Consciousness and Self-Directed Attention

  • Ronald A. Cohen


The relationship between external reality and people’s subjective experience of it has been the subject of philosophical inquiry over the past 2,000 years. These efforts reached a peak during the European Renaissance in the debates between adherents of monism vs. dualism over whether or not objective reality and subjective experience are unified or entirely distinct phenomena that can never being fully reduced or understood relative to one another. A manifestation of this debate was the mind–body problem. Is consideration of the physical and mechanistic underpinnings of human physiology necessary for understanding mental experience? Furthermore, is objectivity theoretically possible if subjective mental experience is distinct from objective reality? Questions regarding the nature of human consciousness and awareness of self relative to the external world have tended to be either implicitly or explicitly embedded in these philosophical debates which continue even today.


Conscious Experience Conscious Awareness Supervisory Control Body Schema Attentional Selection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Pribram, K. H. (1976). Problems concerning the structure of consciousness. In G. Globus, G. Maxell, & I. Savodnik (Eds.), Science and the mind-brain puzzle. New York: Plenum Press.Google Scholar
  2. 2.
    Churchland, P. S., & Sejnowski, T. J. (1988). Perspectives on cognitive neuroscience. Science (New York, NY), 242(4879), 741–745.CrossRefGoogle Scholar
  3. 3.
    Churchland, P. S., & Sejnowski, T. J. (1992). The computational brain. Cambridge: The MIT Press.Google Scholar
  4. 4.
    Norton, L., Hutchison, R. M., Young, G. B., Lee, D. H., Sharpe, M. D., & Mirsattari, S. M. (2012). Disruptions of functional connectivity in the default mode network of comatose patients. Neurology, 78(3), 175–181.PubMedCrossRefGoogle Scholar
  5. 5.
    Crone, J. S., Ladurner, G., Holler, Y., Golaszewski, S., Trinka, E., & Kronbichler, M. (2011). Deactivation of the default mode network as a marker of impaired consciousness: An fMRI study. PLoS One, 6(10), e26373.PubMedCrossRefGoogle Scholar
  6. 6.
    Searle, J. (1990). Is the brain’s mind a computer program? No. A program merely manipulates symbols, whereas a brain attaches meaning to them. Scientific American, 202, 26–31.CrossRefGoogle Scholar
  7. 7.
    Daugman, J. (1990). Brain metaphor and brain theory. In E. L. Schwartz (Ed.), Computational neuroscience. Boston: MIT Press.Google Scholar
  8. 8.
    Power, J. D., Cohen, A. L., Nelson, S. M., et al. (2011). Functional network organization of the human brain. Neuron, 72(4), 665–678.PubMedCrossRefGoogle Scholar
  9. 9.
    Dennett, D. C. (1996). Kinds of minds: Toward an understanding of consciousness. New York: Basic Books.Google Scholar
  10. 10.
    Dennett, D. C., Ito, M., Miyashita, Y., & Rolls, E. T. (1997). Consciousness in human and robot minds. In M. Ito, Y. Miyashita, & E. T. Rolls (Eds.), Cognition, computation, and consciousness (pp. 17–29). New York: Oxford University Press.CrossRefGoogle Scholar
  11. 11.
    Dennett, D. C., & Kinsbourne, M. (1992). Time and the observer: The where and when of consciousness in the brain. The Behavioral and Brain Sciences, 15(2), 183–247.CrossRefGoogle Scholar
  12. 12.
    Dennett, D. C., & Levitin, D. J. (2002). Where am I? In D. J. Levitin (Ed.), Foundations of cognitive psychology: Core readings (pp. 23–33). Cambridge: MIT Press.Google Scholar
  13. 13.
    Dennett, D. C., & Weiner, P. (1991). Consciousness explained. Boston, MA: Little, Brown.Google Scholar
  14. 14.
    Brewer, J. A., Worhunsky, P. D., Gray, J. R., Tang, Y. Y., Weber, J., & Kober, H. (2011). Meditation experience is associated with differences in default mode network activity and connectivity. Proceedings of the National Academy of Sciences of the United States of America, 108(50), 20254–20259.PubMedCrossRefGoogle Scholar
  15. 15.
