Mutual Constraint of Memory and Attention

  • Ronald A. Cohen


That attention and memory are highly interrelated was recognized by psychologists at the beginning of the last century. Even behaviorists recognized this, though they sought to explain attentional effects through learning principles (see  Chap. 7). Classical and instrumental conditioning did not explicitly posit attentional processes. Yet, early researchers studying these forms of learning placed great emphasis on characterizing the effects of stimulus changes on behavioral response. The factors governing stimulus and response selection were a central focus of the conditioning studies, which often described phenomena that we might now label as attentional when attempting to specify the rules governing learning. Therefore, for learning theorists, learning, memory, and attention were conceptually linked.


Semantic Information Semantic Memory Associative Memory Semantic Network Attentional Allocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In K. W. Spence & J. T. Spence (Eds.), The psychology of learning & motivation: Advances in research & theory (Vol. 2, pp. 89–195). New York: Academic.Google Scholar
  2. 2.
    Atkinson, R. C., & Shiffrin, R. M. (1971). The control of short-term memory. Scientific American, 224, 82–90.CrossRefGoogle Scholar
  3. 3.
    Craik, F. I. M., & Lockhart, R. S. (1972). Levels of processing: A framework for memory research. Journal of Verbal Learning & Verbal Behavior., 11, 671–684.CrossRefGoogle Scholar
  4. 4.
    Broadbent, D. E. (1958). Perception and communication. Elmsford: Pergamon Press.Google Scholar
  5. 5.
    Bower, G. (1967). A multicomponent theory of the memory trace. In K. W. Spence & J. T. Spence (Eds.), The psychology of learning and motivation: I. Oxford: Academic.Google Scholar
  6. 6.
    Bower, G. H., & Hilgard, E. R. (1981). Theories of learning (5th ed.). Englewood Cliffs: Prentice-Hall.Google Scholar
  7. 7.
    Norman, D. A. (1968). Toward a theory of memory and attention. Psychological Review, 75(6), 522–536.CrossRefGoogle Scholar
  8. 8.
    Estes, W. K. (1950). Toward a statistical theory of learning. Psychological Review, 57, 94–107.CrossRefGoogle Scholar
  9. 9.
    Estes, W. K., & Burke, C. J. (1953). A theory of stimulus variability in learning. Psychological Review, 60(4), 276–286.PubMedCrossRefGoogle Scholar
  10. 10.
    Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press.Google Scholar
  11. 11.
    Sperling, G. (1960). The information available in brief visual presentations. Psychological Monographs, 74(11), 1–30.CrossRefGoogle Scholar
  12. 12.
    Sperling, G. (1963). A model for visual memory tasks. Human Factors, 5, 19–31.PubMedGoogle Scholar
  13. 13.
    Massaro, D. W. (1972). Preperceptual images, processing time, and perceptual units in auditory perception. Psychological Review, 79, 124–145.PubMedCrossRefGoogle Scholar
  14. 14.
    Massaro, D. W. (1975). Experimental psychology and information processing. Chicago: Rand McNally.Google Scholar
  15. 15.
    Cowan, N. (1984). On short and long auditory stores. Psychological Bulletin, 96, 341–370.PubMedCrossRefGoogle Scholar
  16. 16.
    Cowan, N. (1988). Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information-processing system. Psychological Bulletin, 104(2), 163–191.PubMedCrossRefGoogle Scholar
  17. 17.
    Phillips, W. A. (1974). On the distinction between sensory storage and short-term visual memory. Perception & Psychophysics, 16, 283–290.CrossRefGoogle Scholar
  18. 18.
    Walker, P. (1978). Short-term visual memory: The importance of the spatial and temporal separation of successive stimuli. Quarterly Journal of Experimental Psychology, 30(4), 665–679.PubMedCrossRefGoogle Scholar
  19. 19.
    McGaugh, J. L. (1966). Time-dependent processes in memory storage. Science, 153, 1351–1358.PubMedCrossRefGoogle Scholar
  20. 20.
    Peterson, L. R., & Peterson, M. J. (1959). Short-term retention of individual verbal items. Journal of Experimental Psychology, 58, 193–198.PubMedCrossRefGoogle Scholar
  21. 21.
    Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 81–97.PubMedCrossRefGoogle Scholar
  22. 22.
    Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review, 84, 1–66.CrossRefGoogle Scholar
  23. 23.
    Schneider, W., Dumais, S. T., & Shriffrin, R. M. (1984). Automatic and control processing and attention. In R. Parasuraman, R. Davis, & J. Beatty (Eds.), Varieties of attention (pp. 1–27). New York: Academic.Google Scholar
  24. 24.
    Cohen, R., & Waters, W. (1985). Psychophysiological correlates of levels and states of cognitive processing. Neuropsychologia, 23, 243–256.PubMedCrossRefGoogle Scholar
  25. 25.
    Baddeley, A., & Hitch, G. J. (Eds.) (1974). Working memory. In G. A. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory. New York: Academic Press.Google Scholar
  26. 26.
    D’Esposito, M., Postle, B. R., & Rypma, B. (2000). Prefrontal cortical contributions to working memory: Evidence from event-related fMRI studies. Experimental Brain Research. Experimentelle Hirnforschung, 133(1), 3–11.CrossRefGoogle Scholar
  27. 27.
    Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12(1), 1–47.PubMedCrossRefGoogle Scholar
  28. 28.
