Skip to main content

Processing Speed and Attentional Resources

  • Chapter
  • First Online:
The Neuropsychology of Attention

Abstract

The brain’s transmission rate and speed of information processing influence the quantity of information that can be evaluated and consequently constrain attentional capacity. Processing speed, as measured by reaction time, was studied intermittently as an indicator of individual differences in mental function in the late nineteenth century, but this line of investigation was essentially abandoned until the 1970s [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vernon, P. A. (1987). Speed of information-processing and intelligence. Norwood, NJ: Ablex.

    Google Scholar 

  2. Hirst, W. (1986). The psychology of attention. In J. LeDoux & W. Hirst (Eds.), Mind and brain: Dialogues in cognitive neuroscience (pp. 105–141). New York: Cambridge University.

    Google Scholar 

  3. Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review, 84, 1–66.

    Google Scholar 

  4. Kahneman, D. (1973). Attention and effort. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  5. Fracker, M. L., & Wickens, C. D. (1989). Resources, confusions, and compatibility in dual-axis tracking: Displays, controls, and dynamics. Journal of Experimental Psychology. Human Perception and Performance, 15(1), 80–96.

    PubMed  Google Scholar 

  6. Wickens, C. D., & Liu, Y. (1988). Codes and modalities in multiple resources: A success and a qualification. Human Factors, 30(5), 599–616.

    PubMed  Google Scholar 

  7. Wickens, C. D., Mountford, S. J., & Schreiner, W. (1981). Multiple resources, task-hemispheric integrity, and individual differences in time-sharing. Human Factors, 23(2), 211–229.

    PubMed  Google Scholar 

  8. Wickens, C. D., & Kessel, C. (1980). Processing resource demands of failure detection in dynamic systems. Journal of Experimental Psychology. Human Perception and Performance, 6(3), 564–577.

    PubMed  Google Scholar 

  9. Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47(10), 2015–2028.

    PubMed  Google Scholar 

  10. Stern, Y., Zarahn, E., Habeck, C., et al. (2008). A common neural network for cognitive reserve in verbal and object working memory in young but not old. Cerebral Cortex, 18(4), 959–967.

    PubMed  Google Scholar 

  11. Stern, Y. (2006). Cognitive reserve and Alzheimer disease. Alzheimer Disease and Associated Disorders, 20(2), 112–117.

    PubMed  Google Scholar 

  12. Strauss, M. E., & Fritsch, T. (2004). Factor structure of the CERAD neuropsychological battery. Journal of International Neuropsychological Society, 10(4), 559–565.

    Google Scholar 

  13. Scarmeas, N., Zarahn, E., Anderson, K. E., et al. (2004). Cognitive reserve-mediated modulation of positron emission tomographic activations during memory tasks in Alzheimer disease. Archives of Neurology, 61(1), 73–78.

    PubMed  Google Scholar 

  14. Kaplan, R. F., Cohen, R. A., Moscufo, N., et al. (2009). Demographic and biological influences on cognitive reserve. Journal of Clinical and Experimental Neuropsychology, 31(7), 868–876.

    PubMed  Google Scholar 

  15. Stern, R. A., Silva, S. G., Chaisson, N., & Evans, D. L. (1996). Influence of cognitive reserve on neuropsychological functioning in asymptomatic human immunodeficiency virus-1 infection. Archives of Neurology, 53(2), 148–153.

    PubMed  Google Scholar 

  16. Roldan-Tapia, L., Garcia, J., Canovas, R., & Leon, I. (2012). Cognitive reserve, age, and their relation to attentional and executive functions. Applied Neuropsychology, 19(1), 2–8.

    PubMed  Google Scholar 

  17. Alosco, M. L., Spitznagel, M. B., Raz, N., et al. (2012). Cognitive reserve moderates the association between heart failure and cognitive impairment. Journal of Clinical and Experimental Neuropsychology, 34(1), 1–10.

    PubMed  Google Scholar 

  18. Shannon, C. E. (1997). The mathematical theory of communication. 1963. MD Computing, 14(4), 306–317.

    PubMed  Google Scholar 

  19. Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Urbana: University of Illinois Press.