    Alluri, V., Toiviainen, P., Jaaskelainen, I. P., Glerean, E., Sams, M., & Brattico, E. (2012). Large-scale brain networks emerge from dynamic processing of musical timbre, key and rhythm. NeuroImage, 59(4), 3677–3689.PubMedCrossRefGoogle Scholar
  16. 16.
    Minati, L., Grisoli, M., Franceschetti, S., et al. (2012). Neural signatures of economic parameters during decision-making: A functional MRI (FMRI), electroencephalography (EEG) and autonomic monitoring study. Brain Topography, 25(1), 73–96.PubMedCrossRefGoogle Scholar
  17. 17.
    Santhanam, P., Coles, C. D., Li, Z., Li, L., Lynch, M. E., & Hu, X. (2011). Default mode network dysfunction in adults with prenatal alcohol exposure. Psychiatry Research, 194(3), 354–362.PubMedCrossRefGoogle Scholar
  18. 18.
    Zuo, X. N., & Xing, X. X. (2011). Effects of non-local diffusion on structural MRI preprocessing and default ­network mapping: Statistical comparisons with isotropic/anisotropic diffusion. PLoS One, 6(10), e26703.PubMedCrossRefGoogle Scholar
  19. 19.
    Buckner, R. L. (2012). The serendipitous discovery of the brain’s default network. NeuroImage, 62(2), 1137–1145.PubMedCrossRefGoogle Scholar
  20. 20.
    Schinkel, S., Zamora-Lopez, G., Dimigen, O., Sommer, W., & Kurths, J. (2011). Functional network analysis reveals differences in the semantic priming task. Journal of Neuroscience Methods, 197(2), 333–339.PubMedCrossRefGoogle Scholar
  21. 21.
    Lavallee, C. F., Hunter, M. D., & Persinger, M. A. (2011). Intracerebral source generators characterizing concentrative meditation. Cognitive Processing, 12(2), 141–150.PubMedCrossRefGoogle Scholar
  22. 22.
    Marquand, A. F., De Simoni, S., O’Daly, O. G., Williams, S. C., Mourao-Miranda, J., & Mehta, M. A. (2011). Pattern classification of working memory networks reveals differential effects of methylphenidate, atomoxetine, and placebo in healthy volunteers. Neuropsychopharmacology, 36(6), 1237–1247.PubMedCrossRefGoogle Scholar
  23. 23.
    Wu, X., Li, R., Fleisher, A. S., et al. (2011). Altered default mode network connectivity in Alzheimer’s disease—A resting functional MRI and Bayesian network study. Human Brain Mapping, 32(11), 1868–1881.PubMedCrossRefGoogle Scholar
  24. 24.
    Grimm, S., Ernst, J., Boesiger, P., Schuepbach, D., Boeker, H., & Northoff, G. (2011). Reduced negative BOLD responses in the default-mode network and increased self-focus in depression. The World Journal of Biological Psychiatry, 12(8), 627–637.PubMedCrossRefGoogle Scholar
  25. 25.
    Beason-Held, L. L. (2011). Dementia and the default mode. Current Alzheimer Research, 8(4), 361–365.PubMedCrossRefGoogle Scholar
  26. 26.
    Uddin, L. Q. (2011). The self in autism: An emerging view from neuroimaging. Neurocase, 17(3), 201–208.PubMedCrossRefGoogle Scholar
  27. 27.
    Deshpande, G., Santhanam, P., & Hu, X. (2011). Instantaneous and causal connectivity in resting state brain networks derived from functional MRI data. NeuroImage, 54(2), 1043–1052.PubMedCrossRefGoogle Scholar
  28. 28.
    Seubert, J., Kellermann, T., Loughead, J., et al. (2010). Processing of disgusted faces is facilitated by odor primes: A functional MRI study. NeuroImage, 53(2), 746–756.PubMedCrossRefGoogle Scholar
  29. 29.
    Schwartz, G. E. (1973). Biofeedback as therapy. Some theoretical and practical issues. American Psychologist, 28(8), 666–673.PubMedCrossRefGoogle Scholar
  30. 30.
    Shapiro, D., & Schwartz, G. E. (1972). Biofeedback and visceral learning: Clinical applications. Seminars in Psychiatry, 4(2), 171–184.PubMedGoogle Scholar
  31. 31.
