Neural Constraints on Attention

  • Ronald A. Cohen


Attention is constrained by processing capacity and resource limitations that differ across people and vary within the individual over time. As discussed previously, the idea that people have a limited attentional capacity had its origins in information theory that became prominent in the early 1950s and was a key assumption of early theories of selective attention. A mechanism whereby information reduction was considered to be enabling selective attention to occur in the context of prevailing capacity limitations. Support for these capacity limitations came from a large number of studies showing that for certain types of selective attention, performance decreased dramatically when information load became excessive.


Selective Attention Sensory Modality Neural System Visual Tracking Brain System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Mesulam, M.-M. (Ed.). (2000). Principles of behavioral neurology (2nd ed.). New York, NY: Oxford University Press.Google Scholar
  2. 2.
    Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (2000). Principles of neural science (4th ed.). New York, NY: Health Professions Division, McGraw-Hill.Google Scholar
  3. 3.
    Crick, F. (1989). The recent excitement about neural networks. Nature, 337(6203), 129–132.PubMedCrossRefGoogle Scholar
  4. 4.
    Crick, F. H. C., & Asanuma, C. (1986). Certain aspects of the anatomy and physiology of the cerebral cortex. In J. L. McClelland & D. E. Rumelhart (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition (Vol. 2). Cambridge, MA: MIT Press.Google Scholar
  5. 5.
    Zikopoulos, B., & Barbas, H. (2007). Parallel driving and modulatory pathways link the prefrontal cortex and thalamus. PLoS One, 2(9), e848.PubMedCrossRefGoogle Scholar
  6. 6.
    Dombrowski, S. M., Hilgetag, C. C., & Barbas, H. (2001). Quantitative architecture distinguishes prefrontal cortical systems in the rhesus monkey. Cerebral Cortex, 11(10), 975–988.PubMedCrossRefGoogle Scholar
  7. 7.
    Barbas, H. (2000). Connections underlying the synthesis of cognition, memory, and emotion in primate prefrontal cortices. Brain Research Bulletin, 52(5), 319–330.PubMedCrossRefGoogle Scholar
  8. 8.
    Barbas, H., & Rempel-Clower, N. (1997). Cortical structure predicts the pattern of corticocortical connections. Cerebral Cortex, 7(7), 635–646.PubMedCrossRefGoogle Scholar
  9. 9.
    Barbas, H., & Pandya, D. N. (1987). Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey. The Journal of Comparative Neurology, 256(2), 211–228.PubMedCrossRefGoogle Scholar
  10. 10.
    Barbas, H. (1986). Pattern in the laminar origin of corticocortical connections. The Journal of Comparative Neurology, 252(3), 415–422.PubMedCrossRefGoogle Scholar
  11. 11.
    Foster, K. H., Gaska, J. P., Nagler, M., & Pollen, D. A. (1985). Spatial and temporal frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey. The Journal of Physiology, 365, 331–363.PubMedGoogle Scholar
  12. 12.
    Gaska, J. P., Jacobson, L. D., & Pollen, D. A. (1988). Spatial and temporal frequency selectivity of neurons in visual cortical area V3A of the macaque monkey. Vision Research, 28(11), 1179–1191.PubMedCrossRefGoogle Scholar
  13. 13.
    Gaska, J. P., Pollen, D. A., & Cavanagh, P. (1987). Diversity of complex cell responses to even- and odd-symmetric luminance profiles in the visual cortex of the cat. Experimental Brain Research. Experimentelle Hirnforschung, 68(2), 249–259.Google Scholar
  14. 14.
    Liu, Z., Gaska, J. P., Jacobson, L. D., & Pollen, D. A. (1992). Interneuronal interaction between members of quadrature phase and anti-phase pairs in the cat’s visual cortex. Vision Research, 32(7), 1193–1198.PubMedCrossRefGoogle Scholar
  15. 15.
    Pollen, D. A., Gaska, J. P., & Jacobson, L. D. (1990). Physiological constraints on models of visual cortical function. In R. M. J. Cotterill (Ed.), Models of brain function. New York, NY: Cambridge University Press.Google Scholar
  16. 16.
    Pollen, D. A., Gaska, J. P., & Jacobson, L. D. (1988). Responses of simple and complex cells to compound sine-wave gratings. Vision Research, 28(1), 25–39.PubMedGoogle Scholar
  17. 17.
    Desimone, R., & Gross, C. G. (1979). Visual areas in the temporal cortex of the macaque. Brain Research, 178, 363–380.PubMedCrossRefGoogle Scholar
  18. 18.