    Google Scholar 

  20. Broadbent, D. E. (1958). Perception and communication (p. 1958). London: Pergamon Press.

    Google Scholar 

  21. Eysenck, H. J., & Berger, M. (1982). A model for intelligence. Berlin, New York: Springer.

    Google Scholar 

  22. Eysenck, H. J., & Fulker, D. W. (2007). The structure & measurement of intelligence. New Brunswick, NJ: Transaction Publishers.

    Google Scholar 

  23. Jensen, A. R. (1993). Spearman’s g: Links between psychometrics and biology. Annals of the New York Academy of Sciences, 702, 103–129.

    PubMed  Google Scholar 

  24. Jenson, A. R. (1982). Reaction time and psychometric g. In H. J. Eysenk (Ed.), A model for intelligence. New York: Springer.

    Google Scholar 

  25. Jenson, A. R., & Vernon, P. A. (1986). Jensen’s reaction time studies: A reply to Longstreth. Intelligence, 10, 153–179.

    Google Scholar 

  26. Detterman, D. K. (1987). What does reaction time tell us about intelligence? In P. A. Vernon (Ed.), Speed of information processing and intelligence (pp. 177–200). Norwood, NJ: Ablex.

    Google Scholar 

  27. van der Meer, E., Beyer, R., Horn, J., et al. (2010). Resource allocation and fluid intelligence: Insights from pupillometry. Psychophysiology, 47(1), 158–169.

    PubMed  Google Scholar 

  28. Ryan, J. J., Sattler, J. M., & Lopez, S. J. (2000). Age effects on Wechsler Adult Intelligence Scale-III subtests. Archives of Clinical Neuropsychology, 15(4), 311–317.

    PubMed  Google Scholar 

  29. Gunther, V. K., Schafer, P., Holzner, B. J., & Kemmler, G. W. (2003). Long-term improvements in cognitive performance through computer-assisted cognitive training: A pilot study in a residential home for older people. Aging & Mental Health, 7(3), 200–206.

    Google Scholar 

  30. Zimprich, D., & Martin, M. (2002). Can longitudinal changes in processing speed explain longitudinal age changes in fluid intelligence? Psychology and Aging, 17(4), 690–695.

    PubMed  Google Scholar 

  31. Borella, E., Carretti, B., Riboldi, F., & De Beni, R. (2010). Working memory training in older adults: Evidence of transfer and maintenance effects. Psychology and Aging, 25(4), 767–778.

    PubMed  Google Scholar 

  32. Chen, T., & Li, D. (2007). The roles of working memory updating and processing speed in mediating age-related differences in fluid intelligence. Neuropsychology, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition, 14(6), 631–646.

    PubMed  Google Scholar 

  33. Clay, O. J., Edwards, J. D., Ross, L. A., et al. (2009). Visual function and cognitive speed of processing mediate age-related decline in memory span and fluid intelligence. Journal of Aging and Health, 21(4), 547–566.

    PubMed  Google Scholar 

  34. Colzato, L. S., Spape, M., Pannebakker, M. M., & Hommel, B. (2007). Working memory and the attentional blink: Blink size is predicted by individual differences in operation span. Psychonomic Bulletin & Review, 14(6), 1051–1057.

    Google Scholar 

  35. Finkel, D., Reynolds, C. A., McArdle, J. J., & Pedersen, N. L. (2007). Age changes in processing speed as a leading indicator of cognitive aging. Psychology and Aging, 22(3), 558–568.

    PubMed  Google Scholar 

  36. Mogle, J. A., Lovett, B. J., Stawski, R. S., & Sliwinski, M. J. (2008). What’s so special about working memory? An examination of the relationships among working memory, secondary memory, and fluid intelligence. Psychological Science, 19(11), 1071–1077.

    PubMed  Google Scholar 

  37. Perrotin, A., Tournelle, L., & Isingrini, M. (2008). Executive functioning and memory as potential mediators of the episodic feeling-of-knowing accuracy. Brain and Cognition, 67(1), 76–87.

    PubMed  Google Scholar 

  38. Salthouse, T. A., Fristoe, N., McGuthry, K. E., & Hambrick, D. Z. (1998). Relation of task switching to speed, age, and fluid intelligence. Psychology and Aging, 13(3), 445–461.

    PubMed  Google Scholar 

  39. Schretlen, D., Pearlson, G. D., Anthony, J. C., et al. (2000). Elucidating the contributions of processing speed, executive ability, and frontal lobe volume to normal age-related differences in fluid intelligence. Journal of International Neuropsychological Society, 6(1), 52–61.