    Hafner, R. J. (1982). Psychological treatment of essential hypertension: A controlled comparison of meditation and meditation plus biofeedback. Biofeedback and Self-Regulation, 7(3), 305–316.PubMedCrossRefGoogle Scholar
  32. 32.
    Williamson, D. A., Jarrell, M. P., Monguillot, J. E., & Hutchinson, P. (1983). Comparisons of high, medium, and low feedback sensitivity for the control of heart-rate acceleration. Biofeedback and Self-Regulation, 8(1), 39–44.PubMedCrossRefGoogle Scholar
  33. 33.
    Williamson, D. A., Monguillot, J. E., Hutchinson, P., Jarrell, M. P., & Blouin, D. (1981). Effect of feedback sensitivity upon learned heart rate acceleration. Psychophysiology, 18(6), 712–715.PubMedCrossRefGoogle Scholar
  34. 34.
    Williamson, D. A., & Blanchard, E. B. (1979). Effect of feedback delay upon learned heart rate control. Psychophysiology, 16(2), 108–115.PubMedCrossRefGoogle Scholar
  35. 35.
    Katkin, E. S. (1985). Blood, sweat, and tears: Individual differences in autonomic self-perception. Psychophysiology, 22(2), 125–137.PubMedCrossRefGoogle Scholar
  36. 36.
    Shallice, T., & Burgess, P. (1996). The domain of supervisory processes and temporal organization of behaviour. Philosophical Transactions of the Royal Society of London, 351(1346), 1405–1411; discussion 1411–1402.Google Scholar
  37. 37.
    Jaiswal, N., Ray, W., & Slobounov, S. (2010). Encoding of visual-spatial information in working memory requires more cerebral efforts than retrieval: Evidence from an EEG and virtual reality study. Brain Research, 1347, 80–89.PubMedCrossRefGoogle Scholar
  38. 38.
    Damasio, A. R. (1994). Descartes’ error. New York, NY: Harper Collins.Google Scholar
  39. 39.
    Damasio, A. R. (2010). Self comes to mind: Constructing the conscious brain. New York, NY: Random House.Google Scholar
  40. 40.
    Pribram, K. H. (1978). Consciousness and neurophysiology. Federation Proceedings, 37(9), 2271–2274.PubMedGoogle Scholar
  41. 41.
    Shallice, T. (1972). Dual functions of consciousness. Psychological Review, 79(5), 383–393.PubMedCrossRefGoogle Scholar
  42. 42.
    Hebb, D. O. (1949). The organization of behavior. New York: Wiley.Google Scholar
  43. 43.
    Atkinson, R. C., & Shiffrin, R. M. (1971). The control of short-term memory. Scientific American, 224, 82–90.CrossRefGoogle Scholar
  44. 44.
    Turvey, M. (1977). Preliminaries to a theory of action with reference to vision. In R. Shaw & J. Bransford (Eds.), Perceiving, acting and knowing: Toward an ecological psychology. Hillsdale, NJ: Erlbaum.Google Scholar
  45. 45.
    Bluhm, R. L., Osuch, E. A., Lanius, R. A., et al. (2008). Default mode network connectivity: Effects of age, sex, and analytic approach. Neuroreport, 19(8), 887–891.PubMedCrossRefGoogle Scholar
  46. 46.
    Buckner, R. L., & Vincent, J. L. (2007). Unrest at rest: Default activity and spontaneous network correlations. NeuroImage, 37(4), 1091–1096; discussion 1097–1099.Google Scholar
  47. 47.
    Buckner, R. L., & Carroll, D. C. (2007). Self-projection and the brain. Trends in Cognitive Sciences, 11(2), 49–57.PubMedCrossRefGoogle Scholar
  48. 48.
    Esposito, F., Bertolino, A., Scarabino, T., et al. (2006). Independent component model of the default-mode brain function: Assessing the impact of active thinking. Brain Research Bulletin, 70(4–6), 263–269.PubMedCrossRefGoogle Scholar
  49. 49.