    Desimone, R., Albright, T. D., Gross, C. G., & Bruce, C. J. (1980). Responses of inferior temporal neurons to complex visual stimuli. Society for Neuroscience Abstracts, 6, 581.Google Scholar
  19. 19.
    Desimone, R. (1998). Visual attention mediated by biased competition in extrastriate visual cortex. Philosophical Transactions of the Royal Society of London, 353(1373), 1245–1255.PubMedCrossRefGoogle Scholar
  20. 20.
    Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222.PubMedCrossRefGoogle Scholar
  21. 21.
    Rumelhart, D., & McClelland, J. L. (1986). Parallel distributed processing: Explorations in the microstructure of cognition (Vol. 1 & 2). Cambridge, MA: MIT Press.Google Scholar
  22. 22.
    Gibson, J. J. (1950). The perception of visual world. Boston, MA: Houghton Mifflin.Google Scholar
  23. 23.
    Gibson, J. J. (1979). Ecological approach to visual perception. Boston, MA: Houghton Mifflin.Google Scholar
  24. 24.
    Hinton, G. E., Sijnowski, T. J., & Ackley, D. H. (1984). Boltzmann machines: Constraint satisfaction networks that learn. Pittsburgh, PA: Department of Computer Science, Carnegie-Mellon University.Google Scholar
  25. 25.
    Hinton, G. E., & Sejnowski, T. J. (1986). Learning and relearning in Boltzmann machines in parallel distributed processing: Explorations in the microstructure of cognition. Cambridge, MA: MIT Press.Google Scholar
  26. 26.
    Grossberg, S. (1976). Adaptive pattern classification and universal recoding, II: Feedback, expectation, olfaction, and illusions. Biological Cybernetics, 23, 187–202.PubMedCrossRefGoogle Scholar
  27. 27.
    Grossberg, S. (1980). How does the brain build a cognitive code? Psychological Review, 87, 1–51.PubMedCrossRefGoogle Scholar
  28. 28.
    Grossberg, S., Commons, M. L., Grossberg, S., & Staddon, J. E. R. (1991). A neural network architecture for Pavlovian conditioning: Reinforcement, attention, forgetting, timing. In M. L. Commons, S. Grossberg, & J. E. R. Staddon (Eds.), Neural network models of conditioning and action (pp. 69–122). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  29. 29.
    Grossberg S, Kuperstein, M. (1989). Neural dynamics of adaptive sensory-motor control. Expanded ed. New York, NY: Pergamon Press.Google Scholar
  30. 30.
    Grossberg, S., Mingolla, E., & Ross, W. D. (1994). A neural theory of attentive visual search: Interactions of boundary, surface, spatial, and object representations. Psychological Review, 101(3), 470–489.PubMedCrossRefGoogle Scholar
  31. 31.
    John, E. (1972). Switchboard versus statistical theories of learning and memory. Science, 11, 850–864.CrossRefGoogle Scholar
  32. 32.
    John, E. R. (1967). Mechanisms of memory. New York, NY: Academic Press.Google Scholar
  33. 33.
    Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders’ method. Acta Psychologica, 30, 276–315.CrossRefGoogle Scholar
  34. 34.
    Hillary, F. G., Genova, H. M., Medaglia, J. D., et al. (2010). The nature of processing speed deficits in traumatic brain injury: Is less brain more? Brain Imaging and Behavior, 4(2), 141–154.PubMedCrossRefGoogle Scholar
  35. 35.
    Eckert, M. A., Keren, N. I., Roberts, D. R., Calhoun, V. D., & Harris, K. C. (2010). Age-related changes in processing speed: Unique contributions of cerebellar and prefrontal cortex. Frontiers in Human Neuroscience, 4, 10.PubMedGoogle Scholar
  36. 36.
    Yuan, H., Perdoni, C., & He, B. (2010). Relationship between speed and EEG activity during imagined and executed hand movements. Journal of Neural Engineering, 7(2), 26001.PubMedCrossRefGoogle Scholar
  37. 37.
    DeLuca, J., Genova, H. M., Hillary, F. G., & Wylie, G. (2008). Neural correlates of cognitive fatigue in multiple sclerosis using functional MRI. Journal of the Neurological Sciences, 270(1–2), 28–39.PubMedCrossRefGoogle Scholar
  38. 38.
    Hoffmann, S., Tittgemeyer, M., & von Cramon, D. Y. (2007). Cognitive impairment in multiple sclerosis. Current Opinion in Neurology, 20(3), 275–280.PubMedCrossRefGoogle Scholar
  39. 39.