    Google Scholar 

  40. Shelton, J. T., Elliott, E. M., Matthews, R. A., Hill, B. D., & Gouvier, W. D. (2010). The relationships of working memory, secondary memory, and general fluid intelligence: Working memory is special. Journal of Experimental Psychology. Learning, Memory, and Cognition, 36(3), 813–820.

    PubMed  Google Scholar 

  41. Swanson, H. L. (2004). Working memory and phonological processing as predictors of children’s mathematical problem solving at different ages. Memory & Cognition, 32(4), 648–661.

    Google Scholar 

  42. Norman, D., & Bobrow, D. A. (1975). On data-limited and resource-limited processes. Cognitive Psychology, 7, 44–64.

    Google Scholar 

  43. Davranche, K., Nazarian, B., Vidal, F., & Coull, J. (2011). Orienting attention in time activates left intraparietal sulcus for both perceptual and motor task goals. Journal of Cognitive Neuroscience, 23(11), 3318–3330.

    PubMed  Google Scholar 

  44. Mulder, H., Pitchford, N. J., & Marlow, N. (2011). Processing speed mediates executive function difficulties in very preterm children in middle childhood. Journal of International Neuropsychological Society, 28, 1–10.

    Google Scholar 

  45. Channon, S., Mockler, C., & Lee, P. (2005). Executive functioning and speed of processing in phenylketonuria. Neuropsychology, 19(5), 679–686.

    PubMed  Google Scholar 

  46. Channon, S., German, E., Cassina, C., & Lee, P. (2004). Executive functioning, memory, and learning in phenylketonuria. Neuropsychology, 18(4), 613–620.

    PubMed  Google Scholar 

  47. Ruff, R. M., Niemann, H., Allen, C. C., Farrow, C. E., & Wylie, T. (1992). The Ruff 2 and 7 selective attention test: A neuropsychological application. Perceptual and Motor Skills, 75(3 Pt 2), 1311–1319.

    PubMed  Google Scholar 

  48. Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G. L., & Petersen, S. E. (1991). Selective and divided attention during visual discriminations of shape, color, and speed: Functional anatomy by positron emission tomography. Journal of Neuroscience, 11(8), 2383–2402.

    PubMed  Google Scholar 

  49. Walsh, D. A. (1988). Aging and visual information processing: Potential implications for everyday seeing. Journal of the American Optometric Association, 59(4 Pt 1), 301–306.

    PubMed  Google Scholar 

  50. Wickens, C. D., Braune, R., & Stokes, A. (1987). Age differences in the speed and capacity of information processing: 1. A dual-task approach. Psychology and Aging, 2(1), 70–78.

    PubMed  Google Scholar 

  51. Visser, T. A., & Ohan, J. L. (2012). How does information processing speed relate to the attentional blink? PloS One, 7(3), e33265.

    PubMed  Google Scholar 

  52. Swearer, J. M., & Kane, K. J. (1996). Behavioral slowing with age: Boundary conditions of the generalized slowing model. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 51(4), P189–P200.

    PubMed  Google Scholar 

  53. Salthouse, T. A. (1982). Adult cognition: An experimental psychology of human aging. New York: Springer.

    Google Scholar 

  54. Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103(3), 403–428.

    PubMed  Google Scholar 

  55. Salthouse, T. A. (2009). Decomposing age correlations on neuropsychological and cognitive variables. Journal of International Neuropsychological Society, 15(5), 650–661.

    Google Scholar 

  56. Salthouse, T. A., Babcock, R. L., & Shaw, R. J. (1991). Effects of adult age on structural and operational capacities in working memory. Psychology and Aging, 6(1), 118–127.

    PubMed  Google Scholar 

  57. Salthouse, T. A., Pink, J. E., & Tucker-Drob, E. M. (2008). Contextual analysis of fluid intelligence. Intelligence, 36(5), 464–486.

    PubMed  Google Scholar 

  58. Cassel, W., Stephan, S., Ploch, T., & Peter, J. H. (1989). [Psychological aspects of sleep related disorders of respiratory control]. Pneumologie, 43(Suppl 1), 625–629.

    PubMed  Google Scholar 

  59. Kirasic, K. C., Allen, G. L., Dobson, S. H., & Binder, K. S. (1996). Aging, cognitive resources, and declarative learning. Psychology and Aging, 11(4), 658–670.

