Medical Disorders and Behavioral Risk Factors

  • Ronald A. Cohen


Neurological disorders that directly affect brain structure and function have been the primary subject of neuropsychological inquiry. Yet, over the past 2 decades, there has been growing awareness that cognitive and behavioral problems also often arise secondary to systemic medical conditions that are not neurological disorders per se. The effect of systemic medical disease on brain function has been the subject of increasing interest, as people are living longer, though often with chronic health problems. There has been increased realization that many medical conditions, though of systemic origin, eventually affect the brain. Attention and processing speed are among the cognitive functions most commonly impacted by systemic medical disease. Consideration of all of the medical disorders that affect attention is beyond the scope of this book. We will consider several conditions: cardiovascular disease (CVD), diabetes and other metabolic disorders, human immunological virus (HIV), and chemotherapy effects in the treatment of cancer. These particular disorders were selected to discuss as they serve to illustrate attentional disturbances associated with common medical conditions and in the case of HIV and CVD, because they have been the subject of considerable inquiry by my research group. These disturbances result from different pathological mechanisms, including chronic vascular and metabolic disturbances, viral effects, and iatrogenic treatments effects.


Acquire Immune Deficiency Syndrome Sustained Attention Cerebral Spinal Fluid White Matter Hyperintensities Chronic Cerebral Hypoperfusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    American Heart Association. (2004). Cardiovascular disease statistics: American Heart Association. Retrieved from
  2. 2.
    Bild, D. E., Fitzpatrick, A., Fried, L. P., et al. (1993). Age-related trends in cardiovascular morbidity and physical functioning in the elderly: The Cardiovascular Health Study. Journal of American Geriatrics Society, 41(10), 1047–1056.Google Scholar
  3. 3.
    Smith, S. M., & Mensah, G. A. (2003). Population aging and implications for epidemic cardiovascular disease in Sub-Saharan Africa. Ethnicity & Disease, 13(2 Suppl 2), S77–S80.Google Scholar
  4. 4.
    Miller, L. W., & Missov, E. D. (2001). Epidemiology of heart failure. Cardiology Clinics, 19(4), 547–555.PubMedGoogle Scholar
  5. 5.
    Rich, M. W. (1997). Epidemiology, pathophysiology, and etiology of congestive heart failure in older adults. Journal of American Geriatrics Society, 45(8), 968–974.Google Scholar
  6. 6.
    Haan, M. N., Selby, J. V., Quesenberry, C. P., Jr., Schmittdiel, J. A., Fireman, B. H., & Rice, D. P. (1997). The impact of aging and chronic disease on use of hospital and outpatient services in a large HMO: 1971-1991. Journal of American Geriatrics Society, 45(6), 667–674.Google Scholar
  7. 7.
    Mangano, D. T. (1995). Cardiovascular morbidity and CABG surgery–a perspective: Epidemiology, costs, and potential therapeutic solutions. Journal of Cardiac Surgery, 10(4 Suppl), 366–368.PubMedGoogle Scholar
  8. 8.
    Manton, K. G. (1988). The global impact of noncommunicable diseases: Estimates and projections. World Health Statistics Quarterly, 41(3–4), 255–266.Google Scholar
  9. 9.
    Ayanian, J. Z., Guadagnoli, E., & Cleary, P. D. (1995). Physical and psychosocial functioning of women and men after coronary artery bypass surgery. JAMA: The Journal of the American Medical Association, 274(22), 1767–1770.Google Scholar
  10. 10.
    Bastone, E., & Kerns, R. (1995). Effects of self-efficacy and perceived social support on recovery-related behaviors after coronary artery bypass surgery. Annals of Behavioral Medicine, 17(4), 324–330.PubMedGoogle Scholar
  11. 11.
    Jones, G. E., Jones, K. R., Cunningham, R. A., & Caldwell, J. A. (1985). Cardiac awareness in infarct patients and normals. Psychophysiology, 22(4), 480–487.PubMedGoogle Scholar
  12. 12.
    Ruberman, W., Weinblatt, E., Goldberg, J. D., & Chaudhary, B. S. (1984). Psychosocial influences on mortality after myocardial infarction. The New England Journal of Medicine, 311(9), 552–559.PubMedGoogle Scholar
  13. 13.
    Engebretson, T., Clark, M., Niaura, R., Phillips, T., Albrecht, A., & Tilkemeier, P. (1999). Quality of life and anxiety in a phase II cardiac rehabilitation program. Medicine and Science in Sports and Exercise, 31, 216–223.PubMedGoogle Scholar
  14. 14.
    Drexler, H., Hayoz, D., Munzel, T., Just, H., Zelis, R., & Brunner, H. R. (1993). Endothelial function in congestive heart failure. American Heart Journal, 126(3 Pt 2), 761–764.PubMedGoogle Scholar
  15. 15.
    Polidori, M. C., Marvardi, M., Cherubini, A., Senin, U., & Mecocci, P. (2001). Heart disease and vascular risk factors in the cognitively impaired elderly: Implications for Alzheimer’s dementia. Aging (Milan, Italy), 13(3), 231–239.Google Scholar
  16. 16.
    Guo, Z., Viitanen, M., & Winblad, B. (1997). Clinical correlates of low blood pressure in very old people: The importance of cognitive impairment. Journal of American Geriatrics Society, 45(6), 701–705.Google Scholar
  17. 17.
    Cohen, R. A., Moser, D. J., Clark, M. M., et al. (1999). Neurocognitive functioning and improvement in quality of life following participation in cardiac rehabilitation. The American Journal of Cardiology, 83(9), 1374–1378.PubMedGoogle Scholar
  18. 18.
    Clark, M., Nash, J., Cohen, R., Chase, C., & Niaura, R. (1997). Psychological factors in cardiac disease. In P. Kleespies (Ed.), Emergencies in mental health practice: Evaluation and management. New York: Guilford Press.Google Scholar
  19. 19.
    Ades, P. A., Huang, D., & Weaver, S. O. (1992). Cardiac rehabilitation participation predicts lower rehospitalization costs. American Heart Journal, 123(4 Pt 1), 916–921.PubMedGoogle Scholar
  20. 20.
    Cohen, R., & Kaplan, R. (1995). Neuropsychological aspects of cerebrovascular disease. In J. Boguslovsky, & M. Fisher (Eds.), Current review of cerebrovascular disease. Philadelphia: Current Medicine.Google Scholar
  21. 21.
    Cohen, R. A., Paul, R. H., Ott, B. R., et al. (2002). The relationship of subcortical MRI hyperintensities and brain volume to cognitive function in vascular dementia. Journal of International Neuropsychological Society, 8(6), 743–752.Google Scholar
  22. 22.
    Cook, I., Leuchter, A., Morgan, M., et al. (2002). Cognitive and physiologic correlates of subclinical structural brain disease in elderly healthy control subjects. Archives of Neurology, 59, 1612–1620.PubMedGoogle Scholar
  23. 23.
    Tatemichi, T. K., Desmond, D. W., Mayeux, R., et al. (1992). Dementia after stroke: Baseline frequency, risks, and clinical features in a hospitalized cohort. Neurology, 42(6), 1185–1193.PubMedGoogle Scholar
  24. 24.
    Tatemichi, T. K., Desmond, D. W., Stern, Y., Paik, M., Sano, M., & Bagiella, E. (1994). Cognitive impairment after stroke: Frequency, patterns, and relationship to functional abilities. Journal of Neurology, Neurosurgery, and Psychiatry, 57(2), 202–207.PubMedGoogle Scholar
  25. 25.
    Tatemichi, T., Desmond, D., & Paik, M. (1994). Clinical determinants of dementia related to stroke. Annals of Neurology, 33, 568–575.Google Scholar
  26. 26.
    Butler, R. N., Ahronheim, J., Fillit, H., Rapoport, S. I., & Tatemichi, J. K. (1993). Vascular dementia: Stroke prevention takes on new urgency. Geriatrics, 48(11), 32–34; 40–42.PubMedGoogle Scholar
  27. 27.
    Caplan, L. (1993). Stroke: A clinical approach (2nd ed.). Boston: Butterworths.Google Scholar
  28. 28.
    De Reuck, J. L. (1996). Evidence for chronic ischaemia in the pathogenesis of vascular dementia: From neuroPATH to neuroPET. Acta Neurologica Belgica, 96(3), 228–231.PubMedGoogle Scholar
  29. 29.
    Shuaib, A., & Boyle, C. (1994). Stroke in the elderly. Current Opinion in Neurology, 7(1), 41–47.PubMedGoogle Scholar
  30. 30.
    Petty, L. A., Parker, J. R., & Parker, J. C., Jr. (1992). Hypertension and vascular dementia. Annals of Clinical and Laboratory Science, 22(1), 34–39.PubMedGoogle Scholar
  31. 31.
    Phillips, S. J., & Whisnant, J. P. (1992). Hypertension and the brain. The National High Blood Pressure Education Program. Archives of Internal Medicine, 152(5), 938–945.PubMedGoogle Scholar
  32. 32.
    Lindsay, J., Hebert, R., & Rockwood, K. (1997). The Canadian Study of Health and Aging: Risk factors for vascular dementia. Stroke, 28(3), 526–530.PubMedGoogle Scholar
  33. 33.
    Ahto, M., Isoaho, R., Puolijoki, H., Laippala, P., Sulkava, R., & Kivela, S. L. (1999). Cognitive impairment among elderly coronary heart disease patients. Gerontology, 45(2), 87–95.PubMedGoogle Scholar
  34. 34.
    Aberg, T. (1974). Effect of open heart surgery on intellectual function. Scandinavian Journal of Thoracic and Cardiovascular Surgery. Supplementum, 15, 1–63.PubMedGoogle Scholar
  35. 35.
    Barclay, L. L., Weiss, E. M., Mattis, S., Bond, O., & Blass, J. P. (1988). Unrecognized cognitive impairment in cardiac rehabilitation patients. Journal of American Geriatrics Society, 36(1), 22–28.Google Scholar
  36. 36.
    Ammash, N., & Warnes, C. A. (1996). Cerebrovascular events in adult patients with cyanotic congenital heart disease. Journal of the American College of Cardiology, 28(3), 768–772.PubMedGoogle Scholar
  37. 37.
    Anderson, T. J., Uehata, A., Gerhard, M. D., et al. (1995). Close relation of endothelial function in the human coronary and peripheral circulations. Journal of the American College of Cardiology, 26(5), 1235–1241.PubMedGoogle Scholar
  38. 38.
    Bracco, L., Campani, D., Baratti, E., et al. (1993). Relation between MRI features and dementia in cerebrovascular disease patients with leukoaraiosis: A longitudinal study. Journal of Neurological Sciences, 120(2), 131–136.Google Scholar
  39. 39.
    Brun, A. (1994). Pathology and pathophysiology of cerebrovascular dementia: Pure subgroups of obstructive and hypoperfusive etiology. Dementia, 5(3–4), 145–147.PubMedGoogle Scholar
  40. 40.
    Jennings, J. R., Muldoon, M. F., Ryan, C. M., et al. (1998). Cerebral blood flow in hypertensive patients: An initial report of reduced and compensatory blood flow responses during performance of two cognitive tasks. Hypertension, 31(6), 1216–1222.PubMedGoogle Scholar
  41. 41.
    Inzitari, D., Diaz, F., Fox, A., et al. (1987). Vascular risk factors and leuko-araiosis. Archives of Neurology, 44(1), 42–47.PubMedGoogle Scholar
  42. 42.
    Haskell, W. L., Alderman, E. L., Fair, J. M., et al. (1994). Effects of intensive multiple risk factor reduction on coronary atherosclerosis and clinical cardiac events in men and women with coronary artery disease. The Stanford Coronary Risk Intervention Project (SCRIP). Circulation, 89(3), 975–990.PubMedGoogle Scholar
  43. 43.
    DeCarli, C., Miller, B., Swan, G. E., Reed, T., & Wolf, P. A. (2001). Cerebrovascular and brain morphometry brain correlates of mild cognitive impairment in the National Heart, Lung, and Blood Twin Study. Archives of Neurology, 58(4), 643–647.PubMedGoogle Scholar
  44. 44.
    Cohen, R., & Gunstad, J. (Eds.). (2010). Neuropsychology and cardiovascular disease. New York, NY: Oxford University Press.Google Scholar
  45. 45.
    Boyle, P. A., Paul, R. H., Moser, D. J., & Cohen, R. A. (2004). Executive impairments predict functional declines in vascular dementia. Clinical Neuropsychology, 18(1), 75–82.Google Scholar
  46. 46.
    Garrett, K. D., Browndyke, J. N., Whelihan, W., et al. (2004). The neuropsychological profile of vascular cognitive impairment–no dementia: Comparisons to patients at risk for cerebrovascular disease and vascular dementia. Archives of Clinical Neuropsychology, 19(6), 745–757.PubMedGoogle Scholar
  47. 47.
    Paul, R. H., Cohen, R. A., Moser, D. J., et al. (2003). Clinical correlates of cognitive decline in vascular dementia. Cognitive and Behavioral Neurology, 16(1), 40–46.PubMedGoogle Scholar
  48. 48.
    Sweet, L. H., Paul, R. H., Cohen, R. A., et al. (2003). Neuroimaging correlates of dementia rating scale performance at baseline and 12-month follow-up among patients with vascular dementia. Journal of Geriatric Psychiatry and Neurology, 16(4), 240–244.PubMedGoogle Scholar
  49. 49.
    Paul, R., Garrett, K., & Cohen, R. (2003). Vascular dementia: A diagnostic conundrum for the clinical neuropsychologist. Applied Neuropsychology, 10(3), 129–136.PubMedGoogle Scholar
  50. 50.
    Cohen, R. A., Browndyke, J. N., Moser, D. J., Paul, R. H., Gordon, N., & Sweet, L. (2003). Long-term citicoline (cytidine diphosphate choline) use in patients with vascular dementia: Neuroimaging and neuropsychological outcomes. Cerebrovascular Diseases, 16(3), 199–204.PubMedGoogle Scholar
  51. 51.
    Paul, R., Moser, D., Cohen, R., Browndyke, J., Zawacki, T., & Gordon, N. (2001). Dementia severity and pattern of cognitive performance in vascular dementia. Applied Neuropsychology, 8(4), 211–217.PubMedGoogle Scholar
  52. 52.
    Cohen, R. A., Paul, R. H., Zawacki, T. M., et al. (2001). Single photon emission computed tomography, magnetic resonance imaging hyperintensity, and cognitive impairments in patients with vascular dementia. Journal of Neuroimaging, 11(3), 253–260.PubMedGoogle Scholar
  53. 53.
    Moser, D. J., Cohen, R. A., Paul, R. H., et al. (2001). Executive function and magnetic resonance imaging subcortical hyperintensities in vascular dementia. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 14(2), 89–92.PubMedGoogle Scholar
  54. 54.
    Paul, R. H., Cohen, R. A., Moser, D., et al. (2001). Performance on the Mattis Dementia Rating Scale in patients with vascular dementia: Relationships to neuroimaging findings. Journal of Geriatric Psychiatry and Neurology, 14(1), 33–36.PubMedGoogle Scholar
  55. 55.
    Ott, A., Breteler, M. M., de Bruyne, M. C., van Harskamp, F., Grobbee, D. E., & Hofman, A. (1997). Atrial fibrillation and dementia in a population-based study. The Rotterdam Study. Stroke, 28(2), 316–321.PubMedGoogle Scholar
  56. 56.
    Paciaroni, M., Agnelli, G., Caso, V., et al. (2005). Atrial fibrillation in patients with first-ever stroke: Frequency, antithrombotic treatment before the event and effect on clinical outcome. Journal of Thrombosis and Haemostasis, 3(6), 1218–1223.PubMedGoogle Scholar
  57. 57.
    Yakushiji, Y., Nishiyama, M., Yakushiji, S., et al. (2008). Brain microbleeds and global cognitive function in adults without neurological disorder. Stroke, 39(12), 3323–3328.PubMedGoogle Scholar
  58. 58.