    Golland, Y., Bentin, S., Gelbard, H., et al. (2007). Extrinsic and intrinsic systems in the posterior cortex of the human brain revealed during natural sensory stimulation. Cerebral Cortex, 17(4), 766–777.PubMedCrossRefGoogle Scholar
  50. 50.
    Greicius, M. D., & Menon, V. (2004). Default-mode activity during a passive sensory task: Uncoupled from deactivation but impacting activation. Journal of Cognitive Neuroscience, 16(9), 1484–1492.PubMedCrossRefGoogle Scholar
  51. 51.
    Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 253–258.PubMedCrossRefGoogle Scholar
  52. 52.
    Kompus, K. (2011). Default mode network gates the retrieval of task-irrelevant incidental memories. Neuroscience Letters, 487(3), 318–321.PubMedCrossRefGoogle Scholar
  53. 53.
    Vanhaudenhuyse, A., Noirhomme, Q., Tshibanda, L. J., et al. (2010). Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain, 133(Pt 1), 161–171.PubMedCrossRefGoogle Scholar
  54. 54.
    Travis, F., Haaga, D. A., Hagelin, J., et al. (2010). A self-referential default brain state: Patterns of coherence, power, and eLORETA sources during eyes-closed rest and Transcendental Meditation practice. Cognitive Processing, 11(1), 21–30.PubMedCrossRefGoogle Scholar
  55. 55.
    Horovitz, S. G., Braun, A. R., Carr, W. S., et al. (2009). Decoupling of the brain’s default mode network during deep sleep. Proceedings of the National Academy of Sciences of the United States of America, 106(27), 11376–11381.PubMedCrossRefGoogle Scholar
  56. 56.
    Cauda, F., Micon, B. M., Sacco, K., et al. (2009). Disrupted intrinsic functional connectivity in the vegetative state. Journal of Neurology, Neurosurgery, and Psychiatry, 80(4), 429–431.PubMedCrossRefGoogle Scholar
  57. 57.
    Horovitz, S. G., Fukunaga, M., de Zwart, J. A., et al. (2008). Low frequency BOLD fluctuations during resting wakefulness and light sleep: A simultaneous EEG-fMRI study. Human Brain Mapping, 29(6), 671–682.PubMedCrossRefGoogle Scholar
  58. 58.
    Liotti, M., Brannan, S., Egan, G., et al. (2001). Brain responses associated with consciousness of breathlessness (air hunger). Proceedings of the National Academy of Sciences of the United States of America, 98(4), 2035–2040.PubMedCrossRefGoogle Scholar
  59. 59.
    Brannan, S., Liotti, M., Egan, G., et al. (2001). Neuroimaging of cerebral activations and deactivations associated with hypercapnia and hunger for air. Proceedings of the National Academy of Sciences of the United States of America, 98(4), 2029–2034.PubMedCrossRefGoogle Scholar
  60. 60.
    Yoshii, N., & Fukuda, S. (1976). Several clinical aspects of thalamic pulvinotomy. Applied Neurophysiology, 39(3–4), 162–164.PubMedGoogle Scholar
  61. 61.
    Zhang, S., & Li, C. S. (2012). Functional connectivity mapping of the human precuneus by resting state fMRI. NeuroImage, 59(4), 3548–3562.PubMedCrossRefGoogle Scholar
  62. 62.
    Zhang, Z., Liao, W., Chen, H., et al. (2011). Altered functional-structural coupling of large-scale brain networks in idiopathic generalized epilepsy. Brain, 134(Pt 10), 2912–2928.PubMedCrossRefGoogle Scholar
  63. 63.
    Song, M., Du, H., Wu, N., et al. (2011). Impaired resting-state functional integrations within default mode network of generalized tonic-clonic seizures epilepsy. PLoS One, 6(2), e17294.PubMedCrossRefGoogle Scholar
  64. 64.
    Smyser, C. D., Inder, T. E., Shimony, J. S., et al. (2010). Longitudinal analysis of neural network development in preterm infants. Cerebral Cortex, 20(12), 2852–2862.PubMedCrossRefGoogle Scholar
  65. 65.
    Zhang, Z., Lu, G., Zhong, Y., et al. (2010). fMRI study of mesial temporal lobe epilepsy using amplitude of low-frequency fluctuation analysis. Human Brain Mapping, 31(12), 1851–1861.PubMedCrossRefGoogle Scholar
  66. 66.
