The pretectum mediates rapid eye movement sleep regulation by light. Behavioral Neuroscience, 113(4), 755–765.PubMedGoogle Scholar
  116. 116.
    Schlag, J., & Schlag-Rey, M. (1983). Interface of visual input and oculomotor command for directing the gaze on target. In A. Hein & M. Jeannerod (Eds.), Spatially oriented behavior (pp. 87–104). New York: Springer.Google Scholar
  117. 117.
    Schlag, J., & Schlag-Rey, M. (1986). Role of the central thalamus in gaze control. Progress in Brain Research, 64, 191–201.PubMedGoogle Scholar
  118. 118.
    Schlag-Rey, M., & Schlag, J. (1981). Eye movement-related neuronal activity in the central thalamus of monkeys. In A. Fuchs & W. Becker (Eds.), Progress in oculomotor research. New York: Elsevier/North-Holland.Google Scholar
  119. 119.
    Harting, J. K., Huerta, M. F., Frankfurter, A. J., Strominger, N. L., & Royce, G. J. (1980). Ascending pathways from the monkey superior colliculus: An autoradiographic analysis. The Journal of Comparative Neurology, 192, 853–882.PubMedGoogle Scholar
  120. 120.
    Sparks, D., & Mays, L. E. (1980). Movement of saccade-related burst neurons in the monkey superior colliculus. Brain Research, 190, 39–50.PubMedGoogle Scholar
  121. 121.
    Wang, Z., Kruijne, W., & Theeuwes, J. (2012). Lateral interactions in the superior colliculus produce saccade deviation in a neural field model. Vision Research, 62, 66–74.PubMedGoogle Scholar
  122. 122.
    Katnani, H. A., van Opstal, A. J., & Gandhi, N. J. (2012). A test of spatial temporal decoding mechanisms in the superior colliculus. Journal of Neurophysiology, 107(9), 2442–2452.PubMedGoogle Scholar
  123. 123.
    Hafed, Z. M., & Krauzlis, R. J. (2012). Similarity of superior colliculus involvement in microsaccade and saccade generation. Journal of Neurophysiology, 107(7), 1904–1916.PubMedGoogle Scholar
  124. 124.
    White, B. J., Theeuwes, J., & Munoz, D. P. (2012). Interaction between visual- and goal-related neuronal signals on the trajectories of saccadic eye movements. Journal of Cognitive Neuroscience, 24(3), 707–717.PubMedGoogle Scholar
  125. 125.
    Deconinck, F. J., van Polanen, V., Savelsbergh, G. J., & Bennett, S. J. (2011). The relative timing between eye and hand in rapid sequential pointing is affected by time pressure, but not by advance knowledge. Experimental Brain Research, 213(1), 99–109.PubMedGoogle Scholar
  126. 126.
    Bisley, J. W. (2011). The neural basis of visual attention. The Journal of Physiology, 589(Pt 1), 49–57.PubMedGoogle Scholar
  127. 127.
    Reuter-Lorenz, P. A., Herter, T. M., & Guitton, D. (2011). Control of reflexive saccades following hemispherectomy. Journal of Cognitive Neuroscience, 23(6), 1368–1378.PubMedGoogle Scholar
  128. 128.
    Trappenberg, T. P., Dorris, M. C., Munoz, D. P., & Klein, R. M. (2001). A model of saccade initiation based on the competitive integration of exogenous and endogenous signals in the superior colliculus. Journal of Cognitive Neuroscience, 13(2), 256–271.PubMedGoogle Scholar
  129. 129.
    Stuphorn, V., Bauswein, E., & Hoffmann, K. P. (2000). Neurons in the primate superior colliculus coding for arm movements in gaze-related coordinates. Journal of Neurophysiology, 83(3), 1283–1299.PubMedGoogle Scholar
  130. 130.
    Horwitz, G. D., & Newsome, W. T. (1999). Separate signals for target selection and movement specification in the superior colliculus. Science, 284(5417), 1158–1161.PubMedGoogle Scholar
  131. 131.
    Dorris, M. C., Pare, M., & Munoz, D. P. (1997). Neuronal activity in monkey superior colliculus related to the initiation of saccadic eye movements. Journal of Neuroscience, 17(21), 8566–8579.PubMedGoogle Scholar
  132. 132.
    Basso, M. A., & Wurtz, R. H. (1997). Modulation of neuronal activity by target uncertainty. Nature, 389(6646), 66–69.PubMedGoogle Scholar
  133. 133.
    May, P. J., Sun, W., & Hall, W. C. (1997). Reciprocal connections between the zona incerta and the pretectum and superior colliculus of the cat. Neuroscience, 77(4), 1091–1114.PubMedGoogle Scholar
  134. 134.
    Munoz, D. P., Waitzman, D. M., & Wurtz, R. H. (1996). Activity of neurons in monkey superior colliculus during interrupted saccades. Journal of Neurophysiology, 75(6), 2562–2580.PubMedGoogle Scholar
  135. 135.
    Van Opstal, A. J., & Frens, M. A. (1996). Task-dependence of saccade-related activity in monkey superior solliculus: Implications for models of the saccadic system. Progress in Brain Research, 112, 179–194.PubMedGoogle Scholar
  136. 136.
    Walker, M. F., Fitzgibbon, E. J., & Goldberg, M. E. (1995). Neurons in the monkey superior colliculus predict the visual result of impending saccadic eye movements. Journal of Neurophysiology, 73(5), 1988–2003.PubMedGoogle Scholar
  137. 137.
    Schall, J. D. (1995). Neural basis of saccade target selection. Reviews in the Neurosciences, 6(1), 63–85.PubMedGoogle Scholar
  138. 138.
    Pare, M., & Guitton, D. (1994). The fixation area of the cat superior colliculus: Effects of electrical stimulation and direct connection with brainstem omnipause neurons. Experimental Brain Research, 101(1), 109–122.PubMedGoogle Scholar
  139. 139.
    Munoz, D. P., & Wurtz, R. H. (1993). Fixation cells in monkey superior colliculus. II. Reversible activation and deactivation. Journal of Neurophysiology, 70(2), 576–589.PubMedGoogle Scholar
  140. 140.
    Sparks, D. L. (1993). Are gaze shifts controlled by a ‘moving hill’ of activity in the superior colliculus? Trends in Neurosciences, 16(6), 214–218.PubMedGoogle Scholar
  141. 141.
