Clinical Considerations: Assessment and Treatment

  • Ronald A. Cohen


The clinical assessment of attention depends on three primary sources of information: (1) direct behavioral observation and measurement; (2) psychometric tests designed to measure other cognitive functions (e.g., intellectual measures), which provide indirect information about attention, and (3) neurocognitive tests developed specifically to assess attention and its underlying component processes. As attention is a multifaceted process, the assessment of attention requires that the clinician obtains information about the characteristics of the patient’s performance under different conditions. Therefore, to adequately assess attention, it is usually necessary to use more than one test.


Selective Attention Sustained Attention Digit Span Divided Attention Flanker Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lezak, M. D., & Lezak, M. D. (2004). Neuropsychological assessment (4th ed.). Oxford: Oxford University Press.Google Scholar
  2. 2.
    Folstein, M. F., Robins, L. N., & Helzer, J. E. (1983). The mini-mental state examination. Archives of General Psychiatry, 40(7), 812.PubMedGoogle Scholar
  3. 3.
    Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198.PubMedGoogle Scholar
  4. 4.
    Bellack, A. S., & Hersen, M. (1998). Behavioral assessment: A practical handbook (4th ed.). Boston: Allyn and Bacon.Google Scholar
  5. 5.
    Bellack, A. S., & Hersen, M. (1988). Behavioral assessment (3rd ed.). New York: Pergamon.Google Scholar
  6. 6.
    Cohen, R., McCrae, V., Phillips, K., & Wilkinson, H. (1990). Neurobehavioral consequences of bilateral medial cingulotomy. Neurology, 40(1), 198.Google Scholar
  7. 7.
    Cohen, R., Lohr, I., Paul, R., & Boland, R. (2001). Impairments of attention and effort among patients with major affective disorders. The Journal of Neuropsychiatry and Clinical Neurosciences, 13(3), 385–395.PubMedGoogle Scholar
  8. 8.
    Cohen, R. A., & Albers, H. E. (1991). Disruption of human circadian and cognitive regulation following a discrete hypothalamic lesion: A case study. Neurology, 41(5), 726–729.PubMedGoogle Scholar
  9. 9.
    Long, C., & Hollin, C. R. (1995). Single case design: A critique of methodology and analysis of recent trends. Clinical Psychology & Psychotherapy, 2(3), 177–191.Google Scholar
  10. 10.
    Hersen, M., & Barlow, D. (1976). Single-case experimental designs: Strategies for studying behavior change. New York, NY: Pergamon Press.Google Scholar
  11. 11.
    Zaret, B. S., & Cohen, R. A. (1986). Reversible valproic acid dementia: A case report. Epilepsia, 27(3), 234–240.PubMedGoogle Scholar
  12. 12.
    Barkley, R. (2006). Attention-deficit hyperactivity disorder, third edition: A handbook for diagnosis and treatment. New York, NY: Guilford Press.Google Scholar
  13. 13.
    Fulton, B. D., Scheffler, R. M., Hinshaw, S. P., et al. (2009). National variation of ADHD diagnostic prevalence and medication use: Health care providers and education policies. Psychiatric Services, 60(8), 1075–1083.PubMedGoogle Scholar
  14. 14.
    Hechtman, L. (2000). Assessment and diagnosis of attention-deficit/hyperactivity disorder. Child and Adolescent Psychiatric Clinics of North America, 9(3), 481–498.PubMedGoogle Scholar
  15. 15.
    Waxmonsky, J. (2003). Assessment and treatment of attention deficit hyperactivity disorder in children with comorbid psychiatric illness. Current Opinion in Pediatrics, 15(5), 476–482.PubMedGoogle Scholar
  16. 16.
    Wolraich, M. L., Wibbelsman, C. J., Brown, T. E., et al. (2005). Attention-deficit/hyperactivity disorder among adolescents: A review of the diagnosis, treatment, and clinical implications. Pediatrics, 115(6), 1734–1746.PubMedGoogle Scholar
  17. 17.
    American Psychiatric Association & American Psychiatric Association, Task Force on DSM-IV. (2000). Diagnostic and statistical manual of mental disorders: DSM-IV-TR (4th ed.). Washington, DC: American Psychiatric Association.Google Scholar
  18. 18.
    Williams, J. B., Gibbon, M., First, M. B., et al. (1992). The Structured Clinical Interview for DSM-III-R (SCID). II. Multisite test-retest reliability. Archives of General Psychiatry, 49(8), 630–636.PubMedGoogle Scholar
  19. 19.
    Conners, C. K. (1998). Rating scales in attention-deficit/hyperactivity disorder: Use in assessment and treatment monitoring. The Journal of Clinical Psychiatry, 59(Suppl. 7), 24–30.PubMedGoogle Scholar
  20. 20.
    Conners, C. K. (1999). Clinical use of rating scales in diagnosis and treatment of attention-deficit/hyperactivity disorder. Pediatric Clinics of North America, 46(5), 857–870, vi.Google Scholar
  21. 21.
    Conners, C. K., & Conners, C. K. (2008). Attention deficit hyperactivity disorder in children and adolescents: The latest assessment and treatment strategies (4th ed.). Kansas City, MO: Compact Clinicals.Google Scholar
  22. 22.
    Conners, C. K., Sitarenios, G., Parker, J. D., & Epstein, J. N. (1998). Revision and restandardization of the Conners Teacher Rating Scale (CTRS-R): Factor structure, reliability, and criterion validity. Journal of Abnormal Child Psychology, 26(4), 279–291.PubMedGoogle Scholar
  23. 23.
    Conners, C. K., Sitarenios, G., Parker, J. D., & Epstein, J. N. (1998). The revised Conners’ Parent Rating Scale (CPRS-R): Factor structure, reliability, and criterion validity. Journal of Abnormal Child Psychology, 26(4), 257–268.PubMedGoogle Scholar
  24. 24.
    Gomez, R. (2008). Parent ratings of the ADHD items of the disruptive behavior rating scale: Analyses of their IRT properties based on the generalized partial credit model. Personality and Individual Differences, 45(2), 181–186.Google Scholar
  25. 25.
    Kessler, R. C., Green, J. G., Adler, L. A., et al. (2010). Structure and diagnosis of adult attention-deficit/hyperactivity disorder: Analysis of expanded symptom criteria from the Adult ADHD Clinical Diagnostic Scale. Archives of General Psychiatry, 67(11), 1168–1178.PubMedGoogle Scholar
  26. 26.
    Rosler, M., Retz, W., Thome, J., Schneider, M., Stieglitz, R. D., & Falkai, P. (2006). Psychopathological rating scales for diagnostic use in adults with attention-deficit/hyperactivity disorder (ADHD). European Archives of Psychiatry and Clinical Neuroscience, 256(Suppl. 1), i3–i11.PubMedGoogle Scholar
  27. 27.
    Cummings, J. L., & McPherson, S. (2001). Neuropsychiatric assessment of Alzheimer’s disease and related dementias. Aging (Milano), 13(3), 240–246.Google Scholar
  28. 28.
    Mega, M. S., Cummings, J. L., Fiorello, T., & Gornbein, J. (1996). The spectrum of behavioral changes in Alzheimer’s disease. Neurology, 46(1), 130–135.PubMedGoogle Scholar
  29. 29.
    Schiehser, D. M., Delis, D. C., Filoteo, J. V., et al. (2011). Are self-reported symptoms of executive dysfunction associated with objective executive function performance following mild to moderate traumatic brain injury? Journal of Clinical and Experimental Neuropsychology, 33(6), 704–714.PubMedGoogle Scholar
  30. 30.
    Hoerold, D., Dockree, P. M., O’Keeffe, F. M., Bates, H., Pertl, M., & Robertson, I. H. (2008). Neuropsychology of self-awareness in young adults. Experimental Brain Research, 186(3), 509–515.Google Scholar
  31. 31.
    Ross, S. R., Benning, S. D., & Adams, Z. (2007). Symptoms of executive dysfunction are endemic to secondary psychopathy: An examination in criminal offenders and noninstitutionalized young adults. Journal of Personality Disorders, 21(4), 384–399.PubMedGoogle Scholar
  32. 32.
    Malloy, P., Tremont, G., Grace, J., & Frakey, L. (2007). The Frontal Systems Behavior Scale discriminates frontotemporal dementia from Alzheimer’s disease. Alzheimer’s & Dementia, 3(3), 200–203.Google Scholar
  33. 33.
    Malloy, P., & Grace, J. (2005). A review of rating scales for measuring behavior change due to frontal systems damage. Cognitive and Behavioral Neurology, 18(1), 18–27.PubMedGoogle Scholar
  34. 34.
    Stout, J. C., Ready, R. E., Grace, J., Malloy, P. F., & Paulsen, J. S. (2003). Factor analysis of the frontal systems behavior scale (FrSBe). Assessment, 10(1), 79–85.PubMedGoogle Scholar
  35. 35.
    Marin, R. S., Firinciogullari, S., & Biedrzycki, R. C. (1993). The sources of convergence between measures of apathy and depression. Journal of Affective Disorders, 28(1), 7–14.PubMedGoogle Scholar
  36. 36.
    Marin, R. S., Biedrzycki, R. C., & Firinciogullari, S. (1991). Reliability and validity of the Apathy Evaluation Scale. Psychiatry Research, 38(2), 143–162.PubMedGoogle Scholar
  37. 37.
    Marin, R. S. (1990). Differential diagnosis and classification of apathy. The American Journal of Psychiatry, 147(1), 22–30.PubMedGoogle Scholar
  38. 38.
    Paul, R. H., Brickman, A. M., Navia, B., et al. (2005). Apathy is associated with volume of the nucleus accumbens in patients infected with HIV. The Journal of Neuropsychiatry and Clinical Neurosciences, 17(2), 167–171.PubMedGoogle Scholar
  39. 39.
    Tate, D., Paul, R. H., Flanigan, T. P., et al. (2003). The impact of apathy and depression on quality of life in patients infected with HIV. AIDS Patient Care and STDs, 17(3), 115–120.PubMedGoogle Scholar
  40. 40.