    Qiu, C., Winblad, B., & Fratiglioni, L. (2005). The age-dependent relation of blood pressure to cognitive function and dementia. Lancet Neurology, 4(8), 487–499.PubMedGoogle Scholar
  59. 59.
    Kesavadev, J. D., Short, K. R., & Nair, K. S. (2003). Diabetes in old age: An emerging epidemic. The Journal of the Association of Physicians of India, 51, 1083–1094.PubMedGoogle Scholar
  60. 60.
    Stewart, R., Prince, M., & Mann, A. (2003). Age, vascular risk, and cognitive decline in an older, British, African-Caribbean population. Journal of American Geriatrics Society, 51(11), 1547–1553.Google Scholar
  61. 61.
    Lis, C. G., & Gaviria, M. (1997). Vascular dementia, hypertension, and the brain. Neurological Research, 19(5), 471–480.PubMedGoogle Scholar
  62. 62.
    Elias, P. K., Elias, M. F., D’Agostino, R. B., et al. (1997). NIDDM and blood pressure as risk factors for poor cognitive performance. The Framingham Study. Diabetes Care, 20(9), 1388–1395.PubMedGoogle Scholar
  63. 63.
    Farmer, M. E., Kittner, S. J., Abbott, R. D., Wolz, M. M., Wolf, P. A., & White, L. R. (1990). Longitudinally measured blood pressure, antihypertensive medication use, and cognitive performance: The Framingham Study. Journal of Clinical Epidemiology, 43(5), 475–480.PubMedGoogle Scholar
  64. 64.
    Kim, B. S., Lee, D. H., Lee, D. W., et al. (2011). The role of vascular risk factors in the development of DED syndrome among an elderly community sample. The American Journal of Geriatric Psychiatry, 19(2), 104–114.PubMedGoogle Scholar
  65. 65.
    Maggi, S., Limongi, F., Noale, M., et al. (2009). Diabetes as a risk factor for cognitive decline in older patients. Dementia and Geriatric Cognitive Disorders, 27(1), 24–33.PubMedGoogle Scholar
  66. 66.
    van den Berg, E., Dekker, J. M., Nijpels, G., et al. (2008). Cognitive functioning in elderly persons with type 2 diabetes and metabolic syndrome: The Hoorn study. Dementia and Geriatric Cognitive Disorders, 26(3), 261–269.PubMedGoogle Scholar
  67. 67.
    Biessels, G. J., Deary, I. J., & Ryan, C. M. (2008). Cognition and diabetes: A lifespan perspective. Lancet Neurology, 7(2), 184–190.PubMedGoogle Scholar
  68. 68.
    Verdelho, A., Madureira, S., Ferro, J. M., et al. (2007). Differential impact of cerebral white matter changes, diabetes, hypertension and stroke on cognitive performance among non-disabled elderly. The LADIS study. Journal of Neurology, Neurosurgery, and Psychiatry, 78(12), 1325–1330.PubMedGoogle Scholar
  69. 69.
    Kearney-Schwartz, A., Rossignol, P., Bracard, S., et al. (2009). Vascular structure and function is correlated to cognitive performance and white matter hyperintensities in older hypertensive patients with subjective memory complaints. Stroke, 40(4), 1229–1236.PubMedGoogle Scholar
  70. 70.
    Moser, D. J., Cohen, R. A., Clark, M. M., et al. (1999). Neuropsychological functioning among cardiac rehabilitation patients. Journal of Cardiopulminary Rehabilitation, 19(2), 91–97.Google Scholar
  71. 71.
    Okonkwo, O. C., Cohen, R. A., Gunstad, J., Tremont, G., Alosco, M. L., & Poppas, A. (2010). Longitudinal trajectories of cognitive decline among older adults with cardiovascular disease. Cerebrovascular Diseases, 30(4), 362–373.PubMedGoogle Scholar
  72. 72.
    Hoth, K. F., Poppas, A., Moser, D. J., Paul, R. H., & Cohen, R. A. (2008). Cardiac dysfunction and cognition in older adults with heart failure. Cognitive and Behavioral Neurology, 21(2), 65–72.PubMedGoogle Scholar
  73. 73.
    Stanek, K. M., Gunstad, J., Paul, R. H., et al. (2009). Longitudinal cognitive performance in older adults with cardiovascular disease: Evidence for improvement in heart failure. Journal of Cardiovascular Nursing, 24(3), 192–197.PubMedGoogle Scholar
  74. 74.
    Stanek, K. M., Gunstad, J., Spitznagel, M. B., et al. (2011). Improvements in cognitive function following cardiac rehabilitation for older adults with cardiovascular disease. International Journal of Neuroscience, 121(2), 86–93.PubMedGoogle Scholar
  75. 75.
    Hoth, K. F., Poppas, A., Ellison, K. E., et al. (2010). Link between change in cognition and left ventricular function following cardiac resynchronization therapy. Journal of Cardiopulmonary Rehabilitation and Prevention, 30(6), 401–408.PubMedGoogle Scholar
  76. 76.
    Boyle, P. A., Cohen, R. A., Paul, R., Moser, D., & Gordon, N. (2002). Cognitive and motor impairments predict functional declines in patients with vascular dementia. International Journal of Geriatric Psychiatry, 17(2), 164–169.PubMedGoogle Scholar
  77. 77.
    Boyle, P. A., Paul, R., Moser, D., Zawacki, T., Gordon, N., & Cohen, R. (2003). Cognitive and neurologic predictors of functional impairment in vascular dementia. The American Journal of Geriatric Psychiatry, 11(1), 103–106.PubMedGoogle Scholar
  78. 78.
    Gunstad, J., Brickman, A. M., Paul, R. H., et al. (2005). Progressive morphometric and cognitive changes in vascular dementia. Archives of Clinical Neuropsychology, 20(2), 229–241.PubMedGoogle Scholar
  79. 79.
    Paul, R. H., Gunstad, J., Poppas, A., et al. (2005). Neuroimaging and cardiac correlates of cognitive function among patients with cardiac disease. Cerebrovascular Diseases, 20(2), 129–133.PubMedGoogle Scholar
  80. 80.
    Paul, R. H., Haque, O., Gunstad, J., et al. (2005). Subcortical hyperintensities impact cognitive function among a select subset of healthy elderly. Archives of Clinical Neuropsychology, 20(6), 697–704.PubMedGoogle Scholar
  81. 81.
    Cohen, R. A., Poppas, A., Forman, D. E., et al. (2009). Vascular and cognitive functions associated with cardiovascular disease in the elderly. Journal of Clinical and Experimental Neuropsychology, 31(1), 96–110.PubMedGoogle Scholar
  82. 82.
    Tate, D. F., Jefferson, A. L., Brickman, A. M., et al. (2008). Regional white matter signal abnormalities and cognitive correlates among geriatric patients with treated cardiovascular disease. Brain Imaging and Behavior, 2(3), 200–206.PubMedGoogle Scholar
  83. 83.
    Browndyke, J. N., Moser, D. J., Cohen, R. A., et al. (2002). Acute neuropsychological functioning following cardiosurgical interventions associated with the production of intraoperative cerebral microemboli. Clinical Neuropsychology, 16(4), 463–471.Google Scholar
  84. 84.
    Gunstad, J., Cohen, R. A., Tate, D. F., et al. (2005). Blood pressure variability and white matter hyperintensities in older adults with cardiovascular disease. Blood Pressure, 14(6), 353–358.PubMedGoogle Scholar
  85. 85.
    Gunstad, J., Keary, T. A., Spitznagel, M. B., et al. (2009). Blood pressure and cognitive function in older adults with cardiovascular disease. International Journal of Neuroscience, 119(12), 2228–2242.PubMedGoogle Scholar
  86. 86.
    Haley, A. P., Sweet, L. H., Gunstad, J., et al. (2007). Verbal working memory and atherosclerosis in patients with cardiovascular disease: An fMRI study. Journal of Neuroimaging, 17(3), 227–233.PubMedGoogle Scholar
  87. 87.
    Hoth, K. F., Tate, D. F., Poppas, A., et al. (2007). Endothelial function and white matter hyperintensities in older adults with cardiovascular disease. Stroke, 38(2), 308–312.PubMedGoogle Scholar
  88. 88.
    Irani, F., Sweet, L. H., Haley, A. P., Gunstad, J. J., Jerskey, B. A., Mulligan, R. C., et al. (2009). A fMRI study of verbal working memory, cardiac output, and ejection fraction in elderly patients with cardiovascular disease. Brain Imaging and Behaviour, 3(4), 350–357.Google Scholar
  89. 89.
    Jefferson, A. L., Poppas, A., Paul, R. H., & Cohen, R. A. (2007). Systemic hypoperfusion is associated with executive dysfunction in geriatric cardiac patients. Neurobiology of Aging, 28(3), 477–483.PubMedGoogle Scholar
  90. 90.
    Jefferson, A. L., Tate, D. F., Poppas, A., et al. (2007). Lower cardiac output is associated with greater white matter hyperintensities in older adults with cardiovascular disease. Journal of American Geriatrics Society, 55(7), 1044–1048.Google Scholar
  91. 91.
    Jerskey, B. A., Cohen, R. A., Jefferson, A. L., et al. (2009). Sustained attention is associated with left ventricular ejection fraction in older adults with heart disease. Journal of International Neuropsychological Society, 15(1), 137–141.Google Scholar
  92. 92.
    Keary, T. A., Gunstad, J., Poppas, A., et al. (2007). Blood pressure variability and dementia rating scale performance in older adults with cardiovascular disease. Cognitive and Behavioral Neurology, 20(1), 73–77.PubMedGoogle Scholar
  93. 93.
    Haley, A. P., Forman, D. E., Poppas, A., et al. (2007). Carotid artery intima-media thickness and cognition in cardiovascular disease. International Journal of Cardiology, 121(2), 148–154.PubMedGoogle Scholar
  94. 94.
    Jefferson, A. L., Holland, C. M., Tate, D. F., et al. (2011). Atlas-derived perfusion correlates of white matter hyperintensities in patients with reduced cardiac output. Neurobiology of Aging, 32, 133–139.PubMedGoogle Scholar
  95. 95.
    Gunstad, J., Bausserman, L., Paul, R. H., et al. (2006). C-reactive protein, but not homocysteine, is related to cognitive dysfunction in older adults with cardiovascular disease. Journal of Clinical Neuroscience, 13(5), 540–546.PubMedGoogle Scholar
  96. 96.
    Gunstad, J., Benitez, A., Hoth, K. F., et al. (2009). P-selectin 1087G/A polymorphism is associated with neuropsychological test performance in older adults with cardiovascular disease. Stroke, 40(9), 2969–2972.PubMedGoogle Scholar
  97. 97.
    Gunstad, J., Poppas, A., Smeal, S., et al. (2006). Relation of brain natriuretic peptide levels to cognitive dysfunction in adults >55 years of age with cardiovascular disease. The American Journal of Cardiology, 98(4), 538–540.PubMedGoogle Scholar
  98. 98.
    Gunstad, J., Schofield, P., Paul, R. H., et al. (2006). BDNF Val66Met polymorphism is associated with body mass index in healthy adults. Neuropsychobiology, 53(3), 153–156.PubMedGoogle Scholar
  99. 99.
    Hoth, K. F., Haley, A. P., Gunstad, J., et al. (2008). Elevated C-reactive protein is related to cognitive decline in older adults with cardiovascular disease. Journal of American Geriatrics Society, 56(10), 1898–1903.Google Scholar
  100. 100.
    Hoth, K., Nash, J., Poppas, A., Ellison, K. E., Paul, R. H., & Cohen, R. A. (2008). Effects of cardiac resynchronization therapy on health-related quality of life in older adults with heart failure. Clinical Interventions in Aging, 3(3), 553–560.PubMedGoogle Scholar
  101. 101.
    Pase, M. P., Pipingas, A., Kras, M., et al. (2010). Healthy middle-aged individuals are vulnerable to cognitive deficits as a result of increased arterial stiffness. Journal of Hypertension, 28(8), 1724–1729.PubMedGoogle Scholar
  102. 102.
    Waldstein, S. R., & Wendell, C. R. (2010). Neurocognitive function and cardiovascular disease. Journal of Alzheimer’s Disease, 20(3), 833–842.PubMedGoogle Scholar
  103. 103.
    Sims, R., Madhere, S., Callender, C., & Campbell, A., Jr. (2008). Patterns of relationships between cardiovascular disease risk factors and neurocognitive function in African Americans. Ethnicity & Disease, 18(4), 471–476.Google Scholar
  104. 104.
    Consoli, D., Di Carlo, A., Inzitari, D., et al. (2007). Subcortical ischaemic changes in young hypertensive patients: Frequency, effect on cognitive performance and relationship with markers of endothelial and haemostatic activation. European Journal of Neurology, 14(11), 1222–1229.PubMedGoogle Scholar
  105. 105.
    Vogels, R. L., Oosterman, J. M., van Harten, B., et al. (2007). Profile of cognitive impairment in chronic heart failure. Journal of American Geriatrics Society, 55(11), 1764–1770.Google Scholar
  106. 106.
    Di Carlo, A., Lamassa, M., Baldereschi, M., et al. (2007). CIND and MCI in the Italian elderly: Frequency, vascular risk factors, progression to dementia. Neurology, 68(22), 1909–1916.PubMedGoogle Scholar
  107. 107.
    CDC. (1981). Pneumocystis pneumonia—Los Angeles. MMWR. Morbidity and Mortality Weekly Report, 30(21), 250–252.Google Scholar
  108. 108.
    CDC. (2001). First report of AIDS. MMWR. Morbidity and Mortality Weekly Report, 50(21), 429.Google Scholar
  109. 109.
    CDC. (2001). HIV and AIDS–United States, 1981–2000. MMWR. Morbidity and Mortality Weekly Report, 50(21), 430–434.Google Scholar
  110. 110.
    Small, C. B., Klein, R. S., Friedland, G. H., Moll, B., Emeson, E. E., & Spigland, I. (1983). Community-acquired opportunistic infections and defective cellular immunity in heterosexual drug abusers and homosexual men. American Journal of Medicine, 74(3), 433–441.PubMedGoogle Scholar
  111. 111.
    Kermani, E., Drob, S., & Alpert, M. (1984). Organic brain syndrome in three cases of acquired immune deficiency syndrome. Comprehensive Psychiatry, 25(3), 294–297.PubMedGoogle Scholar
  112. 112.
    Navia, B. A., Jordan, B. D., & Price, R. W. (1986). The AIDS dementia complex: I. Clinical features. Annals of Neurology, 19(6), 517–524.PubMedGoogle Scholar
  113. 113.
    Navia, B. A., & Price, R. W. (1987). The acquired immunodeficiency syndrome dementia complex as the presenting or sole manifestation of human immunodeficiency virus infection. Archives of Neurology, 44(1), 65–69.PubMedGoogle Scholar
  114. 114.
    Price, R. W., Navia, B. A., & Cho, E. S. (1986). AIDS encephalopathy. Neurologic Clinics, 4(1), 285–301.PubMedGoogle Scholar
  115. 115.
    Carpenter, C. C., Cooper, D. A., Fischl, M. A., et al. (2000). Antiretroviral therapy in adults: Updated recommendations of the International AIDS Society-USA Panel. JAMA : The Journal of the American Medical Association, 283(3), 381–390.Google Scholar
  116. 116.
    Hammer, S. M., Saag, M. S., Schechter, M., et al. (2006). Treatment for adult HIV infection: 2006 recommendations of the International AIDS Society-USA panel. JAMA : The Journal of the American Medical Association, 296(7), 827–843.Google Scholar
  117. 117.
    Navia, B., Cho, E., Petito, C., et al. (1986). The AIDS dementia complex II. Neuropathology. Annals of Neurology, 19, 525–535.PubMedGoogle Scholar
  118. 118.
    Budka, H. (1991). Neuropathology of human immunodeficiency virus infection. Brain Pathology, 1(3), 163–175.PubMedGoogle Scholar
  119. 119.
    Budka, H., Wiley, C., Kleihues, P., et al. (1991). HIV-associated disease of the nervous system: Review of nomenclature and proposal for neuropathology-based terminology. Brain Pathology, 1(3), 143–152.PubMedGoogle Scholar
  120. 120.