    Hepp, K., Van Opstal, A. J., Straumann, D., Hess, B. J., & Henn, V. (1993). Monkey superior colliculus represents rapid eye movements in a two-dimensional motor map. Journal of Neurophysiology, 69(3), 965–979.PubMedGoogle Scholar
  142. 142.
    Hikosaka, O., & Wurtz, R. H. (1985). Modification of saccadic eye movements by GABA-related substances. I. Effect of muscimol and bicuculline in monkey superior colliculus. Journal of Neurophysiology, 53(1), 266–291.PubMedGoogle Scholar
  143. 143.
    Dean, P., & Redgrave, P. (1984). The superior colliculus and visual neglect in rat and hamster. I. Behavioural evidence. Brain Research, 320(2–3), 129–141.PubMedGoogle Scholar
  144. 144.
    Goldberg, M. E., & Robinson, D. L. (1977). Visual responses of neurons in inferior parietal lobule: The physiological substrate of attention and neglect. Neurology, 27, 350–362.Google Scholar
  145. 145.
    Goldberg, M. E., & Robinson, D. L. (1980). The significance of enhanced visual responses in posterior parietal cortex. Behavior and Brain Sciences, 3, 503–505.Google Scholar
  146. 146.
    Goldberg, M. E., & Bushnell, M. D. (1981). Behavioral enhancement of visual response in monkey cerebral cortex. II. Modulation in frontal eye fields specifically related to saccades. Journal of Neurophysiology, 46, 773–787.PubMedGoogle Scholar
  147. 147.
    Foster, D. J., Morris, R. G., & Dayan, P. (2000). A model of hippocampally dependent navigation, using the temporal difference learning rule. Hippocampus, 10(1), 1–16.PubMedGoogle Scholar
  148. 148.
    Foster, T. C., Castro, C. A., & McNaughton, B. L. (1989). Spatial selectivity of rat hippocampal neurons: Dependence on preparedness for movement. Science, 244(4912), 1580–1582.PubMedGoogle Scholar
  149. 149.
    Welberg, L. (2012). Spatial processing: Parietal entorhinal cortex cells in navigation. Nature Reviews Neuroscience, 13(4), 223.Google Scholar
  150. 150.
    Welberg, L. (2012). Learning and memory: Channelling spatial information. Nature Reviews Neuroscience, 13(1), 4–5.Google Scholar
  151. 151.
    Heilman, K. M., Watson, R. T., Valenstein, E., & Goldberg, M. E. (1988). Attention: Behavior and neural mechanisms. Attention, II, 461–481.Google Scholar
  152. 152.
    Wurtz, R. H., & Goldberg, M. E. (1972). Activity of superior colliculus in behaving monkey. IV. Effects of lesions on eye movements. Journal of Neurophysiology, 35(4), 587–596.PubMedGoogle Scholar
  153. 153.
    Wurtz, R. H., Goldberg, M. E., & Robinson, D. L. (1982). Brain mechanisms of visual attention. Scientific American, 246(6), 124–135.PubMedGoogle Scholar
  154. 154.
    Wurtz, R. H., & Mohler, C. W. (1976). Enhancement of visual responses in monkey striate cortex and frontal eye fields. Journal of Neurophysiology, 39(4), 766–772.PubMedGoogle Scholar
  155. 155.
    Wurtz, R. H., Richmond, B. J., & Judge, S. J. (1980). Vision during saccadic eye movements. III. Visual interactions in monkey superior colliculus. Journal of Neurophysiology, 43(4), 1168–1181.PubMedGoogle Scholar
  156. 156.
    Bushnell, M. C., Goldberg, M. E., & Robinson, D. L. (1981). Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention. Journal of Neurophysiology, 46(4), 755–772.PubMedGoogle Scholar
  157. 157.
    Goldberg, M. E., Bisley, J. W., Powell, K. D., & Gottlieb, J. (2006). Saccades, salience and attention: The role of the lateral intraparietal area in visual behavior. Progress in Brain Research, 155, 157–175.PubMedGoogle Scholar
  158. 158.
    Goldberg, M. E., Bushnell, M. C., & Bruce, C. J. (1986). The effect of attentive fixation on eye movements evoked by electrical stimulation of the frontal eye fields. Experimental Brain Research, 61(3), 579–584.Google Scholar
  159. 159.
    Bisley, J. W., & Goldberg, M. E. (2003). The role of the parietal cortex in the neural processing of saccadic eye movements. Advances in Neurology, 93, 141–157.PubMedGoogle Scholar
  160. 160.
    Goldberg, M. E. (2007). Studying the visual system in awake monkeys: Two classic papers by Robert H. Wurtz. Journal of Neurophysiology, 98(5), 2495–2496.PubMedGoogle Scholar
  161. 161.
    Goldberg, M. E., & Segraves, M. A. (1989). The visual and frontal cortices. Reviews of Oculomotor Research, 3, 283–313.PubMedGoogle Scholar
  162. 162.
    Goldberg, M. E., & Segraves, M. A. (1990). The role of the frontal eye field and its corticotectal projection in the generation of eye movements. Research Publications: Association for Research in Nervous and Mental Disease, 67, 195–209.Google Scholar
  163. 163.
    Segraves, M. A., & Goldberg, M. E. (1987). Functional properties of corticotectal neurons in the monkey’s frontal eye field. Journal of Neurophysiology, 58(6), 1387–1419.PubMedGoogle Scholar
  164. 164.
    Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review, 84, 1–66.Google Scholar
  165. 165.
    Shiffrin, R. M., & Schneider, W. (1984). Automatic and controlled processing revisited. Psychology Review, 91(2), 269–276.Google Scholar
  166. 166.
    Hasher, L., & Zacks, R. T. (1979). Automatic and effortful processes in memory. Journal of Experimental Psychology. General, 108, 356–388.Google Scholar
  167. 167.
    Hasher, L., & Zacks, R. T. (1984). Automatic processing of fundamental information: The case of frequency of occurrence. American Psychologist, 39, 1372–1388.PubMedGoogle Scholar
  168. 168.
    Johnson, W., & Dark, V. J. (1986). Selective attention. Annual Review of Psychology, 37, 43–75.Google Scholar
  169. 169.
    Treisman, A. (1982). Perceptual grouping and attention in visual search for features and for objects. Journal of Experimental Psychology. Human Perception and Performance, 8(2), 194–214.PubMedGoogle Scholar
  170. 170.
    Treisman, A. (1988). Features and objects: The fourteenth Bartlett memorial lecture. The Quarterly Journal of Experimental Psychology A, 40(2), 201–237.Google Scholar
  171. 171.