    Barrett, D. E. (1977). Reflection-impulsivity as a predictor of children’s academic achievement. Child Development, 48(4), 1443–1447.PubMedGoogle Scholar
  41. 41.
    Cohen, R. A., Brumm, V., Zawacki, T. M., Paul, R., Sweet, L., & Rosenbaum, A. (2003). Impulsivity and verbal deficits associated with domestic violence. Journal of the International Neuropsychological Society, 9(5), 760–770.PubMedGoogle Scholar
  42. 42.
    Russell, E. W. (2004). The operating characteristics of the major HRNES-R measures. Archives of Clinical Neuropsychology, 19(8), 1043–1061.PubMedGoogle Scholar
  43. 43.
    Reitan, R. M. (1984). An impairment index of brain functions in children. Perceptual and Motor Skills, 58(3), 875–881.PubMedGoogle Scholar
  44. 44.
    Boyar, J. I., & Tsushima, W. T. (1975). Cross-validation of the Halstead-Reitan Neuropsychological Battery: Application in Hawaii. Hawaii Medical Journal, 34(3), 94–96.PubMedGoogle Scholar
  45. 45.
    Devaraju-Backhaus, S., Espe-Pfeifer, P., Mahrou, M. L., & Golden, C. J. (2001). Correlation of the LNNB-III with the WAIS-III in a mixed psychiatric and brain-injured population. The International Journal of Neuroscience, 111(3–4), 235–240.PubMedGoogle Scholar
  46. 46.
    Kivlahan, D. R., Harris, M. D., Moore, J. E., Powel, J., & Donovan, D. M. (1985). Validation of the Luria-Nebraska Intellectual Processes Scale as a measure of intelligence in male alcoholics. Journal of Clinical Psychology, 41(2), 287–290.PubMedGoogle Scholar
  47. 47.
    Golden, C. J., MacInnes, W. D., Ariel, R. N., et al. (1982). Cross-validation of the ability of the Luria-Nebraska Neuropsychological Battery to differentiate chronic schizophrenics with and without ventricular enlargement. Journal of Consulting and Clinical Psychology, 50(1), 87–95.PubMedGoogle Scholar
  48. 48.
    Golden, C. J., Moses, J. A., Jr., Fishburne, F. J., et al. (1981). Cross-validation of the Luria-Nebraska Neuropsychological Battery for the presence, lateralization, and localization of brain damage. Journal of Consulting and Clinical Psychology, 49(4), 491–507.PubMedGoogle Scholar
  49. 49.
    Terman, L. M. (1916). The measurement of intelligence: An explanation of and a complete guide for the use of the Stanford revision and extension of the Binet-Simon intelligence scale. Boston: Houghton Mifflin Company.Google Scholar
  50. 50.
    Spearman, C. (1927). The abilities of man. London: Macmillan.Google Scholar
  51. 51.
    Thurstone, L. (1938). Primary mental abilities. Chicago: University of Chicago Press.Google Scholar
  52. 52.
    Cattell, R. B. (1967). The theory of fluid and crystallized general intelligence checked at the 5–6 year-old level. British Journal of Educational Psychology, 37(2), 209–224.PubMedGoogle Scholar
  53. 53.
    Horn, J. L., & Cattell, R. B. (1966). Refinement and test of the theory of fluid and crystallized general intelligences. Journal of Education and Psychology, 57(5), 253–270.Google Scholar
  54. 54.
    Ryan, J. J., Paolo, A. M., Miller, D. A., & Morris, J. (1997). Exploratory factor analysis of the Wechsler Adult Intelligence Scale-Revised in a sample of brain-damaged women. Archives of Clinical Neuropsychology, 12(7), 683–689.PubMedGoogle Scholar
  55. 55.
    Allen, S. R., & Thorndike, R. M. (1995). Stability of the WAIS-R and WISC-III factor structure using cross-validation of covariance structures. Journal of Clinical Psychology, 51(5), 648–657.PubMedGoogle Scholar
  56. 56.
    Paolo, A. M., & Ryan, J. J. (1994). Factor structure of the WAIS-R by educational level: An examination of elderly persons. Archives of Clinical Neuropsychology, 9(3), 259–264.PubMedGoogle Scholar
  57. 57.
    Blaha, J., & Mandes, E. (1993). The hierarchical factor structure of the WAIS-R for alcoholic adults. Journal of Clinical Psychology, 49(5), 740–745.PubMedGoogle Scholar
  58. 58.
    Rossini, E. D., Kowalski, J. M., Dudish, S. A., & Telcher, S. L. (1991). Temporal consistency of the WAIS-R Memory/Freedom from distractibility factor in a nonclinical sample. Psychological Reports, 68(3 Pt 1), 827–832.PubMedGoogle Scholar
  59. 59.
    Dai, X. Y., Ryan, J. J., Paolo, A. M., & Harrington, R. G. (1990). Factor analysis of the mainland Chinese version of the Wechsler Adult Intelligence Scale (WAIS-RC) in a brain-damaged sample. The International Journal of Neuroscience, 55(2–4), 107–111.PubMedGoogle Scholar
  60. 60.
    Bornstein, R. A., Drake, M. E., Jr., & Pakalnis, A. (1988). WAIS-R factor structure in epileptic patients. Epilepsia, 29(1), 14–18.PubMedGoogle Scholar
  61. 61.
    Ryan, J. J., & Schneider, J. A. (1986). Factor analysis of the Wechsler Adult Intelligence Scale-Revised (WAIS-R) in a brain-damaged sample. Journal of Clinical Psychology, 42(6), 962–964.PubMedGoogle Scholar
  62. 62.
    Enns, R. A., & Reddon, J. R. (1998). The factor structure of the Wechsler Adult Intelligence Scale-Revised: One or two but not three factors. Journal of Clinical Psychology, 54(4), 447–459.PubMedGoogle Scholar
  63. 63.
    Ward, L. C., Ryan, J. J., & Axelrod, B. N. (2000). Confirmatory factor analyses of the WAIS-III standardization data. Psychological Assessment, 12(3), 341–345.PubMedGoogle Scholar
  64. 64.
    Yim, C. Y., Soczynska, J. K., Kennedy, S. H., Woldeyohannes, H. O., Brietzke, E., & McIntyre, R. S. (2012). The effect of overweight/obesity on cognitive function in euthymic individuals with bipolar disorder. European Psychiatry, 27(3), 223–228.PubMedGoogle Scholar
  65. 65.
    Syrjala, K. L., Artherholt, S. B., Kurland, B. F., et al. (2011). Prospective neurocognitive function over 5 years after allogeneic hematopoietic cell transplantation for cancer survivors compared with matched controls at 5 years. Journal of Clinical Oncology, 29(17), 2397–2404.PubMedGoogle Scholar
  66. 66.
    Gonzalez-Blanch, C., Perez-Iglesias, R., Rodriguez-Sanchez, J. M., et al. (2011). A digit symbol coding task as a screening instrument for cognitive impairment in first-episode psychosis. Archives of Clinical Neuropsychology, 26(1), 48–58.PubMedGoogle Scholar
  67. 67.
    Morrow, S. A., O’Connor, P. W., Polman, C. H., et al. (2010). Evaluation of the symbol digit modalities test (SDMT) and MS neuropsychological screening questionnaire (MSNQ) in natalizumab-treated MS patients over 48 weeks. Multiple Sclerosis, 16(11), 1385–1392.PubMedGoogle Scholar
  68. 68.
    O’Donnell, W. E., Reynolds, D. M., & De Soto, C. B. (1983). Neuropsychological impairment scale (NIS): Initial validation study using trailmaking test (A & B) and WAIS digit symbol (scaled score) in a mixed grouping of psychiatric, neurological, and normal patients. Journal of Clinical Psychology, 39(5), 746–748.PubMedGoogle Scholar
  69. 69.
    Ardila, A., Rosselli, M., & Strumwasser, S. (1991). Neuropsychological deficits in chronic cocaine abusers. The International Journal of Neuroscience, 57(1–2), 73–79.PubMedGoogle Scholar
  70. 70.
    McCrimmon, R. J., Deary, I. J., Huntly, B. J., MacLeod, K. J., & Frier, B. M. (1996). Visual information processing during controlled hypoglycaemia in humans. Brain, 119(Pt 4), 1277–1287.PubMedGoogle Scholar
  71. 71.
    Hinton-Bayre, A. D., Geffen, G., & McFarland, K. (1997). Mild head injury and speed of information processing: A prospective study of professional rugby league players. Journal of Clinical and Experimental Neuropsychology, 19(2), 275–289.PubMedGoogle Scholar
  72. 72.
    Goldman, W. P., Baty, J. D., Buckles, V. D., Sahrmann, S., & Morris, J. C. (1998). Cognitive and motor functioning in Parkinson disease: Subjects with and without questionable dementia. Archives of Neurology, 55(5), 674–680.PubMedGoogle Scholar
  73. 73.
    Becker, J. T., & Salthouse, T. A. (1999). Neuropsychological test performance in the acquired immunodeficiency syndrome: Independent effects of diagnostic group on functioning. Journal of the International Neuropsychological Society, 5(1), 41–47.PubMedGoogle Scholar
  74. 74.
    Wefel, J. S., Hoyt, B. D., & Massma, P. J. (1999). Neuropsychological functioning in depressed versus nondepressed participants with Alzheimer’s disease. The Clinical Neuropsychologist, 13(3), 249–257.PubMedGoogle Scholar
  75. 75.
    Rovaris, M., Iannucci, G., Falautano, M., et al. (2002). Cognitive dysfunction in patients with mildly disabling relapsing-remitting multiple sclerosis: An exploratory study with diffusion tensor MR imaging. Journal of the Neurological Sciences, 195(2), 103–109.PubMedGoogle Scholar
  76. 76.
    Solari, A., Mancuso, L., Motta, A., Mendozzi, L., & Serrati, C. (2002). Comparison of two brief neuropsychological batteries in people with multiple sclerosis. Multiple Sclerosis, 8(2), 169–176.PubMedGoogle Scholar
  77. 77.