    Everall, I., Luthert, P., & Lantos, P. (1993). A review of neuronal damage in human immunodeficiency virus infection: Its assessment, possible mechanism and relationship to dementia. Journal of Neuropathology and Experimental Neurology, 52(6), 561–566.PubMedGoogle Scholar
  121. 121.
    Everall, I. P., Luthert, P. J., & Lantos, P. L. (1993). Neuronal number and volume alterations in the neocortex of HIV infected individuals. Journal of Neurology, Neurosurgery, and Psychiatry, 56(5), 481–486.PubMedGoogle Scholar
  122. 122.
    Wiley, C. A., Achim, C. L., Christopherson, C., et al. (1999). HIV mediates a productive infection of the brain. AIDS, 13(15), 2055–2059.PubMedGoogle Scholar
  123. 123.
    Wiley, C. A., Masliah, E., Morey, M., et al. (1991). Neocortical damage during HIV infection. Annals of Neurology, 29(6), 651–657.PubMedGoogle Scholar
  124. 124.
    Aylward, E., Henderer, B., McCarthur, J., et al. (1993). Reduced basal ganglia volume in HIV-1 associated dementia: Results from quantitative neuroimaging. Neurology, 43, 2099–2104.PubMedGoogle Scholar
  125. 125.
    Toneatto, S., Finco, O., van der Putten, H., Abrignani, S., & Annunziata, P. (1999). Evidence of blood-brain barrier alteration and activation in HIV-1 gp120 transgenic mice. AIDS, 13(17), 2343–2348.PubMedGoogle Scholar
  126. 126.
    Merrill, J. E., & Chen, I. S. (1991). HIV-1, macrophages, glial cells, and cytokines in AIDS nervous system disease. The FASEB Journal, 5(10), 2391–2397.Google Scholar
  127. 127.
    Brack-Werner, R. (1999). Astrocytes: HIV cellular reservoirs and important participants in neuropathogenesis. AIDS, 13(1), 1–22.PubMedGoogle Scholar
  128. 128.
    Zink, W. E., Zheng, J., Persidsky, Y., Poluektova, L., & Gendelman, H. E. (1999). The neuropathogenesis of HIV-1 infection. FEMS Immunology and Medical Microbiology, 26(3–4), 233–241.PubMedGoogle Scholar
  129. 129.
    Anderson, E., Zink, W., Xiong, H., & Gendelman, H. E. (2002). HIV-1-associated dementia: A metabolic encephalopathy perpetrated by virus-infected and immune-competent mononuclear phagocytes. Journal of Acquired Immune Deficiency Syndromes, 31(Suppl 2), S43–S54.PubMedGoogle Scholar
  130. 130.
    Poluektova, L., Moran, T., Zelivyanskaya, M., Swindells, S., et al. (2001). The regulation of alpha chemokines during HIV-1 infection and leukocyte activation: Relevance for HIV-1 associated dementia. Journal of Neuroviroimmunology, 1, 112–128.Google Scholar
  131. 131.
    Lanjewar, D. N., Jain, P. P., & Shetty, C. R. (1998). Profile of central nervous system pathology in patients with AIDS: An autopsy study from India. AIDS, 12(3), 309–313.PubMedGoogle Scholar
  132. 132.
    Clifford, D. B. (1997). Primary neurologic complications of HIV infection. International AIDS Society-USA, 5, 4–7.Google Scholar
  133. 133.
    Price, R. W., Brew, B., Sidtis, J., Rosenblum, M., Scheck, A. C., & Cleary, P. (1988). The brain in AIDS: Central nervous system HIV-1 infection and AIDS dementia complex. Science (New York, N.Y.), 239(4840), 586–592.Google Scholar
  134. 134.
    Goulsmith, J., DeWolf, F., Paul, D. A., et al. (1986). Expression of human immunodeficiency virus antigen (HIV-Ag) in serum and cerebrospinal fluid during acute and chronic infection. Lancet, 11, 177–180.Google Scholar
  135. 135.
    Davis, L. E., Hjelle, B. L., Miller, V. E., et al. (1992). Early viral brain invasion in iatrogenic human immunodeficiency virus infection. Neurology, 42(9), 1736–1739.PubMedGoogle Scholar
  136. 136.
    Palmer, D., Hjeelle, B., Wiley, C., et al. (1994). HIV-1 infection despite immediate combination antiretroviral therapy after infusion of contaminated white cells. American Journal of Medicine, 97, 289–295.PubMedGoogle Scholar
  137. 137.
    Albrecht, H., Hoffmann, C., Degen, O., et al. (1998). Highly active antiretroviral therapy significantly improves the prognosis of patients with HIV-associated progressive multifocal leukoencephalopathy. AIDS, 12(10), 1149–1154.PubMedGoogle Scholar
  138. 138.
    Vago, L., Cinque, P., Sala, E., et al. (1996). JCV-DNA and BKV-DNA in the CNS tissue and CSF of AIDS patients and normal subjects. Study of 41 cases and review of the literature. Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology, 12(2), 139–146.PubMedGoogle Scholar
  139. 139.
    Clark, R. A., & Bessinger, R. (1997). Clinical manifestations and predictors of survival in older women infected with HIV. Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology, 15(5), 341–345.PubMedGoogle Scholar
  140. 140.
    Odiase, F., Ogunrin, O., & Ogunniyi, A. (2006). Effect of progression of disease on cognitive performance in HIV/AIDS. Journal of the National Medical Association, 98(8), 1260–1262.PubMedGoogle Scholar
  141. 141.
    Egan, V. G., Chiswick, A., Brettle, R. P., & Goodwin, G. M. (1993). The Edinburgh cohort of HIV-positive drug users: The relationship between auditory P3 latency, cognitive function and self-rated mood. Psychological Medicine, 23(3), 613–622.PubMedGoogle Scholar
  142. 142.
    Gruzelier, J., Burgess, A., Baldeweg, T., et al. (1996). Prospective associations between lateralised brain function and immune status in HIV infection: Analysis of EEG, cognition and mood over 30 months. International Journal of Psychophysiology, 23(3), 215–224.PubMedGoogle Scholar
  143. 143.
    Wilkie, F. L., Goodkin, K., Khamis, I., et al. (2003). Cognitive functioning in younger and older HIV-1-infected adults. Journal of Acquired Immune Deficiency Syndromes, 33(Suppl 2), S93–S105.PubMedGoogle Scholar
  144. 144.
    Ellis, R. J., Deutsch, R., Heaton, R. K., et al. (1997). Neurocognitive impairment is an independent risk factor for death in HIV infection. San Diego HIV Neurobehavioral Research Center Group. Archives of Neurology, 54(4), 416–424.PubMedGoogle Scholar
  145. 145.
    Harrison, M. J., Newman, S. P., Hall-Craggs, M. A., et al. (1998). Evidence of CNS impairment in HIV infection: Clinical, neuropsychological, EEG, and MRI/MRS study. Journal of Neurology, Neurosurgery, and Psychiatry, 65(3), 301–307.PubMedGoogle Scholar
  146. 146.
    Wallace, M. R., Moss, R. B., Beecham, H. J., 3rd, et al. (1996). Early clinical markers and CD4 percentage in subjects with human immunodeficiency virus infection. Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology, 12(4), 358–362.PubMedGoogle Scholar
  147. 147.
    Bouwman, F. H., Skolasky, R. L., Hes, D., et al. (1998). Variable progression of HIV-associated dementia. Neurology, 50(6), 1814–1820.PubMedGoogle Scholar
  148. 148.
    Brew, B. J., Dunbar, N., Pemberton, L., & Kaldor, J. (1996). Predictive markers of AIDS dementia complex: CD4 cell count and cerebrospinal fluid concentrations of beta 2-microglobulin and neopterin. Journal of Infectious Diseases, 174(2), 294–298.PubMedGoogle Scholar
  149. 149.
    Letendre, S., Ances, B., Gibson, S., & Ellis, R. J. (2007). Neurologic complications of HIV disease and their treatment. Topics in HIV Medicine, 15(2), 32–39.PubMedGoogle Scholar
  150. 150.
    Heaton, R. K., Marcotte, T. D., Mindt, M. R., et al. (2004). The impact of HIV-associated neuropsychological impairment on everyday functioning. Journal of International Neuropsychological Society, 10(3), 317–331.Google Scholar
  151. 151.
    Marcotte, T. D., Deutsch, R., McCutchan, J. A., et al. (2003). Prediction of incident neurocognitive impairment by plasma HIV RNA and CD4 levels early after HIV seroconversion. Archives of Neurology, 60(10), 1406–1412.PubMedGoogle Scholar
  152. 152.
    Wallace, M. R., Heaton, R. K., McCutchan, J. A., et al. (1997). Neurocognitive impairment in human immunodeficiency virus infection is correlated with sexually transmitted disease history. Sexually Transmitted Diseases, 24(7), 398–401.PubMedGoogle Scholar
  153. 153.
    De Ronchi, D., Faranca, I., Berardi, D., et al. (2002). Risk factors for cognitive impairment in HIV-1-infected persons with different risk behaviors. Archives of Neurology, 59(5), 812–818.PubMedGoogle Scholar
  154. 154.
    Becker, J. T., Sanchez, J., Dew, M. A., Lopez, O. L., Dorst, S. K., & Banks, G. (1997). Neuropsychological abnormalities among HIV-infected individuals in a community-based sample. Neuropsychology, 11(4), 592–601.PubMedGoogle Scholar
  155. 155.
    Heaton, R. K., Grant, I., Butters, N., et al. (1995). The HNRC 500–neuropsychology of HIV infection at different disease stages. HIV Neurobehavioral Research Center. Journal of International Neuropsychological Society, 1(3), 231–251.Google Scholar
  156. 156.
    Tozzi, V., Balestra, P., Lorenzini, P., et al. (2005). Prevalence and risk factors for human immunodeficiency virus-associated neurocognitive impairment, 1996 to 2002: Results from an urban observational cohort. Journal of Neurovirology, 11(3), 265–273.PubMedGoogle Scholar
  157. 157.
    McArthur, J. C., McClernon, D. R., Cronin, M. F., et al. (1997). Relationship between human immunodeficiency virus-associated dementia and viral load in cerebrospinal fluid and brain. Annals of Neurology, 42(5), 689–698.PubMedGoogle Scholar
  158. 158.
    Villa, G., Solida, A., Moro, E., et al. (1996). Cognitive impairment in asymptomatic stages of HIV infection. A longitudinal study. European Neurology, 36(3), 125–133.PubMedGoogle Scholar
  159. 159.
    Miller, E. N., Selnes, O. A., McArthur, J. C., et al. (1990). Neuropsychological performance in HIV-1-infected homosexual men: The Multicenter AIDS Cohort Study (MACS). Neurology, 40(2), 197–203.PubMedGoogle Scholar
  160. 160.
    Mellors, J., Munoz, A., Giorgi, J., et al. (1997). Plasma viral load and CD4+ lymphocytes as prognostic markers of HIV-1 infection. Annals of Internal Medicine, 126(12), 946–954.PubMedGoogle Scholar
  161. 161.
    Mellors, J. W. (1997). Viral load and clinical outcome. International AIDS Society-USA, 5, 8–10.Google Scholar
  162. 162.
    Gonzalez, R., Heaton, R. K., Moore, D. J., et al. (2003). Computerized reaction time battery versus a traditional neuropsychological battery: Detecting HIV-related impairments. Journal of International Neuropsychological Society, 9(1), 64–71.Google Scholar
  163. 163.
    Vitiello, B., Goodkin, K., Ashtana, D., et al. (2007). HIV-1 RNA concentration and cognitive performance in a cohort of HIV-positive people. AIDS, 21(11), 1415–1422.PubMedGoogle Scholar
  164. 164.
    McArthur, J. C., Cohen, B. A., Farzedegan, H., et al. (1988). Cerebrospinal fluid abnormalities in homosexual men with and without neuropsychiatric findings. Annals of Neurology, 23(Suppl), S34–S37.PubMedGoogle Scholar
  165. 165.
    Eggers, C. C., van Lunzen, J., Buhk, T., & Stellbrink, H. J. (1999). HIV infection of the central nervous system is characterized by rapid turnover of viral RNA in cerebrospinal fluid. Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology, 20(3), 259–264.PubMedGoogle Scholar
  166. 166.
    Chang, L., Ernst, T., Witt, M. D., et al. (2003). Persistent brain abnormalities in antiretroviral-naive HIV patients 3 months after HAART. Antiviral Therapy, 8(1), 17–26.PubMedGoogle Scholar
  167. 167.
    Chang, L., Ernst, T., Leonido-Yee, M., Walot, I., & Singer, E. (1999). Cerebral metabolite abnormalities correlate with clinical severity of HIV-1 cognitive motor complex. Neurology, 52(1), 100–108.PubMedGoogle Scholar
  168. 168.
    Robertson, K., Fiscus, S., Kapoor, C., et al. (1998). CSF, plasma viral load and HIV associated dementia. Journal of Neurovirology, 4(1), 90–94.PubMedGoogle Scholar
  169. 169.
    Christo, P. P., Greco, D. B., Aleixo, A. W., & Livramento, J. A. (2005). HIV-1 RNA levels in cerebrospinal fluid and plasma and their correlation with opportunistic neurological diseases in a Brazilian AIDS reference hospital. Arquivos de Neuro-Psiquiatria, 63(4), 907–913.PubMedGoogle Scholar
  170. 170.
    Bandaru, V. V., McArthur, J. C., Sacktor, N., et al. (2007). Associative and predictive biomarkers of dementia in HIV-1-infected patients. Neurology, 68(18), 1481–1487.PubMedGoogle Scholar
  171. 171.
    Cysique, L. A., Brew, B. J., Halman, M., et al. (2005). Undetectable cerebrospinal fluid HIV RNA and beta-2 microglobulin do not indicate inactive AIDS dementia complex in highly active antiretroviral therapy-treated patients. Journal of Acquired Immune Deficiency Syndromes, 39(4), 426–429.PubMedGoogle Scholar
  172. 172.
    Krivine, A., Force, G., Servan, J., et al. (1999). Measuring HIV-1 RNA and interferon-alpha in the cerebrospinal fluid of AIDS patients: Insights into the pathogenesis of AIDS Dementia Complex. Journal of Neurovirology, 5(5), 500–506.PubMedGoogle Scholar
  173. 173.
    Wiley, C. A., Soontornniyomkij, V., Radhakrishnan, L., et al. (1998). Distribution of brain HIV load in AIDS. Brain Pathology, 8(2), 277–284.PubMedGoogle Scholar
  174. 174.
    Letendre, S. L., McCutchan, J. A., Childers, M. E., et al. (2004). Enhancing antiretroviral therapy for human immunodeficiency virus cognitive disorders. Annals of Neurology, 56(3), 416–423.PubMedGoogle Scholar
  175. 175.
    Ellis, R. J., Hsia, K., Spector, S. A., et al. (1997). Cerebrospinal fluid human immunodeficiency virus type 1 RNA levels are elevated in neurocognitively impaired individuals with acquired immunodeficiency syndrome. HIV Neurobehavioral Research Center Group. Annals of Neurology, 42(5), 679–688.PubMedGoogle Scholar
  176. 176.
    Marcotte, T. D., Heaton, R. K., Wolfson, T., et al. (1999). The impact of HIV-related neuropsychological dysfunction on driving behavior. The HNRC Group. Journal of International Neuropsychological Society, 5(7), 579–592.Google Scholar
  177. 177.
    Cohen, R. A., Boland, R., Paul, R., et al. (2001). Neurocognitive performance enhanced by highly active antiretroviral therapy in HIV-infected women. AIDS, 15(3), 341–345.PubMedGoogle Scholar
  178. 178.
    Cohen, R. A., de la Monte, S., Gongvatana, A., et al. (2011). Plasma cytokine concentrations associated with HIV/hepatitis C coinfection are related to attention, executive and psychomotor functioning. Journal of Neuroimmunology, 233(1–2), 204–210.PubMedGoogle Scholar
  179. 179.