    Martuzzi, R., Ramani, R., Qiu, M., Rajeevan, N., & Constable, R. T. (2010). Functional connectivity and alterations in baseline brain state in humans. NeuroImage, 49(1), 823–834.PubMedCrossRefGoogle Scholar
  67. 67.
    Habas, C. (2010). Functional connectivity of the human rostral and caudal cingulate motor areas in the brain resting state at 3T. Neuroradiology, 52(1), 47–59.PubMedCrossRefGoogle Scholar
  68. 68.
    Boly, M., Tshibanda, L., Vanhaudenhuyse, A., et al. (2009). Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient. Human Brain Mapping, 30(8), 2393–2400.PubMedCrossRefGoogle Scholar
  69. 69.
    Kim, D. I., Mathalon, D. H., Ford, J. M., et al. (2009). Auditory oddball deficits in schizophrenia: An independent component analysis of the fMRI multisite function BIRN study. Schizophrenia Bulletin, 35(1), 67–81.PubMedCrossRefGoogle Scholar
  70. 70.
    Williamson, P. (2007). Are anticorrelated networks in the brain relevant to schizophrenia? Schizophrenia Bulletin, 33(4), 994–1003.PubMedCrossRefGoogle Scholar
  71. 71.
    Greicius, M. D., Flores, B. H., Menon, V., et al. (2007). Resting-state functional connectivity in major depression: Abnormally increased contributions from subgenual cingulate cortex and thalamus. Biological Psychiatry, 62(5), 429–437.PubMedCrossRefGoogle Scholar
  72. 72.
    Lashley, K. S. (1929). Brain mechanisms and intelligence: A quantitative study of injuries to the brain. Chicago: Chicago University Press.CrossRefGoogle Scholar
  73. 73.
    Sager, O. (1972). The role of reticular formation in integration. Revue Roumaine de Neurologie, 9(6), 373–380.PubMedGoogle Scholar
  74. 74.
    Merker, B. (2007). Consciousness without a cerebral cortex: a challenge for neuroscience and medicine. The Behavioral and Brain Sciences, 30(1), 63–81; discussion 81–134.Google Scholar
  75. 75.
    The Multi-Society Task Force on PVS. (1994). Medical aspects of the persistent vegetative state (2). The New England Journal of Medicine, 330(22), 1572–1579.CrossRefGoogle Scholar
  76. 76.
    Barrett, A. M., Eslinger, P. J., Ballentine, N. H., & Heilman, K. M. (2005). Unawareness of cognitive deficit (cognitive anosognosia) in probable AD and control subjects. Neurology, 64(4), 693–699.PubMedCrossRefGoogle Scholar
  77. 77.
    Plum, F. (1972). Organic disturbances of consciousness. In M. C. J. L. O’Leary (Ed.), Scientific foundations of neurology. Philadelphia: F.A. Davis.Google Scholar
  78. 78.
    Adair, J. C., Schwartz, R. L., Na, D. L., Fennell, E., Gilmore, R. L., & Heilman, K. M. (1997). Anosognosia: Examining the disconnection hypothesis. Journal of Neurology, Neurosurgery, and Psychiatry, 63(6), 798–800.PubMedCrossRefGoogle Scholar
  79. 79.
    Lu, L. H., Barrett, A. M., Schwartz, R. L., et al. (1997). Anosognosia and confabulation during the Wada test. Neurology, 49(5), 1316–1322.PubMedCrossRefGoogle Scholar
  80. 80.
    Adair, J. C., Na, D. L., Schwartz, R. L., Fennell, E. M., Gilmore, R. L., & Heilman, K. M. (1995). Anosognosia for hemiplegia: Test of the personal neglect hypothesis. Neurology, 45(12), 2195–2199.PubMedCrossRefGoogle Scholar
  81. 81.
    Shuren, J. E., Hammond, C. S., Maher, L. M., Rothi, L. J., & Heilman, K. M. (1995). Attention and anosognosia: The case of a jargonaphasic patient with unawareness of language deficit. Neurology, 45(2), 376–378.PubMedCrossRefGoogle Scholar
  82. 82.