    O’Donnell, B. F., Drachman, D. A., Lew, R. A., & Swearer, J. M. (1988). Measuring dementia: Assessment of multiple deficit domains. Journal of Clinical Psychology, 44(6), 916–923.PubMedGoogle Scholar
  78. 78.
    Prigatano, G. P. (1978). Wechsler memory scale: A selective review of the literature. Journal of Clinical Psychology, 34, 816–832.PubMedGoogle Scholar
  79. 79.
    Stankov, L. (1988). Aging, attention, and intelligence. Psychology and Aging, 3(1), 59–74.PubMedGoogle Scholar
  80. 80.
    Mirsky, A. (1989). Neuropsychology of attention: Elements of a complex behavior. In E. Perecman (Ed.), Integrating theory and practice in clinical neuropsychology (Vol. xxviii, 438p). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  81. 81.
    Mirsky, A. F., & Duncan, C. C. (2001). A nosology of disorders of attention. Annals of the New York Academy of Sciences, 931, 17–32.PubMedGoogle Scholar
  82. 82.
    Mirsky, A. F., Anthony, B. J., Duncan, C. C., Ahearn, M. B., & Kellam, S. G. (1991). Analysis of the elements of attention: A neuropsychological approach. Neuropsychology Review, 2(2), 109–145.PubMedGoogle Scholar
  83. 83.
    Thaler, N. S., Allen, D. N., Park, B. S., McMurray, J. C., & Mayfield, J. (2010). Attention processing abnormalities in children with traumatic brain injury and attention-deficit/hyperactivity disorder: Differential impairment of component processes. Journal of Clinical and Experimental Neuropsychology, 32(9), 929–936.PubMedGoogle Scholar
  84. 84.
    Duncan, C. C., Mirsky, A. F., Lovelace, C. T., & Theodore, W. H. (2009). Assessment of the attention impairment in absence epilepsy: Comparison of visual and auditory P300. International Journal of Psychophysiology, 73(2), 118–122.PubMedGoogle Scholar
  85. 85.
    Levine, A. J., Hardy, D. J., Barclay, T. R., Reinhard, M. J., Cole, M. M., & Hinkin, C. H. (2008). Elements of attention in HIV-infected adults: Evaluation of an existing model. Journal of Clinical and Experimental Neuropsychology, 30(1), 53–62.PubMedGoogle Scholar
  86. 86.
    Strauss, M. E., Thompson, P., Adams, N. L., Redline, S., & Burant, C. (2000). Evaluation of a model of attention with confirmatory factor analysis. Neuropsychology, 14(2), 201–208.PubMedGoogle Scholar
  87. 87.
    Mirsky, A. F., Ingraham, L. J., & Kugelmass, S. (1995). Neuropsychological assessment of attention and its pathology in the Israeli cohort. Schizophrenia Bulletin, 21(2), 193–204.PubMedGoogle Scholar
  88. 88.
    Kremen, W. S., Seidman, L. J., Faraone, S. V., Pepple, J. R., & Tsuang, M. T. (1992). Attention/information-processing factors in psychotic disorders. Replication and extension of recent neuropsychological findings. The Journal of Nervous and Mental Disease, 180(2), 89–93.PubMedGoogle Scholar
  89. 89.
    Kellam, S., Ialongo, N., Brown, H., et al. (1989). Attention problems in first grade and shy and aggressive behaviors as antecedents to later heavy or inhibited substance use. NIDA Research Monograph, 95, 368–369.PubMedGoogle Scholar
  90. 90.
    Cohen, R. (1993). Neuropsychology of attention. New York, NY: Plenum Press.Google Scholar
  91. 91.
    Gunstad, J., Cohen, R. A., Paul, R. H., & Gordon, E. (2006). Dissociation of the component processes of attention in healthy adults. Archives of Clinical Neuropsychology, 21(7), 645–650.PubMedGoogle Scholar
  92. 92.
    Lockwood, K. A., Marcotte, A. C., & Stern, C. (2001). Differentiation of attention-deficit/hyperactivity disorder subtypes: Application of a neuropsychological model of attention. Journal of Clinical and Experimental Neuropsychology, 23(3), 317–330.PubMedGoogle Scholar
  93. 93.
    Wechsler, D. (1997). Technical manual for the Wechsler Adult Intelligence Scale-Third Edition. San Antonio, TX: Psychological Corporation.Google Scholar
  94. 94.
    Raven, J. (1981). Manual for Raven’s Progressive Matrices and Vocabulary Scales. Research Supplement No. 1: The 1979 British Standardisation of the Standard Progressive Matrices and Mill Hill Vocabulary Scales, Together With Comparative Data From Earlier Studies in the UK, US, Canada, Germany and Ireland. San Antonio, TX: Harcourt Assessment.Google Scholar
  95. 95.
    Tulsky, D. S. (2003). Clinical interpretation of WAIS-III and WMS-III. New York, NY: Academic.Google Scholar
  96. 96.
    Lange, R. T., Schoenberg, M. R., Chelune, G. J., Scott, J. G., & Adams, R. L. (2005). Development of the WAIS-III general ability index estimate (GAI-E). The Clinical Neuropsychologist, 19(1), 73–86.PubMedGoogle Scholar
  97. 97.
    Brown, K. I., & Ryan, J. J. (2004). Reliabilities of the WAIS-III for discrepancy scores: Generalization to a clinical sample. Psychological Reports, 95(3 Pt 1), 914–916.PubMedGoogle Scholar
  98. 98.
    Tulsky, D. S., & Price, L. R. (2003). The joint WAIS-III and WMS-III factor structure: Development and cross-validation of a six-factor model of cognitive functioning. Psychological Assessment, 15(2), 149–162.PubMedGoogle Scholar
  99. 99.
    van der Heijden, P., & Donders, J. (2003). WAIS-III factor index score patterns after traumatic brain injury. Assessment, 10(2), 115–122.PubMedGoogle Scholar
  100. 100.
    Wechsler, D. (2008). Wechsler Adult Intelligence Scale-Fourth Edition. San Antonio, Tx: Pearson.Google Scholar
  101. 101.
    Ward, L. C., Bergman, M. A., & Hebert, K. R. (2012). WAIS-IV subtest covariance structure: Conceptual and statistical considerations. Psychological Assessment, 24(2), 328–340.PubMedGoogle Scholar
  102. 102.
    Baxendale, S. (2011). IQ and ability across the adult life span. Applied Neuropsychology, 18(3), 164–167.PubMedGoogle Scholar
  103. 103.
    Holdnack, J., Goldstein, G., & Drozdick, L. (2011). Social perception and WAIS-IV Performance in adolescents and adults diagnosed with Asperger’s syndrome and autism. Assessment, 18(2), 192–200.PubMedGoogle Scholar
  104. 104.
    Holdnack, J. A., Xiaobin, Z., Larrabee, G. J., Millis, S. R., & Salthouse, T. A. (2011). Confirmatory factor analysis of the WAIS-IV/WMS-IV. Assessment, 18(2), 178–191.PubMedGoogle Scholar
  105. 105.
    Binder, L. M., & Binder, A. L. (2011). Relative subtest scatter in the WAIS-IV standardization sample. The Clinical Neuropsychologist, 25(1), 62–71.PubMedGoogle Scholar
  106. 106.
    Gregoire, J., Coalson, D. L., & Jianjun, Z. (2011). Analysis of WAIS-IV index score scatter using significant deviation from the mean index score. Assessment, 18(2), 168–177.PubMedGoogle Scholar
  107. 107.
    Hartman, D. E. (2009). Wechsler Adult Intelligence Scale IV (WAIS IV): Return of the gold standard. Applied Neuropsychology, 16(1), 85–87.PubMedGoogle Scholar
  108. 108.
    Beck, L. H., Bransome, E. D., Jr., Mirsky, A. F., Rosvold, H. E., & Sarason, I. (1956). A continuous performance test of brain damage. Journal of Consulting Psychology, 20(5), 343–350.PubMedGoogle Scholar
  109. 109.
    Smith, A. (1967). Symbol Digit Modalities Test (SDMT). Torrance, CA: Western Psychological Services.Google Scholar
  110. 110.
    Ryan, J. J., & Tree, H. A. (2007). Validity of WAIS-III performance scale subtests completed with the non-dominant hand. Applied Neuropsychology, 14(1), 52–55.PubMedGoogle Scholar
  111. 111.
    Langeluddecke, P. M., & Lucas, S. K. (2003). Wechsler Adult Intelligence Scale-Third Edition findings in relation to severity of brain injury in litigants. The Clinical Neuropsychologist, 17(2), 273–284.PubMedGoogle Scholar
  112. 112.
    Donders, J., Tulsky, D. S., & Zhu, J. (2001). Criterion validity of new WAIS-II subtest scores after traumatic brain injury. Journal of the International Neuropsychological Society, 7(7), 892–898.PubMedGoogle Scholar
  113. 113.
    Ruff, R. M., Niemann, H., Allen, C. C., Farrow, C. E., & Wylie, T. (1992). The Ruff 2 and 7 Selective Attention Test: A neuropsychological application. Perceptual and Motor Skills, 75(3 Pt 2), 1311–1319.PubMedGoogle Scholar
  114. 114.
    Allen, C. C., & Ruff, R. M. (1999). Factorial validation of the Ruff-Light Trail Learning Test (RULIT). Assessment, 6(1), 43–50.PubMedGoogle Scholar
  115. 115.
    Baser, C. A., & Ruff, R. M. (1987). Construct validity of the San Diego Neuropsychological Test Battery. Archives of Clinical Neuropsychology, 2(1), 13–32.PubMedGoogle Scholar
  116. 116.
    Willmott, C., & Ponsford, J. (2009). Efficacy of methylphenidate in the rehabilitation of attention following traumatic brain injury: A randomised, crossover, double blind, placebo controlled inpatient trial. Journal of Neurology, Neurosurgery, and Psychiatry, 80(5), 552–557.PubMedGoogle Scholar
  117. 117.