    Cohen, R. A., & Gongvatana, A. (2010). The persistence of HIV-associated neurocognitive dysfunction and the effects of comorbidities. Neurology, 75(23), 2052–2053.PubMedGoogle Scholar
  180. 180.
    Cohen, R. A., Harezlak, J., Gongvatana, A., et al. (2010). Cerebral metabolite abnormalities in human immunodeficiency virus are associated with cortical and subcortical volumes. Journal of Neurovirology, 16(6), 435–444.PubMedGoogle Scholar
  181. 181.
    Gongvatana, A., Schweinsburg, B. C., Taylor, M. J., et al. (2009). White matter tract injury and cognitive impairment in human immunodeficiency virus-infected individuals. Journal of Neurovirology, 15(2), 187–195.PubMedGoogle Scholar
  182. 182.
    Harezlak, J., Buchthal, S., Taylor, M., et al. (2011). Persistence of HIV-associated cognitive impairment, inflammation, and neuronal injury in era of highly active antiretroviral treatment. AIDS, 25(5), 625–633.PubMedGoogle Scholar
  183. 183.
    Paul, R., Cohen, R., Navia, B., & Tashima, K. (2002). Relationships between cognition and structural neuroimaging findings in adults with human immunodeficiency virus type-1. Neuroscience and Biobehavioral Reviews, 26(3), 353–359.PubMedGoogle Scholar
  184. 184.
    Paul, R. H., Ernst, T., Brickman, A. M., et al. (2008). Relative sensitivity of magnetic resonance spectroscopy and quantitative magnetic resonance imaging to cognitive function among nondemented individuals infected with HIV. Journal of International Neuropsychological Society, 14(5), 725–733.Google Scholar
  185. 185.
    Paul, R. H., Yiannoutsos, C. T., Miller, E. N., et al. (2007). Proton MRS and neuropsychological correlates in AIDS dementia complex: Evidence of subcortical specificity. The Journal of Neuropsychiatry and Clinical Neurosciences, 19(3), 283–292.PubMedGoogle Scholar
  186. 186.
    Panther, L. A., Coombs, R. W., Aung, S. A., dela Rosa, C., Gretch, D., & Corey, L. (1999). Unintegrated HIV-1 circular 2-LTR proviral DNA as a marker of recently infected cells: relative effect of recombinant CD4, zidovudine, and saquinavir in vitro. Journal of Medical Virology, 58(2), 165–173.Google Scholar
  187. 187.
    Panther, L. A., Coombs, R. W., Aung, S. A., dela Rosa, C., Gretch, D., & Corey, L. (1999). Unintegrated HIV-1 circular 2-LTR proviral DNA as a marker of recently infected cells: Relative effect of recombinant CD4, zidovudine, and saquinavir in vitro. Journal of Medical Virology, 58(2), 165–173.PubMedGoogle Scholar
  188. 188.
    Shiramizu, B., Gartner, S., Williams, A., et al. (2005). Circulating proviral HIV DNA and HIV-associated dementia. AIDS, 19(1), 45–52.PubMedGoogle Scholar
  189. 189.
    Shiramizu, B., Ratto-Kim, S., Sithinamsuwan, P., et al. (2007). HIV DNA and dementia in treatment-naive HIV-1-infected individuals in Bangkok, Thailand. International Journal of Medical Sciences, 4(1), 13–18.Google Scholar
  190. 190.
    Valcour, V. G., Shiramizu, B. T., Sithinamsuwan, P., et al. (2009). HIV DNA and cognition in a Thai longitudinal HAART initiation cohort: The SEARCH 001 Cohort Study. Neurology, 72(11), 992–998.PubMedGoogle Scholar
  191. 191.
    Shiramizu, B., Paul, R., Williams, A., et al. (2007). HIV proviral DNA associated with decreased neuropsychological function. The Journal of Neuropsychiatry and Clinical Neurosciences, 19(2), 157–163.PubMedGoogle Scholar
  192. 192.
    Chang, L., Ernst, T., Leonido-Yee, M., et al. (1999). Highly active antiretroviral therapy reverses brain metabolite abnormalities in mild HIV dementia. Neurology, 53(4), 782–789.PubMedGoogle Scholar
  193. 193.
    Chang, L., Ernst, T., Witt, M., Ames, N., & Gaiefsky, M. (2002). Relationships among brain metabolites, cognitive function, and viral loads in antiretroviral-naive HIV patients. NeuroImage, 17, 1638–1648.PubMedGoogle Scholar
  194. 194.
    Chang, L., Lee, P. L., Yiannoutsos, C. T., et al. (2004). A multicenter in vivo proton-MRS study of HIV-associated dementia and its relationship to age. NeuroImage, 23(4), 1336–1347.PubMedGoogle Scholar
  195. 195.
    Yiannoutsos, C. T., Ernst, T., Chang, L., et al. (2004). Regional patterns of brain metabolites in AIDS dementia complex. NeuroImage, 23(3), 928–935.PubMedGoogle Scholar
  196. 196.
    Cohen, R. A., Harezlak, J., Schifitto, G., et al. (2010). Effects of nadir CD4 count and duration of human immunodeficiency virus infection on brain volumes in the highly active antiretroviral therapy era. Journal of Neurovirology, 16(1), 25–32.PubMedGoogle Scholar
  197. 197.
    Letendre, S. L., Zheng, J. C., Kaul, M., et al. (2011). Chemokines in cerebrospinal fluid correlate with cerebral metabolite patterns in HIV-infected individuals. Journal of Neurovirology, 17(1), 63–69.PubMedGoogle Scholar
  198. 198.
    Woods, S. P., Iudicello, J. E., Dawson, M. S., Weber, E., Grant, I., & Letendre, S. L. (2010). HIV-associated deficits in action (verb) generation may reflect astrocytosis. Journal of Clinical and Experimental Neuropsychology, 32(5), 522–527.PubMedGoogle Scholar
  199. 199.
    Woods, S. P., Morgan, E. E., Marquie-Beck, J., Carey, C. L., Grant, I., & Letendre, S. L. (2006). Markers of macrophage activation and axonal injury are associated with prospective memory in HIV-1 disease. Cognitive and Behavioral Neurology, 19(4), 217–221.PubMedGoogle Scholar
  200. 200.
    Clifford, D. B., McArthur, J. C., Schifitto, G., et al. (2002). A randomized clinical trial of CPI-1189 for HIV-associated cognitive-motor impairment. Neurology, 59(10), 1568–1573.PubMedGoogle Scholar
  201. 201.
    Letendre, S. L., Lanier, E. R., & McCutchan, J. A. (1999). Cerebrospinal fluid beta chemokine concentrations in neurocognitively impaired individuals infected with human immunodeficiency virus type 1. Journal of Infectious Diseases, 180(2), 310–319.PubMedGoogle Scholar
  202. 202.
    Becker, J. T., Kingsley, L., Mullen, J., et al. (2009). Vascular risk factors, HIV serostatus, and cognitive dysfunction in gay and bisexual men. Neurology, 73(16), 1292–1299.PubMedGoogle Scholar
  203. 203.
    Becker, J. T., Maruca, V., Kingsley, L. A., et al. (2012). Factors affecting brain structure in men with HIV disease in the post-HAART era. Neuroradiology, 54, 113–121.PubMedGoogle Scholar
  204. 204.
    Cherner, M., Letendre, S., Heaton, R. K., et al. (2005). Hepatitis C augments cognitive deficits associated with HIV infection and methamphetamine. Neurology, 64(8), 1343–1347.PubMedGoogle Scholar
  205. 205.
    Sacktor, N., Nakasujja, N., Robertson, K., & Clifford, D. B. (2007). HIV-associated cognitive impairment in sub-Saharan Africa–the potential effect of clade diversity. Nature Clinical Practice Neurology, 3(8), 436–443.PubMedGoogle Scholar
  206. 206.
    Valcour, V., Shikuma, C., Shiramizu, B., et al. (2004). Higher frequency of dementia in older HIV-1 individuals: The Hawaii Aging with HIV-1 Cohort. Neurology, 63(5), 822–827.PubMedGoogle Scholar
  207. 207.
    Valcour, V., Shikuma, C., Shiramizu, B., et al. (2004). Age, apolipoprotein E4, and the risk of HIV dementia: The Hawaii Aging with HIV Cohort. Journal of Neuroimmunology, 157(1–2), 197–202.PubMedGoogle Scholar
  208. 208.
    Valcour, V. G., Sacktor, N. C., Paul, R. H., et al. (2006). Insulin resistance is associated with cognition among HIV-1-infected patients: The Hawaii Aging With HIV cohort. Journal of Acquired Immune Deficiency Syndromes, 43(4), 405–410.PubMedGoogle Scholar
  209. 209.
    Valcour, V. G., Shikuma, C. M., Shiramizu, B. T., et al. (2005). Diabetes, insulin resistance, and dementia among HIV-1-infected patients. Journal of Acquired Immune Deficiency Syndromes, 38(1), 31–36.PubMedGoogle Scholar
  210. 210.
    Valcour, V. G., Shikuma, C. M., Watters, M. R., & Sacktor, N. C. (2004). Cognitive impairment in older HIV-1-seropositive individuals: Prevalence and potential mechanisms. AIDS, 18(Suppl 1), S79–S86.PubMedGoogle Scholar
  211. 211.
    Heaton, R., Velin, R., & McCutchan, J. (1994). Neuropsychological impairment in human immunodeficiency virus-infection: Implications for employment. Psychosomatic Medicine, 56, 8–17.PubMedGoogle Scholar
  212. 212.
    Grant, I., Atkinson, J. H., Hesselink, J. R., et al. (1987). Evidence for early central nervous system involvement in the acquired immunodeficiency syndrome (AIDS) and other human immunodeficiency virus (HIV) infections. Studies with neuropsychologic testing and magnetic resonance imaging. Ann Intern Med, 107(6), 828–836.PubMedGoogle Scholar
  213. 213.
    Grant, I., Heaton, R. K., Ellis, R. O., et al. (1998). Neurocognitive complications in HIV (Abstract 32208). Paper presented at 12th World AIDS Conference, Geneva, Switzerland.Google Scholar
  214. 214.
    Bornstein, R. A., Nasrallah, H. A., Para, M. F., et al. (1992). Neuropsychological performance in asymptomatic HIV infection. The Journal of Neuropsychiatry and Clinical Neurosciences, 4(4), 386–394.PubMedGoogle Scholar
  215. 215.
    Sacktor, N., McDermott, M. P., Marder, K., et al. (2002). HIV-associated cognitive impairment before and after the advent of combination therapy. Journal of Neurovirology, 8(2), 136–142.PubMedGoogle Scholar
  216. 216.
    Becker, J. T., Lopez, O. L., Dew, M. A., & Aizenstein, H. J. (2004). Prevalence of cognitive disorders differs as a function of age in HIV virus infection. AIDS, 18(Suppl 1), S11–S18.PubMedGoogle Scholar
  217. 217.
    McArthur, J. C. (2004). HIV dementia: An evolving disease. Journal of Neuroimmunology, 157(1–2), 3–10.PubMedGoogle Scholar
  218. 218.
    Navia, B. A., Cho, E., Petito, C. K., & Price, R. W. (1996). The AIDS dementia complex: I. Clinical features. Annals of Neurology., 19, 517–524.Google Scholar
  219. 219.
    Tross, S., Price, R., & Navia, B. (1988). Neuropsychological characterization of the AIDS dementia complex; preliminary report. AIDS, 2, 81–88.PubMedGoogle Scholar
  220. 220.
    van Gorp, W. G., Miller, E. N., Marcotte, T. D., et al. (1994). The relationship between age and cognitive impairment in HIV-1 infection: Findings from the Multicenter AIDS Cohort Study and a clinical cohort. Neurology, 44(5), 929–935.PubMedGoogle Scholar
  221. 221.
    Mitrushina, M., Satz, P., Drebing, C., et al. (1994). The differential pattern of memory deficit in normal aging and dementias of different etiology. Journal of Clinical Psychology, 50(2), 246–252.PubMedGoogle Scholar
  222. 222.
    van Gorp, W. G., Tulin, S. J., Evans, G., & Satz, P. (1990). Incidence of the WAIS-R Fuld profile in HIV-1 infection. Journal of Clinical and Experimental Neuropsychology, 12(5), 807–811.PubMedGoogle Scholar
  223. 223.
    Van Gorp, W. G., Satz, P., Hinkin, C., Evans, G., & Miller, E. N. (1989). The neuropsychological aspects of HIV-1 spectrum disease. Psychiatric Medicine, 7(2), 59–78.PubMedGoogle Scholar
  224. 224.
    Martin, E. M., Sorensen, D. J., Robertson, L. C., Edelstein, H. E., & Chirurgi, V. A. (1992). Spatial attention in HIV-1 infection: A preliminary report. The Journal of Neuropsychiatry and Clinical Neurosciences, 4(3), 288–293.PubMedGoogle Scholar
  225. 225.
    Bornstein, R. A., Nasrallah, H. A., Para, M. F., Whitacre, C. C., & Fass, R. J. (1994). Duration of illness and neuropsychological performance in asymptomatic HIV infection. The Journal of Neuropsychiatry and Clinical Neurosciences, 6(2), 160–164.PubMedGoogle Scholar
  226. 226.
    Portegies, P., Enting, R. H., de Gans, J., et al. (1993). Presentation and course of AIDS dementia complex: 10 years of follow-up in Amsterdam, The Netherlands. AIDS, 7(5), 669–675.PubMedGoogle Scholar
  227. 227.
    Cummings, J. L. (1986). Subcortical dementia. Neuropsychology, neuropsychiatry, and pathophysiology. The British Journal of Psychiatry, 149, 682–697.PubMedGoogle Scholar
  228. 228.
    Cummings, J. L., & Benson, D. F. (1984). Subcortical dementia. Review of an emerging concept. Archives of Neurology, 41(8), 874–879.PubMedGoogle Scholar
  229. 229.
    Antinori, A., Arendt, G., Becker, J. T., et al. (2007). Updated research nosology for HIV-associated neurocognitive disorders. Neurology, 69(18), 1789–1799.PubMedGoogle Scholar
  230. 230.
    Maxwell, J., Egan, V., Chiswick, A., et al. (1991). HIV-1 associated cognitive/motor complex in an injecting drug user. AIDS Care, 3(4), 373–381.PubMedGoogle Scholar
  231. 231.
    Saykin, A. J., Janssen, R. S., Sprehn, G. C., Kaplan, J. E., Spira, T. J., & O’Connor, B. (1991). Longitudinal evaluation of neuropsychological function in homosexual men with HIV infection: 18-month follow-up. The Journal of Neuropsychiatry and Clinical Neurosciences, 3(3), 286–298.PubMedGoogle Scholar
  232. 232.
    Goodkin, K., Wilkie, F. L., Concha, M., et al. (1997). Subtle neuropsychological impairment and minor cognitive-motor disorder in HIV-1 infection. Neuroradiological, neurophysiological, neuroimmunological, and virological correlates. Neuroimaging Clinics of North America, 7(3), 561–579.PubMedGoogle Scholar
  233. 233.
    Osowiecki, D. M., Cohen, R. A., Morrow, K. M., et al. (2000). Neurocognitive and psychological contributions to quality of life in HIV-1-infected women. AIDS, 14(10), 1327–1332.PubMedGoogle Scholar
  234. 234.
    Mindt, M. R., Cherner, M., Marcotte, T. D., et al. (2003). The functional impact of HIV-associated neuropsychological impairment in Spanish-speaking adults: A pilot study. Journal of Clinical and Experimental Neuropsychology, 25(1), 122–132.PubMedGoogle Scholar
  235. 235.
    Miller, V., Sabin, C., Phillips, A., Rottman, C., et al. (2000). The impact of protease inhibitor containing highly active antiretroviral therapy on progression of HIV disease and its relationship to CD4 and viral load. AIDS, 14, 2129–2136.PubMedGoogle Scholar
  236. 236.