    Treisman, A. (1991). Search, similarity, and integration of features between and within dimensions. Journal of Experimental Psychology. Human Perception and Performance, 17(3), 652–676.PubMedGoogle Scholar
  172. 172.
    Treisman, A. (1998). Feature binding, attention and object perception. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 353(1373), 1295–1306.PubMedGoogle Scholar
  173. 173.
    Treisman, A., & Paterson, R. (1984). Emergent features, attention, and object perception. Journal of Experimental Psychology. Human Perception and Performance, 10(1), 12–31.PubMedGoogle Scholar
  174. 174.
    Treisman, A., & Sato, S. (1990). Conjunction search revisited. Journal of Experimental Psychology. Human Perception and Performance, 16(3), 459–478.PubMedGoogle Scholar
  175. 175.
    Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136.PubMedGoogle Scholar
  176. 176.
    Kaplan, R. F., Verfaellie, M., DeWitt, L. D., & Caplan, L. R. (1990). Effects of changes in stimulus contingency on visual extinction. Neurology, 40(8), 1299–1301.PubMedGoogle Scholar
  177. 177.
    Erez, A. B., Katz, N., Ring, H., & Soroker, N. (2009). Assessment of spatial neglect using computerised feature and conjunction visual search tasks. Neuropsychological Rehabilitation, 19(5), 677–695.PubMedGoogle Scholar
  178. 178.
    Keller, I., Lefin-Rank, G., Losch, J., & Kerkhoff, G. (2009). Combination of pursuit eye movement training with prism adaptation and arm movements in neglect therapy: A pilot study. Neurorehabilitation and Neural Repair, 23(1), 58–66.PubMedGoogle Scholar
  179. 179.
    Sireteanu, R., Goebel, C., Goertz, R., & Wandert, T. (2006). Do children with developmental dyslexia show a selective visual attention deficit? Strabismus, 14(2), 85–93.PubMedGoogle Scholar
  180. 180.
    Sprenger, A., Kompf, D., & Heide, W. (2002). Visual search in patients with left visual hemineglect. Progress in Brain Research, 140, 395–416.PubMedGoogle Scholar
  181. 181.
    Van Vleet, T. M., & Robertson, L. C. (2009). Implicit representation and explicit detection of features in patients with hemispatial neglect. Brain, 132(Pt 7), 1889–1897.PubMedGoogle Scholar
  182. 182.
    Wilkinson, D., Ko, P., Milberg, W., & McGlinchey, R. (2008). Impaired search for orientation but not color in hemi-spatial neglect. Cortex, 44(1), 68–78.PubMedGoogle Scholar
  183. 183.
    Laeng, B., Brennen, T., & Espeseth, T. (2002). Fast responses to neglected targets in visual search reflect pre-attentive processes: An exploration of response times in visual neglect. Neuropsychologia, 40(9), 1622–1636.PubMedGoogle Scholar
  184. 184.
    Deutsch, J., & Deutsch, D. (1963). Attention: Some theoretical considerations. Psychological Review, 70, 80–90.PubMedGoogle Scholar
  185. 185.
    Allport, G. (1937). The functional anatomy of motives. The American Journal of Psychology, 50, 141–156.Google Scholar
  186. 186.
    Neumann, O., van der Heijden, A. H., & Allport, D. A. (1986). Visual selective attention: Introductory remarks. Psychological Research, 48(4), 185–188.PubMedGoogle Scholar
  187. 187.
    Shallice, T., Burgess, P. (1996). The domain of supervisory processes and temporal organization of behaviour. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 351(1346), 1405–1411; discussion 1411–1402.Google Scholar
  188. 188.
    Michon, J. A., & Jackson, J. L. (1984). Attentional effort and cognitive strategies in the processing of temporal information. In J. Gibbon & L. Allan (Eds.), Timing and time perception (Annals of the New York Academy of Sciences, Vol. 423, pp. 298–321). New York: The New York Academy of Sciences.Google Scholar
  189. 189.
    Jones, M. R., Boltz, M. G., & Klein, J. M. (1993). Expected endings and judged duration. Memory and Cognition, 21(5), 646–665.PubMedGoogle Scholar
  190. 190.
    Jones, M. R., & Boltz, M. (1989). Dynamic attending and responses to time. Psychology Review, 96(3), 459–491.Google Scholar
  191. 191.
    Ornstein, R. E. (1969). On the experience of time. Harmondsworth, England: Penguin.Google Scholar
  192. 192.
    Aschoff, J. (1981). Biological rhythms. In J. Aschoff (Ed.), Handbook of behavioral neurobiology (Vol. 4). New York: Plenum.Google Scholar
  193. 193.
    Aschoff, J. (1984). Circadian timing. Timing and time perception. Annals of the New York Academy of Sciences, 423, 442–468.PubMedGoogle Scholar
  194. 194.
    Albers, H. E., Lydic, R., Gander, P. H., & Moore-Ede, M. C. (1984). Role of the suprachiasmatic nuclei in the circadian timing system of the squirrel monkey. I. The generation of rhythmicity. Brain Research, 300, 275–284.PubMedGoogle Scholar
  195. 195.
    Lydic, R., Albers, H. E., Tepper, B., & Moore-Ede, M. C. (1982). Three-dimensional structure of the mammalian suprachiasmatic nuclei: A comparative study of five species. The Journal of Comparative Neurology, 204, 225–237.PubMedGoogle Scholar
  196. 196.
    Kristofferson, A. B. (1980). A quantal step function in duration discrimination. Perceptual Psychophysiology, 27(4), 300–306.Google Scholar
  197. 197.
    Kristofferson, A. B. (1984). Quantal and deterministic timing in human duration discrimination. In J. Gibbon & L. Allan (Eds.), Timing and time perception (Annals of the New York Academy of Sciences, Vol. 423, pp. 3–15). New York: The New York Academy of Sciences.Google Scholar
  198. 198.
    Pittendrigh, C. (1981). Circadian systems: Entrainment. In J. Aschoff (Ed.), Handbook of behavioral neurobiology biological rhythms (Vol. IV, pp. 95–124). New York: Plenum Press.Google Scholar
  199. 199.
    Albers, H. E., Liou, S. Y., Stopa, E. G., & Zoeller, R. T. (1991). Interaction of colocalized neuropeptides: Functional significance in the circadian timing system. Journal of Neuroscience, 11(3), 846–851.PubMedGoogle Scholar
  200. 200.