    Brickenkamp, R., & Zillmer, E. A. (2011). D2 Test of Attention™ (D2). Lutz, FL: Psychological Assessment Resources.Google Scholar
  118. 118.
    Wirz, S., Nadstawek, J., Kuhn, K. U., Vater, S., Junker, U., & Wartenberg, H. C. (2010). [Modafinil for the treatment of cancer-related fatigue: An intervention study]. Schmerz, 24(6), 587–595.PubMedGoogle Scholar
  119. 119.
    Begega, A., Mendez Lopez, M., de Iscar, M. J., et al. (2010). Assessment of the global intelligence and selective cognitive capacities in preterm 8-year-old children. Psicothema, 22(4), 648–653.PubMedGoogle Scholar
  120. 120.
    Aslanyan, G., Amroyan, E., Gabrielyan, E., Nylander, M., Wikman, G., & Panossian, A. (2010). Double-blind, placebo-controlled, randomised study of single dose effects of ADAPT-232 on cognitive functions. Phytomedicine, 17(7), 494–499.PubMedGoogle Scholar
  121. 121.
    Fietze, I., Strauch, J., Holzhausen, M., et al. (2009). Sleep quality in professional ballet dancers. Chronobiology International, 26(6), 1249–1262.PubMedGoogle Scholar
  122. 122.
    Remillard, S., Pourcher, E., & Cohen, H. (2008). Long-term effects of risperidone versus haloperidol on verbal memory, attention, and symptomatology in schizophrenia. Journal of the International Neuropsychological Society, 14(1), 110–118.PubMedGoogle Scholar
  123. 123.
    Cserjesi, R., Molnar, D., Luminet, O., & Lenard, L. (2007). Is there any relationship between obesity and mental flexibility in children? Appetite, 49(3), 675–678.PubMedGoogle Scholar
  124. 124.
    Zanello, A., Perrig, L., & Huguelet, P. (2006). Cognitive functions related to interpersonal problem-solving skills in schizophrenic patients compared with healthy subjects. Psychiatry Research, 142(1), 67–78.PubMedGoogle Scholar
  125. 125.
    Lufi, D. (2001). Double-coding test: A new paper-and-pencil measure of eye-hand coordination. Perceptual and Motor Skills, 92(3 Pt 1), 815–826.PubMedGoogle Scholar
  126. 126.
    Seifert, J., Peters, E., Jahn, K., et al. (2004). Treatment of alcohol withdrawal: Chlormethiazole vs. carbamazepine and the effect on memory performance—A pilot study. Addiction Biology, 9(1), 43–51.PubMedGoogle Scholar
  127. 127.
    Rahmann, A., Stodieck, S., Husstedt, I. W., & Evers, S. (2002). Pre-attentive cognitive processing in epilepsy. A pilot study on the impact of epilepsy type and anti-epileptic treatment. European Neurology, 48(3), 146–152.PubMedGoogle Scholar
  128. 128.
    Exton, M. S., Baase, J., Pithan, V., Goebel, M. U., Limmroth, V., & Schedlowski, M. (2002). Neuropsychological performance and mood states following acute interferon-beta-1b administration in healthy males. Neuropsychobiology, 45(4), 199–204.PubMedGoogle Scholar
  129. 129.
    Schuck, S., Bentue-Ferrer, D., Kleinermans, D., et al. (2002). Psychomotor and cognitive effects of piribedil, a dopamine agonist, in young healthy volunteers. Fundamental & Clinical Pharmacology, 16(1), 57–65.Google Scholar
  130. 130.
    Trenerry, M., Crosson, B., DeBoe, J., & Leber, W. R. (2011). Visual Search and Attention Test (VSAT). Lutz, FL: Psychological Assessment Resources.Google Scholar
  131. 131.
    Chan, M. W., Yip, J. T., & Lee, T. M. (2004). Differential impairment on measures of attention in patients with paranoid and nonparanoid schizophrenia. Journal of Psychiatric Research, 38(2), 145–152.PubMedGoogle Scholar
  132. 132.
    Kelland, D. Z., & Lewis, R. F. (1996). The Digit Vigilance Test: Reliability, validity, and sensitivity to diazepam. Archives of Clinical Neuropsychology, 11(4), 339–344.PubMedGoogle Scholar
  133. 133.
    Schretlen, D., Bobholz, J. H., & Brandt, J. (1996). Development and psychometric properties of the brief test of attention. The Clinical Neuropsychologist, 10(1), 80–89.Google Scholar
  134. 134.
    Schretlen, D., Brandt, J., & Bobholz, J. H. (1996). Validation of the Brief Test of Attention in patients with Huntington’s disease and amnesia. The Clinical Neuropsychologist, 10(1), 90–95.Google Scholar
  135. 135.
    Cherry, R., & Rubinstein, A. (2006). Comparing monotic and diotic selective auditory attention abilities in children. Language, Speech, and Hearing Services in Schools, 37(2), 137–142.PubMedGoogle Scholar
  136. 136.
    Cherry, R. S. (1981). Development of selective auditory attention skills in children. Perceptual and Motor Skills, 52(2), 379–385.PubMedGoogle Scholar
  137. 137.
    Doverspike, D., Celler, D., & Barrett, G. V. (1986). The Auditory Selective Attention Test: A review of field and laboratory studies. Educational and Psychological Measurement, 46(4), 1095–1103.Google Scholar
  138. 138.
    Baier, B., Mueller, N., Fechir, M., & Dieterich, M. (2010). Line bisection error and its anatomic correlate. Stroke, 41(7), 1561–1563.PubMedGoogle Scholar
  139. 139.
    Butter, C. M., Mark, V. W., & Heilman, K. M. (1988). An experimental analysis of factors underlying neglect in line bisection. Journal of Neurology, Neurosurgery, and Psychiatry, 51(12), 1581–1583.PubMedGoogle Scholar
  140. 140.
    Chiba, Y., Yamaguchi, A., & Eto, F. (2005). A simple method to dissociate sensory-attentional and motor-intentional biases in unilateral visual neglect. Brain and Cognition, 58(3), 269–273.PubMedGoogle Scholar
  141. 141.
    Friedman, P. J. (1990). Spatial neglect in acute stroke: The line bisection test. Scandinavian Journal of Rehabilitation Medicine, 22(2), 101–106.PubMedGoogle Scholar
  142. 142.
    Marshall, J. C., & Halligan, P. W. (1995). Within- and between-task dissociations in visuo-spatial neglect: A case study. Cortex, 31(2), 367–376.PubMedGoogle Scholar
  143. 143.
    Mennemeier, M., Pierce, C. A., Chatterjee, A., et al. (2005). Biases in attentional orientation and magnitude estimation explain crossover: Neglect is a disorder of both. Journal of Cognitive Neuroscience, 17(8), 1194–1211.PubMedGoogle Scholar
  144. 144.
    Mennemeier, M., Rapcsak, S. Z., Pierce, C., & Vezey, E. (2001). Crossover by line length and spatial location. Brain and Cognition, 47(3), 412–422.PubMedGoogle Scholar
  145. 145.
    Wang, Q., Sonoda, S., Hanamura, M., Okazaki, H., & Saitoh, E. (2005). Line bisection and rebisection: The crossover effect of space location. Neurorehabilitation and Neural Repair, 19(2), 84–92.PubMedGoogle Scholar
  146. 146.
    Kerkhoff, G., & Marquardt, C. (1995). VS—A new computer program for detailed offline analysis of visual-spatial perception. Journal of Neuroscience Methods, 63(1–2), 75–84.PubMedGoogle Scholar
  147. 147.
    Rapcsak, S. Z., Watson, R. T., & Heilman, K. M. (1987). Hemispace-visual field interactions in visual extinction. Journal of Neurology, Neurosurgery, and Psychiatry, 50(9), 1117–1124.PubMedGoogle Scholar
  148. 148.
    Tanaka, Y., Minematsu, K., Hara, H., Hayashida, K., & Yamaguchi, T. (2001). [Sensory extinction phenomenon of double simultaneous stimulation: The analysis of consecutive stroke series with acute and unilateral lesions]. Rinsho Shinkeigaku, 41(9), 569–573.PubMedGoogle Scholar
  149. 149.
    Vallar, G., Rusconi, M. L., Bignamini, L., Geminiani, G., & Perani, D. (1994). Anatomical correlates of visual and tactile extinction in humans: A clinical CT scan study. Journal of Neurology, Neurosurgery, and Psychiatry, 57(4), 464–470.PubMedGoogle Scholar
  150. 150.
    Kaplan, R. F., Cohen, R. A., Rosengart, A., Elsner, A. E., Hedges, T. R., III, & Caplan, L. R. (1995). Extinction during time controlled direct retinal stimulation after recovery from right hemispheric stroke. Journal of Neurology, Neurosurgery, and Psychiatry, 59(5), 534–536.PubMedGoogle Scholar
  151. 151.
    Vigil Continuous Performance Test (1991). San Antonio, TX: Pearson.Google Scholar
  152. 152.
    Conner’s Continuous Performance Test II (Version 5) [computer program]. North Tonawanda, NY: MHS; 2011.Google Scholar
  153. 153.
    Conners, C. K., Epstein, J. N., Angold, A., & Klaric, J. (2003). Continuous performance test performance in a normative epidemiological sample. Journal of Abnormal Child Psychology, 31(5), 555–562.PubMedGoogle Scholar
  154. 154.
    Epstein, J. N., Erkanli, A., Conners, C. K., Klaric, J., Costello, J. E., & Angold, A. (2003). Relations between Continuous Performance Test performance measures and ADHD behaviors. Journal of Abnormal Child Psychology, 31(5), 543–554.PubMedGoogle Scholar
  155. 155.
    Ballard, J. C. (2001). Assessing attention: Comparison of response-inhibition and traditional continuous performance tests. Journal of Clinical and Experimental Neuropsychology, 23(3), 331–350.PubMedGoogle Scholar
  156. 156.
    McGee, R. A., Clark, S. E., & Symons, D. K. (2000). Does the Conners’ Continuous Performance Test aid in ADHD diagnosis? Journal of Abnormal Child Psychology, 28(5), 415–424.PubMedGoogle Scholar
  157. 157.