    Anstey, K. J., Mack, H. A., Christensen, H., et al. (2007). Corpus callosum size, reaction time speed and variability in mild cognitive disorders and in a normative sample. Neuropsychologia, 45(8), 1911–1920.PubMedCrossRefGoogle Scholar
  40. 40.
    Bokeriia, L. A., Golukhova, E. Z., Polunina, A. G., Davydov, D. M., & Begachev, A. V. (2005). Neural correlates of cognitive dysfunction after cardiac surgery. Brain Research. Brain Research Reviews, 50(2), 266–274.PubMedCrossRefGoogle Scholar
  41. 41.
    Braver, T. S., Reynolds, J. R., & Donaldson, D. I. (2003). Neural mechanisms of transient and sustained cognitive control during task switching. Neuron, 39(4), 713–726.PubMedCrossRefGoogle Scholar
  42. 42.
    Caplan, D., Waters, G., & Alpert, N. (2003). Effects of age and speed of processing on rCBF correlates of syntactic processing in sentence comprehension. Human Brain Mapping, 19(2), 112–131.PubMedCrossRefGoogle Scholar
  43. 43.
    Archibald, C. J., & Fisk, J. D. (2000). Information processing efficiency in patients with multiple sclerosis. Journal of Clinical and Experimental Neuropsychology, 22(5), 686–701.PubMedCrossRefGoogle Scholar
  44. 44.
    Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381(6582), 520–522.PubMedCrossRefGoogle Scholar
  45. 45.
    Carretta, T. R., & Ree, M. J. (1996). U.S. Air Force pilot selection tests: What is measured and what is predictive? Aviation, Space, and Environmental Medicine, 67(3), 279–283.PubMedGoogle Scholar
  46. 46.
    Chiaravalloti, N. D., & DeLuca, J. (2008). Cognitive impairment in multiple sclerosis. Lancet Neurology, 7(12), 1139–1151.PubMedCrossRefGoogle Scholar
  47. 47.
    DeLuca, J., Johnson, S. K., Beldowicz, D., & Natelson, B. H. (1995). Neuropsychological impairments in chronic fatigue syndrome, multiple sclerosis, and depression. Journal of Neurology, Neurosurgery, & Psychiatry, 58(1), 38–43.CrossRefGoogle Scholar
  48. 48.
    Dineen, R. A., Vilisaar, J., Hlinka, J., et al. (2009). Disconnection as a mechanism for cognitive dysfunction in multiple sclerosis. Brain, 132(Pt 1), 239–249.PubMedGoogle Scholar
  49. 49.
    Lazeron, R. H., de Sonneville, L. M., Scheltens, P., Polman, C. H., & Barkhof, F. (2006). Cognitive slowing in multiple sclerosis is strongly associated with brain volume reduction. Multiple Sclerosis (Houndmills, Basingstoke, England), 12(6), 760–768.CrossRefGoogle Scholar
  50. 50.
    Oken, B. S., Flegal, K., Zajdel, D., et al. (2006). Cognition and fatigue in multiple sclerosis: Potential effects of medications with central nervous system activity. Journal of Rehabilitation Research and Development, 43(1), 83–90.PubMedCrossRefGoogle Scholar
  51. 51.
    Rao, S. M., St Aubin-Faubert, P., & Leo, G. J. (1989). Information processing speed in patients with multiple sclerosis. Journal of Clinical and Experimental Neuropsychology, 11(4), 471–477.PubMedCrossRefGoogle Scholar
  52. 52.
    Till, C., Ghassemi, R., Aubert-Broche, B., et al. (2011). MRI correlates of cognitive impairment in childhood-onset multiple sclerosis. Neuropsychology, 25(3), 319–332.PubMedCrossRefGoogle Scholar
  53. 53.
    Lydic, R., Albers, H. E., Tepper, B., & Moore-Ede, M. C. (1982). Three-dimensional structure of the mammalian suprachiasmatic nuclei: A comparative study of five species. The Journal of Comparative Neurology, 204, 225–237.PubMedCrossRefGoogle Scholar
  54. 54.
    Albers, H. E., Lydic, R., Gander, P. H., & Moore-Ede, M. C. (1984). Role of the suprachiasmatic nuclei in the circadian timing system of the squirrel monkey. I. The generation of rhythmicity. Brain Research, 300, 275–284.PubMedCrossRefGoogle Scholar
  55. 55.
    Cohen, R. A., & Albers, H. E. (1991). Disruption of human circadian and cognitive regulation following a discrete hypothalamic lesion: A case study. Neurology, 41(5), 726–729.PubMedCrossRefGoogle Scholar
  56. 56.