    Martin, E. M., Robertson, L. C., Edelstein, H. E., et al. (1992). Performance of patients with early HIV-1 infection on the Stroop Task. Journal of Clinical and Experimental Neuropsychology, 14(5), 857–868.PubMedGoogle Scholar
  237. 237.
    Martin, E. M., Pitrak, D. L., Pursell, K. J., Mullane, K. M., & Novak, R. M. (1995). Delayed recognition memory span in HIV-1 infection. Journal of International Neuropsychological Society, 1(6), 575–580.Google Scholar
  238. 238.
    Martin, E. M., Pitrak, D. L., Pursell, K. J., Andersen, B. R., Mullane, K. M., & Novak, R. M. (1998). Information processing and antiretroviral therapy in HIV-1 infection. Journal of International Neuropsychological Society, 4(4), 329–335.Google Scholar
  239. 239.
    Martin, E., Sorenson, D., Edelstein, H., et al. (1992). Decision-making speed in HIV-infection: A preliminary report. AIDS, 6, 109–113.PubMedGoogle Scholar
  240. 240.
    Martin, E., Pitrak, D., Rains, N., et al. (2003). Delayed nonmatch-to-sample performance in HIV-seropositive and HIV-seronegative polydrug abusers. Neuropsychology, 17(2), 283–288.PubMedGoogle Scholar
  241. 241.
    Martin, E., Novak, R., Fendrich, M., et al. (2004). Stroop performance in drug users classified by HIV and hepatitis C virus serostatus. Journal of International Neuropsychological Society, 10(2), 298–300.Google Scholar
  242. 242.
    Martin, A., Heyes, M., Salazar, A., et al. (1992). Progressive slowing of reaction time and increasing cerebral spinal fluid concentrations of quinolinic acid in HIV-infected individuals. The Journal of Neuropsychiatry and Clinical Neurosciences, 4, 270–279.PubMedGoogle Scholar
  243. 243.
    Van Gorp, W. G., Miller, E. N., Satz, P., & Visscher, B. (1989). Neuropsychological performance in HIV-1 immunocompromised patients: A preliminary report. Journal of Clinical and Experimental Neuropsychology, 11(5), 763–773.PubMedGoogle Scholar
  244. 244.
    Levine, A. J., Hinkin, C. H., Miller, E. N., Becker, J. T., Selnes, O. A., & Cohen, B. A. (2007). The generalizability of neurocognitive test/retest data derived from a nonclinical sample for detecting change among two HIV+ cohorts. Journal of Clinical and Experimental Neuropsychology, 29(6), 669–678.PubMedGoogle Scholar
  245. 245.
    Miller, C. L., Strathdee, S. A., Li, K., Kerr, T., & Wood, E. (2007). A longitudinal investigation into excess risk for blood-borne infection among young injection drug users (IUDs). The American Journal of Drug and Alcohol Abuse, 33(4), 527–536.PubMedGoogle Scholar
  246. 246.
    Sacktor, N. C., Bacellar, H., Hoover, D. R., et al. (1996). Psychomotor slowing in HIV infection: A predictor of dementia, AIDS and death. Journal of Neurovirology, 2(6), 404–410.PubMedGoogle Scholar
  247. 247.
    Miller, E. N., Satz, P., & Visscher, B. (1991). Computerized and conventional neuropsychological assessment of HIV-1-infected homosexual men. Neurology, 41(10), 1608–1616.PubMedGoogle Scholar
  248. 248.
    Paul, R. H., Cohen, R. A., & Stern, R. A. (2002). Neurocognitive manifestations of human immunodeficiency virus. CNS Spectrums, 7(12), 860–866.PubMedGoogle Scholar
  249. 249.
    Stout, J. C., Salmon, D. P., Butters, N., et al. (1995). Decline in working memory associated with HIV infection. HNRC Group. Psychological Medicine, 25(6), 1221–1232.PubMedGoogle Scholar
  250. 250.
    Amador, F., Mayor-Rios, J., & del Castillo-Martin, N. (2006). [Cognitive slowing in asymptomatic individuals who are seropositive for human immunodeficiency virus type 1]. Revista de Neurologia, 42(3), 132–136.PubMedGoogle Scholar
  251. 251.
    Amador, F., Pelegrina, M., & Mayor, R. J. (2007). Cognitive slowing in cognitive-motor disorder associated to type 1 human immunodeficiency virus: TR and P300. Actas Españolas de Psiquiatría, 35(4), 221–228.Google Scholar
  252. 252.
    Arendt, G., Hefter, H., & Jablonowski, H. (1993). Acoustically evoked event-related potentials in HIV-associated dementia. Electroencephalography and Clinical Neurophysiology, 86(3), 152–160.PubMedGoogle Scholar
  253. 253.
    Castellon, S. A., Hinkin, C. H., Wood, S., & Yarema, K. T. (1998). Apathy, depression, and cognitive performance in HIV-1 infection. The Journal of Neuropsychiatry and Clinical Neurosciences, 10(3), 320–329.PubMedGoogle Scholar
  254. 254.
    Connolly, S., Manji, H., McAllister, R. H., et al. (1994). Long-latency event-related potentials in asymptomatic human immunodeficiency virus type 1 infection. Annals of Neurology, 35(2), 189–196.PubMedGoogle Scholar
  255. 255.
    Fein, G., Biggins, C. A., & MacKay, S. (1995). Delayed latency of the event-related brain potential P3A component in HIV disease. Progressive effects with increasing cognitive impairment. Archives of Neurology, 52(11), 1109–1118.PubMedGoogle Scholar
  256. 256.
    Handelsman, L., Horvath, T., Aronson, M., et al. (1992). Auditory event-related potentials in HIV-1 infection: A study in the drug-user risk group. The Journal of Neuropsychiatry and Clinical Neurosciences, 4(3), 294–302.PubMedGoogle Scholar
  257. 257.
    Hardy, D. J., Castellon, S. A., & Hinkin, C. H. (2004). Perceptual span deficits in adults with HIV. Journal of International Neuropsychological Society, 10(1), 135–140.Google Scholar
  258. 258.
    Hardy, D. J., & Hinkin, C. H. (2002). Reaction time slowing in adults with HIV: Results of a meta-analysis using brinley plots. Brain and Cognition, 50(1), 25–34.PubMedGoogle Scholar
  259. 259.
    Hinkin, C. H., Castellon, S. A., Hardy, D. J., Farinpour, R., Newton, T., & Singer, E. (2001). Methylphenidate improves HIV-1-associated cognitive slowing. The Journal of Neuropsychiatry and Clinical Neurosciences, 13(2), 248–254.PubMedGoogle Scholar
  260. 260.
    Hinkin, C. H., Castellon, S. A., Hardy, D. J., Granholm, E., & Siegle, G. (1999). Computerized and traditional stroop task dysfunction in HIV-1 infection. Neuropsychology, 13(2), 306–316.PubMedGoogle Scholar
  261. 261.
    Karlsen, N. R., Reinvang, I., & Froland, S. S. (1992). Slowed reaction time in asymptomatic HIV-positive patients. Acta Neurologica Scandinavica, 86(3), 242–246.PubMedGoogle Scholar
  262. 262.
    Lopez, O. L., Wess, J., Sanchez, J., Dew, M. A., & Becker, J. T. (1998). Neurobehavioral correlates of perceived mental and motor slowness in HIV infection and AIDS. The Journal of Neuropsychiatry and Clinical Neurosciences, 10(3), 343–350.PubMedGoogle Scholar
  263. 263.
    Martin, E. M., Pitrak, D. L., Novak, R. M., Pursell, K. J., & Mullane, K. M. (1999). Reaction times are faster in HIV-seropositive patients on antiretroviral therapy: A preliminary report. Journal of Clinical and Experimental Neuropsychology, 21(5), 730–735.PubMedGoogle Scholar
  264. 264.
    Messenheimer, J. A., Robertson, K. R., Wilkins, J. W., Kalkowski, J. C., & Hall, C. D. (1992). Event-related potentials in human immunodeficiency virus infection. A prospective study. Archives of Neurology, 49(4), 396–400.PubMedGoogle Scholar
  265. 265.
    Ogunrin, A. O., Odiase, F. E., & Ogunniyi, A. (2007). Reaction time in patients with HIV/AIDS and correlation with CD4 count: A case-control study. Transactions of the Royal Society of Tropical Medicine and Hygiene, 101(5), 517–522.PubMedGoogle Scholar
  266. 266.
    Pereda, M., Ayuso-Mateos, J. L., Gomez Del Barrio, A., et al. (2000). Factors associated with neuropsychological performance in HIV-seropositive subjects without AIDS. Psychological Medicine, 30(1), 205–217.PubMedGoogle Scholar
  267. 267.
    Poutiainen, E., Elovaara, I., Raininko, R., et al. (1993). Cognitive performance in HIV-1 infection: relationship to severity of disease and brain atrophy. Acta Neurologica Scandinavica, 87(2), 88–94.PubMedGoogle Scholar
  268. 268.
    Sassoon, S. A., Fama, R., Rosenbloom, M. J., O’Reilly, A., Pfefferbaum, A., & Sullivan, E. V. (2007). Component cognitive and motor processes of the digit symbol test: Differential deficits in alcoholism, HIV infection, and their comorbidity. Alcoholism, Clinical and Experimental Research, 31(8), 1315–1324.PubMedGoogle Scholar
  269. 269.
    White, J. L., Darko, D. F., Brown, S. J., et al. (1995). Early central nervous system response to HIV infection: Sleep distortion and cognitive-motor decrements. AIDS, 9(9), 1043–1050.PubMedGoogle Scholar
  270. 270.
    Gonzalez, R., Vassileva, J., Bechara, A., et al. (2005). The influence of executive functions, sensation seeking, and HIV serostatus on the risky sexual practices of substance-dependent individuals. Journal of International Neuropsychological Society, 11(2), 121–131.Google Scholar
  271. 271.
    Jasiukaitis, P., & Fein, G. (1999). Differential association of HIV-related neuropsychological impairment with semantic versus repetition priming. Journal of International Neuropsychological Society, 5(5), 434–441.Google Scholar
  272. 272.
    Cohen, R. A. (1993). Neuropsychology of attention. New York: Plenum.Google Scholar
  273. 273.
    Nishiyori, A., Minami, M., Ohtani, Y., et al. (1998). Localization of fractalkine and CX3CR1 mRNAs in rat brain: Does fractalkine play a role in signaling from neuron to microglia? FEBS Letters, 429(2), 167–172.PubMedGoogle Scholar
  274. 274.
    Sardar, A. M., Czudek, C., & Reynolds, G. P. (1996). Dopamine deficits in the brain: The neurochemical basis of parkinsonian symptoms in AIDS. Neuroreport, 7(4), 910–912.PubMedGoogle Scholar
  275. 275.
    Miszkiel, K. A., Paley, M. N., Wilkinson, I. D., et al. (1997). The measurement of R2, R2* and R2′ in HIV-infected patients using the prime sequence as a measure of brain iron deposition. Magnetic Resonance Imaging, 15(10), 1113–1119.PubMedGoogle Scholar
  276. 276.
    Mankowski, J. L., Queen, S. E., Kirstein, L. M., et al. (1999). Alterations in blood-brain barrier glucose transport in SIV-infected macaques. Journal of Neurovirology, 5(6), 695–702.PubMedGoogle Scholar
  277. 277.
    Price, R. W., & Brew, B. J. (1988). The AIDS dementia complex. Journal of Infectious Diseases, 158(5), 1079–1083.PubMedGoogle Scholar
  278. 278.
    Reger, M., Welsh, R., Razani, J., Martin, D. J., & Boone, K. B. (2002). A meta-analysis of the neuropsychological sequelae of HIV infection. Journal of International Neuropsychological Society, 8(3), 410–424.Google Scholar
  279. 279.
    Cysique, L. A., Maruff, P., & Brew, B. J. (2004). Antiretroviral therapy in HIV infection: Are neurologically active drugs important? Archives of Neurology, 61(11), 1699–1704.PubMedGoogle Scholar
  280. 280.
    Cysique, L. A., Jin, H., Franklin, D. R., Jr., et al. (2007). Neurobehavioral effects of HIV-1 infection in China and the United States: A pilot study. Journal of International Neuropsychological Society, 13(5), 781–790.Google Scholar
  281. 281.
    Cysique, L. A., & Brew, B. J. (2011). Prevalence of non-confounded HIV-associated neurocognitive impairment in the context of plasma HIV RNA suppression. Journal of Neurovirology, 17(2), 176–183.PubMedGoogle Scholar
  282. 282.
    Cysique, L. A., & Brew, B. J. (2009). Neuropsychological functioning and antiretroviral treatment in HIV/AIDS: A review. Neuropsychology Review, 19(2), 169–185.PubMedGoogle Scholar
  283. 283.
    Devlin, K., Gongvatana, A., Clark, U. S., Chasman, J. D., Westbrook, M. L., Tashima, K. T., et al. (2012). Neurocognitive effects of HIV, Hepatitis C, and substance use history. Journal of International Neuropsychological Society, 18, 68–78.Google Scholar
  284. 284.
    Bartok, J. A., Martin, E. M., Pitrak, D. L., et al. (1997). Working memory deficits in HIV-seropositive drug users. Journal of International Neuropsychological Society, 3(5), 451–456.Google Scholar
  285. 285.
    Butters, N., Grant, I., Haxby, J., et al. (1990). Assessment of AIDS-related cognitive changes: Recommendations of the NIMH Workshop on Neuropsychological Assessment Approaches. Journal of Clinical and Experimental Neuropsychology, 12(6), 963–978.PubMedGoogle Scholar
  286. 286.
    Farinpour, R., Martin, E. M., Seidenberg, M., et al. (2000). Verbal working memory in HIV-seropositive drug users. Journal of International Neuropsychological Society, 6(5), 548–555.Google Scholar
  287. 287.
    Law, W. A., Martin, A., Mapou, R. L., et al. (1994). Working memory in individuals with HIV infection. Journal of Clinical and Experimental Neuropsychology, 16(2), 173–182.PubMedGoogle Scholar
  288. 288.
    Martin, E. M., Sullivan, T. S., Reed, R. A., et al. (2001). Auditory working memory in HIV-1 infection. Journal of International Neuropsychological Society, 7(1), 20–26.Google Scholar
  289. 289.
    Woods, S. P., Moore, D. J., Weber, E., & Grant, I. (2009). Cognitive neuropsychology of HIV-associated neurocognitive disorders. Neuropsychology Review, 19(2), 152–168.PubMedGoogle Scholar
  290. 290.
    Weed, M. R., Gold, L. H., Polis, I., Koob, G. F., Fox, H. S., & Taffe, M. A. (2004). Impaired performance on a rhesus monkey neuropsychological testing battery following simian immunodeficiency virus infection. AIDS Research and Human Retroviruses, 20(1), 77–89.PubMedGoogle Scholar
  291. 291.
    Kumar, A. M., Ownby, R. L., Waldrop-Valverde, D., Fernandez, B., & Kumar, M. (2011). Human immunodeficiency virus infection in the CNS and decreased dopamine availability: Relationship with neuropsychological performance. Journal of Neurovirology, 17(1), 26–40.PubMedGoogle Scholar
  292. 292.
    Hinkin, C. H., Hardy, D. J., Mason, K. I., et al. (2002). Verbal and spatial working memory performance among HIV-infected adults. Journal of International Neuropsychological Society, 8(4), 532–538.Google Scholar
  293. 293.
    Munoz-Moreno, J. A., Fumaz, C. R., Ferrer, M. J., et al. (2008). Nadir CD4 cell count predicts neurocognitive impairment in HIV-infected patients. AIDS Research and Human Retroviruses, 24(10), 1301–1307.PubMedGoogle Scholar
  294. 294.
    Gopukumar, K., Rao, S. L., Satishchandra, P., et al. (2008). Cognitive changes in asymptomatic drug-naive human immunodeficiency virus type 1 clade C infection. Journal of Neurovirology, 14(6), 480–485.PubMedGoogle Scholar
  295. 295.
    Fazeli, P. L., Marceaux, J. C., Vance, D. E., Slater, L., & Long, C. A. (2011). Predictors of cognition in adults with HIV: Implications for nursing practice and research. Journal of Neuroscience Nursing, 43(1), 36–50.PubMedGoogle Scholar
  296. 296.