    Test of Variables of Attention (TOVA and TOVA-A) [computer program]. Version 8. Lutz, FL: Psychological Assessment Resources; 2011.Google Scholar
  158. 158.
    Greenberg, L., & Waldmant, I. D. (1993). Developmental Normative Data on The Test of Variables of Attention (T.O.V.A.™). Journal of Child Psychology and Psychiatry, 34(6), 1019–1030.PubMedGoogle Scholar
  159. 159.
    Reddy, L. A., Newman, E., Pedigo, T. K., & Scott, V. (2010). Concurrent validity of the pediatric attention disorders diagnostic screener for children with ADHD. Child Neuropsychology, 16(5), 478–493.PubMedGoogle Scholar
  160. 160.
    Pollak, Y., Shomaly, H. B., Weiss, P. L., Rizzo, A. A., & Gross-Tsur, V. (2010). Methylphenidate effect in children with ADHD can be measured by an ecologically valid continuous performance test embedded in virtual reality. CNS Spectrums, 15(2), 125–130.PubMedGoogle Scholar
  161. 161.
    Pollak, Y., Weiss, P. L., Rizzo, A. A., et al. (2009). The utility of a continuous performance test embedded in virtual reality in measuring ADHD-related deficits. Journal of Developmental and Behavioral Pediatrics, 30(1), 2–6.PubMedGoogle Scholar
  162. 162.
    Bodnar, L. E., Prahme, M. C., Cutting, L. E., Denckla, M. B., & Mahone, E. M. (2007). Construct validity of parent ratings of inhibitory control. Child Neuropsychology, 13(4), 345–362.PubMedGoogle Scholar
  163. 163.
    Preston, A. S., Fennell, E. B., & Bussing, R. (2005). Utility of a CPT in diagnosing ADHD among a representative sample of high-risk children: A cautionary study. Child Neuropsychology, 11(5), 459–469.PubMedGoogle Scholar
  164. 164.
    Flint, R. W., Jr., & Turek, C. (2003). Glucose effects on a continuous performance test of attention in adults. Behavioural Brain Research, 142(1–2), 217–228.PubMedGoogle Scholar
  165. 165.
    Adaptive Rate Continuous Performance Test (ARCPT) [computer program]. Worcester, MA: University of Massachusetts Medical School; 1985.Google Scholar
  166. 166.
    Cohen, R., Lohr, I., Paul, R., & Boland, R. (2001). Impairments of attention and effort among patients with major affective disorders. Journal of Neuropsychiatry and Clinical Neurosciences, 13, 385–395.Google Scholar
  167. 167.
    Cohen, R. A., & Fisher, M. (1988). Neuropsychological correlates of fatigue associated with multiple sclerosis. Journal of Clinical and Experimental Neuropsychology, 10(1), 48.Google Scholar
  168. 168.
    Cohen, R. A., & O’Donnell, B. F. (1988). Attention, effort, and fatigue: Neuropsychological perspectives. Paper presented at Proceedings from the First NASA Mental State Estimation Workshop l988, NASA.Google Scholar
  169. 169.
    Cohen, R. A., & Fisher, M. (1989). Amantadine treatment of fatigue associated with multiple sclerosis. Archives of Neurology, 46(6), 676–680.PubMedGoogle Scholar
  170. 170.
    Cohen, R. A., Kaplan, R. F., Zuffante, P., et al. (1999). Alteration of intention and self-initiated action associated with bilateral anterior cingulotomy. The Journal of Neuropsychiatry and Clinical Neurosciences, 11(4), 444–453.PubMedGoogle Scholar
  171. 171.
    Cohen, R. A., Poppas, A., Forman, D. E., et al. (2009). Vascular and cognitive functions associated with cardiovascular disease in the elderly. Journal of Clinical and Experimental Neuropsychology, 31(1), 96–110.PubMedGoogle Scholar
  172. 172.
    Jerskey, B. A., Cohen, R. A., Jefferson, A. L., et al. (2009). Sustained attention is associated with left ventricular ejection fraction in older adults with heart disease. Journal of the International Neuropsychological Society, 15(1), 137–141.PubMedGoogle Scholar
  173. 173.
    Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 81–97.PubMedGoogle Scholar
  174. 174.
    Drachman, D. A., & Arbit, J. (1966). Memory and the hippocampal complex. II. Is memory a multiple process? Archives of Neurology, 15(1), 52–61.PubMedGoogle Scholar
  175. 175.
    Asarnow, R. F., & MacCrimmon, D. J. (1981). Span of apprehension deficits during the postpsychotic stages of schizophrenia. A replication and extension. Archives of General Psychiatry, 38(9), 1006–1011.PubMedGoogle Scholar
  176. 176.
    Cramer, G., Kietzman, M. L., & van Laer, J. (1982). Dichoptic backward masking of letters, words, and trigrams in old and young subjects. Experimental Aging Research, 8(2), 103–108.PubMedGoogle Scholar
  177. 177.
    Aldridge, J. W. (1981). Levels of processing in speech production. Journal of Experimental Psychology. Human Perception and Performance, 7(2), 388–407.PubMedGoogle Scholar
  178. 178.
    Shefsky, M. W., Stenson, H. H., & Miller, L. K. (1980). Hemispheric asymmetry: A signal detection analysis. Perceptual and Motor Skills, 51(2), 599–604.PubMedGoogle Scholar
  179. 179.
    Samuels, I., Butters, N., Fedio, P., & Cox, C. (1980). Deficits in short-term auditory memory for verbal material following right temporal removals in humans. The International Journal of Neuroscience, 11(2), 101–107.PubMedGoogle Scholar
  180. 180.
    Belleville, S., Chertkow, H., & Gauthier, S. (2007). Working memory and control of attention in persons with Alzheimer’s disease and mild cognitive impairment. Neuropsychology, 21(4), 458–469.PubMedGoogle Scholar
  181. 181.
    Mertens, V. B., Gagnon, M., Coulombe, D., & Messier, C. (2006). Exploratory factor analysis of neuropsychological tests and their relationship to the Brown-Peterson task. Archives of Clinical Neuropsychology, 21(7), 733–739.PubMedGoogle Scholar
  182. 182.
    Gansler, D. A., Fucetola, R., Krengel, M., Stetson, S., Zimering, R., & Makary, C. (1998). Are there cognitive subtypes in adult attention deficit/hyperactivity disorder? The Journal of Nervous and Mental Disease, 186(12), 776–781.PubMedGoogle Scholar
  183. 183.
    Hellige, J. B., Taylor, K. B., Lesmes, L., & Peterson, S. (1998). Relationships between brain morphology and behavioral measures of hemispheric asymmetry and interhemispheric interaction. Brain and Cognition, 36(2), 158–192.PubMedGoogle Scholar
  184. 184.
    Parravicini, C., Spinnler, H., Sterzi, R., & Vallar, G. (1981). Counting back from a visually presented digit increases recall asymmetries between hemispheres: A Brown-Peterson experiment with lateral projection of trigrams. Cortex, 17(2), 279–290.PubMedGoogle Scholar
  185. 185.
    Milner, B. (1971). Interhemispheric differences in the localization of psychological processes in man. British Medical Bulletin, 27(3), 272–277.PubMedGoogle Scholar
  186. 186.
    Bornstein, R. (1983). Construct validity of the knox cube test as a neuropsychological measure. Journal of Clinical Neuropsychology, 5(2), 105–114.PubMedGoogle Scholar
  187. 187.
    DeRenzi, E., Faglioni, P., & Previdi, P. (1977). Spatial memory and hemispheric locus of lesion. Cortex, 13, 424–433.Google Scholar
  188. 188.
    Smith, A. (1967). Archives of Neurology, 17(1), 78–80.PubMedGoogle Scholar
  189. 189.
    Gronwall, D. M. A., & Sampson, H. D. (1974). The psychological effects of concussion. Auckland, Wellington: Auckland University Press, Oxford University Press.Google Scholar
  190. 190.
    Gronwall, D., & Wrightson, P. (1974). Delayed recovery of intellectual function after minor head injury. Lancet, 2(7874), 1452.PubMedGoogle Scholar
  191. 191.
    Milner, B. (1963). Effects of different brain lesions on card sorting. Archives of Neurology, 9, 90–100.Google Scholar
  192. 192.
    Chelune, G. J., & Baer, R. A. (1986). Developmental norms for the Wisconsin Card Sorting test. Journal of Clinical and Experimental Neuropsychology, 8(3), 219–228.PubMedGoogle Scholar
  193. 193.
    Shallice, T. (1982). Specific impairments of planning. Philosophical Transactions of the Royal Society of London, 298, 199–209.PubMedGoogle Scholar
  194. 194.
    Stroop, J. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–662.Google Scholar
  195. 195.
    Nehemkis, A. M., & Lewinsohn, P. M. (1972). Effects of left and right cerebral lesions in the naming process. Perceptual and Motor Skills, 35, 787–798.PubMedGoogle Scholar
  196. 196.
    Kaplan, R. F., Verfaellie, M., Meadows, M. E., Caplan, L. R., Pessin, M. S., & DeWitt, L. D. (1991). Changing attentional demands in left hemispatial neglect. Archives of Neurology, 48(12), 1263–1266.PubMedGoogle Scholar
  197. 197.
    Benton, A. (1988). Handbook of neuropsychology. New York: Elsevier.Google Scholar
  198. 198.
    Spreen, O., & Benton, A. L. (1969). Neurosensory center comprehensive examination for aphasia. Victoria, BC: University of Victoria.Google Scholar
  199. 199.
    Servan-Schreiber, D., Bruno, R. M., Carter, C. S., & Cohen, J. D. (1998). Dopamine and the mechanisms of cognition: Part I. A neural network model predicting dopamine effects on selective attention. Biological Psychiatry, 43(10), 713–722.PubMedGoogle Scholar
  200. 200.