    Schwartz, W. J., Davidsen, L. C., & Smith, C. B. (1980). In vivo metabolic activity of a putative circadian oscillator, the rat suprachiasmatic nucleus. The Journal of Comparative Neurology, 189, 157–167.PubMedGoogle Scholar
  201. 201.
    Kleitman, N., & Jackson, D. P. (1951). Body temperature and performance under different routines. Journal of Applied Physiology, 3, 309–328.Google Scholar
  202. 202.
    Folkard, S. (1975). Diurnal variation in logical reasoning. British Journal of Psychology, 66(1), 1–8.PubMedGoogle Scholar
  203. 203.
    Folkard, S. (1979). Changes in immediate memory strategy under induced muscle tension and with time of day. The Quarterly Journal of Experimental Psychology, 31, 621–633.Google Scholar
  204. 204.
    Folkard, S. (1979). Time of day and level of processing. Memory and Cognition, 7, 247–252.Google Scholar
  205. 205.
    Folkard, S., & Haines, S. M. (1977). Adjustment to night in full and part-time night nurses [proceedings]. The Journal of Physiology, 267(1), 23P–24P.PubMedGoogle Scholar
  206. 206.
    Folkard, S., Knauth, P., & Monk, T. H. (1976). The effect of memory load on the circadian variation in performance efficiency under a rapidly rotating shift system. Ergonomics, 19(4), 479–488.PubMedGoogle Scholar
  207. 207.
    Folkard, S., Marks, M., Minors, D. S., & Waterhouse, J. M. (1985). Circadian rhythms in human performance and affective state. Acta Psychiatrica Belgica, 85(5), 568–581.PubMedGoogle Scholar
  208. 208.
    Folkard, S., & Monk, T. H. (1980). Circadian rhythms in human memory. British Journal of Psychology, 71, 295–307.Google Scholar
  209. 209.
    Hockey, G. R., & Colquhoun, W. P. (1972). Diurnal variation in human performance: A review. In W. P. Colquhoun (Ed.), Aspects of human efficiency: Diurnal rhythm and loss of sleep. London: English Universities Press.Google Scholar
  210. 210.
    Cohen, R. A., & Albers, H. E. (1991). Disruption of human circadian and cognitive regulation following a discrete hypothalamic lesion: A case study. Neurology, 41(5), 726–729.PubMedGoogle Scholar
  211. 211.
    Cohen, R. A., Barnes, H. J., Jenkins, M., & Albers, H. E. (1997). Disruption of short-duration timing associated with damage to the suprachiasmatic region of the hypothalamus. Neurology, 48(6), 1533–1539.PubMedGoogle Scholar
  212. 212.
    Rosenthal, N. E., & Blehar, M. (1989). Seasonal affective disorders and phototherapy. New York: Guilford Press.Google Scholar
  213. 213.
    Carskadon, M. A., Labyak, S. E., Acebo, C., & Seifer, R. (1999). Intrinsic circadian period of adolescent humans measured in conditions of forced desynchrony. Neuroscience Letters, 260(2), 129–132.PubMedGoogle Scholar
  214. 214.
    Carskadon, M. A., Acebo, C., Richardson, G. S., Tate, B. A., & Seifer, R. (1997). An approach to studying ­circadian rhythms of adolescent humans. Journal of Biological Rhythms, 12(3), 278–289.PubMedGoogle Scholar
  215. 215.
    Aschoff, J., & Wever, R. (1976). Human circadian rhythms: A multioscillatory system. Federation Proceedings, 35(12), 236–242.PubMedGoogle Scholar
  216. 216.
    Folkard, S., Minors, D. S., & Waterhouse, J. M. (1984). Is there more than one circadian clock in humans? Evidence from fractional desynchronization studies. The Journal of Physiology, 357, 341–356.PubMedGoogle Scholar
  217. 217.
    Treisman, M. (1984). Temporal rhythms and cerebral rhythms. Annals of the New York Academy of Sciences, 423, 542–565.PubMedGoogle Scholar
  218. 218.
    Treisman, M. (1963). Temporal discrimination and the indifference interval. Implications for a model of the ­“internal clock”. Psychological Monographs, 77(13), 1–31.PubMedGoogle Scholar
  219. 219.
    Treisman, M., Cook, N., Naish, P. L., & MacCrone, J. K. (1994). The internal clock: Electroencephalographic evidence for oscillatory processes underlying time perception. The Quarterly Journal of Experimental Psychology, 47(2), 241–289.PubMedGoogle Scholar
  220. 220.
    Church, R. M. (1984). Properties of the internal clock. Annals of the New York Academy of Sciences, 423, 566–582.PubMedGoogle Scholar
  221. 221.
    Ivry, R. B., Keele, S. B., & Diener, H. C. (1988). Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Experimental Brain Research, 73(1), 167–180.PubMedGoogle Scholar
  222. 222.
    Heinemann, E. G. (1984). A model for temporal generalization and discrimination. In J. Gibbon & L. Allan (Eds.), Timing and time perception (Annals of the New York Academy of Sciences, Vol. 423, pp. 361–371). New York: The New York Academy of Sciences.Google Scholar
  223. 223.
    Wing, M., & Kristofferson, A. B. (1973). Response delays and the timing of discrete motor responses. Perception & Psychophysics, 14, 5–12.Google Scholar
  224. 224.
    Hopkins, G. W., & Kristofferson, A. B. (1980). Ultrastable stimulus-response latencies: Acquisition and stimulus control. Perceptual Psychophysiology, 27(3), 241–250.Google Scholar
  225. 225.
    Hopkins, G. W. (1984). Ultrastable stimulus-response latencies: Towards a model of response-stimulus synchronization. In J. Gibbon & L. Allan (Eds.), Timing and time perception (Annals of the New York Academy of Sciences, Vol. 423, pp. 16–29). New York: The New York Academy of Sciences.Google Scholar
  226. 226.
    Kristofferson, A. B. (1977). A real-time criterion theory of duration discrimination. Perceptual Psychophysiology, 21(2), 105–117.Google Scholar
  227. 227.
    Stubbs, A. (1968). The discrimination of stimulus duration by pigeons. Journal of Experimental Analysis of Behavior, 11(3), 223–238.Google Scholar
  228. 228.
    Stubbs, D., Dreyfus, L. R., & Fetterman, J. G. (1984). The perception of temporal events. In J. Gibbon & L. Allan (Eds.), Timing and time perception (Annals of the New York Academy of Sciences, Vol. 423, pp. 30–42). New York: The New York Academy of Sciences.Google Scholar
  229. 229.