    Dawes, S., Suarez, P., Casey, C. Y., et al. (2008). Variable patterns of neuropsychological performance in HIV-1 infection. Journal of Clinical and Experimental Neuropsychology, 30(6), 613–626.PubMedGoogle Scholar
  297. 297.
    Maki, P. M., Cohen, M. H., Weber, K., et al. (2009). Impairments in memory and hippocampal function in HIV-positive vs HIV-negative women: A preliminary study. Neurology, 72(19), 1661–1668.PubMedGoogle Scholar
  298. 298.
    Ragin, A. B., Wu, Y., Storey, P., Cohen, B. A., Edelman, R. R., & Epstein, L. G. (2005). Diffusion tensor imaging of subcortical brain injury in patients infected with human immunodeficiency virus. Journal of Neurovirology, 11(3), 292–298.PubMedGoogle Scholar
  299. 299.
    Chang, L., Speck, O., Miller, E. N., et al. (2001). Neural correlates of attention and working memory deficits in HIV patients. Neurology, 57(6), 1001–1007.PubMedGoogle Scholar
  300. 300.
    Ernst, T., Chang, L., & Arnold, S. (2003). Increased glial metabolites predict increased working memory network activation in HIV brain injury. NeuroImage, 19(4), 1686–1693.PubMedGoogle Scholar
  301. 301.
    Ernst, T., Chang, L., Jovicich, J., Ames, N., & Arnold, S. (2002). Abnormal brain activation on functional MRI in cognitively asymptomatic HIV patients. Neurology, 59(9), 1343–1349.PubMedGoogle Scholar
  302. 302.
    Mohamed, M. A., Barker, P. B., Skolasky, R. L., et al. (2010). Brain metabolism and cognitive impairment in HIV infection: A 3-T magnetic resonance spectroscopy study. Magnetic Resonance Imaging, 28(9), 1251–1257.PubMedGoogle Scholar
  303. 303.
    Hinkin, C. H., Castellon, S. A., & Hardy, D. J. (2000). Dual task performance in HIV-1 infection. Journal of Clinical and Experimental Neuropsychology, 22(1), 16–24.PubMedGoogle Scholar
  304. 304.
    Woods, S. W., O’Malley, S. S., Martini, B. L., et al. (1991). SPECT regional cerebral blood flow and neuropsychological testing in non-demented HIV-positive drug abusers: Preliminary results. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 15(5), 649–662.Google Scholar
  305. 305.
    Levine, A. J., Hardy, D. J., Miller, E., Castellon, S. A., Longshore, D., & Hinkin, C. H. (2006). The effect of recent stimulant use on sustained attention in HIV-infected adults. Journal of Clinical and Experimental Neuropsychology, 28(1), 29–42.PubMedGoogle Scholar
  306. 306.
    Watkins, J. M., Cool, V. A., Usner, D., et al. (2000). Attention in HIV-infected children: Results from the Hemophilia Growth and Development Study. Journal of International Neuropsychological Society, 6(4), 443–454.Google Scholar
  307. 307.
    Cysique, L. A., Maruff, P., & Brew, B. J. (2004). Prevalence and pattern of neuropsychological impairment in human immunodeficiency virus-infected/acquired immunodeficiency syndrome (HIV/AIDS) patients across pre- and post-highly active antiretroviral therapy eras: A combined study of two cohorts. Journal of Neurovirology, 10(6), 350–357.PubMedGoogle Scholar
  308. 308.
    Forton, D. M., Allsop, J. M., Cox, I. J., et al. (2005). A review of cognitive impairment and cerebral metabolite abnormalities in patients with hepatitis C infection. AIDS, 19(Suppl 3), S53–S63.PubMedGoogle Scholar
  309. 309.
    Grohman, K., Donnelly, K., Strang, J., & Kleiner, J. (2002). Neuropsychological impairment in veterans who are HIV-positive. Brain and Cognition, 49(2), 194–198.PubMedGoogle Scholar
  310. 310.
    Klusman, L. E., Moulton, J. M., Hornbostel, L. K., Picano, J. J., & Beattie, M. T. (1991). Neuropsychological abnormalities in asymptomatic HIV seropositive military personnel. The Journal of Neuropsychiatry and Clinical Neurosciences, 3(4), 422–428.PubMedGoogle Scholar
  311. 311.
    Marcotte, T. D., Lazzaretto, D., Scott, J. C., Roberts, E., Woods, S. P., & Letendre, S. (2006). Visual attention deficits are associated with driving accidents in cognitively-impaired HIV-infected individuals. Journal of Clinical and Experimental Neuropsychology, 28(1), 13–28.PubMedGoogle Scholar
  312. 312.
    Perry, W., Carlson, M. D., Barakat, F., et al. (2005). Neuropsychological test performance in patients co-infected with hepatitis C virus and HIV. AIDS, 19(Suppl 3), S79–S84.PubMedGoogle Scholar
  313. 313.
    Rabkin, J. G., Ferrando, S. J., van Gorp, W., Rieppi, R., McElhiney, M., & Sewell, M. (2000). Relationships among apathy, depression, and cognitive impairment in HIV/AIDS. The Journal of Neuropsychiatry and Clinical Neurosciences, 12(4), 451–457.PubMedGoogle Scholar
  314. 314.
    Robertson, K. R., Nakasujja, N., Wong, M., et al. (2007). Pattern of neuropsychological performance among HIV positive patients in Uganda. BMC Neurology, 7, 8.PubMedGoogle Scholar
  315. 315.
    Schulte, T., Mueller-Oehring, E. M., Rosenbloom, M. J., Pfefferbaum, A., & Sullivan, E. V. (2005). Differential effect of HIV infection and alcoholism on conflict processing, attentional allocation, and perceptual load: Evidence from a Stroop Match-to-Sample task. Biological Psychiatry, 57(1), 67–75.PubMedGoogle Scholar
  316. 316.
    Shor-Posner, G. (2000). Cognitive function in HIV-1-infected drug users. Journal of Acquired Immune Deficiency Syndromes, 25(Suppl 1), S70–S73.PubMedGoogle Scholar
  317. 317.
    Villa, G., Monteleone, D., Marra, C., et al. (1993). Neuropsychological abnormalities in AIDS and asymptomatic HIV seropositive patients. Journal of Neurology, Neurosurgery, and Psychiatry, 56(8), 878–884.PubMedGoogle Scholar
  318. 318.
    Mann, L. S., Westlake, T., Wise, T. N., Beckman, A., Beckman, P., & Portez, D. (1999). Executive functioning and compliance in HIV patients. Psychological Reports, 84(1), 319–322.PubMedGoogle Scholar
  319. 319.
    Selnes, O. A. (2002). Neurocognitive aspects of medication adherence in HIV infection. Journal of Acquired Immune Deficiency Syndromes, 31(Suppl 3), S132–S135.PubMedGoogle Scholar
  320. 320.
    Carey, C. L., Woods, S. P., Rippeth, J. D., Heaton, R. K., & Grant, I. (2006). Prospective memory in HIV-1 infection. Journal of Clinical and Experimental Neuropsychology, 28(4), 536–548.PubMedGoogle Scholar
  321. 321.
    Gray, R. A., Wilcox, K. M., Zink, M. C., & Weed, M. R. (2006). Impaired performance on the object retrieval-detour test of executive function in the SIV/macaque model of AIDS. AIDS Research and Human Retroviruses, 22(10), 1031–1035.PubMedGoogle Scholar
  322. 322.
    York, M. K., Franks, J. J., Henry, R. R., & Hamilton, W. J. (2001). Verbal working memory storage and processing deficits in HIV-1 asymptomatic and symptomatic individuals. Psychological Medicine, 31(7), 1279–1291.PubMedGoogle Scholar
  323. 323.
    Martin, E. M., Robertson, L. C., Sorensen, D. J., Jagust, W. J., Mallon, K. F., & Chirurgi, V. A. (1993). Speed of memory scanning is not affected in early HIV-1 infection. Journal of Clinical and Experimental Neuropsychology, 15(2), 311–320.PubMedGoogle Scholar
  324. 324.
    Dunlop, O., Bjorklund, R., Bruun, J. N., et al. (2002). Early psychomotor slowing predicts the development of HIV dementia and autopsy-verified HIV encephalitis. Acta Neurologica Scandinavica, 105(4), 270–275.PubMedGoogle Scholar
  325. 325.
    Maruff, P., Malone, V., McArthur-Jackson, C., Mulhall, B., Benson, E., & Currie, J. (1995). Abnormalities of visual spatial attention in HIV infection and the HIV-associated dementia complex. The Journal of Neuropsychiatry and Clinical Neurosciences, 7(3), 325–333.PubMedGoogle Scholar
  326. 326.
    Bisschop, P. H., de Rooij, S. E., Zwinderman, A. H., van Oosten, H. E., & van Munster, B. C. (2011). Cortisol, insulin, and glucose and the risk of delirium in older adults with hip fracture. Journal of American Geriatrics Society, 59, 1692–1696.Google Scholar
  327. 327.
    Morandi, A., Gunther, M. L., Pandharipande, P. P., et al. (2011). Insulin-like growth factor-1 and delirium in critically ill mechanically ventilated patients: A preliminary investigation. International Psychogeriatrics/IPA, 23(7), 1175–1181.PubMedGoogle Scholar
  328. 328.
    Suzuki, K., Miyamoto, M., Miyamoto, T., & Hirata, K. (2007). Insulinoma with early-morning abnormal behavior. Internal Medicine (Tokyo, Japan), 46(7), 405–408.Google Scholar
  329. 329.
    Wolk, M., Kieselstein, M., Hamburger, R., & Jaul, E. (1993). Association between high concentration of antibodies to insulin and some diseases common in the elderly. Gerontology, 39(6), 334–337.PubMedGoogle Scholar
  330. 330.
    Northam, E., Bowden, S., Anderson, V., & Court, J. (1992). Neuropsychological functioning in adolescents with diabetes. Journal of Clinical and Experimental Neuropsychology, 14(6), 884–900.PubMedGoogle Scholar
  331. 331.
    Fernandez, J. M., Lara, I., Gila, L., O’Neill of Tyrone, A., Tovar, J., & Gimeno, A. (1990). Disturbed hypothalamic-pituitary axis in idiopathic recurring hypersomnia syndrome. Acta Neurologica Scandinavica, 82(6), 361–363.PubMedGoogle Scholar
  332. 332.
    Puczynski, M. S., Puczynski, S. S., Reich, J., Kaspar, J. C., & Emanuele, M. A. (1990). Mental efficiency and hypoglycemia. Journal of Developmental and Behavioral Pediatrics, 11(4), 170–174.PubMedGoogle Scholar
  333. 333.
    Prescott, J. H., Richardson, J. T., & Gillespie, C. R. (1990). Cognitive function in diabetes mellitus: The effects of duration of illness and glycaemic control. The British Journal of Clinical Psychology, 29(Pt 2), 167–175.PubMedGoogle Scholar
  334. 334.
    Holmes, C. S. (1986). Neuropsychological profiles in men with insulin-dependent diabetes. Journal of Consulting and Clinical Psychology, 54(3), 386–389.PubMedGoogle Scholar
  335. 335.
    Dobrzanski, T. (1974). Endocrine alterations in delirium tremens. Quarterly Journal of Studies on Alcohol, 35(4 Pt A), 1205–1211.PubMedGoogle Scholar
  336. 336.
    Heni, M., Hennige, A. M., Peter, A., et al. (2011). Insulin promotes glycogen storage and cell proliferation in primary human astrocytes. PLoS One, 6(6), e21594.PubMedGoogle Scholar
  337. 337.
    Varghese, J., Lim, S. F., & Cohen, S. M. (2010). Drosophila miR-14 regulates insulin production and metabolism through its target, sugarbabe. Genes & Development, 24(24), 2748–2753.Google Scholar
  338. 338.
    Thorens, B. (2008). Glucose sensing and the pathogenesis of obesity and type 2 diabetes. International Journal of Obesity, 32(Suppl 6), S62–S71.PubMedGoogle Scholar
  339. 339.
    Weghuber, D., Mandl, M., Krssak, M., et al. (2007). Characterization of hepatic and brain metabolism in young adults with glycogen storage disease type 1: A magnetic resonance spectroscopy study. American Journal of Physiology, Endocrinology and Metabolism, 293(5), E1378–E1384.Google Scholar
  340. 340.
    Imagawa, T., Shogaki, K., & Uehara, M. (2006). Interaction between glycogen body cell and neuron: Examination in co-culture system. Journal of Veterinary Medical Science, 68(10), 1081–1087.PubMedGoogle Scholar
  341. 341.
    Park, S., Jang, J. S., Jun, D. W., & Hong, S. M. (2005). Exercise enhances insulin and leptin signaling in the cerebral cortex and hypothalamus during dexamethasone-induced stress in diabetic rats. Neuroendocrinology, 82(5–6), 282–293.PubMedGoogle Scholar
  342. 342.
    Burcelin, R., Brunner, H., Seydoux, J., Thorensa, B., & Pedrazzini, T. (2001). Increased insulin concentrations and glucose storage in neuropeptide Y Y1 receptor-deficient mice. Peptides, 22(3), 421–427.PubMedGoogle Scholar
  343. 343.
    Tsalikian, E., Simmons, P., Gerich, J. E., Howard, C., & Haymond, M. W. (1984). Glucose production and utilization in children with glycogen storage disease type I. The American Journal of Physiology, 247(4 Pt 1), E513–E519.PubMedGoogle Scholar
  344. 344.
    Killick, R., Scales, G., Leroy, K., et al. (2009). Deletion of Irs2 reduces amyloid deposition and rescues behavioural deficits in APP transgenic mice. Biochemical and Biophysical Research Communications, 386(1), 257–262.PubMedGoogle Scholar
  345. 345.
    Richard, A. M., Webb, D. L., Goodman, J. M., et al. (2007). Tissue-dependent loss of phosphofructokinase-M in mice with interrupted activity of the distal promoter: Impairment in insulin secretion. American Journal of Physiology, Endocrinology and Metabolism, 293(3), E794–E801.Google Scholar
  346. 346.
    Carro, E., Trejo, J. L., Spuch, C., Bohl, D., Heard, J. M., & Torres-Aleman, I. (2006). Blockade of the insulin-like growth factor I receptor in the choroid plexus originates Alzheimer’s-like neuropathology in rodents: New cues into the human disease? Neurobiology of Aging, 27(11), 1618–1631.PubMedGoogle Scholar
  347. 347.
    Yau, L. S., Strother, A., Buchholz, J., & Abu-el-Haj, S. (1987). Glucose effect on drug action, metabolism, and pharmacokinetic parameters in mice. Drug-Nutrient Interactions, 5(1), 9–20.PubMedGoogle Scholar
  348. 348.
    Suzuki, R., Lee, K., Jing, E., et al. (2010). Diabetes and insulin in regulation of brain cholesterol metabolism. Cell Metabolism, 12(6), 567–579.PubMedGoogle Scholar
  349. 349.
    Baker, L. D., Cross, D. J., Minoshima, S., Belongia, D., Watson, G. S., & Craft, S. (2011). Insulin resistance and Alzheimer-like reductions in regional cerebral glucose metabolism for cognitively normal adults with prediabetes or early type 2 diabetes. Archives of Neurology, 68(1), 51–57.PubMedGoogle Scholar
  350. 350.
    Craft, S. (2009). The role of metabolic disorders in Alzheimer disease and vascular dementia: Two roads converged. Archives of Neurology, 66(3), 300–305.PubMedGoogle Scholar
  351. 351.
    Craft, S. (2007). Insulin resistance and Alzheimer’s disease pathogenesis: Potential mechanisms and implications for treatment. Current Alzheimer Research, 4(2), 147–152.PubMedGoogle Scholar
  352. 352.
    Craft, S. (2006). Insulin resistance syndrome and Alzheimer disease: Pathophysiologic mechanisms and therapeutic implications. Alzheimer Disease and Associated Disorders, 20(4), 298–301.PubMedGoogle Scholar
  353. 353.