    Cohen, R. A., Barnes, H. J., Jenkins, M., & Albers, H. E. (1997). Disruption of short-duration timing associated with damage to the suprachiasmatic region of the hypothalamus. Neurology, 48(6), 1533–1539.PubMedCrossRefGoogle Scholar
  57. 57.
    Ivry, R. B., Keele, S.W., Diener, H. C. (1988). Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Experimental brain research. Experimentelle Hirnforschung, 73(1):167–180.PubMedCrossRefGoogle Scholar
  58. 58.
    Meck, W. H. (1984). Attentional bias between modalities: Effect on the internal clock, memory, and decision stages used in animal time discrimination. In J. Gibbon & L. Allan (Eds.), Timing and time perception (Annals of the New York Academy of Sciences) (pp. 528–541). New York, NY: New York Academy of Sciences.Google Scholar
  59. 59.
    Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes (Vol. 2). New York, NY: Academic Press.Google Scholar
  60. 60.
    Merzenich, M. M., Kaas, J. H., Wall, J. T., Sur, M., Nelson, R. J., & Feldman, D. J. (1983). Progression of change following median nerve section in the cortical representation of the hand in areas 3b and 1 in adult owl and squirrel monkeys. Neuroscience, 10, 639–665.PubMedCrossRefGoogle Scholar
  61. 61.
    Bansal, A. K., Truccolo, W., Vargas-Irwin, C. E., & Donoghue, J. P. (2012). Decoding 3D reach and grasp from hybrid signals in motor and premotor cortices: Spikes, multiunit activity, and local field potentials. Journal of Neurophysiology, 107(5), 1337–1355.PubMedCrossRefGoogle Scholar
  62. 62.
    Truccolo, W., Friehs, G. M., Donoghue, J. P., & Hochberg, L. R. (2008). Primary motor cortex tuning to intended movement kinematics in humans with tetraplegia. The Journal of Neuroscience, 28(5), 1163–1178.PubMedCrossRefGoogle Scholar
  63. 63.
    Rioult-Pedotti, M. S., Donoghue, J. P., & Dunaevsky, A. (2007). Plasticity of the synaptic modification range. Journal of Neurophysiology, 98(6), 3688–3695.PubMedCrossRefGoogle Scholar
  64. 64.
    Donoghue, J. P., Hochberg, L. R., Nurmikko, A. V., Black, M. J., Simeral, J. D., & Friehs, G. (2007). Neuromotor prosthesis development. Medicine and Health, Rhode Island, 90(1), 12–15.PubMedGoogle Scholar
  65. 65.
    Hochberg, L. R., Serruya, M. D., Friehs, G. M., et al. (2006). Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature, 442(7099), 164–171.PubMedCrossRefGoogle Scholar
  66. 66.
    Donoghue, J. P., Nurmikko, A., Friehs, G., & Black, M. (2004). Development of neuromotor prostheses for humans. Supplements to Clinical Neurophysiology, 57, 592–606.PubMedCrossRefGoogle Scholar
  67. 67.
    Hopkins, W. F., & Johnston, D. (1984). Frequency-dependent noradrenergic modulation of long-term potentiation in the hippocampus. Science., 226, 350–352.PubMedCrossRefGoogle Scholar
  68. 68.
    Grunditz, A., Holbro, N., Tian, L., Zuo, Y., & Oertner, T. G. (2008). Spine neck plasticity controls postsynaptic calcium signals through electrical compartmentalization. The Journal of Neuroscience, 28(50), 13457–13466.PubMedCrossRefGoogle Scholar
  69. 69.
    Madara, J. C., & Levine, E. S. (2008). Presynaptic and postsynaptic NMDA receptors mediate distinct effects of brain-derived neurotrophic factor on synaptic transmission. Journal of Neurophysiology, 100(6), 3175–3184.PubMedCrossRefGoogle Scholar
  70. 70.
    Crozier, R. A., Bi, C., Han, Y. R., & Plummer, M. R. (2008). BDNF modulation of NMDA receptors is activity dependent. Journal of Neurophysiology, 100(6), 3264–3274.PubMedCrossRefGoogle Scholar
  71. 71.
    Bear, M. F., & Malenka, R. C. (1994). Synaptic plasticity: LTP and LTD. Current Opinion in Neurobiology, 4(3), 389–399.PubMedCrossRefGoogle Scholar
  72. 72.