    Stubbs, D. A. (1976). Scaling of stimulus duration by pigeons. Journal of Experimental Analysis of Behavior, 26(1), 15–25.Google Scholar
  230. 230.
    Stubbs, D. A. (1976). Response bias and the discrimination of stimulus duration. Journal of Experimental Analysis of Behavior, 25(2), 243–250.Google Scholar
  231. 231.
    Stubbs, D. A. (1980). Temporal discrimination and a free-operant psychophysical procedure. Journal of Experimental Analysis of Behavior, 33(2), 167–185.Google Scholar
  232. 232.
    Stubbs, D. A., Dreyfus, L. R., & Fetterman, J. G. (1984). The perception of temporal events. Annals of the New York Academy of Sciences, 423, 30–42.PubMedGoogle Scholar
  233. 233.
    Gibbon, J., Church, R. M., & Meck, W. H. (1984). Scalar timing in memory. In J. Gibbon & L. Allan (Eds.), Timing and time perception (Annals of the New York Academy of Sciences, Vol. 423, pp. 52–77). New York: The New York Academy of Sciences.Google Scholar
  234. 234.
    Allan, L. G. (1977). The time-order error in judgments of duration. Canadian Journal of Psychology, 31, 24–31.Google Scholar
  235. 235.
    Allan, L. G. (1984). Timing and time perception. In J. Gibbon & L. Allan (Eds.), Annals of the New York Academy of Sciences (Vol. 423, pp. 116–130). New York: The New York Academy of Sciences.Google Scholar
  236. 236.
    Allan, L. G. (1984). Contingent aftereffects in duration judgments. Annals of the New York Academy of Sciences, 423, 116–130.PubMedGoogle Scholar
  237. 237.
    Jamieson, D. G., & Petrusic, W. M. (1976). On a bias induced by the provision of feedback in psychophysical experiments. Acta Psychologica, 40, 127–152.Google Scholar
  238. 238.
    Jamieson, D. G. (1977). Two presentation order effects. Canadian Journal of Psychology, 31, 184–194.PubMedGoogle Scholar
  239. 239.
    Jamieson, D. G., Slawinska, E., Cheesman, M. F., & Espinoza-Varas, B. (1984). Timing perturbations with complex auditory stimuli. In J. Gibbon & L. Allan (Eds.), Timing and time perception (Annals of the New York Academy of Sciences, Vol. 423, pp. 96–102). New York: The New York Academy of Sciences.Google Scholar
  240. 240.
    Wasserman, E. A., DeLong, R. E., & Larew, M. B. (1984). Temporal order and duration: Their discrimination and retention by pigeons. Annals of the New York Academy of Sciences, 423, 103–115.PubMedGoogle Scholar
  241. 241.
    DeLong, R. E., & Wasserman, E. A. (1981). Effects of differential reinforcement expectancies on successive matching-to-sample performance in pigeons. Journal of Experimental Psychology. Animal Behavior Processes, 7(4), 394–412.PubMedGoogle Scholar
  242. 242.
    Ornstein, R. E. (1997). On the experience of time. Boulder, CO: Westview Press.Google Scholar
  243. 243.
    Michon, J. A., & Jackson, J. L. (1984). Attentional effort and cognitive strategies in the processing of temporal information. Annals of the New York Academy of Sciences, 423, 298–321.PubMedGoogle Scholar
  244. 244.
    Block, R. A. (1982). Temporal judgments and contextual change. Journal of Experimental Psychology: Learning, Memory, and Cognition, 8(6), 530–544.PubMedGoogle Scholar
  245. 245.
    Keele, S. (1981). Behavioral analysis of movement. In V. Brooks (Ed.), Handbook of physiology: Motor control. Baltimore, MD: Williams and Wilkins.Google Scholar
  246. 246.
    Keele, S. W., Pokorny, R. A., Corcos, D. M., & Ivry, R. (1985). Do perception and motor production share common timing mechanisms: A correctional analysis. Acta Psychologica, 60(2–3), 173–191.PubMedGoogle Scholar
  247. 247.
    Rosenbaum, D. A. (1991). Human motor control. San Diego: Academic.Google Scholar
  248. 248.
    Viviani, P., & Terzuolo, C. (1982). Trajectory determines movement dynamics. Neuroscience, 7(2), 431–437.PubMedGoogle Scholar
  249. 249.
    Stelmach, G. E., Mullins, P. A., & Teulings, H. L. (1984). Motor programming and temporal patterns in handwriting. Annals of the New York Academy of Sciences, 423, 144–157.PubMedGoogle Scholar
  250. 250.
    Wing, A. M., Keele, S., & Margolin, D. I. (1984). Motor disorder and the timing of repetitive movements. Annals of the New York Academy of Sciences, 423, 183–192.PubMedGoogle Scholar
  251. 251.
    Semjen, A., Leone, G., & Lipshits, M. (1998). Temporal control and motor control: Two functional modules which may be influenced differently under microgravity. Human Movement Science, 17(1), 77–93.PubMedGoogle Scholar
  252. 252.
    Semjen, A., Schulze, H. H., & Vorberg, D. (2000). Timing precision in continuation and synchronization tapping. Psychological Research, 63(2), 137–147.PubMedGoogle Scholar
  253. 253.
    Piek, J. P., Glencross, D. J., Barrett, N. C., & Love, G. L. (1993). The effect of temporal and force changes on the patterning of sequential movements. Psychological Research, 55(2), 116–123.PubMedGoogle Scholar
  254. 254.
    Semjen, A., Garcia-Colera, A., & Requin, J. (1984). On controlling force and time in rhythmic movement sequences: The effect of stress location. Annals of the New York Academy of Sciences, 423, 168–182.PubMedGoogle Scholar
  255. 255.
    Rumelhart, D., & Norman, D. A. (1982). Simulating a skilled typist: A study of skilled cognitive-motor performance. Cognition, 6(1), 1–36.Google Scholar
  256. 256.
    Schweickert, R. J. (1984). The representation of mental activities in critical path networks. In J. Gibbon & L. Allan (Eds.), Timing and time perception (Annals of the New York Academy of Sciences, Vol. 423, pp. 82–95). New York: New York Academy of Sciences.Google Scholar
  257. 257.
    Kahana, M. J., Howard, M. W., Zaromb, F., & Wingfield, A. (2002). Age dissociates recency and lag recency effects in free recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(3), 530–540.PubMedGoogle Scholar
  258. 258.
    Howard, M. W., & Kahana, M. J. (1999). Contextual variability and serial position effects in free recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(4), 923–941.PubMedGoogle Scholar
  259. 259.