    Watson, G. S., & Craft, S. (2006). Insulin resistance, inflammation, and cognition in Alzheimer’s Disease: Lessons for multiple sclerosis. Journal of the Neurological Sciences, 245(1–2), 21–33.PubMedGoogle Scholar
  354. 354.
    Craft, S. (2005). Insulin resistance syndrome and Alzheimer’s disease: Age- and obesity-related effects on memory, amyloid, and inflammation. Neurobiology of Aging, 26(Suppl 1), 65–69.PubMedGoogle Scholar
  355. 355.
    Fishel, M. A., Watson, G. S., Montine, T. J., et al. (2005). Hyperinsulinemia provokes synchronous increases in central inflammation and beta-amyloid in normal adults. Archives of Neurology, 62(10), 1539–1544.PubMedGoogle Scholar
  356. 356.
    Craft, S., & Watson, G. S. (2004). Insulin and neurodegenerative disease: Shared and specific mechanisms. Lancet Neurology, 3(3), 169–178.PubMedGoogle Scholar
  357. 357.
    Craft, S., Baker, L. D., Montine, T. J., et al. (2011). Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: A pilot clinical trial. Archives of Neurology, 69, 29–38.PubMedGoogle Scholar
  358. 358.
    D’Mello, C., & Swain, M. G. (2011). Liver-brain inflammatory axis. American Journal of Physiology. Gastrointestinal and Liver Physiology, 301, G749–G761.PubMedGoogle Scholar
  359. 359.
    Mendez, M., Mendez-Lopez, M., Lopez, L., et al. (2010). Reversal learning impairment and alterations in the prefrontal cortex and the hippocampus in a model of portosystemic hepatic encephalopathy. Acta Neurologica Belgica, 110(3), 246–254.PubMedGoogle Scholar
  360. 360.
    Shoffner, J. M. (1993). Mitochondrial neurogastrointestinal encephalopathy disease. In: R. A. Pagon, M. P. Adam, T, D. Bird, C. R. Dolan, C. T. Fong, & K. Stephens (Eds.). SourceGeneReviews™ [Internet]. Seattle, WA: University of Washington [updated 2010 May 11].Google Scholar
  361. 361.
    Butterworth, R. F., Norenberg, M. D., Felipo, V., Ferenci, P., Albrecht, J., & Blei, A. T. (2009). Experimental models of hepatic encephalopathy: ISHEN guidelines. Liver International, 29(6), 783–788.PubMedGoogle Scholar
  362. 362.
    Daniels, T. F., Killinger, K. M., Michal, J. J., Wright, R. W., Jr., & Jiang, Z. (2009). Lipoproteins, cholesterol homeostasis and cardiac health. International Journal of Biological Sciences, 5(5), 474–488.PubMedGoogle Scholar
  363. 363.
    Weissenborn, K., Tryc, A. B., Heeren, M., et al. (2009). Hepatitis C virus infection and the brain. Metabolic Brain Disease, 24(1), 197–210.PubMedGoogle Scholar
  364. 364.
    Stracciari, A., Mattarozzi, K., D’Alessandro, R., Baldin, E., & Guarino, M. (2008). Cognitive functioning in chronic acquired hepatocerebral degeneration. Metabolic Brain Disease, 23(2), 155–160.PubMedGoogle Scholar
  365. 365.
    Weissenborn, K., Krause, J., Bokemeyer, M., et al. (2004). Hepatitis C virus infection affects the brain-evidence from psychometric studies and magnetic resonance spectroscopy. Journal of Hepatology, 41(5), 845–851.PubMedGoogle Scholar
  366. 366.
    Kugler, C. F., Petter, J., Taghavy, A., et al. (1994). Dynamics of cognitive brain dysfunction in patients with cirrhotic liver disease: An event-related P300 potential perspective. Electroencephalography and Clinical Neurophysiology, 91(1), 33–41.PubMedGoogle Scholar
  367. 367.
    Kugler, C. F., Taghavy, A., Fleig, W. E., & Hahn, E. G. (1991). [Visual P300 in acute hepatic encephalopathy resulting from non-A-non-B fulminant hepatitis: Analysis of the course before and after orthotopic liver transplantation]. EEG-EMG Zeitschrift für Elektroenzephalographie, Elektromyographie und Verwandte Gebiete, 22(4), 259–263.PubMedGoogle Scholar
  368. 368.
    de la Monte, S. M., Longato, L., Tong, M., & Wands, J. R. (2009). Insulin resistance and neurodegeneration: roles of obesity, type 2 diabetes mellitus and non-alcoholic steatohepatitis. Current Opinion in Investigational Drugs, 10(10), 1049–1060.PubMedGoogle Scholar
  369. 369.
    Hilsabeck, R. C., Hassanein, T. I., Carlson, M. D., Ziegler, E. A., & Perry, W. (2003). Cognitive functioning and psychiatric symptomatology in patients with chronic hepatitis C. Journal of International Neuropsychological Society, 9(6), 847–854.Google Scholar
  370. 370.
    Gongvatana, A., Cohen, R. A., Correia, S., Devlin, K. N., Miles, J., Kang, H., et al. (2011). Clinical contributors to cerebral white matter integrity in HIV-infected individuals. Journal of Neurovirology, 17, 477–486.PubMedGoogle Scholar
  371. 371.
    De Deyn, P. P., Vanholder, R., Eloot, S., & Glorieux, G. (2009). Guanidino compounds as uremic (neuro)toxins. Seminars in Dialysis, 22(4), 340–345.PubMedGoogle Scholar
  372. 372.
    Gokce, M., Dogan, E., Nacitarhan, S., & Demirpolat, G. (2006). Posterior reversible encephalopathy syndrome caused by hypertensive encephalopathy and acute uremia. Neurocritical Care, 4(2), 133–136.PubMedGoogle Scholar
  373. 373.
    Obrador, G. T., & Pereira, B. J. (2002). Systemic complications of chronic kidney disease. Pinpointing clinical manifestations and best management. Postgraduate Medicine, 111(2), 115–122; quiz 121.PubMedGoogle Scholar
  374. 374.
    Nissenson, A. R. (1992). Epoetin and cognitive function. American Journal of Kidney Diseases, 20(1 Suppl 1), 21–24.PubMedGoogle Scholar
  375. 375.
    Osberg, J. W., Meares, G. J., McKee, D. C., & Burnett, G. B. (1982). Intellectual functioning in renal failure and chronic dialysis. Journal of Chronic Diseases, 35(6), 445–457.PubMedGoogle Scholar
  376. 376.
    Visser, S. L. (1980). Clinical applications of evoked responses: A survey. Clinical Neurology and Neurosurgery, 82(2), 65–84.PubMedGoogle Scholar
  377. 377.
    Ginn, H. E., Teschan, P. E., Walker, P. J., et al. (1975). Neurotoxicity in uremia. Kidney International. Supplement, 3, 357–360.PubMedGoogle Scholar
  378. 378.
    Dziurzynski, K., Delashaw, J. B., Gultekin, S. H., Yedinak, C. G., & Fleseriu, M. (2009). Diabetes insipidus, panhypopituitarism, and severe mental status deterioration in a patient with chordoid glioma: Case report and literature review. Endocrine Practice, 15(3), 240–245.PubMedGoogle Scholar
  379. 379.
    Medic-Stojanoska, M., Pekic, S., Curic, N., Djilas-Ivanovic, D., & Popovic, V. (2007). Evolving hypopituitarism as a consequence of traumatic brain injury (TBI) in childhood—Call for attention. Endocrine, 31(3), 268–271.PubMedGoogle Scholar
  380. 380.
    Bruins, J., Kovacs, G. L., Abbes, A. P., et al. (2006). Minor disturbances in central nervous system function in familial neurohypophysial diabetes insipidus. Psychoneuroendocrinology, 31(1), 80–91.PubMedGoogle Scholar
  381. 381.
    Asteria, C., Persani, L., & Beck-Peccoz, P. (2001). Central hypothyroidism: consequences in adult life. Journal of Pediatric Endocrinology & Metabolism, 14(Suppl 5), 1263–1269; discussion 1297–1298.Google Scholar
  382. 382.
    Bakiri, F., Tatai, S., Aouali, R., et al. (1996). Treatment of Cushing’s disease by transsphenoidal, pituitary microsurgery: Prognosis factors and long-term follow-up. Journal of Endocrinological Investigation, 19(9), 572–580.PubMedGoogle Scholar
  383. 383.
    Samuels, M. H. (2008). Cognitive function in untreated hypothyroidism and hyperthyroidism. Current Opinion in Endocrinology, Diabetes, and Obesity, 15(5), 429–433.PubMedGoogle Scholar
  384. 384.
    Mafrica, F., & Fodale, V. (2008). Thyroid function, Alzheimer’s disease and postoperative cognitive dysfunction: A tale of dangerous liaisons? Journal of Alzheimer’s Disease, 14(1), 95–105.PubMedGoogle Scholar
  385. 385.
    Bauer, M., Goetz, T., Glenn, T., & Whybrow, P. C. (2008). The thyroid-brain interaction in thyroid disorders and mood disorders. Journal of Neuroendocrinology, 20(10), 1101–1114.PubMedGoogle Scholar
  386. 386.
    Zimmermann, M. B. (2007). The adverse effects of mild-to-moderate iodine deficiency during pregnancy and childhood: A review. Thyroid, 17(9), 829–835.PubMedGoogle Scholar
  387. 387.
    Rivas, M., & Naranjo, J. R. (2007). Thyroid hormones, learning and memory. Genes, Brain, and Behavior, 6(Suppl 1), 40–44.PubMedGoogle Scholar
  388. 388.
    Tutuncu, N. B., Karatas, M., & Sozay, S. (2004). Prolonged P300 latency in thyroid failure: A paradox. P300 latency recovers later in mild hypothyroidism than in severe hypothyroidism. Thyroid, 14(8), 622–627.PubMedGoogle Scholar
  389. 389.
    Bono, G., Fancellu, R., Blandini, F., Santoro, G., & Mauri, M. (2004). Cognitive and affective status in mild hypothyroidism and interactions with L-thyroxine treatment. Acta Neurologica Scandinavica, 110(1), 59–66.PubMedGoogle Scholar
  390. 390.
    Smith, J. W., Evans, A. T., Costall, B., & Smythe, J. W. (2002). Thyroid hormones, brain function and cognition: A brief review. Neuroscience and Biobehavioral Reviews, 26(1), 45–60.PubMedGoogle Scholar
  391. 391.
    Galluzzi, S., Geroldi, C., Zanetti, O., & Frisoni, G. B. (2002). Hashimoto’s encephalopathy in the elderly: Relationship to cognitive impairment. Journal of Geriatric Psychiatry and Neurology, 15(3), 175–179.PubMedGoogle Scholar
  392. 392.
    Schantz, S. L., & Widholm, J. J. (2001). Cognitive effects of endocrine-disrupting chemicals in animals. Environmental Health Perspectives, 109(12), 1197–1206.PubMedGoogle Scholar
  393. 393.
    Munte, T. F., Radamm, C., Johannes, S., & Brabant, G. (2001). Alterations of cognitive functions induced by exogenous application of thyroid hormones in healthy men: A double-blind cross-over study using event-related brain potentials. Thyroid, 11(4), 385–391.PubMedGoogle Scholar
  394. 394.
    Kragie, L. (1993). Neuropsychiatric implications of thyroid hormone and benzodiazepine interactions. Endocrine Research, 19(1), 1–32.PubMedGoogle Scholar
  395. 395.
    Osterweil, D., Syndulko, K., Cohen, S. N., et al. (1992). Cognitive function in non-demented older adults with hypothyroidism. Journal of American Geriatrics Society, 40(4), 325–335.Google Scholar
  396. 396.
    Schraml, F. V., Goslar, P. W., Baxter, L., & Beason-Held, L. L. (2011). Thyroid stimulating hormone and cognition during severe, transient hypothyroidism. Neuro Endocrinology Letters, 32(3), 279–285.PubMedGoogle Scholar
  397. 397.
    Fu, A. L., Zhou, C. Y., & Chen, X. (2010). Thyroid hormone prevents cognitive deficit in a mouse model of Alzheimer’s disease. Neuropharmacology, 58(4–5), 722–729.PubMedGoogle Scholar
  398. 398.
    Ances, B. M., Vitaliani, R., Taylor, R. A., et al. (2005). Treatment-responsive limbic encephalitis identified by neuropil antibodies: MRI and PET correlates. Brain, 128(Pt 8), 1764–1777.PubMedGoogle Scholar
  399. 399.
    Cohen, R., McCrae, V., Phillips, K., & Wilkinson, H. (1990). Neurobehavioral consequences of bilateral medial cingulotomy. Neurology, 40(1), 198.Google Scholar
  400. 400.
    Cohen, R. A., Kaplan, R. F., Meadows, M. E., & Wilkinson, H. (1994). Habituation and sensitization of the orienting response following bilateral anterior cingulotomy. Neuropsychologia, 32(5), 609–617.PubMedGoogle Scholar
  401. 401.
    Cohen, R. A., Paul, R., Zawacki, T. M., Moser, D. J., Sweet, L., & Wilkinson, H. (2001). Emotional and personality changes following cingulotomy. Emotion (Washington, D.C.), 1(1), 38–50.Google Scholar
  402. 402.
    Birnboim, S., Breznitz, Z., Pratt, H., & Aharon, Y. (2002). Distractibility after frontal lobe lesions: Behavioral and event-related brain potential evidence. Genetic, Social, and General Psychology Monographs, 128(4), 382–407.PubMedGoogle Scholar
  403. 403.
    Giovagnoli, A. R., Tamburini, M., & Boiardi, A. (1996). Quality of life in brain tumor patients. Journal of Neuro-Oncology, 30(1), 71–80.PubMedGoogle Scholar
  404. 404.
    Ito, T., Ozaki, Y., Sato, K., et al. (2010). Radiation-induced osteosarcomas after treatment for frontal gliomas: A report of two cases. Brain Tumor Pathology, 27(2), 103–109.PubMedGoogle Scholar
  405. 405.
    Tucha, O., Smely, C., Preier, M., Becker, G., Paul, G. M., & Lange, K. W. (2003). Preoperative and postoperative cognitive functioning in patients with frontal meningiomas. Journal of Neurosurgery, 98(1), 21–31.PubMedGoogle Scholar
  406. 406.
    Vilkki, J. (1989). Hemi-inattention in visual search for parallel lines after focal cerebral lesions. Journal of Clinical and Experimental Neuropsychology, 11(2), 319–331.PubMedGoogle Scholar
  407. 407.
    Vilkki, J., Virtanen, S., Surma-Aho, O., & Servo, A. (1996). Dual task performance after focal cerebral lesions and closed head injuries. Neuropsychologia, 34(11), 1051–1056.PubMedGoogle Scholar
  408. 408.
    Zaret, B. S., & Cohen, R. A. (1986). Reversible valproic acid-induced dementia: A case report. Epilepsia, 27(3), 234–240.PubMedGoogle Scholar
  409. 409.
    Wefel, J. S., Vardy, J., Ahles, T., & Schagen, S. B. (2011). International Cognition and Cancer Task Force recommendations to harmonise studies of cognitive function in patients with cancer. The Lancet Oncology, 12(7), 703–708.PubMedGoogle Scholar
  410. 410.
    Seigers, R., & Fardell, J. E. (2011). Neurobiological basis of chemotherapy-induced cognitive impairment: A review of rodent research. Neuroscience and Biobehavioral Reviews, 35(3), 729–741.PubMedGoogle Scholar
  411. 411.
    Argyriou, A. A., Polychronopoulos, P., Koutras, A., Iconomou, G., Gourzis, P., Assimakopoulos, K., et al. (2006). Is advanced age associated with increased incidence and severity of chemotherapy-induced peripheral neuropathy? Support Care Cancer, 14(3), 223–229. doi:  10.1007/s00520-005-0868-6.Google Scholar
  412. 412.
    Dietrich, J. (2010). Chemotherapy associated central nervous system damage. Advances in Experimental Medicine and Biology, 678, 77–85.PubMedGoogle Scholar
  413. 413.