    Campbell, K. A. (1990). Plasticity in the propagation of hippocampal stimulation-induced activity: A [14C]2-deoxyglucose mapping study. Brain Research, 520(1–2), 199–207.PubMedCrossRefGoogle Scholar
  73. 73.
    Stelzer, A., Slater, N. T., & ten Bruggencate, G. (1987). Activation of NMDA receptors blocks GABAergic inhibition in an in vitro model of epilepsy. Nature, 326(6114), 698–701.PubMedCrossRefGoogle Scholar
  74. 74.
    Kaufer, D., Friedman, A., Seidman, S., & Soreq, H. (1998). Acute stress facilitates long-lasting changes in cholinergic gene expression. Nature, 393(6683), 373–377.PubMedCrossRefGoogle Scholar
  75. 75.
    Ryan, B. K., Vollmayr, B., Klyubin, I., Gass, P., & Rowan, M. J. (2010). Persistent inhibition of hippocampal long-term potentiation in vivo by learned helplessness stress. Hippocampus, 20(6), 758–767.PubMedCrossRefGoogle Scholar
  76. 76.
    Kasamatsu, T., Pettigrew, J., & Ary, M. (1979). Restoration of visual cortical plasticity by local microperfusion of norepinephrine. The Journal of Comparative Neurology, 185, 163–182.PubMedCrossRefGoogle Scholar
  77. 77.
    Kasamatsu, T. (1983). Neuronal plasticity maintained by the central norepinephrine system in the cat visual cortex. In A. N. Epstein & M. James (Eds.), Progress in psychobiology and physiological psychology (pp. 1–83). New York, NY: Academic Press.Google Scholar
  78. 78.
    Sacchetti, B., Scelfo, B., Tempia, F., & Strata, P. (2004). Long-term synaptic changes induced in the cerebellar cortex by fear conditioning. Neuron, 42(6), 973–982.PubMedCrossRefGoogle Scholar
  79. 79.
    Medina, J. F., Nores, W. L., & Mauk, M. D. (2002). Inhibition of climbing fibres is a signal for the extinction of conditioned eyelid responses. Nature, 416(6878), 330–333.PubMedCrossRefGoogle Scholar
  80. 80.
    Aumann, T. D., Redman, S. J., & Horne, M. K. (2000). Long-term potentiation across rat cerebello-thalamic synapses in vitro. Neuroscience Letters, 287(2), 151–155.PubMedCrossRefGoogle Scholar
  81. 81.
    Kreitzer, A. C., & Malenka, R. C. (2008). Striatal plasticity and basal ganglia circuit function. Neuron, 60(4), 543–554.PubMedCrossRefGoogle Scholar
  82. 82.
    Fino, E., & Venance, L. (2011). Spike-timing dependent plasticity in striatal interneurons. Neuropharmacology, 60(5), 780–788.PubMedCrossRefGoogle Scholar
  83. 83.
    Fino, E., & Venance, L. (2010). Spike-timing dependent plasticity in the striatum. Frontiers in Synaptic Neuroscience, 2, 6.PubMedGoogle Scholar
  84. 84.
    Worgotter, F., & Porr, B. (2005). Temporal sequence learning, prediction, and control: A review of different models and their relation to biological mechanisms. Neural Computation, 17(2), 245–319.PubMedCrossRefGoogle Scholar
  85. 85.
    D’Angelo, E., Mazzarello, P., Prestori, F., et al. (2011). The cerebellar network: From structure to function and dynamics. Brain Research Reviews, 66(1–2), 5–15.PubMedCrossRefGoogle Scholar
  86. 86.
    D’Angelo, E., Koekkoek, S. K., Lombardo, P., et al. (2009). Timing in the cerebellum: Oscillations and resonance in the granular layer. Neuroscience, 162(3), 805–815.PubMedCrossRefGoogle Scholar
  87. 87.
    Treisman, A. M. (1964). Selective attention in man. British Medical Bulletin, 20, 12–16.PubMedGoogle Scholar
  88. 88.
    McLeod, P., & Posner, M. I. (1984). Privileged loops from perception to act. In H. B. D. Bowhius (Ed.), Attention and performance X. Hillsdale, NJ: Erlbaum.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ronald A. Cohen
    • 1
    • 2
    • 3
  1. 1.Departments of Neurology, Psychiatry and AgingGainesvilleUSA
  2. 2.Center for Cognitive Aging and MemoryUniversity of Florida College of MedicineGainesvilleUSA
  3. 3.Department of Psychiatry and Human Behavior Warren Alpert School of MedicineBrown UniversityProvidenceUSA

Personalised recommendations