    Kahana, M. J. (1996). Associative retrieval processes in free recall. Memory and Cognition, 24(1), 103–109.PubMedGoogle Scholar
  260. 260.
    Izawa, C. (1971). Massed and spaced practice in paired-associate learning: List versus item distributions. Journal of Experimental Psychology, 89, 10–21.Google Scholar
  261. 261.
    Izawa, C. (2008). A unified theory of all-or-none and incremental learning processes via a new application of study-test-rest presentation programs and psychophysiological measures. The American Journal of Psychology, 121(4), 565–606.PubMedGoogle Scholar
  262. 262.
    Tzeng, O. L. A., & Wetzel, C. D. (1979). Temporal coding in verbal information processing. Journal of Experimental Psychology: Human Learning and Memory, 5(1), 52–64.Google Scholar
  263. 263.
    Hock, H. S., Park, C. L., & Bjorklund, D. F. (1998). Temporal organization in children’s strategy formation. Journal of Experimental Child Psychology, 70(3), 187–206.PubMedGoogle Scholar
  264. 264.
    Cleeremans, A., & McClelland, J. L. (1991). Learning the structure of event sequences. Journal of Experimental Psychology. General, 120(3), 235–253.PubMedGoogle Scholar
  265. 265.
    Jou, J., & Harris, R. J. (1990). Event order versus syntactic structure in recall of adverbial complex sentences. Journal of Psycholinguistic Research , 19(1), 21–42.PubMedGoogle Scholar
  266. 266.
    Stephane, M., Ince, N. F., Kuskowski, M., et al. (2010). Neural oscillations associated with the primacy and recency effects of verbal working memory. Neuroscience Letters, 473(3), 172–177.PubMedGoogle Scholar
  267. 267.
    Parmentier, F. B., Andres, P., Elford, G., & Jones, D. M. (2006). Organization of visuo-spatial serial memory: Interaction of temporal order with spatial and temporal grouping. Psychological Research, 70(3), 200–217.PubMedGoogle Scholar
  268. 268.
    Pace-Schott, E. F., & Spencer, R. M. (2011). Age-related changes in the cognitive function of sleep. Progress in Brain Research, 191, 75–89.PubMedGoogle Scholar
  269. 269.
    Fouquet, C., Tobin, C., & Rondi-Reig, L. (2010). A new approach for modeling episodic memory from rodents to humans: The temporal order memory. Behavioural Brain Research, 215(2), 172–179.PubMedGoogle Scholar
  270. 270.
    Polyn, S. M., Norman, K. A., & Kahana, M. J. (2009). A context maintenance and retrieval model of organizational processes in free recall. Psychology Review, 116(1), 129–156.Google Scholar
  271. 271.
    Wieser, S., & Wieser, H. G. (2003). Event-related brain potentials in memory: Correlates of episodic, semantic and implicit memory. Clinical Neurophysiology, 114(6), 1144–1152.PubMedGoogle Scholar
  272. 272.
    Rescorla, R. A. (1976). Stimulus generalization: Some predictions from a model of Pavlovian conditioning. Journal of Experimental Psychology. Animal Behavior Processes, 2(1), 88–96.PubMedGoogle Scholar
  273. 273.
    Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. Black & W. F. Prokasy (Eds.), Classical conditioning II. New York: Appleton.Google Scholar
  274. 274.
    Gibbon, J., & Church, R. M. (1981). Time left: Linear versus logarithmic subjective time. Journal of Experimental Psychology. Animal Behavior Processes, 7(2), 87–107.PubMedGoogle Scholar
  275. 275.
    Gallistel, C. R., & Gibbon, J. (2000). Time, rate, and conditioning. Psychology Review, 107(2), 289–344.Google Scholar
  276. 276.
    Church, R. M., Meck, W. H., & Gibbon, J. (1994). Application of scalar timing theory to individual trials. Journal of Experimental Psychology. Animal Behavior Processes, 20(2), 135–155.PubMedGoogle Scholar
  277. 277.
    Cooper, L. D., Aronson, L., Balsam, P. D., & Gibbon, J. (1990). Duration of signals for intertrial reinforcement and nonreinforcement in random control procedures. Journal of Experimental Psychology. Animal Behavior Processes, 16(1), 14–26.PubMedGoogle Scholar
  278. 278.
    Church, R. M., & Gibbon, J. (1982). Temporal generalization. Journal of Experimental Psychology. Animal Behavior Processes, 8(2), 165–186.PubMedGoogle Scholar
  279. 279.
    Jenkins, H. M. (1984). Time and conditioning in classical conditioning. In J. Gibbon & L. Allan (Eds.), Timing and time perception (Annals of the New York Academy of Sciences, Vol. 423, pp. 242–253). New York: The New York Academy of Sciences.Google Scholar
  280. 280.
    Staddon, J. (1984). Time and memory. In J. Gibbon & L. Allan (Eds.), Timing and time perception (Annals of the New York Academy of Sciences, pp. 322–334). New York: The New York Academy of Sciences.Google Scholar
  281. 281.
    Meck, W. H., Komeily-Zadeh, F., & Church, R. M. (1981). Interference of signal timing by response timing. Paper presented at meeting of the Psychonomic Society, Philadelphia.Google Scholar
  282. 282.
    Meck, W. H. (1984). Attentional bias between modalities: Effect on the internal clock, memory, and decision stages used in animal time discrimination. In J. Gibbon & L. Allan (Eds.), Timing and time perception (Annals of the New York Academy of Sciences, pp. 528–541). New York: New York Academy of Sciences.Google Scholar
  283. 283.
    Meck, W. H., & Benson, A. M. (2002). Dissecting the brain’s internal clock: How frontal-striatal circuitry keeps time and shifts attention. Brain and Cognition, 48(1), 195–211.PubMedGoogle Scholar
  284. 284.
    Meck, W. H. (2006). Temporal memory in mature and aged rats is sensitive to choline acetyltransferase inhibition. Brain Research, 1108(1), 168–175.PubMedGoogle Scholar
  285. 285.
    Meck, W. H. (2005). Neuropsychology of timing and time perception. Brain and Cognition, 58(1), 1–8.PubMedGoogle Scholar
  286. 286.
    Meck, W. H., & Williams, C. L. (1997). Characterization of the facilitative effects of perinatal choline supplementation on timing and temporal memory. Neuroreport, 8(13), 2831–2835.PubMedGoogle Scholar
  287. 287.