    Raffa, R. B., & Tallarida, R. J. (2010). Chemo fog: Cancer chemotherapy-related cognitive impairment. Preface. Advances in Experimental Medicine and Biology, 678, vii–viii.PubMedGoogle Scholar
  414. 414.
    Palmer, S. L., Hassall, T., Evankovich, K., et al. (2010). Neurocognitive outcome 12 months following cerebellar mutism syndrome in pediatric patients with medulloblastoma. Neuro-Oncology, 12(12), 1311–1317.PubMedGoogle Scholar
  415. 415.
    Seigers, R., Timmermans, J., van der Horn, H. J., et al. (2010). Methotrexate reduces hippocampal blood vessel density and activates microglia in rats but does not elevate central cytokine release. Behavioural Brain Research, 207(2), 265–272.PubMedGoogle Scholar
  416. 416.
    Correa, D. D., & Ahles, T. A. (2008). Neurocognitive changes in cancer survivors. Cancer Journal, 14(6), 396–400.Google Scholar
  417. 417.
    Seruga, B., Zhang, H., Bernstein, L. J., & Tannock, I. F. (2008). Cytokines and their relationship to the symptoms and outcome of cancer. Nature Reviews. Cancer, 8(11), 887–899.PubMedGoogle Scholar
  418. 418.
    Luciani, A., Jacobsen, P. B., Extermann, M., et al. (2008). Fatigue and functional dependence in older cancer patients. American Journal of Clinical Oncology, 31(5), 424–430.PubMedGoogle Scholar
  419. 419.
    Correa, D. D., & Ahles, T. A. (2007). Cognitive adverse effects of chemotherapy in breast cancer patients. Current Opinion in Supportive and Palliative Care, 1(1), 57–62.PubMedGoogle Scholar
  420. 420.
    Vardy, J., Wefel, J. S., Ahles, T., Tannock, I. F., & Schagen, S. B. (2008). Cancer and cancer-therapy related cognitive dysfunction: An international perspective from the Venice cognitive workshop. Annals of Oncology, 19(4), 623–629.PubMedGoogle Scholar
  421. 421.
    Correa, D. D., Shi, W., Thaler, H. T., Cheung, A. M., DeAngelis, L. M., & Abrey, L. E. (2008). Longitudinal cognitive follow-up in low grade gliomas. Journal of Neuro-Oncology, 86(3), 321–327.PubMedGoogle Scholar
  422. 422.
    Scherwath, A., Mehnert, A., Schleimer, B., et al. (2006). Neuropsychological function in high-risk breast cancer survivors after stem-cell supported high-dose therapy versus standard-dose chemotherapy: Evaluation of long-term treatment effects. Annals of Oncology, 17(3), 415–423.PubMedGoogle Scholar
  423. 423.
    Jansen, C. E., Miaskowski, C., Dodd, M., Dowling, G., & Kramer, J. (2005). A metaanalysis of studies of the effects of cancer chemotherapy on various domains of cognitive function. Cancer, 104(10), 2222–2233.PubMedGoogle Scholar
  424. 424.
    Minisini, A., Atalay, G., Bottomley, A., Puglisi, F., Piccart, M., & Biganzoli, L. (2004). What is the effect of systemic anticancer treatment on cognitive function? The Lancet Oncology, 5(5), 273–282.PubMedGoogle Scholar
  425. 425.
    Radcliffe, J., Bunin, G. R., Sutton, L. N., Goldwein, J. W., & Phillips, P. C. (1994). Cognitive deficits in long-term survivors of childhood medulloblastoma and other noncortical tumors: Age-dependent effects of whole brain radiation. International Journal of Developmental Neuroscience, 12(4), 327–334.PubMedGoogle Scholar
  426. 426.
    Archibald, Y. M., Lunn, D., Ruttan, L. A., et al. (1994). Cognitive functioning in long-term survivors of high-grade glioma. Journal of Neurosurgery, 80(2), 247–253.PubMedGoogle Scholar
  427. 427.
    Andrykowski, M. A., Schmitt, F. A., Gregg, M. E., Brady, M. J., Lamb, D. G., & Henslee-Downey, P. J. (1992). Neuropsychologic impairment in adult bone marrow transplant candidates. Cancer, 70(9), 2288–2297.PubMedGoogle Scholar
  428. 428.
    Stiefel, F., & Holland, J. (1991). Delirium in cancer patients. International Psychogeriatrics/IPA, 3(2), 333–336.PubMedGoogle Scholar
  429. 429.
    Bruera, E., Macmillan, K., Hanson, J., & MacDonald, R. N. (1989). The cognitive effects of the administration of narcotic analgesics in patients with cancer pain. Pain, 39(1), 13–16.PubMedGoogle Scholar
  430. 430.
    Fletcher, J. M., & Copeland, D. R. (1988). Neurobehavioral effects of central nervous system prophylactic treatment of cancer in children. Journal of Clinical and Experimental Neuropsychology, 10(4), 495–537.PubMedGoogle Scholar
  431. 431.
    Packer, R. J., Meadows, A. T., Rorke, L. B., Goldwein, J. L., & D’Angio, G. (1987). Long-term sequelae of cancer treatment on the central nervous system in childhood. Medical and Pediatric Oncology, 15(5), 241–253.PubMedGoogle Scholar
  432. 432.
    Silberfarb, P. M. (1983). Chemotherapy and cognitive defects in cancer patients. Annual Review of Medicine, 34, 35–46.PubMedGoogle Scholar
  433. 433.
    Ahles, T. A., Saykin, A. J., McDonald, B. C., et al. (2010). Longitudinal assessment of cognitive changes associated with adjuvant treatment for breast cancer: Impact of age and cognitive reserve. Journal of Clinical Oncology, 28(29), 4434–4440.PubMedGoogle Scholar
  434. 434.
    Ferguson, R. J., McDonald, B. C., Saykin, A. J., & Ahles, T. A. (2007). Brain structure and function differences in monozygotic twins: Possible effects of breast cancer chemotherapy. Journal of Clinical Oncology, 25(25), 3866–3870.PubMedGoogle Scholar
  435. 435.
    Ahles, T. A., Saykin, A. J., McDonald, B. C., et al. (2008). Cognitive function in breast cancer patients prior to adjuvant treatment. Breast Cancer Research and Treatment, 110(1), 143–152.PubMedGoogle Scholar
  436. 436.
    Ahles, T. A., & Saykin, A. J. (2007). Candidate mechanisms for chemotherapy-induced cognitive changes. Nature Reviews. Cancer, 7(3), 192–201.PubMedGoogle Scholar
  437. 437.
    McAllister, T. W., Ahles, T. A., Saykin, A. J., et al. (2004). Cognitive effects of cytotoxic cancer chemotherapy: Predisposing risk factors and potential treatments. Current Psychiatry Reports, 6(5), 364–371.PubMedGoogle Scholar
  438. 438.
    Saykin, A. J., Ahles, T. A., & McDonald, B. C. (2003). Mechanisms of chemotherapy-induced cognitive disorders: Neuropsychological, pathophysiological, and neuroimaging perspectives. Seminars in Clinical Neuropsychiatry, 8(4), 201–216.PubMedGoogle Scholar
  439. 439.
    Ahles, T. A., & Saykin, A. J. (2002). Breast cancer chemotherapy-related cognitive dysfunction. Clinical Breast Cancer, 3(Suppl 3), S84–S90.PubMedGoogle Scholar
  440. 440.
    Ahles, T. A., Saykin, A. J., Furstenberg, C. T., et al. (2002). Neuropsychologic impact of standard-dose systemic chemotherapy in long-term survivors of breast cancer and lymphoma. Journal of Clinical Oncology, 20(2), 485–493.PubMedGoogle Scholar
  441. 441.
    Harder, H., Holtel, H., Bromberg, J. E., et al. (2004). Cognitive status and quality of life after treatment for primary CNS lymphoma. Neurology, 62(4), 544–547.PubMedGoogle Scholar
  442. 442.
    Meyers, C. A., Albitar, M., & Estey, E. (2005). Cognitive impairment, fatigue, and cytokine levels in patients with acute myelogenous leukemia or myelodysplastic syndrome. Cancer, 104(4), 788–793.PubMedGoogle Scholar
  443. 443.
    Myers, J. S., Pierce, J., & Pazdernik, T. (2008). Neurotoxicology of chemotherapy in relation to cytokine release, the blood-brain barrier, and cognitive impairment. Oncology Nursing Forum, 35(6), 916–920.PubMedGoogle Scholar
  444. 444.
    Schagen, S. B., Hamburger, H. L., Muller, M. J., Boogerd, W., & van Dam, F. S. (2001). Neurophysiological evaluation of late effects of adjuvant high-dose chemotherapy on cognitive function. Journal of Neuro-Oncology, 51(2), 159–165.PubMedGoogle Scholar
  445. 445.
    Tchen, N., Juffs, H. G., Downie, F. P., et al. (2003). Cognitive function, fatigue, and menopausal symptoms in women receiving adjuvant chemotherapy for breast cancer. Journal of Clinical Oncology, 21(22), 4175–4183.PubMedGoogle Scholar
  446. 446.
    Whitney, K. A., Lysaker, P. H., Steiner, A. R., Hook, J. N., Estes, D. D., & Hanna, N. H. (2008). Is “chemobrain” a transient state? A prospective pilot study among persons with non-small cell lung cancer. The Journal of Supportive Oncology, 6(7), 313–321.PubMedGoogle Scholar
  447. 447.
    Gamis, A. S., & Nesbit, M. E. (1991). Neuropsychologic (cognitive) disabilities in long-term survivors of childhood cancer. Pediatrician, 18(1), 11–19.PubMedGoogle Scholar
  448. 448.
    Iuvone, L., Mariotti, P., Colosimo, C., Guzzetta, F., Ruggiero, A., & Riccardi, R. (2002). Long-term cognitive outcome, brain computed tomography scan, and magnetic resonance imaging in children cured for acute lymphoblastic leukemia. Cancer, 95(12), 2562–2570.PubMedGoogle Scholar
  449. 449.
    Mennes, M., Stiers, P., Vandenbussche, E., et al. (2005). Attention and information processing in survivors of childhood acute lymphoblastic leukemia treated with chemotherapy only. Pediatric Blood & Cancer, 44(5), 478–486.Google Scholar
  450. 450.
    Minisini, A. M., De Faccio, S., Ermacora, P., et al. (2008). Cognitive functions and elderly cancer patients receiving anticancer treatment: A prospective study. Critical Reviews in Oncology/Hematology, 67(1), 71–79.PubMedGoogle Scholar
  451. 451.
    Olin, J. J. (2001). [Cognitive function after systemic therapy for breast cancer]. Oncology (Williston Park, N.Y.), 15(5), 613–618; discussion 618, 621–624.Google Scholar
  452. 452.
    Phillips, K. A., & Bernhard, J. (2003). Adjuvant breast cancer treatment and cognitive function: Current knowledge and research directions. Journal of the National Cancer Institute, 95(3), 190–197.PubMedGoogle Scholar
  453. 453.
    Schagen, S. B., van Dam, F. S., Muller, M. J., Boogerd, W., Lindeboom, J., & Bruning, P. F. (1999). Cognitive deficits after postoperative adjuvant chemotherapy for breast carcinoma. Cancer, 85(3), 640–650.PubMedGoogle Scholar
  454. 454.
    Vandenbossche, S., Fery, P., & Razavi, D. (2009). [Cognitive impairments and breast cancer: A critical review of the literature]. Bulletin du Cancer, 96(2), 239–248.PubMedGoogle Scholar
  455. 455.
    Vearncombe, K. J., Rolfe, M., Wright, M., Pachana, N. A., Andrew, B., & Beadle, G. (2009). Predictors of cognitive decline after chemotherapy in breast cancer patients. Journal of International Neuropsychological Society, 15(6), 951–962.Google Scholar
  456. 456.
    Weiss, B. (2008). Chemobrain: A translational challenge for neurotoxicology. Neurotoxicology, 29(5), 891–898.PubMedGoogle Scholar
  457. 457.
    Yamada, T. H., Denburg, N. L., Beglinger, L. J., & Schultz, S. K. (2010). Neuropsychological outcomes of older breast cancer survivors: Cognitive features ten or more years after chemotherapy. The Journal of Neuropsychiatry and Clinical Neurosciences, 22(1), 48–54.PubMedGoogle Scholar
  458. 458.
    Grosshans, D. R., Meyers, C. A., Allen, P. K., Davenport, S. D., & Komaki, R. (2008). Neurocognitive function in patients with small cell lung cancer: Effect of prophylactic cranial irradiation. Cancer, 112(3), 589–595.PubMedGoogle Scholar
  459. 459.
    Joly, F., Rigal, O., Noal, S., & Giffard, B. (2011). Cognitive dysfunction and cancer: Which consequences in terms of disease management? Psycho-Oncology, 20, 1251–1258.PubMedGoogle Scholar
  460. 460.
    Lee, G. D., Longo, D. L., Wang, Y., et al. (2006). Transient improvement in cognitive function and synaptic plasticity in rats following cancer chemotherapy. Clinical Cancer Research, 12(1), 198–205.PubMedGoogle Scholar
  461. 461.
    Matsuda, T., Takayama, T., Tashiro, M., Nakamura, Y., Ohashi, Y., & Shimozuma, K. (2005). Mild cognitive impairment after adjuvant chemotherapy in breast cancer patients–evaluation of appropriate research design and methodology to measure symptoms. Breast Cancer, 12(4), 279–287.PubMedGoogle Scholar
  462. 462.
    Schagen, S. B., Muller, M. J., Boogerd, W., et al. (2002). Late effects of adjuvant chemotherapy on cognitive function: A follow-up study in breast cancer patients. Annals of Oncology, 13(9), 1387–1397.PubMedGoogle Scholar
  463. 463.
    Schagen, S. B., Das, E., & van Dam, F. S. (2009). The influence of priming and pre-existing knowledge of chemotherapy-associated cognitive complaints on the reporting of such complaints in breast cancer patients. Psycho-Oncology, 18(6), 674–678.PubMedGoogle Scholar
  464. 464.
    Seigers, R., Schagen, S. B., Beerling, W., et al. (2008). Long-lasting suppression of hippocampal cell proliferation and impaired cognitive performance by methotrexate in the rat. Behavioural Brain Research, 186(2), 168–175.PubMedGoogle Scholar
  465. 465.
    Deprez, S., Amant, F., Yigit, R., et al. (2011). Chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning in breast cancer patients. Human Brain Mapping, 32(3), 480–493.PubMedGoogle Scholar
  466. 466.
    Mulhern, R. K., Merchant, T. E., Gajjar, A., Reddick, W. E., & Kun, L. E. (2004). Late neurocognitive sequelae in survivors of brain tumours in childhood. The Lancet Oncology, 5(7), 399–408.PubMedGoogle Scholar
  467. 467.
    Reddick, W. E., Shan, Z. Y., Glass, J. O., et al. (2006). Smaller white-matter volumes are associated with larger deficits in attention and learning among long-term survivors of acute lymphoblastic leukemia. Cancer, 106(4), 941–949.PubMedGoogle Scholar
  468. 468.
    Ahles, T. A., & Saykin, A. (2001). Cognitive effects of standard-dose chemotherapy in patients with cancer. Cancer Investigation, 19(8), 812–820.PubMedGoogle Scholar
  469. 469.
    Ahles, T. A., Saykin, A. J., Noll, W. W., et al. (2003). The relationship of APOE genotype to neuropsychological performance in long-term cancer survivors treated with standard dose chemotherapy. Psycho-Oncology, 12(6), 612–619.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ronald A. Cohen
    • 1
    • 2
    • 3
  1. 1.Departments of Neurology, Psychiatry and AgingGainesvilleUSA
  2. 2.Center for Cognitive Aging and MemoryUniversity of Florida College of MedicineGainesvilleUSA
  3. 3.Department of Psychiatry and Human Behavior Warren Alpert School of MedicineBrown UniversityProvidenceUSA

Personalised recommendations