    PubMed  Google Scholar 

  60. Marshall, P. S., Forstot, M., Callies, A., Peterson, P. K., & Schenck, C. H. (1997). Cognitive slowing and working memory difficulties in chronic fatigue syndrome. Psychosomatic Medicine, 59(1), 58–66.

    PubMed  Google Scholar 

  61. Byrne, M. D. (1998). Taking a computational approach to aging: The SPAN theory of working memory. Psychology and Aging, 13(2), 309–322.

    PubMed  Google Scholar 

  62. Anderson, V. A., Godber, T., Smibert, E., Weiskop, S., & Ekert, H. (2004). Impairments of attention following treatment with cranial irradiation and chemotherapy in children. Journal of Clinical and Experimental Neuropsychology, 26(5), 684–697.

    PubMed  Google Scholar 

  63. Andersson, S., Lovdahl, H., & Malt, U. F. (2010). Neuropsychological function in unmedicated recurrent brief depression. Journal of Affective Disorders, 125(1–3), 155–164.

    PubMed  Google Scholar 

  64. Ballard, C., Stephens, S., Kenny, R., Kalaria, R., Tovee, M., & O’Brien, J. (2003). Profile of neuropsychological deficits in older stroke survivors without dementia. Dementia and Geriatric Cognitive Disorders, 16(1), 52–56.

    PubMed  Google Scholar 

  65. Rao, S. M. (1995). Neuropsychology of multiple sclerosis. Current Opinion in Neurology, 8(3), 216–220.

    PubMed  Google Scholar 

  66. Rohlf, H., Jucksch, V., Gawrilow, C., et al. (2012). Set shifting and working memory in adults with attention-deficit/hyperactivity disorder. Journal of Neural Transmission, 119(1), 95–106.

    PubMed  Google Scholar 

  67. Stenneken, P., Egetemeir, J., Schulte-Korne, G., Muller, H. J., Schneider, W. X., & Finke, K. (2011). Slow perceptual processing at the core of developmental dyslexia: A parameter-based assessment of visual attention. Neuropsychologia, 49(12), 3454–3465.

    PubMed  Google Scholar 

  68. Strang-Karlsson, S., Andersson, S., Paile-Hyvarinen, M., et al. (2010). Slower reaction times and impaired learning in young adults with birth weight <1500 g. Pediatrics, 125(1), e74–e82.

    PubMed  Google Scholar 

  69. Stroup, S., Appelbaum, P., Swartz, M., et al. (2005). Decision-making capacity for research participation among individuals in the CATIE schizophrenia trial. Schizophrenia Research, 80(1), 1–8.

    PubMed  Google Scholar 

  70. Birren, J. E., Woods, A. M., & Williams, M. V. (1980). Behavioral slowing with age: Causes, organization and consequences. In L. W. Poon (Ed.), Aging in the 1980’s. Washington: American Psychological Association.

    Google Scholar 

  71. Batista, S., Zivadinov, R., Hoogs, M., et al. (2012). Basal ganglia, thalamus and neocortical atrophy predicting slowed cognitive processing in multiple sclerosis. Journal of Neurology, 259(1), 139–146.

    PubMed  Google Scholar 

  72. De Sonneville, L. M., Boringa, J. B., Reuling, I. E., Lazeron, R. H., Ader, H. J., & Polman, C. H. (2002). Information processing characteristics in subtypes of multiple sclerosis. Neuropsychologia, 40(11), 1751–1765.

    PubMed  Google Scholar 

  73. Lazeron, R. H., de Sonneville, L. M., Scheltens, P., Polman, C. H., & Barkhof, F. (2006). Cognitive slowing in multiple sclerosis is strongly associated with brain volume reduction. Multiple Sclerosis (Houndmills, Basingstoke, England), 12(6), 760–768.

    Google Scholar 

  74. Rao, S. M., St Aubin-Faubert, P., & Leo, G. J. (1989). Information processing speed in patients with multiple sclerosis. Journal of Clinical and Experimental Neuropsychology, 11(4), 471–477.

    PubMed  Google Scholar 

  75. Urbanek, C., Weinges-Evers, N., Bellmann-Strobl, J., et al. (2010). Attention Network Test reveals alerting network dysfunction in multiple sclerosis. Multiple Sclerosis (Houndmills, Basingstoke, England), 16(1), 93–99.