    Buhusi, C. V., Gray, J. A., & Schmajuk, N. A. (1998). Perplexing effects of hippocampal lesions on latent inhibition: A neural network solution. Behavioral Neuroscience, 112(2), 316–351.PubMedGoogle Scholar
  201. 201.
    Coslett, H. B., Bowers, D., Fitzpatrick, E., Haws, B., & Heilman, K. M. (1990). Directional hypokinesia and hemispatial inattention in neglect. Brain, 113(Pt 2), 475–486.PubMedGoogle Scholar
  202. 202.
    Coslett, H. B., & Heilman, K. M. (1989). Hemihypokinesia after right hemisphere stroke. Brain and Cognition, 9(2), 267–278.PubMedGoogle Scholar
  203. 203.
    Luria, A. (1966). Higher cortical functions in man. New York: Basic Books.Google Scholar
  204. 204.
    Luria, A. R., & Khomskaya, E. D. (Eds.). (1966). The frontal lobes and regulation of psychological processes. Moscow: Moscow University Press.Google Scholar
  205. 205.
    Dewey, J., Hana, G., Russell, T., et al. (2010). Reliability and validity of MRI-based automated volumetry software relative to auto-assisted manual measurement of subcortical structures in HIV-infected patients from a multisite study. NeuroImage, 51(4), 1334–1344.PubMedGoogle Scholar
  206. 206.
    Ames, H., & Grossberg, S. (2008). Speaker normalization using cortical strip maps: A neural model for steady-state vowel categorization. The Journal of the Acoustical Society of America, 124(6), 3918–3936.PubMedGoogle Scholar
  207. 207.
    Grossberg, S. (1994). 3-D vision and figure-ground separation by visual cortex. Perception & Psychophysics, 55(1), 48–121.Google Scholar
  208. 208.
    Ryan, T. W., Winter, C. L., & Turner, C. J. (1987). Dynamic control of an artificial neural system: The property inheritance network. Applied Optics, 26(23), 4961–4971.PubMedGoogle Scholar
  209. 209.
    Pragay, E. B., Mirsky, A. F., Ray, C. L., Turner, D. F., & Mirsky, C. V. (1978). Neuronal activity in the brain stem reticular formation during performance of a “go-no go” visual attention task in the monkey. Experimental Neurology, 60(1), 83–95.PubMedGoogle Scholar
  210. 210.
    Contreras-Vidal, J. L., & Schultz, W. (1999). A predictive reinforcement model of dopamine neurons for learning approach behavior. Journal of Computational Neuroscience, 6(3), 191–214.PubMedGoogle Scholar
  211. 211.
    Grossberg, S. (1971). Pavlovian pattern learning by nonlinear neural networks. Proceedings of the National Academy of Sciences of the United States of America, 68(4), 828–831.PubMedGoogle Scholar
  212. 212.
    Helie, S., Proulx, R., & Lefebvre, B. (2011). Bottom-up learning of explicit knowledge using a Bayesian algorithm and a new Hebbian learning rule. Neural Networks, 24(3), 219–232.PubMedGoogle Scholar
  213. 213.
    Goldrick, M. (2008). Does like attract like? Exploring the relationship between errors and representational structure in connectionist networks. Cognitive Neuropsychology, 25(2), 287–313.PubMedGoogle Scholar
  214. 214.
    Demanuele, C., Sonuga-Barke, E. J., & James, C. J. (2010). Slow neuronal oscillations in the resting brain vs task execution: A BSS investigation of EEG recordings. Conference Proceedings—IEEE Engineering in Medicine and Biology Society, 2010, 1638–1641.Google Scholar
  215. 215.
    Soltani, A., & Koch, C. (2010). Visual saliency computations: Mechanisms, constraints, and the effect of feedback. Journal of Neuroscience, 30(38), 12831–12843.PubMedGoogle Scholar
  216. 216.
    Wright, J. J. (2011). Attractor dynamics and thermodynamic analogies in the cerebral cortex: Synchronous oscillation, the background EEG, and the regulation of attention. Bulletin of Mathematical Biology, 73(2), 436–457.PubMedGoogle Scholar
  217. 217.
    Stuss, D. T., & Knight, R. T. (2002). Principles of frontal lobe function. Oxford: Oxford University Press.Google Scholar
  218. 218.
    Fuster, J. M. (1997). The prefrontal cortex: Anatomy, physiology, and neuropsychology of the frontal lobe (3rd ed.). Philadelphia: Lippincott-Raven.Google Scholar
  219. 219.
    Fuster, J. M. (2000). Executive frontal functions. Experimental Brain Research, 133(1), 66–70.PubMedGoogle Scholar
  220. 220.
    Kaplan, G. B., Sengor, N. S., Gurvit, H., Genc, I., & Guzelis, C. (2006). A composite neural network model for perseveration and distractibility in the Wisconsin card sorting test. Neural Networks, 19(4), 375–387.PubMedGoogle Scholar
  221. 221.
    Lee, K. W., Buxton, H., & Feng, J. (2005). Cue-guided search: A computational model of selective attention. IEEE Transactions on Neural Networks, 16(4), 910–924.PubMedGoogle Scholar
  222. 222.
    Sohrabi, A., & West, R. L. (2009). Positive and negative congruency effects in masked priming: A neuro-computational model based on representation, attention, and conflict. Brain Research, 1289, 124–132.PubMedGoogle Scholar
  223. 223.
    Liu, D., Xiong, X., Hou, Z. G., & Dasgupta, B. (2005). Identification of motifs with insertions and deletions in protein sequences using self-organizing neural networks. Neural Networks, 18(5–6), 835–842.PubMedGoogle Scholar
  224. 224.
    Standage, D. I., Trappenberg, T. P., & Klein, R. M. (2005). Modelling divided visual attention with a winner-take-all network. Neural Networks, 18(5–6), 620–627.PubMedGoogle Scholar
  225. 225.
    Heerebout, B. T., & Phaf, R. H. (2010). Good vibrations switch attention: An affective function for network oscillations in evolutionary simulations. Cognitive, Affective, & Behavioral Neuroscience, 10(2), 217–229.Google Scholar
  226. 226.
    Onken, R., & Feraric, J. P. (1997). Adaptation to the driver as part of a driver monitoring and warning system. Accident; Analysis and Prevention, 29(4), 507–513.PubMedGoogle Scholar
  227. 227.
    Hudson, P. T., van den Herik, H. J., & Postma, E. O. (1997). SCAN: A scalable model of attentional selection. Neural Networks, 10(6), 993–1015.PubMedGoogle Scholar
  228. 228.
    Flach, K. A., Adler, L. E., Gerhardt, G. A., Miller, C., Bickford, P., & MacGregor, R. J. (1996). Sensory gating in a computer model of the CA3 neural network of the hippocampus. Biological Psychiatry, 40(12), 1230–1245.PubMedGoogle Scholar
  229. 229.
    Servan-Schreiber, D., Cohen, J. D., & Steingard, S. (1996). Schizophrenic deficits in the processing of context. A test of a theoretical model. Archives of General Psychiatry, 53(12), 1105–1112.PubMedGoogle Scholar
  230. 230.
    Arrington, K. F. (1996). Directional filling-in. Neural Computation, 8(2), 300–318.PubMedGoogle Scholar
  231. 231.
    Green, D. M. (1958). Detection of multiple component signals in noise. Journal of the Acoustical Society of America, 30, 904–911.Google Scholar
  232. 232.
    Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New York: Wiley.Google Scholar
  233. 233.
    Swets, J. (1984). Mathematical models of attention. In: Davies RPDR (Ed.). (pp. 183–242). New York: Academic.Google Scholar
  234. 234.
    Swets, J. A. (1964). Signal detection and recognition by human observers; contemporary readings. New York: Wiley.Google Scholar
  235. 235.
    Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240(4857), 1285–1293.PubMedGoogle Scholar
  236. 236.
    Swets, J. A., & Birdsall, T. G. (1978). Repeated observation of an uncertain signal. Perception & Psychophysics, 23(4), 269–274.Google Scholar
  237. 237.
    Swets, J. A., Green, D. M., Getty, D. J., & Swets, J. B. (1978). Signal detection and identification at successive stages of observation. Perception & Psychophysics, 23(4), 275–289.Google Scholar
  238. 238.
    Swets, J. A., & Kristofferson, A. B. (1970). Attention. Annual Review of Psychology, 21, 339–366.PubMedGoogle Scholar
  239. 239.
    Neifeld, M. A. (1995). Optical dual-scale architecture for neural image recognition. Applied Optics, 34(26), 5920–5927.PubMedGoogle Scholar
  240. 240.
    Posner, M. I. (1978). Chronometric explorations of mind. Hillsdale, NJ: Erlbaum.Google Scholar
  241. 241.
    Piche, S. W. (1995). The selection of weight accuracies for Madalines. IEEE Transactions on Neural Networks, 6(2), 432–445.PubMedGoogle Scholar
  242. 242.
    Somers, D., & Kopell, N. (1993). Rapid synchronization through fast threshold modulation. Biological Cybernetics, 68(5), 393–407.PubMedGoogle Scholar
  243. 243.
    de Carvalho, L. A. (1994). Modeling the thalamocortical loop. International Journal of Bio-Medical Computing, 35(4), 267–296.PubMedGoogle Scholar
  244. 244.
    Brown, M. A., & Sharp, P. E. (1995). Simulation of spatial learning in the Morris water maze by a neural network model of the hippocampal formation and nucleus accumbens. Hippocampus, 5(3), 171–188.PubMedGoogle Scholar
  245. 245.
    Posner, M. I. (1980). Orienting of attention: The VIIth Sir Frederic Bartlett Lecture. Quarterly Journal of Experimental Psychology, 32, 3–25.PubMedGoogle Scholar
  246. 246.
    Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology. General, 109, 160–174.Google Scholar
  247. 247.
    Posner, M. I., & Cohen, Y. (1984). Facilitation and inhibition in shifts of visual attention. In B. Bouma & D. Bowhuis (Eds.), Attention and performance (Vol. X). Hillsdale, NJ: Erlbaum.Google Scholar
  248. 248.