    D’Esposito, M., Postle, B. R., Jonides, J., & Smith, E. E. (1999). The neural substrate and temporal dynamics of interference effects in working memory as revealed by event-related functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 96(13), 7514–7519.PubMedCrossRefGoogle Scholar
  29. 29.
    D’Esposito, M., Ballard, D., Aguirre, G. K., & Zarahn, E. (1998). Human prefrontal cortex is not specific for working memory: A functional MRI study. NeuroImage, 8(3), 274–282.PubMedCrossRefGoogle Scholar
  30. 30.
    Cohen, J. D., Perlstein, W. M., Braver, T. S., et al. (1997). Temporal dynamics of brain activation during a working memory task. Nature, 386(6625), 604–608.PubMedCrossRefGoogle Scholar
  31. 31.
    Sweet, L. H., Paskavitz, J. F., Haley, A. P., et al. (2008). Imaging phonological similarity effects on verbal working memory. Neuropsychologia, 46(4), 1114–1123.PubMedCrossRefGoogle Scholar
  32. 32.
    Sweet, L. H., Rao, S. M., Primeau, M., Durgerian, S., & Cohen, R. A. (2006). Functional magnetic resonance imaging response to increased verbal working memory demands among patients with multiple sclerosis. Human Brain Mapping, 27(1), 28–36.PubMedCrossRefGoogle Scholar
  33. 33.
    Sweet, L. H., Rao, S. M., Primeau, M., Mayer, A. R., & Cohen, R. A. (2004). Functional magnetic resonance imaging of working memory among multiple sclerosis patients. Journal of Neuroimaging, 14(2), 150–157.PubMedGoogle Scholar
  34. 34.
    Wickelgren, W. A. (1979). Chunking and consolidation: A theoretical synthesis of semantic networks, configuring in conditioning, S–R versus congenitive learning, normal forgetting, the amnesic syndrome, and the hippocampal arousal system. Psychological Review, 86(1), 44–60.PubMedCrossRefGoogle Scholar
  35. 35.
    Maltzman, I. (1955). Thinking: From a behavioristic point of view. Psychological Review, 62, 275–286.PubMedCrossRefGoogle Scholar
  36. 36.
    Maltzman, I. (1968). Theoretical conceptions of semantic conditioning and generalization. In T. R. Dixon & D. L. Horton (Eds.), Verbal behavior and general behavior theory (pp. 291–339). Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  37. 37.
    Maltzman, I. (1979). Orienting reflexes and classical conditioning in humans. In H. D. Kimmel, E. H. van Olst, & J. F. Orlebeke (Eds.), The orienting reflex in humans (pp. 323–352). Hillsdale: Erlbaum.Google Scholar
  38. 38.
    Posner, M. I., Petersen, S. E., Fox, P. T., & Raichle, M. E. (1988). Localization of cognitive operations in the human brain. Science (New York, NY), 240(4859), 1627–1631.CrossRefGoogle Scholar
  39. 39.
    Maltzman, I., Langdon, B., & Feeney, D. (1970). Semantic generalization without prior conditioning. Journal of Experimental Psychology, 83(1), 73–75.PubMedCrossRefGoogle Scholar
  40. 40.
    Maltzman, I., & Langdon, B. (1969). Semantic generalization of the GSR as a function of semantic distance or the orienting reflex. Journal of Experimental Psychology, 80(2), 289–294.PubMedCrossRefGoogle Scholar
  41. 41.
    McClelland, J. L., & Rumelhart, D. E. (1988). Explorations in parallel distributed processing: A handbook of models, programs, and exercises. Cambridge, MA: MIT Press.Google Scholar
  42. 42.
    Collins, A., & Quillian, M. R. (1969). Retrieval time from semantic memory. Journal of Verbal Learning & Verbal Behavior., 8, 240–247.CrossRefGoogle Scholar
  43. 43.
    Ashcraft, M. H. (1976). Priming and property dominance effects in semantic memory. Memory & Cognition, 4(5), 490–500.CrossRefGoogle Scholar
  44. 44.
    O’Connor, C. M., Cree, G. S., & McRae, K. (2009). Conceptual Hierarchies in a flat attractor network: Dynamics of learning and computations. Cognitive Science, 33(4), 665–708.PubMedCrossRefGoogle Scholar
  45. 45.
    Peled, A., Netzer, I., & Modai, I. (2005). Rating of textual associations in organized and nonorganized sentences for the assessment of semantic networks in schizophrenia. Comprehensive Psychiatry, 46(3), 176–180.PubMedCrossRefGoogle Scholar
  46. 46.
    Smith, E. E., & Sloman, S. A. (1994). Similarity- versus rule-based categorization. Memory & Cognition, 22(4), 377–386.CrossRefGoogle Scholar
  47. 47.
    Smith, E. E., Medin, D. L., & Rips, L. J. (1984). A psychological approach to concepts: Comments on Rey’s “Concepts and stereotypes”. Cognition, 17(3), 265–274.PubMedCrossRefGoogle Scholar
  48. 48.
    Collins, A., & Loftus, E. F. (1975). A spreading-activation theory of semantic processing. Psychological Review, 82(6), 407–428.CrossRefGoogle Scholar
  49. 49.
    Tulving, E., & Thompson, D. M. (1973). Encoding specificity and retrieval processes in episodic memory. Psychological Review, 80, 352–373.CrossRefGoogle Scholar
  50. 50.
    Schneider, W., & Fisk, A. D. (1984). Automatic category search and its transfer. Journal of Experimental Psychology. Learning, Memory, and Cognition, 10, 1–15.CrossRefGoogle Scholar
  51. 51.
    Allport, G. (1937). The functional anatomy of motives. The American Journal of Psychology, 50, 141–156.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ronald A. Cohen
    • 1
    • 2
    • 3
  1. 1.Departments of Neurology, Psychiatry and AgingGainesvilleUSA
  2. 2.Center for Cognitive Aging and MemoryUniversity of Florida College of MedicineGainesvilleUSA
  3. 3.Department of Psychiatry and Human Behavior Warren Alpert School of MedicineBrown UniversityProvidenceUSA

Personalised recommendations