    Meck, W. H., & Church, R. M. (1987). Cholinergic modulation of the content of temporal memory. Behavioral Neuroscience, 101(4), 457–464.PubMedGoogle Scholar
  288. 288.
    Meck, W. H., Church, R. M., & Olton, D. S. (1984). Hippocampus, time, and memory. Behavioral Neuroscience, 98(1), 3–22.PubMedGoogle Scholar
  289. 289.
    Meck, W. H. (1983). Selective adjustment of the speed of internal clock and memory processes. Journal of Experimental Psychology. Animal Behavior Processes, 9(2), 171–201.PubMedGoogle Scholar
  290. 290.
    Meck, W. H., & Church, R. M. (1984). Simultaneous temporal processing. Journal of Experimental Psychology. Animal Behavior Processes, 10(1), 1–29.PubMedGoogle Scholar
  291. 291.
    Killeen, P. R. (1984). Incentive theory III: Adaptive clocks. In J. Gibbon & L. Allan (Eds.), Timing and time perception (Annals of the New York Academy of Sciences, Vol. 423, pp. 515–527). New York: The New York Academy of Sciences.Google Scholar
  292. 292.
    Killeen, P. R., & Fetterman, J. G. (1988). A behavioral theory of timing. Psychological Review, 92(2), 274–295.Google Scholar
  293. 293.
    Fetterman, J. G., & Killeen, P. R. (2010). Prospective and retrospective timing by pigeons. Learning & Behavior, 38(2), 119–125.Google Scholar
  294. 294.
    Fetterman, J. G., Killeen, P. R., & Hall, S. (1998). Watching the clock. Behavioural Processes, 44(2), 211–224.PubMedGoogle Scholar
  295. 295.
    Fetterman, J. G., & Killeen, P. R. (1995). Categorical scaling of time: Implications for clock-counter models. Journal of Experimental Psychology. Animal Behavior Processes, 21(1), 43–63.PubMedGoogle Scholar
  296. 296.
    Killeen, P. R., & Fetterman, J. G. (1993). The behavioral theory of timing: Transition analyses. Journal of Experimental Analysis of Behavior, 59(2), 411–422.Google Scholar
  297. 297.
    Killeen, P. R., & Fetterman, J. G. (1988). A behavioral theory of timing. Psychology Review, 95(2), 274–295.Google Scholar
  298. 298.
    Platt, J. R. (1984). Motivational and response factors in temporal differentiation. In J. Gibbon & L. Allan (Eds.), Timing and time perception (Annals of the New York Academy of Sciences, Vol. 423, pp. 646–648). New York: The New York Academy of Sciences.Google Scholar
  299. 299.
    Massaro, D. W. (1972). Preperceptual images, processing time, and perceptual units in auditory perception. Psychological Review, 79, 124–145.PubMedGoogle Scholar
  300. 300.
    Massaro, D. (1984). Time’s role for information, processing, and normalization. In J. Gibbon & L. Allan (Eds.), Timing and time perception (Annals of the New York Academy of Sciences, Vol. 423, pp. 372–384). New York: The New York Academy of Sciences.Google Scholar
  301. 301.
    Massaro, D. W. (1975). Experimental psychology and information processing. Chicago: Rand McNally.Google Scholar
  302. 302.
    Massaro, D. (1989). Experimental psychology: An information processing approach. San Diego: Harcourt Brace Jovanovich.Google Scholar
  303. 303.
    Collard, R., & Leeuwenberg, E. (1981). Judged temporal order and spatial context. Canadian Journal of Psychology, 35, 323–329.PubMedGoogle Scholar
  304. 304.
    Dreyfus, L. R., Fetterman, J. G., Smith, L. D., & Stubbs, D. A. (1988). Discrimination of temporal relations by pigeons. Journal of Experimental Psychology. Animal Behavior Processes, 14(4), 349–367.PubMedGoogle Scholar
  305. 305.
    Deecke, L., Kornhuber, H. H., Lang, W., Lang, M., & Schreiber, H. (1985). Timing function of the frontal cortex in sequential motor and learning tasks. Human Neurobiology, 4(3), 143–154.PubMedGoogle Scholar
  306. 306.
    Pouthas, V., & Jacquet, A. Y. (1987). A developmental study of timing behavior in 4 1/2- and 7-year-old children. Journal of Experimental Child Psychology, 43(2), 282–299.PubMedGoogle Scholar
  307. 307.
    Macar, F., & Vitton, N. (1989). Effect of learning on production of duration in variable motor conditions. Acta Psychologica, 72(3), 247–261.PubMedGoogle Scholar
  308. 308.
    Wearden, J. H., Edwards, H., Fakhri, M., & Percival, A. (1998). Why “sounds are judged longer than lights”: Application of a model of the internal clock in humans. The Quarterly Journal of Experimental Psychology. B, 51(2), 97–120.Google Scholar
  309. 309.
    vom Hofe, A., & Fery, Y. A. (1991). Attentional demands of a temporal prediction task: The trajectory of a tennis ball. Perceptual and Motor Skills, 73(3 Pt 2), 1235–1243.PubMedGoogle Scholar
  310. 310.
    Brown, S. W., & Stubbs, D. A. (1992). Attention and interference in prospective and retrospective timing. Perception, 21(4), 545–557.PubMedGoogle Scholar
  311. 311.
    Broadway, J. M., & Engle, R. W. (2011). Lapsed attention to elapsed time? Individual differences in working memory capacity and temporal reproduction. Acta Psychologica, 137(1), 115–126.PubMedGoogle Scholar
  312. 312.
    Lustig, C., & Meck, W. H. (2001). Paying attention to time as one gets older. Psychological Science, 12(6), 478–484.PubMedGoogle Scholar
  313. 313.
    Woehrle, J. L., & Magliano, J. P. (2012). Time flies faster if a person has a high working-memory capacity. Acta Psychologica, 139(2), 314–319.PubMedGoogle Scholar
  314. 314.
    Molet, M., Alessandri, J., & Zentall, T. R. (2011). Subjective time: Cognitive and physical secondary tasks affect timing differently. Quarterly Journal of Experimental Psychology, 64(7), 1344–1353.Google Scholar
  315. 315.
    Saarinen, J., & Julesz, B. (1991). The speed of attentional shifts in the visual field. Proceedings of the National Academy of Sciences of the United States of America, 88(5), 1812–1814.PubMedGoogle Scholar
  316. 316.
    Sorkin, R. D. (1987). Temporal factors in the discrimination of tonal sequences. Journal of the Acoustical Society of America, 82(4), 1218–1226.PubMedGoogle Scholar
  317. 317.