    Posner, M. I., Walker, J. A., Friedrich, F. J., & Rafal, R. D. (1984). Effects of parietal lobe injury on covert orienting of visual attention. Journal of Neuroscience, 4(7), 1863–1874.PubMedGoogle Scholar
  249. 249.
    Posner, M. I., Peterson, S. E., Fox, P. T., & Raichle, M. E. (1988). Localization of cognitive operations in the human brain. Science, 240, 1627–1631.PubMedGoogle Scholar
  250. 250.
    Sperling, G. (1960). The information available in brief visual presentations. Psychological Monographs, 74(11), 1–30.Google Scholar
  251. 251.
    Fukushima, K. (1987). Self-organizing neural network models for visual pattern recognition. Acta Neurochirurgica Supplement, 41, 51–67.Google Scholar
  252. 252.
    Fukushima, K. (1986). A neural network model for selective attention in visual pattern recognition. Biological Cybernetics, 55(1), 5–15.PubMedGoogle Scholar
  253. 253.
    Mortara, R. A., & Koch, G. L. (1986). Analysis of pseudopodial structure and assembly with viral projections. Journal of Cell Science. Supplement, 5, 129–144.PubMedGoogle Scholar
  254. 254.
    Leisman, G., & Koch, P. (1989). Cybernetic model of psychophysiological pathways: I. Control functions. Journal of Manipulative and Physiological Therapeutics, 12(2), 98–108.PubMedGoogle Scholar
  255. 255.
    Heinke, D., & Backhaus, A. (2011). Modelling Visual Search with the Selective Attention for Identification Model (VS-SAIM): A novel explanation for visual search asymmetries. Cognitive Computation, 3(1), 185–205.PubMedGoogle Scholar
  256. 256.
    Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon identification of a target letter in a non- search task. Perception and Psychophysics, 16, 143–149.Google Scholar
  257. 257.
    Light, G. A., & Braff, D. L. (2001). Measuring P50 suppression and prepulse inhibition in a single recording session. The American Journal of Psychiatry, 158(12), 2066–2068.PubMedGoogle Scholar
  258. 258.
    Perry, W., Feifel, D., Minassian, A., Bhattacharjie, I., & Braff, D. L. (2002). Information processing deficits in acutely psychotic schizophrenia patients medicated and unmedicated at the time of admission. The American Journal of Psychiatry, 159(8), 1375–1381.PubMedGoogle Scholar
  259. 259.
    Scheres, A., Oosterlaan, J., Swanson, J., et al. (2003). The effect of methylphenidate on three forms of response inhibition in boys with AD/HD. Journal of Abnormal Child Psychology, 31(1), 105–120.PubMedGoogle Scholar
  260. 260.
    Swerdlow, N. R., Talledo, J. A., & Braff, D. L. (2005). Startle modulation in Caucasian-Americans and Asian-Americans: A prelude to genetic/endophenotypic studies across the ‘Pacific Rim’. Psychiatric Genetics, 15(1), 61–65.PubMedGoogle Scholar
  261. 261.
    Castellanos, F. X., Sonuga-Barke, E. J., Scheres, A., Di Martino, A., Hyde, C., & Walters, J. R. (2005). Varieties of attention-deficit/hyperactivity disorder-related intra-individual variability. Biological Psychiatry, 57(11), 1416–1423.PubMedGoogle Scholar
  262. 262.
    Ruchsow, M., Herrnberger, B., Beschoner, P., Gron, G., Spitzer, M., & Kiefer, M. (2006). Error processing in major depressive disorder: Evidence from event-related potentials. Journal of Psychiatric Research, 40(1), 37–46.PubMedGoogle Scholar
  263. 263.
    Franken, I. H., van Strien, J. W., Franzek, E. J., & van de Wetering, B. J. (2007). Error-processing deficits in patients with cocaine dependence. Biological Psychology, 75(1), 45–51.PubMedGoogle Scholar
  264. 264.
    Greenwood, T. A., Braff, D. L., Light, G. A., et al. (2007). Initial heritability analyses of endophenotypic measures for schizophrenia: The consortium on the genetics of schizophrenia. Archives of General Psychiatry, 64(11), 1242–1250.PubMedGoogle Scholar
  265. 265.
    Wynn, J. K., Green, M. F., Sprock, J., et al. (2007). Effects of olanzapine, risperidone and haloperidol on prepulse inhibition in schizophrenia patients: A double-blind, randomized controlled trial. Schizophrenia Research, 95(1–3), 134–142.PubMedGoogle Scholar
  266. 266.
    Corchs, S., & Deco, G. (2002). Large-scale neural model for visual attention: Integration of experimental single-cell and fMRI data. Cerebral Cortex, 12(4), 339–348.PubMedGoogle Scholar
  267. 267.
    Zirnsak, M., Beuth, F., & Hamker, F. H. (2011). Split of spatial attention as predicted by a systems-level model of visual attention. The European Journal of Neuroscience, 33(11), 2035–2045.PubMedGoogle Scholar
  268. 268.
    Meincke, U., Light, G. A., Geyer, M. A., Braff, D. L., & Gouzoulis-Mayfrank, E. (2004). Sensitization and habituation of the acoustic startle reflex in patients with schizophrenia. Psychiatry Research, 126(1), 51–61.PubMedGoogle Scholar
  269. 269.
    Yu, A. J., Dayan, P., & Cohen, J. D. (2009). Dynamics of attentional selection under conflict: Toward a rational Bayesian account. Journal of Experimental Psychology. Human Perception and Performance, 35(3), 700–717.PubMedGoogle Scholar
  270. 270.
    Deco, G., & Heinke, D. (2007). Attention and spatial resolution: A theoretical and experimental study of visual search in hierarchical patterns. Perception, 36(3), 335–354.PubMedGoogle Scholar
  271. 271.
    Luks, T. L., Oliveira, M., Possin, K. L., et al. (2010). Atrophy in two attention networks is associated with performance on a Flanker task in neurodegenerative disease. Neuropsychologia, 48(1), 165–170.PubMedGoogle Scholar
  272. 272.
    van’t Ent, D., van Beijsterveldt, C. E., Derks, E. M., et al. (2009). Neuroimaging of response interference in twins concordant or discordant for inattention and hyperactivity symptoms. Neuroscience, 164(1), 16–29.Google Scholar
  273. 273.
    Swerdlow, N. R., Martinez, Z. A., Hanlon, F. M., et al. (2000). Toward understanding the biology of a complex phenotype: Rat strain and substrain differences in the sensorimotor gating-disruptive effects of dopamine agonists. Journal of Neuroscience, 20(11), 4325–4336.PubMedGoogle Scholar
  274. 274.
    Cadenhead, K. S., Light, G. A., Geyer, M. A., & Braff, D. L. (2000). Sensory gating deficits assessed by the P50 event-related potential in subjects with schizotypal personality disorder. The American Journal of Psychiatry, 157(1), 55–59.PubMedGoogle Scholar
  275. 275.
    Swerdlow, N. R., Geyer, M. A., Hartman, P. L., et al. (1999). Sex differences in sensorimotor gating of the human startle reflex: All smoke? Psychopharmacology, 146(2), 228–232.PubMedGoogle Scholar
  276. 276.
    Vaidya, C. J., Bunge, S. A., Dudukovic, N. M., Zalecki, C. A., Elliott, G. R., & Gabrieli, J. D. (2005). Altered neural substrates of cognitive control in childhood ADHD: Evidence from functional magnetic resonance imaging. The American Journal of Psychiatry, 162(9), 1605–1613.PubMedGoogle Scholar
  277. 277.
    Braff, D. L., Swerdlow, N. R., & Geyer, M. A. (1999). Symptom correlates of prepulse inhibition deficits in male schizophrenic patients. The American Journal of Psychiatry, 156(4), 596–602.PubMedGoogle Scholar
  278. 278.
    Perry, W., Geyer, M. A., & Braff, D. L. (1999). Sensorimotor gating and thought disturbance measured in close temporal proximity in schizophrenic patients. Archives of General Psychiatry, 56(3), 277–281.PubMedGoogle Scholar
  279. 279.
    Cadenhead, K. S., Carasso, B. S., Swerdlow, N. R., Geyer, M. A., & Braff, D. L. (1999). Prepulse inhibition and habituation of the startle response are stable neurobiological measures in a normal male population. Biological Psychiatry, 45(3), 360–364.PubMedGoogle Scholar
  280. 280.
    Mansbach, R. S., Braff, D. L., & Geyer, M. A. (1989). Prepulse inhibition of the acoustic startle response is disrupted by N-ethyl-3,4-methylenedioxyamphetamine (MDEA) in the rat. European Journal of Pharmacology, 167(1), 49–55.PubMedGoogle Scholar
  281. 281.
    Fan, J., McCandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience, 14(3), 340–347.PubMedGoogle Scholar
  282. 282.
    Gravius, A., Laszy, J., Pietraszek, M., et al. (2011). Effects of 5-HT6 antagonists, Ro-4368554 and SB-258585, in tests used for the detection of cognitive enhancement and antipsychotic-like activity. Behavioural Pharmacology, 22(2), 122–135.PubMedGoogle Scholar
  283. 283.
    Weaver, B., Bedard, M., McAuliffe, J., & Parkkari, M. (2009). Using the Attention Network Test to predict driving test scores. Accident; Analysis and Prevention, 41(1), 76–83.PubMedGoogle Scholar
  284. 284.
    Benoit, C. E., Bastianetto, S., Brouillette, J., et al. (2010). Loss of quinone reductase 2 function selectively facilitates learning behaviors. Journal of Neuroscience, 30(38), 12690–12700.PubMedGoogle Scholar
  285. 285.
    Savonenko, A., Munoz, P., Melnikova, T., et al. (2009). Impaired cognition, sensorimotor gating, and hippocampal long-term depression in mice lacking the prostaglandin E2 EP2 receptor. Experimental Neurology, 217(1), 63–73.PubMedGoogle Scholar
  286. 286.
    Leskin, L. P., & White, P. M. (2007). Attentional networks reveal executive function deficits in posttraumatic stress disorder. Neuropsychology, 21(3), 275–284.PubMedGoogle Scholar
  287. 287.