    Google Scholar 

  76. Arrondo, G., Alegre, M., Sepulcre, J., Iriarte, J., Artieda, J., & Villoslada, P. (2009). Abnormalities in brain synchronization are correlated with cognitive impairment in multiple sclerosis. Multiple Sclerosis (Houndmills, Basingstoke, England), 15(4), 509–516.

    Google Scholar 

  77. Scherer, P., Bauer, H., & Baum, K. (1997). Alternate finger tapping test in patients with migraine. Acta Neurologica Scandinavica, 96(6), 392–396.

    PubMed  Google Scholar 

  78. Paul, R. H., Beatty, W. W., Schneider, R., Blanco, C., & Hames, K. (1998). Impairments of attention in individuals with multiple sclerosis. Multiple Sclerosis (Houndmills, Basingstoke, England), 4(5), 433–439.

    Google Scholar 

  79. Sweet, L. H., Vanderhill, S. D., Jerskey, B. A., Gordon, N. M., Paul, R. H., & Cohen, R. A. (2010). Subvocal articulatory rehearsal during verbal working memory in multiple sclerosis. Neurocase, 16(5), 418–425.

    PubMed  Google Scholar 

  80. Chiaravalloti, N. D., & DeLuca, J. (2008). Cognitive impairment in multiple sclerosis. Lancet Neurology, 7(12), 1139–1151.

    PubMed  Google Scholar 

  81. DeLuca, J., Genova, H. M., Hillary, F. G., & Wylie, G. (2008). Neural correlates of cognitive fatigue in multiple sclerosis using functional MRI. Journal of the Neurological Sciences, 270(1–2), 28–39.

    PubMed  Google Scholar 

  82. DeLuca, J., Johnson, S. K., & Natelson, B. H. (1993). Information processing efficiency in chronic fatigue syndrome and multiple sclerosis. Archives of Neurology, 50(3), 301–304.

    PubMed  Google Scholar 

  83. Genova, H. M., Hillary, F. G., Wylie, G., Rypma, B., & Deluca, J. (2009). Examination of processing speed deficits in multiple sclerosis using functional magnetic resonance imaging. Journal of International Neuropsychological Society, 15(3), 383–393.

    Google Scholar 

  84. Paul, R. H., Ernst, T., Brickman, A. M., et al. (2008). Relative sensitivity of magnetic resonance spectroscopy and quantitative magnetic resonance imaging to cognitive function among nondemented individuals infected with HIV. Journal of International Neuropsychological Society, 14(5), 725–733.

    Google Scholar 

  85. Paul, R. H., Yiannoutsos, C. T., Miller, E. N., et al. (2007). Proton MRS and neuropsychological correlates in AIDS dementia complex: Evidence of subcortical specificity. The Journal of Neuropsychiatry and Clinical Neurosciences, 19(3), 283–292.

    PubMed  Google Scholar 

  86. Paul, R., Cohen, R., Navia, B., & Tashima, K. (2002). Relationships between cognition and structural neuroimaging findings in adults with human immunodeficiency virus type-1. Neuroscience and Biobehavioral Reviews, 26(3), 353–359.

    PubMed  Google Scholar 

  87. Cohen, R. A., Boland, R., Paul, R., et al. (2001). Neurocognitive performance enhanced by highly active antiretroviral therapy in HIV-infected women. AIDS (London, England), 15(3), 341–345.

    Google Scholar 

  88. Harezlak, J., Buchthal, S., Taylor, M., et al. (2011). Persistence of HIV-associated cognitive impairment, inflammation, and neuronal injury in era of highly active antiretroviral treatment. AIDS (London, England), 25(5), 625–633.

    Google Scholar 

  89. Gongvatana, A., Cohen, R. A., Correia, S., et al. (2011). Clinical contributors to cerebral white matter integrity in HIV-infected individuals. Journal of Neurovirology, 17(5), 477–486.

    PubMed  Google Scholar 

  90. Cohen, R. A., de la Monte, S., Gongvatana, A., et al. (2011). Plasma cytokine concentrations associated with HIV/hepatitis C coinfection are related to attention, executive and psychomotor functioning. Journal of Neuroimmunology, 233(1–2), 204–210.