    Adair, J. C., Gilmore, R. L., Fennell, E. B., Gold, M., & Heilman, K. M. (1995). Anosognosia during intracarotid barbiturate anesthesia: Unawareness or amnesia for weakness. Neurology, 45(2), 241–243.PubMedCrossRefGoogle Scholar
  83. 83.
    Gold, M., Adair, J. C., Jacobs, D. H., & Heilman, K. M. (1994). Anosognosia for hemiplegia: An electrophysiologic investigation of the feed-forward hypothesis. Neurology, 44(10), 1804–1808.PubMedCrossRefGoogle Scholar
  84. 84.
    Gilmore, R. L., Heilman, K. M., Schmidt, R. P., Fennell, E. M., & Quisling, R. (1992). Anosognosia during Wada testing. Neurology, 42(4), 925–927.PubMedCrossRefGoogle Scholar
  85. 85.
    Heilman, K. M., Barrett, A. M., & Adair, J. C. (1998). Possible mechanisms of anosognosia: A defect in self-awareness. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 353(1377), 1903–1909.PubMedCrossRefGoogle Scholar
  86. 86.
    Hier, D. B., Mondlock, J., & Caplan, L. R. (1983). Behavioral abnormalities after right hemisphere stroke. Neurology, 33(3), 337–344.PubMedCrossRefGoogle Scholar
  87. 87.
    Cohen, R. A., Kaplan, R. F., Meadows, M. E., & Wilkinson, H. (1994). Habituation and sensitization of the orienting response following bilateral anterior cingulotomy. Neuropsychologia, 32(5), 609–617.PubMedCrossRefGoogle Scholar
  88. 88.
    Cohen, R. A., Kaplan, R. F., Moser, D. J., Jenkins, M. A., & Wilkinson, H. (1999). Impairments of attention after cingulotomy. Neurology, 53(4), 819–824.PubMedCrossRefGoogle Scholar
  89. 89.
    Cohen, R. A., Paul, R., Zawacki, T. M., Moser, D. J., Sweet, L., & Wilkinson, H. (2001). Emotional and personality changes following cingulotomy. Emotion (Washington, DC), 1(1), 38–50.CrossRefGoogle Scholar
  90. 90.
    Neisser, U. (1967). Cognitive psychology. New York: Appleton.Google Scholar
  91. 91.
    Neisser, U. (1976). Cognition and reality. San Francisco: W.H. Freeman.Google Scholar
  92. 92.
    Hochberg, J. E. (1970). Attention, organization, and consciousness. In D. I. Mostofsky (Ed.), Attention, contemporary theory and analysis (pp. 99–124). New York: Appleton.Google Scholar
  93. 93.
    Hochberg, D., Molina-Paris, C., Perez-Mercader, J., & Visser, M. (1999). Effective action for stochastic partial differential equations. Physical Review, 60(6 Pt A), 6343–6360.PubMedGoogle Scholar
  94. 94.
    Hochberg, J. (2003). Acts of perceptual inquiry: Problems for any stimulus-based simplicity theory. Acta Psychologica, 114(3), 215–228.PubMedCrossRefGoogle Scholar
  95. 95.
    Hasher, L., & Zacks, R. T. (1979). Automatic and effortful processes in memory. Journal of Experimental Psychology. General, 108, 356–388.CrossRefGoogle Scholar
  96. 96.
    Hasher, L., & Zacks, R. T. (1984). Automatic processing of fundamental information: The case of frequency of occurrence. American Psychologist, 39, 1372–1388.PubMedCrossRefGoogle Scholar
  97. 97.
    Norman, D., & Shallice, T. (1984). Attention to action: Willed and automatic control of behavior. In R. Davidson, G. E. Schwartz, & D. Shapiro (Eds.), Consciousness and self-regulation (Vol. 4, pp. 3–16). New York: Plenum.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ronald A. Cohen
    • 1
    • 2
    • 3
  1. 1.Departments of Neurology, Psychiatry and AgingGainesvilleUSA
  2. 2.Center for Cognitive Aging and MemoryUniversity of Florida College of MedicineGainesvilleUSA
  3. 3.Department of Psychiatry and Human Behavior Warren Alpert School of MedicineBrown UniversityProvidenceUSA

Personalised recommendations