    Dunlop, J., Lock, T., Jow, B., et al. (2009). Old and new pharmacology: Positive allosteric modulation of the alpha7 nicotinic acetylcholine receptor by the 5-hydroxytryptamine(2B/C) receptor antagonist SB-206553 (3,5-dihydro-5-methyl-N-3-pyridinylbenzo[1,2-b:4,5-b′]di pyrrole-1(2H)-carboxamide). The Journal of Pharmacology and Experimental Therapeutics, 328(3), 766–776.PubMedGoogle Scholar
  288. 288.
    Tsujimura, A., Matsuki, M., Takao, K., Yamanishi, K., Miyakawa, T., & Hashimoto-Gotoh, T. (2008). Mice lacking the kf-1 gene exhibit increased anxiety—But not despair-like behavior. Frontiers in Behavioral Neuroscience, 2, 4.PubMedGoogle Scholar
  289. 289.
    Savonenko, A. V., Melnikova, T., Laird, F. M., Stewart, K. A., Price, D. L., & Wong, P. C. (2008). Alteration of BACE1-dependent NRG1/ErbB4 signaling and schizophrenia-like phenotypes in BACE1-null mice. Proceedings of the National Academy of Sciences of the United States of America, 105(14), 5585–5590.PubMedGoogle Scholar
  290. 290.
    Fan, J., McCandliss, B. D., Fossella, J., Flombaum, J. I., & Posner, M. I. (2005). The activation of attentional networks. NeuroImage, 26(2), 471–479.PubMedGoogle Scholar
  291. 291.
    Taniguchi, T., Doe, N., Matsuyama, S., et al. (2005). Transgenic mice expressing mutant (N279K) human tau show mutation dependent cognitive deficits without neurofibrillary tangle formation. FEBS Letters, 579(25), 5704–5712.PubMedGoogle Scholar
  292. 292.
    Gooding, D. C., Braun, J. G., & Studer, J. A. (2006). Attentional network task performance in patients with schizophrenia-spectrum disorders: evidence of a specific deficit. Schizophrenia Research, 88, 169–178.Google Scholar
  293. 293.
    Bakshi, V. P., Swerdlow, N. R., Braff, D. L., & Geyer, M. A. (1998). Reversal of isolation rearing-induced deficits in prepulse inhibition by Seroquel and olanzapine. Biological Psychiatry, 43(6), 436–445.PubMedGoogle Scholar
  294. 294.
    Cadenhead, K., Kumar, C., & Braff, D. (1996). Clinical and experimental characteristics of “hypothetically psychosis prone” college students. Journal of Psychiatric Research, 30(5), 331–340.PubMedGoogle Scholar
  295. 295.
    Lipska, B. K., Swerdlow, N. R., Geyer, M. A., Jaskiw, G. E., Braff, D. L., & Weinberger, D. R. (1995). Neonatal excitotoxic hippocampal damage in rats causes post-pubertal changes in prepulse inhibition of startle and its disruption by apomorphine. Psychopharmacology, 122(1), 35–43.PubMedGoogle Scholar
  296. 296.
    Kendler, H. H., & Kendler, T. S. (1962). Vertical and horizontal processes in problem solving. Psychological Review, 69, 1–16.PubMedGoogle Scholar
  297. 297.
    Kendler, H. H., & Kendler, T. S. (1966). Selective attention versus mediation: Some comments on Mackintosh’s analysis of two-stage models of discrimination learning. Psychological Bulletin, 66(4), 282–288.PubMedGoogle Scholar
  298. 298.
    Kendler, T. S. (1971). Continuity theory and cue-dominance. In H. H. Kendler & J. T. Spence (Eds.), Tenets of neurobehaviorism (pp. 237–264). New York: Appleton.Google Scholar
  299. 299.
    Kendler, T. S., Basden, B. H., & Bruckner, J. B. (1970). Dimensional dominance and continuity theory. Journal of Experimental Psychology, 83(2), 309–318.PubMedGoogle Scholar
  300. 300.
    David, S. P., Munafo, M. R., Johansen-Berg, H., et al. (2007). Effects of acute nicotine abstinence on cue-elicited ventral striatum/nucleus accumbens activation in female cigarette smokers: A functional magnetic resonance imaging study. Brain Imaging and Behavior, 1(3–4), 43–57.PubMedGoogle Scholar
  301. 301.
    McCaffery, J. M., Haley, A. P., Sweet, L. H., et al. (2009). Differential functional magnetic resonance imaging response to food pictures in successful weight-loss maintainers relative to normal-weight and obese controls. American Journal of Clinical Nutrition, 90(4), 928–934.PubMedGoogle Scholar
  302. 302.
    Swerdlow, N. R., Geyer, M. A., & Braff, D. L. (2001). Neural circuit regulation of prepulse inhibition of startle in the rat: Current knowledge and future challenges. Psychopharmacology, 156(2–3), 194–215.PubMedGoogle Scholar
  303. 303.
    Swerdlow, N. R., Weber, M., Qu, Y., Light, G. A., & Braff, D. L. (2008). Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacology, 199(3), 331–388.PubMedGoogle Scholar
  304. 304.
    Perriol, M. P., Dujardin, K., Derambure, P., et al. (2005). Disturbance of sensory filtering in dementia with Lewy bodies: Comparison with Parkinson’s disease dementia and Alzheimer’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 76(1), 106–108.PubMedGoogle Scholar
  305. 305.
    Hejl, A. M., Glenthoj, B., Mackeprang, T., Hemmingsen, R., & Waldemar, G. (2004). Prepulse inhibition in patients with Alzheimer’s disease. Neurobiology of Aging, 25(8), 1045–1050.PubMedGoogle Scholar
  306. 306.
    Braff, D. L., & Geyer, M. A. (1990). Sensorimotor gating and schizophrenia. Human and animal model studies. Archives of General Psychiatry, 47(2), 181–188.PubMedGoogle Scholar
  307. 307.
    Geyer, M. A., & Braff, D. L. (1987). Startle habituation and sensorimotor gating in schizophrenia and related animal models. Schizophrenia Bulletin, 13(4), 643–668.PubMedGoogle Scholar
  308. 308.
    Mackworth, N. H. (1950). Researches in the measurement of human performance. MRC special report series no. 268. London: H. M. Stationery Office.Google Scholar
  309. 309.
    Mackworth, J. F. (1969). Vigilance and habituation: A neuropsychological approach. Harmondsworth, England: Penguin.Google Scholar
  310. 310.
    Buchsbaum, M. S., Haier, R. J., Sostek, A. J., et al. (1985). Attention dysfunction and psychopathology in college men. Archives of General Psychiatry, 42(4), 354–360.PubMedGoogle Scholar
  311. 311.
    Siever, L. J., Haier, R. J., Coursey, R. D., et al. (1982). Smooth pursuit eye tracking impairment: Relation to other ‘markers’ of schizophrenia and psychologic correlates. Archives of General Psychiatry, 39(9), 1001–1005.PubMedGoogle Scholar
  312. 312.
    Sostek, A. J., Buchsbaum, M. S., & Rapoport, J. L. (1980). Effects of amphetamine on vigilance performance in normal and hyperactive children. Journal of Abnormal Child Psychology, 8(4), 491–500.PubMedGoogle Scholar
  313. 313.
    Neisser, U. (1967). Cognitive psychology. New York: Appleton.Google Scholar
  314. 314.
    Neisser, U. (1976). Cognition and reality. San Francisco: W.H. Freeman.Google Scholar
  315. 315.
    Neisser, U. B. (1975). Selective looking: Attending to visually-specified events. Cognitive Psychology, 7, 480–494.Google Scholar
  316. 316.
    Spelke, E., Hirst, W. C., & Neisser, U. (1976). Skills of divided attention. Cognition, 4, 215–230.Google Scholar
  317. 317.
    Sperling, G., & Melchner, M. J. (1978). Visual search, visual attention, and the attention operating characteristic. In J. Requin (Ed.), Attention and performance VII (pp. 675–686). Hillsdale, NJ: Erlbaum.Google Scholar
  318. 318.
    Posner, M. I. (1986). Chronometric explorations of the mind. New York: Oxford University Press.Google Scholar
  319. 319.
    Kimura, D. (1967). Functional asymmetry of the brain in dichotic listening. Cortex, 3, 163–178.Google Scholar
  320. 320.
    Springer, S. P., Sidtis, J., Wilson, D., & Gazzaniga, M. S. (1978). Left ear performance in dichotic listening following commissurotomy. Neuropsychologia, 16(3), 305–312.PubMedGoogle Scholar
  321. 321.
    Springer, S. P., & Gazzaniga, M. S. (1975). Dichotic testing of partial and complete split brain subjects. Neuropsychologia, 13(3), 341–346.PubMedGoogle Scholar
  322. 322.
    Springer, S. P., & Searleman, A. (1978). The ontogeny of hemispheric specialization: evidence from dichotic listening in twins. Neuropsychologia, 16, 269–281.Google Scholar
  323. 323.
    Cherry, E. C. (1953). Some experiments on the recognition of speech, with one and with two ears. Journal of the Acoustical Society of America, 26, 975–979.Google Scholar
  324. 324.
    Treisman, A., & Davies, A. (1973). Divided attention to ear and eye. In S. Kornblum (Ed.), Attention and performance IV (pp. 101–117). London: Academic.Google Scholar
  325. 325.
    Underwood, G. (1976). Attention and memory. Oxford, NY: Pergamon Press.Google Scholar
  326. 326.
    Underwood, G., & Stevens, R. (1979). Aspects of consciousness. London: Academic.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ronald A. Cohen
    • 1
    • 2
    • 3
  1. 1.Departments of Neurology, Psychiatry and AgingGainesvilleUSA
  2. 2.Center for Cognitive Aging and MemoryUniversity of Florida College of MedicineGainesvilleUSA
  3. 3.Department of Psychiatry and Human Behavior Warren Alpert School of MedicineBrown UniversityProvidenceUSA

Personalised recommendations