    PubMed  Google Scholar 

  91. Gongvatana, A., Schweinsburg, B. C., Taylor, M. J., et al. (2009). White matter tract injury and cognitive impairment in human immunodeficiency virus-infected individuals. Journal of Neurovirology, 15(2), 187–195.

    PubMed  Google Scholar 

  92. Cohen, R. A., Poppas, A., Forman, D. E., et al. (2009). Vascular and cognitive functions associated with cardiovascular disease in the elderly. Journal of Clinical and Experimental Neuropsychology, 31(1), 96–110.

    PubMed  Google Scholar 

  93. Haley, A. P., Sweet, L. H., Gunstad, J., et al. (2007). Verbal working memory and atherosclerosis in patients with cardiovascular disease: An fMRI study. Journal of Neuroimaging, 17(3), 227–233.

    PubMed  Google Scholar 

  94. Jefferson, A. L., Tate, D. F., Poppas, A., et al. (2007). Lower cardiac output is associated with greater white matter hyperintensities in older adults with cardiovascular disease. Journal of American Geriatrics Society, 55(7), 1044–1048.

    Google Scholar 

  95. Hoth, K. F., Tate, D. F., Poppas, A., et al. (2007). Endothelial function and white matter hyperintensities in older adults with cardiovascular disease. Stroke; a journal of cerebral circulation, 38(2), 308–312.

    PubMed  Google Scholar 

  96. Haley, A. P., Forman, D. E., Poppas, A., et al. (2007). Carotid artery intima-media thickness and cognition in cardiovascular disease. International Journal of Cardiology, 121(2), 148–154.

    PubMed  Google Scholar 

  97. Jefferson, A. L., Paul, R. H., Ozonoff, A., & Cohen, R. A. (2006). Evaluating elements of executive functioning as predictors of instrumental activities of daily living (IADLs). Archives of Clinical Neuropsychology, 21(4), 311–320.

    PubMed  Google Scholar 

  98. Jefferson, A. L., Poppas, A., Paul, R. H., & Cohen, R. A. (2007). Systemic hypoperfusion is associated with executive dysfunction in geriatric cardiac patients. Neurobiology of Aging, 28(3), 477–483.

    PubMed  Google Scholar 

  99. Paul, R. H., Haque, O., Gunstad, J., et al. (2005). Subcortical hyperintensities impact cognitive function among a select subset of healthy elderly. Archives of Clinical Neuropsychology, 20(6), 697–704.

    PubMed  Google Scholar 

  100. Paul, R., Garrett, K., & Cohen, R. (2003). Vascular dementia: A diagnostic conundrum for the clinical neuropsychologist. Applied Neuropsychology, 10(3), 129–136.

    PubMed  Google Scholar 

  101. Cohen, R. A., Paul, R. H., Ott, B. R., et al. (2002). The relationship of subcortical MRI hyperintensities and brain volume to cognitive function in vascular dementia. Journal of International Neuropsychological Society, 8(6), 743–752.

    Google Scholar 

  102. Moser, D. J., Cohen, R. A., Paul, R. H., et al. (2001). Executive function and magnetic resonance imaging subcortical hyperintensities in vascular dementia. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 14(2), 89–92.

    PubMed  Google Scholar 

  103. Cohen, R. A., O’Donnell, B. F., Meadows, M. E., Moonis, M., Stone, W. F., & Drachman, D. A. (1995). ERP indices and neuropsychological performance as predictors of functional outcome in dementia. Journal of Geriatric Psychiatry and Neurology, 8(4), 217–225.

    PubMed  Google Scholar 

  104. Goodin, D. S., Squires, K. C., & Starr, A. (1978). Long latency event-related components of the auditory evoked potential in dementia. Brain, 101, 635–648.

    PubMed  Google Scholar 

  105. Goodin, D. S., Starr, A., Chippendale, T., & Squires, K. C. (1983). Sequential changes in the P3 component of the auditory evoked potential in confusional states and dementing illnesses. Neurology, 33(9), 1215–1218.

    PubMed  Google Scholar 

  106. Pfefferbaum, A., Ford, J. M., Roth, W. T., & Kopell, B. S. (1980). Age differences in P3-reaction time associations. Electroencephalography and Clinical Neurophysiology, 49, 257–265.