    Arnold, G., & Sieroff, E. (2012). Timing constraints of temporal view association in face recognition. Vision Research, 54, 61–67.PubMedGoogle Scholar
  318. 318.
    Swallow, K. M., & Jiang, Y. V. (2011). The role of timing in the attentional boost effect. Attention, Perception, & Psychophysics, 73(2), 389–404.Google Scholar
  319. 319.
    Barnes, R., & Johnston, H. (2010). The role of timing deviations and target position uncertainty on temporal attending in a serial auditory pitch discrimination task. Quarterly Journal of Experimental Psychology, 63(2), 341–355.Google Scholar
  320. 320.
    Donohue, S. E., Woldorff, M. G., & Mitroff, S. R. (2010). Video game players show more precise multisensory temporal processing abilities. Attention, Perception, & Psychophysics, 72(4), 1120–1129.Google Scholar
  321. 321.
    Harrington, D. L., Castillo, G. N., Greenberg, P. A., et al. (2011). Neurobehavioral mechanisms of temporal processing deficits in Parkinson’s disease. PLoS One, 6(2), e17461.PubMedGoogle Scholar
  322. 322.
    Harrington, D. L., Zimbelman, J. L., Hinton, S. C., & Rao, S. M. (2010). Neural modulation of temporal encoding, maintenance, and decision processes. Cerebral Cortex, 20(6), 1274–1285.PubMedGoogle Scholar
  323. 323.
    Hinton, S. C., Harrington, D. L., Binder, J. R., Durgerian, S., & Rao, S. M. (2004). Neural systems supporting timing and chronometric counting: An FMRI study. Brain Research. Cognitive Brain Research, 21(2), 183–192.PubMedGoogle Scholar
  324. 324.
    Harrington, D. L., & Haaland, K. Y. (1999). Neural underpinnings of temporal processing: A review of focal lesion, pharmacological, and functional imaging research. Reviews in the Neurosciences, 10(2), 91–116.PubMedGoogle Scholar
  325. 325.
    Harrington, D. L., Haaland, K. Y., & Knight, R. T. (1998). Cortical networks underlying mechanisms of time perception. Journal of Neuroscience, 18(3), 1085–1095.PubMedGoogle Scholar
  326. 326.
    Harrington, D. L., & Haaland, K. Y. (1992). Motor sequencing with left hemisphere damage. Are some cognitive deficits specific to limb apraxia? Brain, 115(Pt 3), 857–874.PubMedGoogle Scholar
  327. 327.
    Zahn, T. P., Kruesi, M. J., & Rapoport, J. L. (1991). Reaction time indices of attention deficits in boys with disruptive behavior disorders. Journal of Abnormal Child Psychology, 19(2), 233–252.PubMedGoogle Scholar
  328. 328.
    Barkley, R. A., Edwards, G., Laneri, M., Fletcher, K., & Metevia, L. (2001). Executive functioning, temporal discounting, and sense of time in adolescents with attention deficit hyperactivity disorder (ADHD) and oppositional defiant disorder (ODD). Journal of Abnormal Child Psychology, 29(6), 541–556.PubMedGoogle Scholar
  329. 329.
    Barkley, R. A. (1997). Attention-deficit/hyperactivity disorder, self-regulation, and time: Toward a more comprehensive theory. Journal of Developmental and Behavioral Pediatrics, 18(4), 271–279.PubMedGoogle Scholar
  330. 330.
    Barkley, R. A., Koplowitz, S., Anderson, T., & McMurray, M. B. (1997). Sense of time in children with ADHD: Effects of duration, distraction, and stimulant medication. Journal of the International Neuropsychological Society, 3(4), 359–369.PubMedGoogle Scholar
  331. 331.
    Lyon, M., Lyon, N., & Magnusson, M. S. (1994). The importance of temporal structure in analyzing schizophrenic behavior: Some theoretical and diagnostic implications. Schizophrenia Research, 13(1), 45–56.PubMedGoogle Scholar
  332. 332.
    Allman, M. J., & Meck, W. H. (2012). Pathophysiological distortions in time perception and timed performance. Brain, 135(Pt 3), 656–677.PubMedGoogle Scholar
  333. 333.
    Jones, C. R., Malone, T. J., Dirnberger, G., Edwards, M., & Jahanshahi, M. (2008). Basal ganglia, dopamine and temporal processing: Performance on three timing tasks on and off medication in Parkinson’s disease. Brain and Cognition, 68(1), 30–41.PubMedGoogle Scholar
  334. 334.
    Michon, J., & Jackson, J. L. (1985). The psychology of time. In J. Michon & T. Jackson (Eds.), Time, mind, and behavior (pp. 2–17). Berlin: Springer.Google Scholar
  335. 335.
    Beck, L. H., Bransome, E. D., Jr., Mirsky, A. F., Rosvold, H. E., & Sarason, I. (1956). A continuous performance test of brain damage. Journal of Consulting Psychology, 20(5), 343–350.PubMedGoogle Scholar
  336. 336.
    Findlay, J. M. (1983). Visual information processing for saccadic eye movements. In A. H. M. Jeannerod (Ed.), Spatially oriented behavior. New York: Springer.PubMedGoogle Scholar
  337. 337.
    Lestienne, F., Whittington, D., & Bizzi, E. (1983). Coordination of eye-head movements in alert monkeys: Behavior of eye-related neurons in the brain stem. In A. H. M. Jeannerod (Ed.), Spatially oriented behavior. New York: Springer.PubMedGoogle Scholar
  338. 338.
    Sperling, G. (1984). A unified theory of attention and signal detection. In R. Parasuraman and D.R. Davies (Eds.), Varieties of Attention. New York, N.Y.: Academic Press, pp. 103–181.PubMedGoogle Scholar
  339. 339.
    Robinson, D. A. (1974). Occulomotor control signals. In G. Lennerstrand & P. Bach-y-Rita (Eds.), Basic mechanisms of ocular motility and their clinical implications (pp. 337–374). Oxford: Pergamon Press.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ronald A. Cohen
    • 1
    • 2
    • 3
  1. 1.Departments of Neurology, Psychiatry and AgingGainesvilleUSA
  2. 2.Center for Cognitive Aging and MemoryUniversity of Florida College of MedicineGainesvilleUSA
  3. 3.Department of Psychiatry and Human Behavior Warren Alpert School of MedicineBrown UniversityProvidenceUSA

Personalised recommendations