    PubMed  Google Scholar 

  107. Pfefferbaum, A., Ford, J. M., White, P. M., & Roth, W. T. (1989). P3 in schizophrenia is affected by stimulus modality, response requirements, medication status, and negative symptoms. Archives of General Psychiatry, 46(11), 1035–1044.

    PubMed  Google Scholar 

  108. Polich, J., Ladish, C., & Bloom, F. E. (1990). P300 assessment of early Alzheimer’s disease. Electroencephalography and Clinical Neurophysiology, 77(3), 179–189.

    PubMed  Google Scholar 

  109. Polich, J., Moore, A. P., & Wiederhold, M. D. (1995). P300 assessment of chronic fatigue syndrome. Journal of Clinical Neurophysiology, 12(2), 186–191.

    PubMed  Google Scholar 

  110. Polich, J., Pollock, V. E., & Bloom, F. E. (1994). Meta-analysis of P300 amplitude from males at risk for ­alcoholism. Psychological Bulletin, 115(1), 55–73.

    PubMed  Google Scholar 

  111. Syndulko, K., Hansch, E. C., Cohen, S. N., et al. (1982). Long-latency event-related potentials in normal aging and dementia. Advances in Neurology, 32, 279–285.

    PubMed  Google Scholar 

  112. Hansch, E. C., Syndulko, K., Cohen, S. N., Goldberg, Z. I., Potvin, A. R., & Tourtellotte, W. W. (1982). Cognition in Parkinson disease: An event-related potential perspective. Annals of Neurology, 11(6), 599–607.

    PubMed  Google Scholar 

  113. O’Donnell, B. F., Squires, N. K., Martz, M. J., Chen, J. R., & Phay, A. J. (1987). Evoked potential changes and neuropsychological performance in Parkinson’s disease. Biological Psychology, 24(1), 23–37.

    PubMed  Google Scholar 

  114. Homberg, V., Hefter, H., Granseyer, G., et al. (1986). Event-related potentials in patients with Huntington’s disease and relative at-risk in relation to detailed psychometry. Electroencephalography and Clinical Neurophysiology, 63, 552–569.

    PubMed  Google Scholar 

  115. Goodin, D. S., Aminoff, M. J., Kutukcu, Y., & Marks, W. J., Jr. (1999). Order effects in response times of parkinsonian patients and normal controls. Muscle & Nerve, 22(5), 567–572.

    Google Scholar 

  116. Kutukcu, Y., Marks, W. J., Jr., Goodin, D. S., & Aminoff, M. J. (1999). Simple and choice reaction time in Parkinson’s disease. Brain Research, 815(2), 367–372.

    PubMed  Google Scholar 

  117. Kutukcu, Y., Marks, W. J., Jr., Goodin, D. S., & Aminoff, M. J. (1998). Cerebral accompaniments to simple and choice reaction tasks in Parkinson’s disease. Brain Research, 799(1), 1–5.

    PubMed  Google Scholar 

  118. Goodin, D. S., & Aminoff, M. J. (1987). The distinction between different types of dementia using evoked potentials. Electroencephalography and Clinical Neurophysiology. Supplement, 40, 695–698.

    PubMed  Google Scholar 

  119. Goodin, D. S., & Aminoff, M. J. (1986). Electrophysiological differences between subtypes of dementia. Brain, 109(Pt 6), 1103–1113.

    PubMed  Google Scholar 

  120. O’Donnell, B. F., Cohen, R. A., Hokama, H., et al. (1993). Electrical source analysis of auditory ERPs in medial temporal lobe amnestic syndrome. Electroencephalography and Clinical Neurophysiology, 87(6), 394–402.

    PubMed  Google Scholar 

  121. Kraiuhin, C., Gordon, E., Meares, R., & Howson, A. (1986). Psychometrics and event-related potentials in the diagnosis of dementia. Journal of Gerontology, 41(2), 154–162.

    PubMed  Google Scholar 

  122. Gordon, E., Kraiuhin, C., Stanfield, P., Meares, R., & Howson, A. (1986). The prediction of normal P3 latency and the diagnosis of dementia. Neuropsychologia, 24(6), 823–830.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cohen, R.A. (2014). Processing Speed and Attentional Resources. In: The Neuropsychology of Attention. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-72639-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-72639-7_23

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-72638-0

  • Online ISBN: 978-0-387-72639-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics