Subcortical and Limbic Attentional Influences

  • Ronald A. Cohen


Situated below the cerebral cortex are the brain stem, midbrain, cerebellum, basal ganglia, thalamus, hypothalamus, basal ganglia, and limbic nuclei. Collectively these areas are referred to as “subcortical” based on anatomic location, and because they have different phylogenic origins, cytoarchitecture, and biobehavioral function than the cerebral cortex. Whereas the cerebral cortex has been traditionally viewed as the site of higher cognitive functioning, the subcortex was thought to be primarily involved in the control of more primitive systemic appetitive and biological functions. Yet, it is now recognized that many subcortical brain areas have important roles in cognitive functioning, as well, as exemplified by the involvement of the thalamus and basal ganglia to language [1, 2]. Subcortical systems also influence attention.


Basal Ganglion Nucleus Accumbens Limbic System Nucleus Basalis Reticular Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Crosson, B. (1999). Subcortical mechanisms in language: Lexical-semantic mechanisms and the thalamus. Brain and Cognition, 40(2), 414–438.PubMedGoogle Scholar
  2. 2.
    Crosson, B., Benefield, H., Cato, M. A., et al. (2003). Left and right basal ganglia and frontal activity during language generation: Contributions to lexical, semantic, and phonological processes. Journal of the International Neuropsychological Society, 9(7), 1061–1077.PubMedGoogle Scholar
  3. 3.
    Mesulam, M.-M. (Ed.). (2000). Principles of behavioral neurology (2nd ed.). New York, NY: Oxford University Press.Google Scholar
  4. 4.
    Mesulam, M. M., Van Hoesen, G. W., Pandya, D. N., & Geschwind, N. (1977). Limbic and sensory connections of the inferior parietal lobule (area PG) in the rhesus monkey: A study with a new method for horseradish peroxidase histochemistry. Brain Research, 136, 393–414.PubMedGoogle Scholar
  5. 5.
    Broca, P. (1878). Anatomie comparée des circonvolutions cérébrales: Le grand lobe limbique. Reviews in Anthropology, 1, 385–498.Google Scholar
  6. 6.
    Papez, J. W. (1995, Winter). A proposed mechanism of emotion. 1937. The Journal of Neuropsychiatry and Clinical Neurosciences, 7(1):103–112.Google Scholar
  7. 7.
    Maclean, P. D. (1952). Some psychiatric implications of physiological studies on frontotemporal portion of limbic system (visceral brain). Electroencephalography and Clinical Neurophysiology, 4(4), 407–418.PubMedGoogle Scholar
  8. 8.
    Nauta, W. J. (1960). Limbic system and hypothalamus: Anatomical aspects. Physiological Reviews. Supplement, 4, 102–104.PubMedGoogle Scholar
  9. 9.
    Pribram, K. H., Lim, H., Poppen, R., & Bagshaw, M. (1966). Limbic lesions and the temporal structure of redundancy. Journal of Comparative and Physiological Psychology, 61(3), 368–373.PubMedGoogle Scholar
  10. 10.
    Olds, J. (1958). Self-stimulation of the brain. Science (New York, N.Y.), 127, 315–324.Google Scholar
  11. 11.
    Delgrado, J. M. R., Roberts, W. W., & Miller, N. E. (1954). Learning motivated by electrical stimulation of the brain. American Journal of Physiology, 179, 587–593.Google Scholar
  12. 12.
    Pribram, K. H. (1969). The neurobehavioral analysis of limbic forebrain mechanisms: Revision and progress report. In D. S. Lehrman, R. A. Hinde, & E. Shaw (Eds.), Advances in the study of behavior (Vol. 2). New York, NY: Academic Press.Google Scholar
  13. 13.
    Pribram, K. H. (1967). Neurophysiology and learning: I. Memory and the organization of attention. In D. B. Lindsley & A. A. Lumsdaine (Eds.), Brain function (Brain function and learning, Vol. 4, p. 79). Berkeley, CA: University of California Press.Google Scholar
  14. 14.
    Milner, B. (1959). The memory defect in bilateral hippocampal lesions. Psychiatric Research Reports, 11, 43–58.PubMedGoogle Scholar
  15. 15.
    Kotter, R., & Stephan, K. E. (1997). Useless or helpful? The “limbic system” concept. Reviews in the Neurosciences, 8(2), 139–145.PubMedGoogle Scholar
  16. 16.
    Kotter, R., & Meyer, N. (1992). The limbic system: A review of its empirical foundation. Behavioural Brain Research, 52(2), 105–127.PubMedGoogle Scholar
  17. 17.
    Moruzzi, G., & Magoun, H. W. (1949). Brain stem reticular formation and activation of the EEG. Electroencephalography and Clinical Neurophysiology, 1, 455–473.PubMedGoogle Scholar
  18. 18.
    Gandhi, N. J., Barton, E. J., & Sparks, D. L. (2008). Coordination of eye and head components of movements evoked by stimulation of the paramedian pontine reticular formation. Experimental Brain Research. Experimentelle Hirnforschung. Expérimentation Cérébrale, 189(1), 35–47.PubMedGoogle Scholar
  19. 19.
    Mager, P., Mager, R., & Klingberg, F. (1984). The effect of lesions in the mesencephalic reticular formation upon conditioned avoidance responses in rat. II. Lesions of the area cuneiformis. Biomedica Biochimica Acta, 43(10), 1145–1155.PubMedGoogle Scholar
  20. 20.
    Smythies, J. (1997). The functional neuroanatomy of awareness: With a focus on the role of various anatomical systems in the control of intermodal attention. Consciousness and Cognition, 6(4), 455–481.PubMedGoogle Scholar
  21. 21.
    Rapoport, J. L., Buchsbaum, M. S., Zahn, T. P., Weingartner, H., Ludlow, C., & Mikkelsen, E. J. (1978). Dextroamphetamine: Cognitive and behavioral effects in normal prepubertal boys. Science (New York, N.Y.), 199, 560–563.Google Scholar
  22. 22.
    Bonvallet, M., & Zbrozyna, A. (1963). [Reticular control of the autonomic system, and particularly, the sympathetic and parasympathetic innervation of the pupil]. Archives Italiennes de Biologie, 101, 174–207.PubMedGoogle Scholar
  23. 23.
    Buser, P., & Horvath, F. E. (1972). Thalamo-caudate-cortical relationships in synchronized activity. II. Further differentiation between spindle systems by cooling and lesions in the mesencephalon. Brain Research, 39(1), 43–60.PubMedGoogle Scholar
  24. 24.
    Klemm, W. R. (1972). Ascending and descending excitatory influences in the brain stem reticulum: A re-examination. Brain Research, 36(2), 444–452.PubMedGoogle Scholar
  25. 25.
    Yingling, C. D., & Skinner, J. E. (1975). Regulation of unit activity in nucleus reticularis thalami by the mesencephalic reticular formation and the frontal granular cortex. Electroencephalography and Clinical Neurophysiology, 39(6), 635–642.PubMedGoogle Scholar
  26. 26.
    Schwartzbaum, J. S. (1975). Interrelationship among multiunit activity of the midbrain reticular formation and lateral geniculate nucleus, thalamocortical arousal, and behavior in rats. Journal of Comparative and Physiological Psychology, 89(2), 131–157.PubMedGoogle Scholar
  27. 27.
    Bartlett, J. R., Doty, R. W., Pecci-Saavedra, J., & Wilson, P. D. (1973). Mesencephalic control of lateral geniculate nucleus in primates. 3. Modifications with state of alertness. Experimental Brain Research. Experimentelle Hirnforschung Expérimentation. Cérébrale, 18(2), 214–224.PubMedGoogle Scholar
  28. 28.
    Groves, P. M., & Lynch, G. S. (1972). Mechanisms of habituation in the brain stem. Psychological Review, 79(3), 237–244.PubMedGoogle Scholar
  29. 29.
    Groves, P. M., & Thompson, R. F. (1970). Habituation: A dual-process theory. Psychological Review, 77(5), 419–450.PubMedGoogle Scholar
  30. 30.
    Sokolov, E. N. (1963). Perception and the conditioned reflex. Oxford, NY: Pergamon Press.Google Scholar
  31. 31.
    Waters, W. F., & Wright, J. W. (1979). Maintenance and habituation of the phasic orienting response to competing stimuli in selective attention. In H. D. Kimmel, E. H. van Olst, & J. F. Orlebeke (Eds.), The orienting reflex in humans. New York, NY: Lawrence Erlbaum.Google Scholar
  32. 32.
    Groves, P. M., De Marco, R., & Thompson, R. F. (1969). Habituation and sensitization of spinal interneuron ­activity in acute spinal cat. Brain Research, 14(2), 521–525.PubMedGoogle Scholar
  33. 33.
    Adams, R. D. V., Victor, M., & Roper, A. H. (1981). Principles of neurology (2nd ed.). New York, NY: McGraw-Hill.Google Scholar
  34. 34.
    Ropper, A., & Samuels, M. (2009). Adams and Victor’s principles of neurology (9th ed.). New York, NY: McGraw-Hill.Google Scholar
  35. 35.
    Takamatsu, K., & Ohta, T. (1995). [A case of infarction in the pontine tegmentum involving the bilateral MLF and unilateral paramedian pontine reticular formation]. Rinsho Shinkeigaku = Clinical Neurology, 35(3), 272–276.PubMedGoogle Scholar
  36. 36.
    Ohta, K., Gotoh, F., Fukuuchi, Y., Tanahashi, N., & Shinohara, T. (1994). Midpontine tegmentum infarction with “one-and-a-half syndrome” demonstrated by magnetic resonance imaging. The Keio Journal of Medicine, 43(3), 164–166.PubMedGoogle Scholar
  37. 37.
    Tatemichi, T. K., Steinke, W., Duncan, C., et al. (1992). Paramedian thalamopeduncular infarction: Clinical syndromes and magnetic resonance imaging. Annals of Neurology, 32(2), 162–171.PubMedGoogle Scholar
  38. 38.
    Takamatsu, K., & Takizawa, T. (1991). [A case of brainstem infarction presenting with paralytic pontine exotropia and non-paralytic pontine exotropia]. Rinsho Shinkeigaku = Clinical Neurology, 31(11), 1214–1218.PubMedGoogle Scholar
  39. 39.
    Pierrot-Deseilligny, C., Chain, F., & Lhermitte, F. (1982). The pontine reticular formation syndrome. Physiopathologic data on voluntary eye movement abnormalities. Revista de Neurologia, 138(6–7), 517–532.Google Scholar
  40. 40.
    Heiss, W. D., & Jellinger, K. (1972). Cerebral blood flow and brain stem lesion. Zeitschrift für Neurologie, 203(3), 197–209.PubMedGoogle Scholar
  41. 41.
    Browning, R. A. (1986). Neuroanatomical localization of structures responsible for seizures in the GEPR: Lesion studies. Life Sciences, 39(10), 857–867.PubMedGoogle Scholar
  42. 42.
    Browning, R. A. (1985). Role of the brain-stem reticular formation in tonic-clonic seizures: Lesion and pharmacological studies. Federation Proceedings, 44(8), 2425–2431.PubMedGoogle Scholar
  43. 43.
    Browning, R. A., Nelson, D. K., Mogharreban, N., Jobe, P. C., & Laird, H. E., II. (1985). Effect of midbrain and pontine tegmental lesions on audiogenic seizures in genetically epilepsy-prone rats. Epilepsia, 26(2), 175–183.PubMedGoogle Scholar
  44. 44.
    Wada, J. A., & Sato, M. (1975). Effects of unilateral lesion in the midbrain reticular formation on kindled amygdaloid convulsion in cats. Epilepsia, 16(5), 693–697.PubMedGoogle Scholar
  45. 45.
    Gloor, P., Ball, G., & Schaul, N. (1977). Brain lesions that produce delta waves in the EEG. Neurology, 27(4), 326–333.PubMedGoogle Scholar
  46. 46.
    Ommaya, A. K., & Gennarelli, T. A. (1974). Cerebral concussion and traumatic unconsciousness. Correlation of experimental and clinical observations of blunt head injuries. Brain, 97(4), 633–654.PubMedGoogle Scholar
  47. 47.
    Ross, D. T., & Ebner, F. F. (1990). Thalamic retrograde degeneration following cortical injury: An excitotoxic process? Neuroscience, 35(3), 525–550.PubMedGoogle Scholar
  48. 48.
    Gibbs, F. P. (1969). Area of pons necessary for traumatic stress-induced ACTH release under pentobarbital anesthesia. American Journal of Physiology, 217(1), 84–88.PubMedGoogle Scholar
  49. 49.
    McLardy, T., Mark, V., Scoville, W., & Sweet, W. (1969). Pathology in diffuse projection system preventing brainstem-electrode arousal from traumatic coma. Confinia Neurologica, 31(4), 219–225.PubMedGoogle Scholar
  50. 50.
    Lighthall, J. W., Goshgarian, H. G., & Pinderski, C. R. (1990, Summer). Characterization of axonal injury produced by controlled cortical impact. Journal of Neurotrauma, 7(2):65–76.Google Scholar
  51. 51.
    Shukla, D., Mahadevan, A., Sastry, K. V., & Shankar, S. K. (2007). Pathology of post traumatic brainstem and hypothalamic injuries. Clinical Neuropathology, 26(5), 197–209.PubMedGoogle Scholar
  52. 52.
    Lipton, M. L., Gellella, E., Lo, C., et al. (2008). Multifocal white matter ultrastructural abnormalities in mild traumatic brain injury with cognitive disability: A voxel-wise analysis of diffusion tensor imaging. Journal of Neurotrauma, 25(11), 1335–1342.PubMedGoogle Scholar
  53. 53.
    Wang, J. Y., Bakhadirov, K., Devous, M. D., Sr., et al. (2008). Diffusion tensor tractography of traumatic diffuse axonal injury. Archives of Neurology, 65(5), 619–626.PubMedGoogle Scholar
  54. 54.
    Niogi, S. N., Mukherjee, P., Ghajar, J., et al. (2008). Extent of microstructural white matter injury in postconcussive syndrome correlates with impaired cognitive reaction time: A 3T diffusion tensor imaging study of mild traumatic brain injury. AJNR. American Journal of Neuroradiology, 29(5), 967–973.PubMedGoogle Scholar
  55. 55.
    Lewis, S. B., Finnie, J. W., Blumbergs, P. C., et al. (1996). A head impact model of early axonal injury in the sheep. Journal of Neurotrauma, 13(9), 505–514.PubMedGoogle Scholar
  56. 56.
    Voigt, G. E., Lowenhielm, C. G., & Ljung, C. B. (1977). Rotational cerebral injuries near the superior margin of the brain. Acta Neuropathologica, 39(3), 201–209.PubMedGoogle Scholar
  57. 57.
    Gaetz, M. (2004). The neurophysiology of brain injury. Clinical Neurophysiology, 115(1), 4–18.PubMedGoogle Scholar
  58. 58.
    Cecil, K. M., Hills, E. C., Sandel, M. E., et al. (1998). Proton magnetic resonance spectroscopy for detection of axonal injury in the splenium of the corpus callosum of brain-injured patients. Journal of Neurosurgery, 88(5), 795–801.PubMedGoogle Scholar
  59. 59.
    Hashimoto, T., Nakamura, N., Richard, K. E., & Frowein, R. A. (1993). Primary brain stem lesions caused by closed head injuries. Neurosurgical Review, 16(4), 291–298.PubMedGoogle Scholar
  60. 60.
    Kilbourne, M., Kuehn, R., Tosun, C., et al. (2009). Novel model of frontal impact closed head injury in the rat. Journal of Neurotrauma, 26(12), 2233–2243.PubMedGoogle Scholar
  61. 61.
    Ray, C. L., Mirsky, A. F., & Pragay, E. B. (1982). Functional analysis of attention-related unit activity in the reticular formation of the monkey. Experimental Neurology, 77, 544–562.PubMedGoogle Scholar
  62. 62.
    Pragay, E. B., Mirsky, A. F., & Nakamura, R. K. (1987). Attention-related unit activity in the frontal association cortex during a go/no-go visual discrimination task. Experimental Neurology, 96(3), 481–500.PubMedGoogle Scholar
  63. 63.
    Goodman, S. J. (1968). Visuo-motor reaction times and brain stem multiple-unit activity. Experimental Neurology, 22, 367–378.PubMedGoogle Scholar
  64. 64.
    Yerkes, R., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit formation. Journal of Comparative Neurology and Psychology, 18, 459–482.Google Scholar
  65. 65.
    von Cramon, D. (1978). Consciousness and disturbances of consciousness. Journal of Neurology, 219(1), 1–13.Google Scholar
  66. 66.
    Lindsley, D. B., Bowden, J. W., & Magoun, H. W. (1949). Effect upon the EEG of acute injury to the brain stem activating system. Electroencephalography and Clinical Neurophysiology, I, 475–486.Google Scholar
  67. 67.
    Lindsley, D. B. (1952). Psychological phenomena and the electroencephalogram. Electroencephalography and Clinical Neurophysiology, 4, 443–456.PubMedGoogle Scholar
  68. 68.
    Lindsley, D. B. (1960). Attention, consciousness, sleep and wakefulness. In J. Field, H. W. Magoun, & V. C. Hall (Eds.), Handbook of physiology (Vol. III, pp. 1553–1593). Washington, DC: American Physiological Society.Google Scholar
  69. 69.
    Lindsley, D. B. (1970). The role of nonspecific reticulo-thalamo-cortical systems in emotion. In P. Black (Ed.), Physiological correlates of emotion. New York, NY: Academic Press.Google Scholar
  70. 70.
    Mirsky, A. F., Tecce, J. J., Harman, N., & Oshima, H. (1975). EEG correlates of impaired attention performance under secobarbital and chlorpromazine in the monkey. Psychopharmacologia, 41(1), 35–41.PubMedGoogle Scholar
  71. 71.
    Watson, R. T., Heilman, K. M., Miller, B. D., & King, F. A. (1974). Neglect after mesencephalic reticular formation lesions. Neurology, 24(3), 294–298.PubMedGoogle Scholar
  72. 72.
    Greeley, H. P., Hagamen, S. J., Hagamen, W. D., & Reeves, A. G. (1975). Bilateral sensory neglect following midsagittal reticular formation lesions in cats. Brain, Behavior and Evolution, 12(1–2), 57–74.PubMedGoogle Scholar
  73. 73.
    Zikopoulos, B., & Barbas, H. (2007). Circuits formultisensory integration and attentional modulation through the prefrontal cortex and the thalamic reticular nucleus in primates. Reviews in the Neurosciences, 18(6), 417–438.PubMedGoogle Scholar
  74. 74.
    Zikopoulos, B., & Barbas, H. (2006). Prefrontal projections to the thalamic reticular nucleus form a unique circuit for attentional mechanisms. Journal of Neuroscience, 26(28), 7348–7361.PubMedGoogle Scholar
  75. 75.
    McAlonan, K., Cavanaugh, J., & Wurtz, R. H. (2006). Attentional modulation of thalamic reticular neurons. Journal of Neuroscience, 26(16), 4444–4450.PubMedGoogle Scholar
  76. 76.
    Heilman, K., & Valenstein, E. (2003). Clinical neuropsychology (4th ed.). New York, NY: Oxford University Press.Google Scholar
  77. 77.
    Vinogradova, O. S., Kitchigina, V. F., & Zenchenko, C. I. (1998). Pacemaker neurons of the forebrain medical septal area and theta rhythm of the hippocampus. Membrane & Cell Biology, 11(6), 715–725.Google Scholar
  78. 78.
    Guillery, R. W., Feig, S. L., & Lozsadi, D. A. (1998). Paying attention to the thalamic reticular nucleus. Trends in Neurosciences, 21(1), 28–32.PubMedGoogle Scholar
  79. 79.
    Paus, T. (2000). Functional anatomy of arousal and attention systems in the human brain. Progress in Brain Research, 126, 65–77.PubMedGoogle Scholar
  80. 80.
    Sherman, S. M. (2001). Thalamic relay functions. Progress in Brain Research, 134, 51–69.PubMedGoogle Scholar
  81. 81.
    Jones, E. (2007). The thalamus. New York, NY: Cambridge University Press.Google Scholar
  82. 82.
    Jones, E. G. (2002). Thalamic organization and function after Cajal. Progress in Brain Research, 136, 333–357.PubMedGoogle Scholar
  83. 83.
    Henderson, J. M., Carpenter, K., Cartwright, H., & Halliday, G. M. (2000). Loss of thalamic intralaminar nuclei in progressive supranuclear palsy and Parkinson’s disease: Clinical and therapeutic implications. Brain, 123(Pt 7), 1410–1421.PubMedGoogle Scholar
  84. 84.
    Mesulam, M. A. (1981). A cortical network for directed attention and unilateral neglect. Archives of Neurology, 10, 304–325.Google Scholar
  85. 85.
    Berry, D. J., Ohara, P. T., Jeffery, G., & Lieberman, A. R. (1986). Are there connections between the thalamic reticular nucleus and the brainstem reticular formation? The Journal of Comparative Neurology, 243(3), 347–362.PubMedGoogle Scholar
  86. 86.
    Bogen, J. E. (1995). On the neurophysiology of consciousness: I. An overview. Consciousness and Cognition, 4(1), 52–62.PubMedGoogle Scholar
  87. 87.
    Crick, F. (1984). Function of the thalamic reticular complex: The searchlight hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 81(14), 4586–4590.PubMedGoogle Scholar
  88. 88.
    Yu, X. J., Xu, X. X., He, S., & He, J. (2009). Change detection by thalamic reticular neurons. Nature Neuroscience, 12(9), 1165–1170.PubMedGoogle Scholar
  89. 89.
    Weese, G. D., Phillips, J. M., & Brown, V. J. (1999). Attentional orienting is impaired by unilateral lesions of the thalamic reticular nucleus in the rat. Journal of Neuroscience, 19(22), 10135–10139.PubMedGoogle Scholar
  90. 90.
    Sturm, W., de Simone, A., Krause, B. J., et al. (1999). Functional anatomy of intrinsic alertness: Evidence for a fronto-parietal-thalamic-brainstem network in the right hemisphere. Neuropsychologia, 37(7), 797–805.PubMedGoogle Scholar
  91. 91.
    Stehberg, J., Acuna-Goycolea, C., Ceric, F., & Torrealba, F. (2001). The visceral sector of the thalamic reticular nucleus in the rat. Neuroscience, 106(4), 745–755.PubMedGoogle Scholar
  92. 92.
    Min, B. K. (2010). A thalamic reticular networking model of consciousness. Theoretical Biology & Medical Modelling, 7, 10.Google Scholar
  93. 93.
    McAlonan, K., Cavanaugh, J., & Wurtz, R. H. (2008). Guarding the gateway to cortex with attention in visual thalamus. Nature, 456(7220), 391–394.PubMedGoogle Scholar
  94. 94.
    McAlonan, K., Brown, V. J., & Bowman, E. M. (2000). Thalamic reticular nucleus activation reflects attentional gating during classical conditioning. Journal of Neuroscience, 20(23), 8897–8901.PubMedGoogle Scholar
  95. 95.
    McAlonan, K., & Brown, V. J. (2002). The thalamic reticular nucleus: More than a sensory nucleus? The Neuroscientist, 8(4), 302–305.PubMedGoogle Scholar
  96. 96.
    Yu, X. J., Xu, X. X., Chen, X., He, S., & He, J. (2009). Slow recovery from excitation of thalamic reticular nucleus neurons. Journal of Neurophysiology, 101(2), 980–987.PubMedGoogle Scholar
  97. 97.
    Montero, V. M. (2000). Attentional activation of the visual thalamic reticular nucleus depends on ‘top-down’ inputs from the primary visual cortex via corticogeniculate pathways. Brain Research, 864(1), 95–104.PubMedGoogle Scholar
  98. 98.
    Floran, B., Floran, L., Erlij, D., & Aceves, J. (2004). Activation of dopamine D4 receptors modulates [3H]GABA release in slices of the rat thalamic reticular nucleus. Neuropharmacology, 46(4), 497–503.PubMedGoogle Scholar
  99. 99.
    Govindaiah, G., Wang, T., Gillette, M. U., Crandall, S. R., & Cox, C. L. (2010). Regulation of inhibitory synapses by presynaptic D dopamine receptors in thalamus. Journal of Neurophysiology, 104(5), 2757–2765.PubMedGoogle Scholar
  100. 100.
    Tucker, D. M., Brown, M., Luu, P., & Holmes, M. D. (2007). Discharges in ventromedial frontal cortex during absence spells. Epilepsy & Behavior, 11(4), 546–557.Google Scholar
  101. 101.
    Ligam, P., Haynes, R. L., Folkerth, R. D., et al. (2009). Thalamic damage in periventricular leukomalacia: Novel pathologic observations relevant to cognitive deficits in survivors of prematurity. Pediatric Research, 65(5), 524–529.PubMedGoogle Scholar
  102. 102.
    Watson, R. T., Valenstein, E., & Heilman, K. M. (1981). Thalamic neglect. Possible role of the medial thalamus and nucleus reticularis in behavior. Archives of Neurology, 38(8), 501–506.PubMedGoogle Scholar
  103. 103.
    Barrett, A. M., Schwartz, R. L., Crucian, G. P., Kim, M., & Heilman, K. M. (2000). Attentional grasp in far extrapersonal space after thalamic infarction. Neuropsychologia, 38(6), 778–784.PubMedGoogle Scholar
  104. 104.
    Hillis, A. E., Mordkoff, J. T., & Caramazza, A. (1999). Mechanisms of spatial attention revealed by hemispatial neglect. Cortex; A Journal Devoted to the Study of the Nervous System and Behavior, 35(3), 433–442.PubMedGoogle Scholar
  105. 105.
    Graveleau, P., Viader, F., & Cambier, J. (1986). Subcortical neglect. Italian Journal of Neurological Sciences, 7(6), 573–580.PubMedGoogle Scholar
  106. 106.
    Waxman, S. G., Ricaurte, G. A., & Tucker, S. B. (1986). Thalamic hemorrhage with neglect and memory disorder. Journal of the Neurological Sciences, 75(1), 105–112.PubMedGoogle Scholar
  107. 107.
    Chalupa, L. M. (1977). A review of cat and monkey studies implicating the pulvinar in visual function. Behavioral Biology, 20(2), 149–167.PubMedGoogle Scholar
  108. 108.
    Chalupa, L. M., Coyle, R. S., & Lindsley, D. B. (1976). Effect of pulvinar lesions on visual pattern discrimination in monkeys. Journal of Neurophysiology, 39(2), 354–369.PubMedGoogle Scholar
  109. 109.
    Perryman, K. M., Lindsley, D. F., & Lindsley, D. B. (1980). Pulvinar neuron responses to spontaneous and trained eye movements and to light flashes in squirrel monkeys. Electroencephalography and Clinical Neurophysiology, 49(1–2), 152–161.PubMedGoogle Scholar
  110. 110.
    Marczynski, T. J., Wei, J. Y., Burns, L. L., Choi, S. Y., Chen, E., & Marczynski, G. T. (1982). Visual attention and neuronal firing patterns in the feline pulvinar nucleus of thalamus. Brain Research Bulletin, 8(6), 565–580.PubMedGoogle Scholar
  111. 111.
    Wilke, M., Turchi, J., Smith, K., Mishkin, M., & Leopold, D. A. (2010). Pulvinar inactivation disrupts selection of movement plans. Journal of Neuroscience, 30(25), 8650–8659.PubMedGoogle Scholar
  112. 112.
    Petersen, S. E., Robinson, D. L., & Keys, W. (1985). Pulvinar nuclei of the behaving rhesus monkey: Visual responses and their modulation. Journal of Neurophysiology, 54(4), 867–886.PubMedGoogle Scholar
  113. 113.
    LaBerge, D., & Buchsbaum, M. S. (1990). Positron emission tomographic measurements of pulvinar activity during an attention task. Journal of Neuroscience, 10(2), 613–619.PubMedGoogle Scholar
  114. 114.
    Benevento, L. A., & Port, J. D. (1995). Single neurons with both form/color differential responses and saccade-related responses in the nonretinotopic pulvinar of the behaving macaque monkey. Visual Neuroscience, 12(3), 523–544.PubMedGoogle Scholar
  115. 115.
    Brunia, C. H. (1999). Neural aspects of anticipatory behavior. Acta Psychologica, 101(2–3), 213–242.PubMedGoogle Scholar
  116. 116.
    Robinson, D. L., & Petersen, S. E. (1992). The pulvinar and visual salience. Trends in Neurosciences, 15(4), 127–132.PubMedGoogle Scholar
  117. 117.
    Michael, G. A., Boucart, M., Degreef, J. F., & Godefroy, O. (2001). The thalamus interrupts top-down attentional control for permitting exploratory shiftings to sensory signals. Neuroreport, 12(9), 2041–2048.PubMedGoogle Scholar
  118. 118.
    Saalmann, Y. B., & Kastner, S. (2009). Gain control in the visual thalamus during perception and cognition. Current Opinion in Neurobiology, 19(4), 408–414.PubMedGoogle Scholar
  119. 119.
    Salzmann, E. (1995). Attention and memory trials during neuronal recording from the primate pulvinar and posterior parietal cortex (area PG). Behavioural Brain Research, 67(2), 241–253.PubMedGoogle Scholar
  120. 120.
    Rotshtein, P., Soto, D., Grecucci, A., Geng, J. J., & Humphreys, G. W. (2011). The role of the pulvinar in resolving competition between memory and visual selection: A functional connectivity study. Neuropsychologia, 49(6), 1544–1552.PubMedGoogle Scholar
  121. 121.
    Snow, J. C., Allen, H. A., Rafal, R. D., & Humphreys, G. W. (2009). Impaired attentional selection following lesions to human pulvinar: Evidence for homology between human and monkey. Proceedings of the National Academy of Sciences of the United States of America, 106(10), 4054–4059.PubMedGoogle Scholar
  122. 122.
    Singh-Curry, V., Malhotra, P., Farmer, S. F., & Husain, M. (2011). Attention deficits following ADEM ameliorated by guanfacine. Journal of Neurology, Neurosurgery, and Psychiatry, 82(6), 688–690.PubMedGoogle Scholar
  123. 123.
    Arend, I., Machado, L., Ward, R., McGrath, M., Ro, T., & Rafal, R. D. (2008). The role of the human pulvinar in visual attention and action: Evidence from temporal-order judgment, saccade decision, and antisaccade tasks. Progress in Brain Research, 171, 475–483.PubMedGoogle Scholar
  124. 124.
    Little, D. M., Kraus, M. F., Joseph, J., et al. (2010). Thalamic integrity underlies executive dysfunction in traumatic brain injury. Neurology, 74(7), 558–564.PubMedGoogle Scholar
  125. 125.
    Cronenwett, W. J., & Csernansky, J. (2010). Thalamic pathology in schizophrenia. Current Topics in Behavioral Neurosciences, 4, 509–528.PubMedGoogle Scholar
  126. 126.
    Carota, A., Pizzolato, G. P., Gailloud, P., et al. (1996). A panencephalopathic type of Creutzfeldt-Jakob disease with selective lesions of the thalamic nuclei in 2 Swiss patients. Clinical Neuropathology, 15(3), 125–134.PubMedGoogle Scholar
  127. 127.
    Kuljis, R. O. (1994). Lesions in the pulvinar in patients with Alzheimer’s disease. Journal of Neuropathology and Experimental Neurology, 53(2), 202–211.PubMedGoogle Scholar
  128. 128.
    Yagishita, T., Kojima, S., Arai, K., Hirayama, K., Akai, J., & Takemura, K. (1987). [Dementia and disturbance of consciousness in thalamic degeneration]. No to Shinkei = Brain and Nerve, 39(1), 79–85.PubMedGoogle Scholar
  129. 129.
    Kerr, K. M., Agster, K. L., Furtak, S. C., & Burwell, R. D. (2007). Functional neuroanatomy of the parahippocampal region: the lateral and medial entorhinal areas. Hippocampus, 17(9), 697–708.PubMedGoogle Scholar
  130. 130.
    Stenset, V., Grambaite, R., Reinvang, I., et al. (2007). Diaschisis after thalamic stroke: A comparison of metabolic and structural changes in a patient with amnesic syndrome. Acta Neurologica Scandinavica, 187, 68–71.PubMedGoogle Scholar
  131. 131.
    Lado, F. A. (2006). Chronic bilateral stimulation of the anterior thalamus of kainate-treated rats increases seizure frequency. Epilepsia, 47(1), 27–32.PubMedGoogle Scholar
  132. 132.
    Saunders, R. C., Mishkin, M., & Aggleton, J. P. (2005). Projections from the entorhinal cortex, perirhinal cortex, presubiculum, and parasubiculum to the medial thalamus in macaque monkeys: Identifying different pathways using disconnection techniques. Experimental Brain Research. Experimentelle Hirnforschung. Expérimentation Cérébrale, 167(1), 1–16.PubMedGoogle Scholar
  133. 133.
    Perren, F., Clarke, S., & Bogousslavsky, J. (2005). The syndrome of combined polar and paramedian thalamic infarction. Archives of Neurology, 62(8), 1212–1216.PubMedGoogle Scholar
  134. 134.
    Linek, V., Sonka, K., & Bauer, J. (2005). Dysexecutive syndrome following anterior thalamic ischemia in the dominant hemisphere. Journal of the Neurological Sciences, 229–230, 117–120.PubMedGoogle Scholar
  135. 135.
    Chudasama, Y., & Muir, J. L. (2001). Visual attention in the rat: A role for the prelimbic cortex and thalamic nuclei? Behavioral Neuroscience, 115(2), 417–428.PubMedGoogle Scholar
  136. 136.
    Gaffan, E. A., Bannerman, D. M., Warburton, E. C., & Aggleton, J. P. (2001). Rats’ processing of visual scenes: Effects of lesions to fornix, anterior thalamus, mamillary nuclei or the retrohippocampal region. Behavioural Brain Research, 121(1–2), 103–117.PubMedGoogle Scholar
  137. 137.
    Baleydier, C., & Mauguiere, F. (1980). The duality of the cingulate gyrus in monkey. Neuroanatomical study and functional hypothesis. Brain, 103(3), 525–554.PubMedGoogle Scholar
  138. 138.
    Alexander, G. E., Crutcher, M. D., & DeLong, M. R. (1990). Basal ganglia-thalamocortical circuits: Parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Progress in Brain Research, 85, 119–146.PubMedGoogle Scholar
  139. 139.
    DeLong, M. R., Alexander, G. E., Mitchell, S. J., & Richardson, R. T. (1986). The contribution of basal ganglia to limb control. Progress in Brain Research, 64, 161–174.PubMedGoogle Scholar
  140. 140.
    Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–381.PubMedGoogle Scholar
  141. 141.
    Mega, M. S., & Cummings, J. L. (1994, Fall). Frontal-subcortical circuits and neuropsychiatric disorders. The Journal of Neuropsychiatry and Clinical Neurosciences, 6(4):358–370.Google Scholar
  142. 142.
    Cummings, J. L. (1993). Frontal-subcortical circuits and human behavior. Archives of Neurology, 50(8), 873–880.PubMedGoogle Scholar
  143. 143.
    Chen, H., Zhuang, P., Zhang, Y. Q., Li, J. Y., & Li, Y. J. (2009). Neuronal firing in the globus pallidus internus and the ventrolateral thalamus related to parkinsonian motor symptoms. Chinese Medical Journal, 122(19), 2308–2314.PubMedGoogle Scholar
  144. 144.
    Chatterjee, A., Yapundich, R., Mennemeier, M., et al. (1997). Thalamic thought disorder: On being “a bit addled”. Cortex; A Journal Devoted to the Study of the Nervous System and Behavior, 33(3), 419–440.PubMedGoogle Scholar
  145. 145.
    Chakravarthy, V. S., Joseph, D., & Bapi, R. S. (2010). What do the basal ganglia do? A modeling perspective. Biological Cybernetics, 103(3), 237–253.PubMedGoogle Scholar
  146. 146.
    Nieto, A., Mexicano, G., Cappello, S., Contreras, C. M., & Nieto, D. (1989). Projections of the nucleus accumbens in the cat. The Japanese Journal of Psychiatry and Neurology, 43(1), 105–112.PubMedGoogle Scholar
  147. 147.
    Cameron, I. G., Watanabe, M., Pari, G., & Munoz, D. P. (2010). Executive impairment in Parkinson’s disease: Response automaticity and task switching. Neuropsychologia, 48(7), 1948–1957.PubMedGoogle Scholar
  148. 148.
    Stocco, A., Lebiere, C., & Anderson, J. R. (2010). Conditional routing of information to the cortex: A model of the basal ganglia’s role in cognitive coordination. Psychological Review, 117(2), 541–574.PubMedGoogle Scholar
  149. 149.
    Dubois, B., & Pillon, B. (1997). Cognitive deficits in Parkinson’s disease. Journal of Neurology, 244(1), 2–8.PubMedGoogle Scholar
  150. 150.
    Valenstein, E., & Heilman, K. M. (1981). Unilateral hypokinesia and motor extinction. Neurology, 31(4), 445–448.PubMedGoogle Scholar
  151. 151.
    Lim, J. K., & Yap, K. B. (1999). Bilateral caudate infarct—A case report. Annals of the Academy of Medicine, Singapore, 28(4), 569–571.PubMedGoogle Scholar
  152. 152.
    Maeshima, S., Truman, G., Smith, D. S., et al. (1997). Is unilateral spatial neglect a single phenomenon? A comparative study between exploratory-motor and visual-counting tests. Journal of Neurology, 244(7), 412–417.PubMedGoogle Scholar
  153. 153.
    Annett, L. E., Rogers, D. C., Hernandez, T. D., & Dunnett, S. B. (1992). Behavioural analysis of unilateral monoamine depletion in the marmoset. Brain, 115(Pt 3), 825–856.PubMedGoogle Scholar
  154. 154.
    Caplan, L. R., Schmahmann, J. D., Kase, C. S., et al. (1990). Caudate infarcts. Archives of Neurology, 47(2), 133–143.PubMedGoogle Scholar
  155. 155.
    Bogousslavsky, J., Miklossy, J., Regli, F., Deruaz, J. P., Assal, G., & Delaloye, B. (1988). Subcortical neglect: Neuropsychological, SPECT, and neuropathological correlations with anterior choroidal artery territory infarction. Annals of Neurology, 23(5), 448–452.PubMedGoogle Scholar
  156. 156.
    Buklina, S. B. (2010). [The unilateral space neglect in patients with arteriovenous malformations of the deep brain structures]. Zhurnal Nevrologii i Psikhiatrii Imeni S.S., 101(9), 10–15.Google Scholar
  157. 157.
    Viader, F., Cambier, J., & Pariser, P. (1982). [Left motor extinction due to an ischemic lesion of the anterior limb of the internal capsule (author’s transl)]. Revue Neurologique, 138(3), 213–217.PubMedGoogle Scholar
  158. 158.
    Karnath, H. O., Rorden, C., & Ticini, L. F. (2009). Damage to white matter fiber tracts in acute spatial neglect. Cerebral Cortex (New York, N.Y.: 1991), 19(10), 2331–2337.Google Scholar
  159. 159.
    Karnath, H. O., Himmelbach, M., & Rorden, C. (2002). The subcortical anatomy of human spatial neglect: Putamen, caudate nucleus and pulvinar. Brain, 125(Pt 2), 350–360.PubMedGoogle Scholar
  160. 160.
    Kumral, E., Evyapan, D., & Balkir, K. (1999). Acute caudate vascular lesions. Stroke; A Journal of Cerebral Circulation, 30(1), 100–108.PubMedGoogle Scholar
  161. 161.
    Karnath, H. O., Fruhmann Berger, M., Kuker, W., & Rorden, C. (2004). The anatomy of spatial neglect based on voxelwise statistical analysis: A study of 140 patients. Cerebral Cortex (New York, N.Y.: 1991), 14(10), 1164–1172.Google Scholar
  162. 162.
    Ferro, J. M. (2001). Hyperacute cognitive stroke syndromes. Journal of Neurology, 248(10), 841–849.PubMedGoogle Scholar
  163. 163.
    Ho, A. K., Manly, T., Nestor, P. J., et al. (2003). A case of unilateral neglect in Huntington’s disease. Neurocase, 9(3), 261–273.PubMedGoogle Scholar
  164. 164.
    Northcutt, R. G. (2001). Changing views of brain evolution. Brain Research Bulletin, 55(6), 663–674.PubMedGoogle Scholar
  165. 165.
    Christakou, A., Robbins, T. W., & Everitt, B. J. (2005). Prolonged neglect following unilateral disruption of a prefrontal cortical-dorsal striatal system. European Journal of Neuroscience, 21(3), 782–792.PubMedGoogle Scholar
  166. 166.
    Apicella, P., Legallet, E., Nieoullon, A., & Trouche, E. (1991). Neglect of contralateral visual stimuli in monkeys with unilateral striatal dopamine depletion. Behavioural Brain Research, 46(2), 187–195.PubMedGoogle Scholar
  167. 167.
    Kappers, C. U. (1936). The endocranial casts of the Ehringsdorf and Homo soloensis skulls. Journal of Anatomy, 71(Pt 1), 61–76.PubMedGoogle Scholar
  168. 168.
    Engdahl, B., Leuthold, A. C., Tan, H. R., et al. (2010). Post-traumatic stress disorder: A right temporal lobe syndrome? Journal of Neural Engineering, 7(6), 066005.PubMedGoogle Scholar
  169. 169.
    Fimm, B., Zahn, R., Mull, M., et al. (2001). Asymmetries of visual attention after circumscribed subcortical vascular lesions. Journal of Neurology, Neurosurgery, and Psychiatry, 71(5), 652–657.PubMedGoogle Scholar
  170. 170.
    Chung, C. S., Caplan, L. R., Yamamoto, Y., et al. (2000). Striatocapsular haemorrhage. Brain, 123(Pt 9), 1850–1862.PubMedGoogle Scholar
  171. 171.
    Volkow, N. D., Fowler, J. S., Wang, G., Ding, Y., & Gatley, S. J. (2002). Mechanism of action of methylphenidate: Insights from PET imaging studies. Journal of Attention Disorders, 6(Suppl 1), S31–S43.PubMedGoogle Scholar
  172. 172.
    Castellanos, F. X., Giedd, J. N., Berquin, P. C., et al. (2001). Quantitative brain magnetic resonance imaging in girls with attention-deficit/hyperactivity disorder. Archives of General Psychiatry, 58(3), 289–295.PubMedGoogle Scholar
  173. 173.
    Castellanos, F. X. (1997). Toward a pathophysiology of attention-deficit/hyperactivity disorder. Clinical Pediatrics, 36(7), 381–393.PubMedGoogle Scholar
  174. 174.
    Gloor, G. J., Jackson, G., Blas, F. J., Del Rio, E. M., & de Miguel, E. (2004). An accurate density functional theory for the vapor–liquid interface of associating chain molecules based on the statistical associating fluid theory for potentials of variable range. Journal of Chemical Physics, 121(24), 12740–12759.PubMedGoogle Scholar
  175. 175.
    Hofer, S., Gloor, S., Muller, U., Mathis, A., Hegglin, D., & Deplazes, P. (2000). High prevalence of Echinococcus multilocularis in urban red foxes (Vulpes vulpes) and voles (Arvicola terrestris) in the city of Zurich, Switzerland. Parasitology, 120(Pt 2), 135–142.PubMedGoogle Scholar
  176. 176.
    Fluhr, J. W., & Gloor, M. (1997). The antimicrobial effect of narrow-band UVB (313 nm) and UVA1 (345–440 nm) radiation in vitro. Photodermatology, Photoimmunology and Photomedicine, 13(5–6), 197–201.PubMedGoogle Scholar
  177. 177.
    Gloor, P., Kim, M., McNiff, J. M., & Wolfley, D. (1997). Discoid lupus erythematosus presenting as asymmetric posterior blepharitis. American Journal of Ophthalmology, 124(5), 707–709.PubMedGoogle Scholar
  178. 178.
    Gloor, S. M., Weber, A., Adachi, N., & Frei, K. (1997). Interleukin-1 modulates protein tyrosine phosphatase activity and permeability of brain endothelial cells. Biochemical and Biophysical Research Communications, 239(3), 804–809.PubMedGoogle Scholar
  179. 179.
    Robbins, T. W., James, M., Owen, A. M., et al. (1994). Cognitive deficits in progressive supranuclear palsy, Parkinson’s disease, and multiple system atrophy in tests sensitive to frontal lobe dysfunction. Journal of Neurology, Neurosurgery, and Psychiatry, 57(1), 79–88.PubMedGoogle Scholar
  180. 180.
    Eccles, J., Ito, M., & Szentágothai, J. (1967). The cerebellum as a neuronal machine. New York, NY: Springer.Google Scholar
  181. 181.
    Wolf, U., Rapoport, M. J., & Schweizer, T. A. (Summer 2009). Evaluating the affective component of the cerebellar cognitive affective syndrome. The Journal of Neuropsychiatry and Clinical Neurosciences, 21(3), 245–253.Google Scholar
  182. 182.
    Dray, T., & Gloor, G. B. (1997). Homology requirements for targeting heterologous sequences during P-induced gap repair in Drosophila melanogaster. Genetics, 147(2), 689–699.PubMedGoogle Scholar
  183. 183.
    Todd, K. E., Lewis, M. P., Gloor, B., Kusske, A. M., Ashley, S. W., & Reber, H. A. (1997). Management decisions for unusual periampullary tumors. American Surgeon, 63(10), 927–932.PubMedGoogle Scholar
  184. 184.
    Apps, R., & Garwicz, M. (2005). Anatomical and physiological foundations of cerebellar information processing. Nature Reviews. Neuroscience, 6(4), 297–311.PubMedGoogle Scholar
  185. 185.
    Boyden, E. S., Katoh, A., & Raymond, J. L. (2004). Cerebellum-dependent learning: The role of multiple plasticity mechanisms. Annual Review of Neuroscience, 27, 581–609.PubMedGoogle Scholar
  186. 186.
    Reinhardt, C. A., & Gloor, S. M. (1997). Co-culture blood–brain barrier models and their use for pharmatoxicological screening. Toxicology In Vitro, 11(5), 513–518.PubMedGoogle Scholar
  187. 187.
    Tietjen, D. N., Gloor, J. M., & Husmann, D. A. (1997). Proximal urinary diversion in the management of posterior urethral valves: Is it necessary? Journal of Urology, 158(3 Pt 2), 1008–1010.PubMedGoogle Scholar
  188. 188.
    Spoelstra, J., Schweighofer, N., & Arbib, M. A. (2000). Cerebellar learning of accurate predictive control for fast-reaching movements. Biological Cybernetics, 82(4), 321–333.PubMedGoogle Scholar
  189. 189.
    Wang, Y. T., & Linden, D. J. (2000). Expression of cerebellar long-term depression requires postsynaptic clathrin-mediated endocytosis. Neuron, 25(3), 635–647.PubMedGoogle Scholar
  190. 190.
    Imamizu, H., Miyauchi, S., Tamada, T., et al. (2000). Human cerebellar activity reflecting an acquired internal model of a new tool. Nature, 403(6766), 192–195.PubMedGoogle Scholar
  191. 191.
    Lisberger, S. G. (1994). Neural basis for motor learning in the vestibuloocular reflex of primates. III. Computational and behavioral analysis of the sites of learning. Journal of Neurophysiology, 72(2), 974–998.PubMedGoogle Scholar
  192. 192.
    Welsh, J. P. (1992). Changes in the motor pattern of learned and unlearned responses following cerebellar lesions: A kinematic analysis of the nictitating membrane reflex. Neuroscience, 47(1), 1–19.PubMedGoogle Scholar
  193. 193.
    Lalonde, R., & Botez, M. I. (1990). The cerebellum and learning processes in animals. Brain Research. Brain Research Reviews, 15(3), 325–332.PubMedGoogle Scholar
  194. 194.
    Lisberger, S. G. (1988). The neural basis for learning of simple motor skills. Science (New York, N.Y.), 242(4879), 728–735.Google Scholar
  195. 195.
    Marr, D. (1969). A theory of cerebellar cortex. The Journal of Physiology, 202(2), 437–470.PubMedGoogle Scholar
  196. 196.
    Thompson, R. F., & Steinmetz, J. E. (2009). The role of the cerebellum in classical conditioning of discrete behavioral responses. Neuroscience, 162(3), 732–755.PubMedGoogle Scholar
  197. 197.
    Thompson, R. F., Patterson, M. M., & Teyler, T. J. (1972). The neurophysiology of learning. Annual Review of Psychology, 23, 73–104.PubMedGoogle Scholar
  198. 198.
    Knoblauch, A., Gloor, B. W., Flury, R., Galeazzi, R. L., & Fierz, W. (1997). Disseminated mycobacteriosis with M. kansasii in a case of AIDS without HIV infection. Schweizerische Medizinische Wochenschrift, 127(31–32), 1291–1295.PubMedGoogle Scholar
  199. 199.
    Halverson, H. E., Lee, I., & Freeman, J. H. (2010). Associative plasticity in the medial auditory thalamus and cerebellar interpositus nucleus during eyeblink conditioning. Journal of Neuroscience, 30(26), 8787–8796.PubMedGoogle Scholar
  200. 200.
    Gehring, W., Wenz, J., & Gloor, M. (1997). Influence of topically applied ceramide/phospholipid mixture on the barrier function of intact skin, atopic skin and experimentally induced barrier damage. International Journal of Cosmetic Science, 19(4), 143–156.PubMedGoogle Scholar
  201. 201.
    Todd, K. E., Lewis, M. P., Gloor, B., Lane, J. S., Ashley, S. W., & Reber, H. A. (1997). An ETa/ETb endothelin antagonist ameliorates systemic inflammation in a murine model of acute hemorrhagic pancreatitis. Surgery, 122(2), 443–449; discussion 449–450.PubMedGoogle Scholar
  202. 202.
    Lane, J. S., Todd, K. E., Lewis, M. P., et al. (1997). Interleukin-10 reduces the systemic inflammatory response in a murine model of intestinal ischemia/reperfusion. Surgery, 122(2), 288–294.PubMedGoogle Scholar
  203. 203.
    Gloor, S. M. (1997). Relevance of Na, K-ATPase to local extracellular potassium homeostasis and modulation of synaptic transmission. FEBS Letters, 412(1), 1–4.PubMedGoogle Scholar
  204. 204.
    Goldin, P. R., McRae, K., Ramel, W., & Gross, J. J. (2008). The neural bases of emotion regulation: Reappraisal and suppression of negative emotion. Biological Psychiatry, 63(6), 577–586.PubMedGoogle Scholar
  205. 205.
    Cohen, R. A., & Albers, H. E. (1991). Disruption of human circadian and cognitive regulation following a discrete hypothalamic lesion: A case study. Neurology, 41(5), 726–729.PubMedGoogle Scholar
  206. 206.
    Cohen, R. A., Barnes, H. J., Jenkins, M., & Albers, H. E. (1997). Disruption of short-duration timing associated with damage to the suprachiasmatic region of the hypothalamus. Neurology, 48(6), 1533–1539.PubMedGoogle Scholar
  207. 207.
    Gloor, B., Todd, K. E., & Reber, H. A. (1997). Surgical therapy for pancreatic pseudocysts. Journal of Gastrointestinal Surgery, 1(3), 203–204.PubMedGoogle Scholar
  208. 208.
    Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12(1), 1–47.PubMedGoogle Scholar
  209. 209.
    Kammann, M. T., Bonvin, E., Robert, Y., & Gloor, B. (1997). [Refractory endophthalmitis after bulbus perforation after careless handling of orthodontic headgear]. Klinische Monatsblätter für Augenheilkunde, 210(5), 337–338.PubMedGoogle Scholar
  210. 210.
    Rossi, M., Maiuri, L., Fusco, M. I., et al. (1997). Lactase persistence versus decline in human adults: Multifactorial events are involved in down-regulation after weaning. Gastroenterology, 112(5), 1506–1514.PubMedGoogle Scholar
  211. 211.
    Gloor, B., Todd, K. E., & Reber, H. A. (1997). Diagnostic workup of patients with suspected pancreatic carcinoma: The University of California-Los Angeles approach. Cancer, 79(9), 1780–1786.PubMedGoogle Scholar
  212. 212.
    Pontiggia, L., & Gloor, S. M. (1997). The extracellular domain of the sodium pump beta isoforms determines complex stability with alpha 1. Biochemical and Biophysical Research Communications, 231(3), 755–759.PubMedGoogle Scholar
  213. 213.
    Schmalzing, G., Ruhl, K., & Gloor, S. M. (1997). Isoform-specific interactions of Na, K-ATPase subunits are mediated via extracellular domains and carbohydrates. Proceedings of the National Academy of Sciences of the United States of America, 94(4), 1136–1141.PubMedGoogle Scholar
  214. 214.
    Spanaus, K. S., Nadal, D., Pfister, H. W., et al. (1997). C-X-C and C-C chemokines are expressed in the cerebrospinal fluid in bacterial meningitis and mediate chemotactic activity on peripheral blood-derived polymorphonuclear and mononuclear cells in vitro. Journal of Immunology (Baltimore, Md. : 1950), 158(4), 1956–1964.Google Scholar
  215. 215.
    Kulkarni, B., Bentley, D. E., Elliott, R., et al. (2005). Attention to pain localization and unpleasantness discriminates the functions of the medial and lateral pain systems. European Journal of Neuroscience, 21(11), 3133–3142.PubMedGoogle Scholar
  216. 216.
    Gloor, J. M., Breckle, R. J., Gehrking, W. C., et al. (1997). Fetal renal growth evaluated by prenatal ultrasound examination. Mayo Clinic Proceedings. Mayo Clinic, 72(2), 124–129.PubMedGoogle Scholar
  217. 217.
    Keeler, K. J., & Gloor, G. B. (1997). Efficient gap repair in Drosophila melanogaster requires a maximum of 31 nucleotides of homologous sequence at the searching ends. Molecular and Cellular Biology, 17(2), 627–634.PubMedGoogle Scholar
  218. 218.
    Fankhauser, F., III, Gloor, B., Iliev, M., & Kalman, A. (1997). The use of the G1 and Octosmart programs in detecting temporal changes in the visual field. International Ophthalmology, 21(6), 311–317.PubMedGoogle Scholar
  219. 219.
    Muchant, D. G., Gloor, J. M., & Norling, L. L. (1996). Persistent severe hypertension in an infant with posterior urethral valves. Pediatric Nephrology (Berlin, Germany), 10(6), 764–765.Google Scholar
  220. 220.
    Appel, C., Gloor, S., Schmalzing, G., Schachner, M., & Bernhardt, R. R. (1996). Expression of a Na, K-ATPase beta 3 subunit during development of the zebrafish central nervous system. Journal of Neuroscience Research, 46(5), 551–564.PubMedGoogle Scholar
  221. 221.
    Meli, B., Landau, K., & Gloor, B. P. (1996). [The bane of giant cell arteritis from an ophthalmological viewpoint]. Schweizerische Medizinische Wochenschrift, 126(43), 1821–1828.PubMedGoogle Scholar
  222. 222.
    Koller, T., Sturmer, J., Reme, C., & Gloor, B. (1996). [Risk factors for development of argon laser trabeculoplasty failure producing membrane in the chamber angle]. Der Ophthalmologe, 93(5), 552–557.PubMedGoogle Scholar
  223. 223.
    Sturmer, J., Bernasconi, P., Caubergh, M. J., Frei, C., Yanar, A., & Gloor, B. (1996). [Value of scanning laser ophthalmoscopy and polarimetry compared with perimetry in evaluating glaucomatous changes in the optic papilla and nerve fiber layer]. Der Ophthalmologe, 93(5), 520–526.PubMedGoogle Scholar
  224. 224.
    Gloor, B., & Meier-Gibbons, F. (1996). [Principles of effectiveness control in therapy of glaucoma]. Der Ophthalmologe, 93(5), 510–519.PubMedGoogle Scholar
  225. 225.
    Gloor, J. M., Ogburn, P., & Matsumoto, J. (1996). Prenatally diagnosed ureterocele presenting as fetal bladder outlet obstruction. Journal of Perinatology, 16(4), 285–287.PubMedGoogle Scholar
  226. 226.
    Radonovich, K. J., & Mostofsky, S. H. (2004). Duration judgments in children with ADHD suggest deficient utilization of temporal information rather than general impairment in timing. Child Neuropsychology, 10(3), 162–172.PubMedGoogle Scholar
  227. 227.
    Emond, V., Joyal, C., & Poissant, H. (2009). [Structural and functional neuroanatomy of attention-deficit hyperactivity disorder (ADHD)]. L’Encéphale, 35(2), 107–114.PubMedGoogle Scholar
  228. 228.
    Schneider, M., Retz, W., Coogan, A., Thome, J., & Rosler, M. (2006). Anatomical and functional brain imaging in adult attention-deficit/hyperactivity disorder (ADHD)—A neurological view. European Archives of Psychiatry and Clinical Neuroscience, 256(Suppl 1), i32–i41.PubMedGoogle Scholar
  229. 229.
    Mansour, S. J., Candia, J. M., Gloor, K. K., & Ahn, N. G. (1996). Constitutively active mitogen-activated protein kinase kinase 1 (MAPKK1) and MAPKK2 mediate similar transcriptional and morphological responses. Cell Growth & Differentiation, 7(2), 243–250.Google Scholar
  230. 230.
    Reichlin, S., Baldessarini, R. J., & Martin, J. B. (1978). The hypothalamus. New York, NY: Raven Press.Google Scholar
  231. 231.
    Hess, W. R. (1969). Hypothalamus and thalamus: Experimental documentation. Stuttgart: Georg Thieme.Google Scholar
  232. 232.
    Korner, P. L. (1971). Integrative neural cardiovascular control. Physiological Reviews, 51, 312–367.PubMedGoogle Scholar
  233. 233.
    Olds, J. (1955). Physiological mechanisms of reward. Nebraska symposium on motivation. Lincoln, NE: University of Nebraska Press.Google Scholar
  234. 234.
    Olds, J. (1956). The growth and structure of motives; psychological studies in the theory of action. Glencoe, IL: Free Press.Google Scholar
  235. 235.
    Olds, J. (1958). Effects of hunger and male sex hormone on self-stimulation of the brain. Journal of Comparative and Physiological Psychology, 51, 320–324.PubMedGoogle Scholar
  236. 236.
    Olds, J., & Olds, M. E. (1958). Positive reinforcement produced by stimulating hippothalamus. Science (New York, N.Y.), 127.Google Scholar
  237. 237.
    Olds, J. (1962). Hypothalamic substrates of reward. Physiological Reviews, 42, 554–604.PubMedGoogle Scholar
  238. 238.
    Olds, J., & Olds, M. (1965). Drives, rewards, and the brain. New directions in psychology. New York, NY: Holt, Rhinehart and Winston.Google Scholar
  239. 239.
    Olds, M. E. (1973). Short-term changes in the firing pattern of hypothalamic neurons during Pavlovian conditioning. Brain Research, 58(1), 95–116.PubMedGoogle Scholar
  240. 240.
    Albers, H. E., & Ferris, C. F. (1986). Role of the flank gland in vasopressin induced scent marking behavior in the hamster. Brain Research Bulletin, 17(3), 387–389.PubMedGoogle Scholar
  241. 241.
    Grunewald, A. M., Gloor, M., & Kleesz, P. (1996). Barrier recompensation mechanisms. Current Problems in Dermatology, 25, 206–213.PubMedGoogle Scholar
  242. 242.
    Nauta, W. J. H. (1946). Hypothalamic regulation of sleep in rats: Experimental study. Journal of Neurophysiology, 9, 285–316.PubMedGoogle Scholar
  243. 243.
    Ranson, S. W. (1939). Somnolence caused by hypothalamic lesions in the monkey. Archives of Neurology and Psychiatry, 41, 1–23.Google Scholar
  244. 244.
    Economo, C., & López Ibor, J. (1932). La encefalitis letárgica. Madrid: Espasa-Calpe, S.A.Google Scholar
  245. 245.
    Albers, H. E., Lydic, R., & Moore-Ede, M. C. (1984). Role of the suprachiasmatic nuclei in the circadian timing system of the squirrel monkey. II. Light–dark cycle entrainment. Brain Research, 300(2), 285–293.PubMedGoogle Scholar
  246. 246.
    Cox, V. C., Kakolewski, J. W., & Valenstein, E. S. (1969). Ventromedial hypothalamic lesions and changes in body weight and food consumption in male and female rats. Journal of Comparative and Physiological Psychology, 67(3), 320–326.PubMedGoogle Scholar
  247. 247.
    Thomas, J. B., & Thomas, K. A. (1972). Running-wheel avoidance behavior following septal area lesions in rats. Journal of Comparative and Physiological Psychology, 81(1), 143–148.PubMedGoogle Scholar
  248. 248.
    Young, C. K., Koke, S. J., Kiss, Z. H., & Bland, B. H. (2009). Deep brain stimulation of the posterior hypothalamic nucleus reverses akinesia in bilaterally 6-hydroxydopamine-lesioned rats. Neuroscience, 162(1), 1–4.PubMedGoogle Scholar
  249. 249.
    Gold, F. W., Weingartner, J., Ballenger, J. C., et al. (1979). Effects of I-desamino-8-D-arginine vasopressin on behaviour and cognition in primary affective disorder. Lancet, 2, 992–994.PubMedGoogle Scholar
  250. 250.
    Gold, R. M., & Proulx, D. M. (1972). Bait-shyness acquisition is impaired by VMH lesions that produce obesity. Journal of Comparative and Physiological Psychology, 79(2), 201–209.PubMedGoogle Scholar
  251. 251.
    Grunewald, A. M., Gloor, M., Gehring, W., & Kleesz, P. (1995). Efficacy of barrier creams. Current Problems in Dermatology, 23, 187–197.PubMedGoogle Scholar
  252. 252.
    Sennwald, G., Schmid, U., Segmuller, G., Jungi, F., Hardmeier, T., & Gloor, F. (1983). Epithelioid sarcoma. Annales de Chirurgie de la Main, 2(4), 313–318.PubMedGoogle Scholar
  253. 253.
    Gloor, P. (1955). Electrophysiological studies on the connections of the amygdaloid nucleus in the cat II. The electrophysiological properties of the amygdaloid projection system. Electroencephalography and Clinical Neurophysiology, 7(2), 243–264.PubMedGoogle Scholar
  254. 254.
    Gloor, P. (1955). Electrophysiological studies on the connections of the amygdaloid nucleus in the cat. I. The neuronal organization of the amygdaloid projection system. Electroencephalography and Clinical Neurophysiology, 7(2), 223–242.PubMedGoogle Scholar
  255. 255.
    Cannon, W. B. (1929). Bodily changes in pain, horror, fear and rage (2nd ed.). New York, NY: Appleton.Google Scholar
  256. 256.
    Andy, O. J., Clower, B. R., & Peeler, D. (1981). Limbic hypertension induced by stress and septal stimulation. Stress-locked-in hypertension. Pavlovian Journal of Biological Science, 16(2), 80–89.PubMedGoogle Scholar
  257. 257.
    Dornig, F., Nitzschke, B., Frotscher, M., & Wenzel, J. (1976). [Neuron structure of the rat septum telencephali]. Journal für Hirnforschung, 17(4), 365–385.PubMedGoogle Scholar
  258. 258.
    Andy, O. J., & Stephan, H. (1966). Septal nuclei in primate phylogeny. A quantitative investigation. The Journal of Comparative Neurology, 126(2), 157–170.PubMedGoogle Scholar
  259. 259.
    Andy, O. J., & Stephan, H. (1961). Septal nuclei in the Soricidae (insectivors). Cyto-architectonic study. The Journal of Comparative Neurology, 117, 251–273.PubMedGoogle Scholar
  260. 260.
    Andy, O. J., Chinn, R. M., & Bonn, P. (1957). Seizures from the septal region; behavioral and electrical study in the cat. Transactions of the American Neurological Association, 82nd Meeting:128–129.Google Scholar
  261. 261.
    Browne, B., & Simmons, R. M. (1984). Quantitative studies of the evolution of the thalamus in primates. Journal für Hirnforschung, 25(3), 261–274.PubMedGoogle Scholar
  262. 262.
    Stephan, H., & Andy, O. J. (1977). Quantitative comparison of the amygdala in insectivores and primates. Acta Anatomica, 98(2), 130–153.PubMedGoogle Scholar
  263. 263.
    Weissenberger, A. A., Dell, M. L., Liow, K., et al. (2001). Aggression and psychiatric comorbidity in children with hypothalamic hamartomas and their unaffected siblings. Journal of the American Academy of Child and Adolescent Psychiatry, 40(6), 696–703.PubMedGoogle Scholar
  264. 264.
    Stephan, H., & Andy, O. J. (1964). Quantitative Comparisons of Brain Structures from Insectivores to Primates. American Zoologist, 4, 59–74.PubMedGoogle Scholar
  265. 265.
    Stephan, H., & Andy, O. J. (1962). The septum (a comparative study on its size) in insectivores and primates. Journal für Hirnforschung, 5, 229–244.PubMedGoogle Scholar
  266. 266.
    Perini, G. I. (1986). Emotions and personality in complex partial seizures. Psychotherapy and Psychosomatics, 45(3), 141–148.PubMedGoogle Scholar
  267. 267.
    Devinsky, O., & Bear, D. (1984). Varieties of aggressive behavior in temporal lobe epilepsy. The American Journal of Psychiatry, 141(5), 651–656.PubMedGoogle Scholar
  268. 268.
    Bear, D., Schenk, L., & Benson, H. (1981). Increased autonomic responses to neutral and emotional stimuli in patients with temporal lobe epilepsy. The American Journal of Psychiatry, 138(6), 843–845.PubMedGoogle Scholar
  269. 269.
    Olds, M. E., & Olds, J. (1963). Approach-avoidance analysis of rat diencephalon. The Journal of Comparative Neurology, 120, 259–295.PubMedGoogle Scholar
  270. 270.
    Olds, M. E., & Olds, J. (1962). Approach-escape interactions in rat brain. American Journal of Physiology, 203, 803–810.PubMedGoogle Scholar
  271. 271.
    Olds, J. (1962). Spreading depression and hypothalamic behavior mechanisms. Federation Proceedings, 21, 648–658.PubMedGoogle Scholar
  272. 272.
    Mis, F. W., Norman, J. B., Hurley, J. W., Lohr, A. C., & Moore, J. W. (1974). Electrical brain stimulation as the reinforced CS in Pavlov’s conditioned inhibition paradigm. Physiology & Behavior, 12(4), 689–692.Google Scholar
  273. 273.
    Pragay, E. B., Mirsky, A. F., Fullerton, B. C., Oshima, H., & Arnold, S. W. (1975). Effect of electrical stimulation of the brain on visually controlled (attentive) behavior in Macaca mulatta. Experimental Neurology, 49(1 Pt 1), 203–220.PubMedGoogle Scholar
  274. 274.
    Piazza, P. V., Ferdico, M., Russo, D., Crescimanno, G., Benigno, A., & Amato, G. (1988). Facilitatory effect of ventral tegmental area A10 region on the attack behaviour in the cat: Possible dopaminergic role in selective attention. Experimental Brain Research. Experimentelle Hirnforschung. Expérimentation Cérébrale, 72(1), 109–116.PubMedGoogle Scholar
  275. 275.
    Bogacz, J., & Wilson, E. (1969). Visual evoked potentials at hypothalamic and tegmental areas of the upper brain-stem. Electroencephalography and Clinical Neurophysiology, 26(3), 288–295.PubMedGoogle Scholar
  276. 276.
    Bird, M., & Kornetsky, C. (1990). Dissociation of the attentional and motivational effects of pimozide on the threshold for rewarding brain stimulation. Neuropsychopharmacology, 3(1), 33–40.PubMedGoogle Scholar
  277. 277.
    Fouriezos, G., Bielajew, C., & Pagotto, W. (1990). Task difficulty increases thresholds of rewarding brain stimulation. Behavioural Brain Research, 37(1), 1–7.PubMedGoogle Scholar
  278. 278.
    Duan, Y. F., Winters, R., McCabe, P. M., Green, E. J., Huang, Y., & Schneiderman, N. (1996). Behavioral characteristics of defense and vigilance reactions elicited by electrical stimulation of the hypothalamus in rabbits. Behavioural Brain Research, 81(1–2), 33–41.PubMedGoogle Scholar
  279. 279.
    Fredrikson, M., Wik, G., Fischer, H., & Andersson, J. (1995). Affective and attentive neural networks in humans: A PET study of Pavlovian conditioning. Neuroreport, 7(1), 97–101.PubMedGoogle Scholar
  280. 280.
    Bothe, W., Kvitting, J. P., Stephens, E. H., et al. (2011). Effects of different annuloplasty ring types on mitral leaflet tenting area during acute myocardial ischemia. The Journal of Thoracic and Cardiovascular Surgery, 141(2), 345–353.PubMedGoogle Scholar
  281. 281.
    Feeney, D. M., & Wier, C. S. (1979). Sensory neglect after lesions of substantia nigra or lateral hypothalamus: Differential severity and recovery of function. Brain Research, 178(2–3), 329–346.PubMedGoogle Scholar
  282. 282.
    Wright, J. J., Craggs, M. D., & Sergejew, A. A. (1979). Visual-evoked response in lateral hypothalamic neglect. Experimental Neurology, 65(1), 178–185.PubMedGoogle Scholar
  283. 283.
    Marshall, J. F., Turner, B. H., & Teitelbaum, P. (1971). Sensory neglect produced by lateral hypothalamic damage. Science (New York, N.Y.), 174, 523–525.Google Scholar
  284. 284.
    Veening, J. G. (1992). Brain and behaviour: Morphological and functional aspects of the hypothalamus in the rat. European Journal of Morphology, 30(1), 53–66.PubMedGoogle Scholar
  285. 285.
    Forget, H., Lacroix, A., & Cohen, H. (2002). Persistent cognitive impairment following surgical treatment of Cushing’s syndrome. Psychoneuroendocrinology, 27(3), 367–383.PubMedGoogle Scholar
  286. 286.
    Bothe, W., Kvitting, J. P., Swanson, J. C., Hartnett, S., Ingels, N. B., Jr., & Miller, D. C. (2010). Effects of different annuloplasty rings on anterior mitral leaflet dimensions. The Journal of Thoracic and Cardiovascular Surgery, 139(5), 1114–1122.PubMedGoogle Scholar
  287. 287.
    Ferris, C. F., Pollock, J., Albers, H. E., & Leeman, S. E. (1985). Inhibition of flank-marking behavior in golden hamsters by microinjection of a vasopressin antagonist into the hypothalamus. Neuroscience Letters, 55(2), 239–243.PubMedGoogle Scholar
  288. 288.
    Ferris, C. F., Meenan, D. M., Axelson, J. F., & Albers, H. E. (1986). A vasopressin antagonist can reverse dominant/subordinate behavior in hamsters. Physiology & Behavior, 38(1), 135–138.Google Scholar
  289. 289.
    Ferris, C. F., Axelson, J. F., Shinto, L. H., & Albers, H. E. (1987). Scent marking and the maintenance of dominant/subordinate status in male golden hamsters. Physiology & Behavior, 40(5), 661–664.Google Scholar
  290. 290.
    Ferris, C. F., Albers, H. E., Wesolowski, S. M., Goldman, B. D., & Luman, S. E. (1984). Vasopressin injected into the hypothalamus triggers a stereotypic behavior in golden hamsters. Science (New York, N.Y.), 224(4648), 521–523.Google Scholar
  291. 291.
    Passani, M. B., Bacciottini, L., Mannaioni, P. F., & Blandina, P. (2000). Central histaminergic system and cognition. Neuroscience and Biobehavioral Reviews, 24(1), 107–113.PubMedGoogle Scholar
  292. 292.
    Lin, J. S. (2000). Brain structures and mechanisms involved in the control of cortical activation and wakefulness, with emphasis on the posterior hypothalamus and histaminergic neurons. Sleep Medicine Reviews, 4(5), 471–503.PubMedGoogle Scholar
  293. 293.
    Seed, J. A., Dixon, R. A., McCluskey, S. E., & Young, A. H. (2000). Basal activity of the hypothalamic-pituitary-adrenal axis and cognitive function in anorexia nervosa. European Archives of Psychiatry and Clinical Neuroscience, 250(1), 11–15.PubMedGoogle Scholar
  294. 294.
    Bryant, R. A. (2003). Acute stress reactions: Can biological responses predict posttraumatic stress disorder? CNS Spectrums, 8(9), 668–674.PubMedGoogle Scholar
  295. 295.
    Tsigos, C., & Chrousos, G. P. (2002). Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. Journal of Psychosomatic Research, 53(4), 865–871.PubMedGoogle Scholar
  296. 296.
    LeDoux, J. (1996). Emotional networks and motor control: A fearful view. Progress in Brain Research, 107, 437–446.PubMedGoogle Scholar
  297. 297.
    LeDoux, J. (2003). The emotional brain, fear, and the amygdala. Cellular and Molecular Neurobiology, 23(4–5), 727–738.PubMedGoogle Scholar
  298. 298.
    LeDoux, J. E. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23, 155–184.PubMedGoogle Scholar
  299. 299.
    Aggleton, J. (2000). The amygdala: A functional analysis (2nd ed.). Oxford: Oxford University Press.Google Scholar
  300. 300.
    Nauta, W. J. H., & Haymaker, W. (1969). Hypothalamic nuclei and fiber connections. In W. Haymaker, E. Anderson, & W. J. H. Nauta (Eds.), The hypothalamus (pp. 136–210). Springfield, MO: Charles C. Thomas.Google Scholar
  301. 301.
    Nauta, W. J. H. (1962). Neural associations of the amygdaloid complex in the monkey. Brain, 85, 505–520.PubMedGoogle Scholar
  302. 302.
    Joseph, R. (1999, Spring). Environmental influences on neural plasticity, the limbic system, emotional development and attachment: A review. Child Psychiatry and Human Development, 29(3):189–208.Google Scholar
  303. 303.
    Olds, J., & Milner, P. (1954). Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. Journal of Comparative and Physiological Psychology, 47(6), 419–427.PubMedGoogle Scholar
  304. 304.
    Hu, H., Su, L., Xu, Y. Q., Zhang, H., & Wang, L. W. (2010). Behavioral and [F-18] fluorodeoxyglucose micro positron emission tomography imaging study in a rat chronic mild stress model of depression. Neuroscience, 169(1), 171–181.PubMedGoogle Scholar
  305. 305.
    Contreras, C. M., Molina, M., Saavedra, M., & Martinez-Mota, L. (2000). Lateral septal neuronal firing rate increases during proestrus-estrus in the rat. Physiology & Behavior, 68(3), 279–284.Google Scholar
  306. 306.
    Kishore, K. R., & Desiraju, T. (1990). Inhibition of positively rewarding behavior by the heightened aggressive state evoked either by pain-inducing stimulus or septal lesion. Indian Journal of Physiology and Pharmacology, 34(2), 125–129.PubMedGoogle Scholar
  307. 307.
    Jacques, S. (1979). Brain stimulation and reward: “pleasure centers” after twenty-five years. Neurosurgery, 5(2), 277–283.PubMedGoogle Scholar
  308. 308.
    Massi, L., Elezgarai, I., Puente, N., et al. (2008). Cannabinoid receptors in the bed nucleus of the stria terminalis control cortical excitation of midbrain dopamine cells in vivo. Journal of Neuroscience, 28(42), 10496–10508.PubMedGoogle Scholar
  309. 309.
    Shearman, E., Fallon, S., Sershen, H., & Lajtha, A. (2008). Nicotine-induced monoamine neurotransmitter changes in the brain of young rats. Brain Research Bulletin, 76(6), 626–639.PubMedGoogle Scholar
  310. 310.
    Befort, K., Filliol, D., Ghate, A., et al. (2008). Mu-opioid receptor activation induces transcriptional plasticity in the central extended amygdala. European Journal of Neuroscience, 27(11), 2973–2984.PubMedGoogle Scholar
  311. 311.
    Jonkman, S., & Markou, A. (2006). Blockade of nicotinic acetylcholine or dopamine D1-like receptors in the central nucleus of the amygdala or the bed nucleus of the stria terminalis does not precipitate nicotine withdrawal in nicotine-dependent rats. Neuroscience Letters, 400(1–2), 140–145.PubMedGoogle Scholar
  312. 312.
    Dumont, E. C., Mark, G. P., Mader, S., & Williams, J. T. (2005). Self-administration enhances excitatory synaptic transmission in the bed nucleus of the stria terminalis. Nature Neuroscience, 8(4), 413–414.PubMedGoogle Scholar
  313. 313.
    Liu, J., Yu, B., Orozco-Cabal, L., et al. (2005). Chronic cocaine administration switches corticotropin-releasing factor2 receptor-mediated depression to facilitation of glutamatergic transmission in the lateral septum. Journal of Neuroscience, 25(3), 577–583.PubMedGoogle Scholar
  314. 314.
    Nishijo, H., Kita, T., Tamura, R., Uwano, T., Terasawa, K., & Ono, T. (1997). Septal neuronal responses related to spatial representation in monkeys. Hippocampus, 7(5), 460–464.PubMedGoogle Scholar
  315. 315.
    Andy, O. J., & Stephan, H. (1968). The septum in the human brain. The Journal of Comparative Neurology, 133(3), 383–410.PubMedGoogle Scholar
  316. 316.
    Risold, P. Y., Canteras, N. S., & Swanson, L. W. (1994). Organization of projections from the anterior hypothalamic nucleus: A Phaseolus vulgaris-leucoagglutinin study in the rat. The Journal of Comparative Neurology, 348(1), 1–40.PubMedGoogle Scholar
  317. 317.
    Swanson, L. W., & Cowan, W. M. (1979). The connections of the septal region in the rat. The Journal of Comparative Neurology, 186(4), 621–655.PubMedGoogle Scholar
  318. 318.
    Grossman, S. P. (1976). Behavioral functions of the septum: A re-analysis. In J. F. DeFrance (Ed.), The septal nuclei. New York, NY: Plenum Press.Google Scholar
  319. 319.
    Grossman, S. P. (1977). An experimental ‘dissection’ of the septal syndrome. CIBA Foundation Symposium, 58, 227–273.PubMedGoogle Scholar
  320. 320.
    Moore, R. Y. (1964). Effects of some rhinencephalic lesions on retention of conditioned avoidance behavior in cats. Journal of Comparative and Physiological Psychology, 53, 540–548.Google Scholar
  321. 321.
    Heath, R. G. M., & Mickle, W. A. (1960). Evaluation of seven years’ experience with depth electrode studies in human patients. In E. R. Ramsey & D. S. O’Doherty (Eds.), Electrical studies of the unasthetized brain (pp. 214–242). New York, NY: Hoever.Google Scholar
  322. 322.
    Corman, C. D., Meyer, P. M., & Meyer, D. R. (1967). Open-field activity and exploration in rats with septal and amygdaloid lesions. Brain Research, 5(4), 469–476.PubMedGoogle Scholar
  323. 323.
    Cherry, C. T. (l975). Variability and discrimination reversal learning in the open field following septal lesions in rats. Physiology & Behavior, 15, 641–646.Google Scholar
  324. 324.
    Bonvallet, M. B., & Bobo, E. G. (1972). Changes in phrenic activity and heart rate elicited by localized stimulation of amygdala and adjacent structures. Electroencephalography and Clinical Neurophysiology, 32, 1–16.PubMedGoogle Scholar
  325. 325.
    Delgado, J. M. (1967). Social rank and radio-stimulated aggressiveness in monkeys. The Journal of Nervous and Mental Disease, 144(5), 383–390.PubMedGoogle Scholar
  326. 326.
    Valenstein, E. S., & Valenstein, T. (1964). Interaction of Positive and Negative Reinforcing Neural Systems. Science (New York, N.Y.), 145, 1456–1458.Google Scholar
  327. 327.
    Valenstein, E. S. (1975). Brain stimulation and behavior control. Nebraska Symposium on Motivation, 22, 251–292.PubMedGoogle Scholar
  328. 328.
    Morgan, H. D., Watchus, J. A., Milgram, N. W., & Fleming, A. S. (1999). The long lasting effects of electrical simulation of the medial preoptic area and medial amygdala on maternal behavior in female rats. Behavioural Brain Research, 99(1), 61–73.PubMedGoogle Scholar
  329. 329.
    Fonberg, E., & Delgado, J. M. R. (1961). Avoidance and alimentary reactions during amygdala stimulation. Journal of Neurophysiology, 24, 651–664.PubMedGoogle Scholar
  330. 330.
    Fonberg, E. (1972). Control of emotional behaviour through the hypothalamus and amygdaloid complex. CIBA Foundation Symposium, 8, 131–150.PubMedGoogle Scholar
  331. 331.
    Fonberg, E. (1973). The normalizing effect of lateral amygdalar lesions upon the dorsomedial amygdalar syndrome in dogs. Acta Neurobiologiae Experimentalis, 33, 449.PubMedGoogle Scholar
  332. 332.
    Fonberg, E. (1988). Dominance and aggression. International Journal of Neuroscience, 41(3–4), 201–213.PubMedGoogle Scholar
  333. 333.
    Pribram, K. H., & Bagshaw, M. (1953). Further analysis of the temporal lobe syndrome utilize frontotemporal ablations. The Journal of Comparative Neurology, 99, 347–375.PubMedGoogle Scholar
  334. 334.
    LeDoux, J. E., Thompson, M. E., Iadecola, C., Tucker, L. W., & Reis, D. J. (1983). Local cerebral blood flow increases during auditory and emotional processing in the conscious rat. Science (New York, N.Y.), 221, 576–578.Google Scholar
  335. 335.
    Dong, H. W., & Swanson, L. W. (2006). Projections from bed nuclei of the stria terminalis, anteromedial area: Cerebral hemisphere integration of neuroendocrine, autonomic, and behavioral aspects of energy balance. The Journal of Comparative Neurology, 494(1), 142–178.PubMedGoogle Scholar
  336. 336.
    Li, X., Jones, M., Wang, H. F., et al. (2003). Strain rate acceleration yields a better index for evaluating left ventricular contractile function as compared with tissue velocity acceleration during isovolumic contraction time: An in vivo study. Journal of the American Society of Echocardiography, 16(12), 1211–1216.PubMedGoogle Scholar
  337. 337.
    Heaton, M. B., Paiva, M., Swanson, D. J., & Walker, D. W. (1994). Ethanol neurotoxicity in vitro: Effects of GM1 ganglioside and protein synthesis inhibition. Brain Research, 654(2), 336–342.PubMedGoogle Scholar
  338. 338.
    Ghashghaei, H. T., & Barbas, H. (2002). Pathways for emotion: Interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience, 115(4), 1261–1279.PubMedGoogle Scholar
  339. 339.
    Nakagawa, T., Yamamoto, R., Fujio, M., et al. (2005). Involvement of the bed nucleus of the stria terminalis activated by the central nucleus of the amygdala in the negative affective component of morphine withdrawal in rats. Neuroscience, 134(1), 9–19.PubMedGoogle Scholar
  340. 340.
    Williams, J. M., & Givens, B. (2003). Stimulation-induced reset of hippocampal theta in the freely performing rat. Hippocampus, 13(1), 109–116.PubMedGoogle Scholar
  341. 341.
    Erdtmann-Vourliotis, M., Mayer, P., Ammon, S., Riechert, U., & Hollt, V. (2001). Distribution of G-protein-coupled receptor kinase (GRK) isoforms 2, 3, 5 and 6 mRNA in the rat brain. Brain Research. Molecular Brain Research, 95(1–2), 129–137.PubMedGoogle Scholar
  342. 342.
    Zahm, D. S., Grosu, S., Williams, E. A., Qin, S., & Berod, A. (2001). Neurons of origin of the neurotensinergic plexus enmeshing the ventral tegmental area in rat: Retrograde labeling and in situ hybridization combined. Neuroscience, 104(3), 841–851.PubMedGoogle Scholar
  343. 343.
    Randall-Thompson, J. F., Pescatore, K. A., & Unterwald, E. M. (2010). A role for delta opioid receptors in the central nucleus of the amygdala in anxiety-like behaviors. Psychopharmacology, 212(4), 585–595.PubMedGoogle Scholar
  344. 344.
    Makkar, S. R., Zhang, S. Q., & Cranney, J. (2010). Behavioral and neural analysis of GABA in the acquisition, consolidation, reconsolidation, and extinction of fear memory. Neuropsychopharmacology, 35(8), 1625–1652.PubMedGoogle Scholar
  345. 345.
    Ji, G., Sun, H., Fu, Y., et al. (2010). Cognitive impairment in pain through amygdala-driven prefrontal cortical deactivation. Journal of Neuroscience, 30(15), 5451–5464.PubMedGoogle Scholar
  346. 346.
    Takahashi, H., Takano, H., Kodaka, F., et al. (2010). Contribution of dopamine D1 and D2 receptors to amygdala activity in human. Journal of Neuroscience, 30(8), 3043–3047.PubMedGoogle Scholar
  347. 347.
    Fadok, J. P., Dickerson, T. M., & Palmiter, R. D. (2009). Dopamine is necessary for cue-dependent fear conditioning. Journal of Neuroscience, 29(36), 11089–11097.PubMedGoogle Scholar
  348. 348.
    Furmark, T. (2009). Neurobiological aspects of social anxiety disorder. The Israel Journal of Psychiatry and Related Sciences, 46(1), 5–12.PubMedGoogle Scholar
  349. 349.
    Orsini, C. A., & Maren, S. (2009). Glutamate receptors in the medial geniculate nucleus are necessary for expression and extinction of conditioned fear in rats. Neurobiology of Learning and Memory, 92(4), 581–589.PubMedGoogle Scholar
  350. 350.
    Minami, M. (2009). Neuronal mechanisms for pain-induced aversion behavioral studies using a conditioned place aversion test. International Review of Neurobiology, 85, 135–144.PubMedGoogle Scholar
  351. 351.
    Langton, J. M., & Richardson, R. (2009). The role of context in the re-extinction of learned fear. Neurobiology of Learning and Memory, 92(4), 496–503.PubMedGoogle Scholar
  352. 352.
    So, N., Gloor, P., Quesney, L. F., Jones-Gotman, M., Olivier, A., & Andermann, F. (1989). Depth electrode investigations in patients with bitemporal epileptiform abnormalities. Annals of Neurology, 25, 423–431.PubMedGoogle Scholar
  353. 353.
    Swanson, D. K., & Myerowitz, P. D. (1983). Effect of reperfusion temperature and pressure on the functional and metabolic recovery of preserved hearts. The Journal of Thoracic and Cardiovascular Surgery, 86(2), 242–251.PubMedGoogle Scholar
  354. 354.
    Onat, F. Y., Aker, R. G., Gurbanova, A. A., Ates, N., & van Luijtelaar, G. (2007). The effect of generalized absence seizures on the progression of kindling in the rat. Epilepsia, 48(Suppl 5), 150–156.PubMedGoogle Scholar
  355. 355.
    Anand, B. K., & Dua, S. (1956). Effect of electrical stimulation of the limbic system (visceral brain) on gastric secretion and motility. Indian Journal of Medical Research, 44(1), 125–130.PubMedGoogle Scholar
  356. 356.
    Cohen, R., Kaplan, R. F., Meadows, M. E., & Kwan, E. (1996). Comparison of the orienting response during the intracarotid and posterior cerebral artery amobarbital tests: A case study. Neurocase, 2, 93–98.Google Scholar
  357. 357.
    Sokolov, E. N., & Vinogradova, O. S. (1975). Neuronal mechanisms of the orienting reflex. Hillsdale, NJ: Lawrence Erlbaum (distributed by the Halsted Press Division of Wiley).Google Scholar
  358. 358.
    Pribram, K. (1975). McGuinness d. Arousal, activation, and effort in the control of attention. Psychological Review, 82(2), 116–149.PubMedGoogle Scholar
  359. 359.
    Pribram, K. H., & McGuinness, D. (1992). Attention and para-attentional processing. Event-related brain potentials as tests of a model. Annals of the New York Academy of Sciences, 658, 65–92.PubMedGoogle Scholar
  360. 360.
    Pribram, K. H., Reitz, S., McNeil, M., & Spevack, A. A. (1979). The effect of amygdalectomy on orienting and classical conditioning in monkeys. Pavlovian Journal of Biological Science, 14(4), 203–217.PubMedGoogle Scholar
  361. 361.
    Linden, A. M., Johnson, B. G., Trokovic, N., Korpi, E. R., & Schoepp, D. D. (2009). Use of MGLUR2 and MGLUR3 knockout mice to explore in vivo receptor specificity of the MGLUR2/3 selective antagonist LY341495. Neuropharmacology, 57(2), 172–182.PubMedGoogle Scholar
  362. 362.
    Oshibuchi, H., Inada, K., Sugawara, H., & Ishigooka, J. (2009). Aripiprazole and haloperidol suppress excessive dopamine release in the amygdala in response to conditioned fear stress, but show contrasting effects on basal dopamine release in methamphetamine-sensitized rats. European Journal of Pharmacology, 615(1–3), 83–90.PubMedGoogle Scholar
  363. 363.
    Cohen, R., & Waters, W. (1985). Psychophysiological correlates of levels and states of cognitive processing. Neuropsychologia, 23, 243–256.PubMedGoogle Scholar
  364. 364.
    Kahneman, D., & Beatty, J. (1966). Pupil diameter and load on memory. Science (New York, N.Y.), 154(756), 1583–1585.Google Scholar
  365. 365.
    Jennings, J., & Hall, S. W. (1980). Recall, recognition, and rate: Memory and the heart. Psychophysiology, 17, 37–46.PubMedGoogle Scholar
  366. 366.
    Jennings, J. R., Lawrence, B. E., & Kasper, P. (1978). Changes in alertness and processing capacity in a serial learning task. Memory and Cognition, 6, 45–63.Google Scholar
  367. 367.
    Jennings, J. R. (1986). Bodily changes during attending. In M. G. H. Coles, E. Donchin, & S. W. Porges (Eds.), Psychophysiology: Systems, processes, and applications (pp. 268–289). New York, NY: The Guilford Press.Google Scholar
  368. 368.
    Jennings, J. R. (1986). Memory, thought, and bodily response. In M. G. H. Coles, E. Donchin, & S. W. Porges (Eds.), Psychophysiology: Systems, processes, and applications (pp. 290–308). New York, NY: The Guilford Press.Google Scholar
  369. 369.
    Riccardi, P., Li, R., Ansari, M. S., et al. (2006). Amphetamine-induced displacement of [18F] fallypride in striatum and extrastriatal regions in humans. Neuropsychopharmacology, 31(5), 1016–1026.PubMedGoogle Scholar
  370. 370.
    Pittman, Q. J., & Spencer, S. J. (2005). Neurohypophysial peptides: Gatekeepers in the amygdala. Trends in Endocrinology and Metabolism, 16(8), 343–344.PubMedGoogle Scholar
  371. 371.
    Takahashi, H., Yahata, N., Koeda, M., et al. (2005). Effects of dopaminergic and serotonergic manipulation on emotional processing: A pharmacological fMRI study. NeuroImage, 27(4), 991–1001.PubMedGoogle Scholar
  372. 372.
    Strange, B. A., & Dolan, R. J. (2004). Beta-adrenergic modulation of emotional memory-evoked human amygdala and hippocampal responses. Proceedings of the National Academy of Sciences of the United States of America, 101(31), 11454–11458.PubMedGoogle Scholar
  373. 373.
    Yasuno, F., Suhara, T., Ichimiya, T., Takano, A., Ando, T., & Okubo, Y. (2004). Decreased 5-HT1A receptor binding in amygdala of schizophrenia. Biological Psychiatry, 55(5), 439–444.PubMedGoogle Scholar
  374. 374.
    Morales, M., Wang, S. D., Diaz-Ruiz, O., & Jho, D. H. (2004). Cannabinoid CB1 receptor and serotonin 3 receptor subunit A (5-HT3A) are co-expressed in GABA neurons in the rat telencephalon. The Journal of Comparative Neurology, 468(2), 205–216.PubMedGoogle Scholar
  375. 375.
    Hammack, S. E., Schmid, M. J., LoPresti, M. L., et al. (2003). Corticotropin releasing hormone type 2 receptors in the dorsal raphe nucleus mediate the behavioral consequences of uncontrollable stress. Journal of Neuroscience, 23(3), 1019–1025.PubMedGoogle Scholar
  376. 376.
    Zangrossi, H., Jr., Viana, M. B., Zanoveli, J., Bueno, C., Nogueira, R. L., & Graeff, F. G. (2001). Serotonergic regulation of inhibitory avoidance and one-way escape in the rat elevated T-maze. Neuroscience and Biobehavioral Reviews, 25(7–8), 637–645.PubMedGoogle Scholar
  377. 377.
    Passani, M. B., Cangioli, I., Baldi, E., Bucherelli, C., Mannaioni, P. F., & Blandina, P. (2001). Histamine H3 receptor-mediated impairment of contextual fear conditioning and in-vivo inhibition of cholinergic transmission in the rat basolateral amygdala. 14(9), 1522–1532.Google Scholar
  378. 378.
    Greba, Q., Gifkins, A., & Kokkinidis, L. (2001). Inhibition of amygdaloid dopamine D2 receptors impairs emotional learning measured with fear-potentiated startle. Brain Research, 899(1–2), 218–226.PubMedGoogle Scholar
  379. 379.
    Rammes, G., Steckler, T., Kresse, A., Schutz, G., Zieglgansberger, W., & Lutz, B. (2000). Synaptic plasticity in the basolateral amygdala in transgenic mice expressing dominant-negative cAMP response element-binding protein (CREB) in forebrain. 12(7), 2534–2546.Google Scholar
  380. 380.
    Mash, D. C., & Staley, J. K. (1999). D3 dopamine and kappa opioid receptor alterations in human brain of cocaine-overdose victims. Annals of the New York Academy of Sciences, 877, 507–522.PubMedGoogle Scholar
  381. 381.
    Guarraci, F. A., Frohardt, R. J., & Kapp, B. S. (1999). Amygdaloid D1 dopamine receptor involvement in Pavlovian fear conditioning. Brain Research, 827(1–2), 28–40.PubMedGoogle Scholar
  382. 382.
    Stein, E. A., Pankiewicz, J., Harsch, H. H., et al. (1998). Nicotine-induced limbic cortical activation in the human brain: A functional MRI study. The American Journal of Psychiatry, 155(8), 1009–1015.PubMedGoogle Scholar
  383. 383.
    Cahill, L. (1998). Interactions between catecholamines and the amygdala in emotional memory: Subclinical and clinical evidence. Advances in Pharmacology, 42, 964–967.PubMedGoogle Scholar
  384. 384.
    Rodriguez de Fonseca, F., Carrera, M. R., Navarro, M., Koob, G. F., & Weiss, F. (1997). Activation of corticotropin-releasing factor in the limbic system during cannabinoid withdrawal. Science (New York, N.Y.), 276(5321), 2050–2054.Google Scholar
  385. 385.
    Duxon, M. S., Kennett, G. A., Lightowler, S., Blackburn, T. P., & Fone, K. C. (1997). Activation of 5-HT2B receptors in the medial amygdala causes anxiolysis in the social interaction test in the rat. Neuropharmacology, 36(4–5), 601–608.PubMedGoogle Scholar
  386. 386.
    Maren, S., Aharonov, G., Stote, D. L., & Fanselow, M. S. (1996). N-methyl-D-aspartate receptors in the basolateral amygdala are required for both acquisition and expression of conditional fear in rats. Behavioral Neuroscience, 110(6), 1365–1374.PubMedGoogle Scholar
  387. 387.
    Gonzalez, L. E., Andrews, N., & File, S. E. (1996). 5-HT1A and benzodiazepine receptors in the basolateral amygdala modulate anxiety in the social interaction test, but not in the elevated plus-maze. Brain Research, 732(1–2), 145–153.PubMedGoogle Scholar
  388. 388.
    Maren, S. (1996). Synaptic transmission and plasticity in the amygdala. An emerging physiology of fear conditioning circuits. Molecular Neurobiology, 13(1), 1–22.PubMedGoogle Scholar
  389. 389.
    Roozendaal, B., & Cools, A. R. (1994). Influence of the noradrenergic state of the nucleus accumbens in basolateral amygdala mediated changes in neophobia of rats. Behavioral Neuroscience, 108(6), 1107–1118.PubMedGoogle Scholar
  390. 390.
    Campeau, S., Miserendino, M. J., & Davis, M. (1992). Intra-amygdala infusion of the N-methyl-D-aspartate receptor antagonist AP5 blocks acquisition but not expression of fear-potentiated startle to an auditory conditioned stimulus. Behavioral Neuroscience, 106(3), 569–574.PubMedGoogle Scholar
  391. 391.
    Louilot, A., Taghzouti, K., Simon, H., & Le Moal, M. (1989). Limbic system, basal ganglia, and dopaminergic neurons. Executive and regulatory neurons and their role in the organization of behavior. Brain, behavior and evolution., 33(2–3), 157–161.PubMedGoogle Scholar
  392. 392.
    Zolovick, A. J. (1972). Effects of lesions and electrical stimulation of the amygdala on hypothalamic-hypophyseal regulation. In B. E. Eleftheriou (Ed.), The neurobiology of the amygdala. New York, NY: Plenum.Google Scholar
  393. 393.
    Henke, P. G., Allen, J. D., & Davbison, C. (1972). Effect of lesions in the amygdala on behavioral contrast. Physiology & Behavior, 8, 173–176.Google Scholar
  394. 394.
    White, N. (1971). Perseveration by rats with amygdaloid lesions. Journal of Comparative and Physiological Psychology, 77(3), 416–426.PubMedGoogle Scholar
  395. 395.
    Wada, J. A., & Mizoguchi, T. (1984). Limbic kindling in the forebrain-bisected photosensitive baboon, Papio papio. Epilepsia, 25(3), 278–287.PubMedGoogle Scholar
  396. 396.
    Wada, J. A. (1982). Mechanism of amygdaloid convulsive seizure development. Electroencephalography and Clinical Neurophysiology. Supplement, 36, 233–238.PubMedGoogle Scholar
  397. 397.
    Wada, J. A. (1978). Kindling as a model of epilepsy. Electroencephalography and Clinical Neurophysiology. Supplement, 34, 309–316.PubMedGoogle Scholar
  398. 398.
    Adamec, R. (1997). Transmitter systems involved in neural plasticity underlying increased anxiety and defense—Implications for understanding anxiety following traumatic stress. Neuroscience and Biobehavioral Reviews, 21(6), 755–765.PubMedGoogle Scholar
  399. 399.
    Adamec, R. E. (1993). Partial limbic kindling—Brain, behavior, and the benzodiazepine receptor. Physiology & Behavior, 54(3), 531–545.Google Scholar
  400. 400.
    Gilbert, M. E. (2001). Does the kindling model of epilepsy contribute to our understanding of multiple chemical sensitivity? Annals of the New York Academy of Sciences, 933, 68–91.PubMedGoogle Scholar
  401. 401.
    Kalynchuk, L. E., Pearson, D. M., Pinel, J. P., & Meaney, M. J. (1999). Effect of amygdala kindling on emotional behavior and benzodiazepine receptor binding in rats. Annals of the New York Academy of Sciences, 877, 737–741.PubMedGoogle Scholar
  402. 402.
    Witkin, J. M., Lee, M. A., & Walczak, D. D. (1988). Anxiolytic properties of amygdaloid kindling unrelated to benzodiazepine receptors. Psychopharmacology, 96(3), 296–301.PubMedGoogle Scholar
  403. 403.
    McIntyre, D. C. (1979). Effects of focal vs. generalized kindled convulsions from anterior neocortex or amygdala on CER acquisition in rats. Physiology & Behavior, 23, 855–859.Google Scholar
  404. 404.
    Wada, J. A., & Tsuchimochi, H. (1995). Cingulate kindling in Senegalese baboons, Papio papio. Epilepsia, 36(11), 1142–1151.PubMedGoogle Scholar
  405. 405.
    Wada, Y., Minabe, Y., Okuda, H., Jibiki, I., Yoshida, K., & Yamaguchi, N. (1986). Lateral geniculate kindling and long-lasting photosensitivity in cats. Experimental Neurology, 91(2), 343–354.PubMedGoogle Scholar
  406. 406.
    Whitehouse, P. J., Martino, A. M., Antuono, P. G., et al. (1986). Nicotinic acetylcholine binding sites in Alzheimer’s disease. Brain Research, 371(1), 146–151.PubMedGoogle Scholar
  407. 407.
    Price, D. L., Struble, R. G., Whitehouse, P. J., et al. (1986). Alzheimer’s disease: A multisystem disorder. Research Publications—Association for Research in Nervous and Mental Disease, 64, 209–214.PubMedGoogle Scholar
  408. 408.
    Clark, A. W., Parhad, I. M., Folstein, S. E., et al. (1983). The nucleus basalis in Huntington’s disease. Neurology, 33(10), 1262–1267.PubMedGoogle Scholar
  409. 409.
    Whitehouse, P. J., Hedreen, J. C., White, C. L., III, & Price, D. L. (1983). Basal forebrain neurons in the dementia of Parkinson disease. Annals of Neurology, 13(3), 243–248.PubMedGoogle Scholar
  410. 410.
    Whitehouse, P. J., Price, D. L., Clark, A. W., Coyle, J. T., & DeLong, M. R. (1981). Alzheimer disease: Evidence for selective loss of cholinergic neurons in the nucleus basalis. Annals of Neurology, 10(2), 122–126.PubMedGoogle Scholar
  411. 411.
    Masullo, C., Pocchiari, M., Mariotti, P., et al. (1989). The nucleus basalis of Meynert in parkinsonism-dementia of Guam: A morphometric study. Neuropathol Appl Neurobiol, 15(3), 193–206.PubMedGoogle Scholar
  412. 412.
    Kleinschmidt-DeMasters, B. K. (1989). Early progressive supranuclear palsy: Pathology and clinical presentation. Clinical Neuropathology, 8(2), 79–84.PubMedGoogle Scholar
  413. 413.
    Cartier, L., Verdugo, R., Vergara, C., & Galvez, S. (1989). The nucleus basalis of Meynert in 20 definite cases of Creutzfeldt-Jakob disease. Journal of Neurology, Neurosurgery, and Psychiatry, 52(3), 304–309.PubMedGoogle Scholar
  414. 414.
    Mizukami, K., & Kosaka, K. (1989). Neuropathological study on the nucleus basalis of Meynert in Pick’s disease. Acta Neuropathologica, 78(1), 52–56.PubMedGoogle Scholar
  415. 415.
    Cummings, J. L., & Benson, D. F. (1987). The role of the nucleus basalis of Meynert in dementia: Review and reconsideration. Alzheimer Disease and Associated Disorders, 1(3), 128–155.PubMedGoogle Scholar
  416. 416.
    Quirion, R., Martel, J. C., Robitaille, Y., et al. (1986). Neurotransmitter and receptor deficits in senile dementia of the Alzheimer type. The Canadian Journal of Neurological Sciences, 13(4 Suppl), 503–510.PubMedGoogle Scholar
  417. 417.
    Saper, C. B., German, D. C., & White, C. L., III. (1985). Neuronal pathology in the nucleus basalis and associated cell groups in senile dementia of the Alzheimer’s type: Possible role in cell loss. Neurology, 35(8), 1089–1095.PubMedGoogle Scholar
  418. 418.
    Arendt, T., Bigl, V., Tennstedt, A., & Arendt, A. (1985). Neuronal loss in different parts of the nucleus basalis is related to neuritic plaque formation in cortical target areas in Alzheimer’s disease. Neuroscience, 14(1), 1–14.PubMedGoogle Scholar
  419. 419.
    Mann, D. M., Yates, P. O., & Marcyniuk, B. (1984). A comparison of changes in the nucleus basalis and locus caeruleus in Alzheimer’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 47(2), 201–203.PubMedGoogle Scholar
  420. 420.
    Nakamura, S., Koshimura, K., & Kato T., et al. (1984). Neurotransmitters in dementia. Clinical Therapeutics, 7 Spec No:18–34.Google Scholar
  421. 421.
    Mesulam, M. M., Mufson, E. J., Wainer, B. H., & Levey, A. I. (1983). Central cholinergic pathways in the rat: An overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience, 10(4), 1185–1201.PubMedGoogle Scholar
  422. 422.
    Flicker, C., Dean, R. L., Watkins, D. L., Fisher, S. K., & Bartus, R. T. (1983). Behavioral and neurochemical effects following neurotoxic lesions of a major cholinergic input to the cerebral cortex in the rat. Pharmacology, Biochemistry, and Behavior, 18(6), 973–981.PubMedGoogle Scholar
  423. 423.
    Kuo, M. C., Rasmusson, D. D., & Dringenberg, H. C. (2009). Input-selective potentiation and rebalancing of primary sensory cortex afferents by endogenous acetylcholine. Neuroscience, 163(1), 430–441.PubMedGoogle Scholar
  424. 424.
    Yu, A. J., & Dayan, P. (2005). Uncertainty, neuromodulation, and attention. Neuron, 46(4), 681–692.PubMedGoogle Scholar
  425. 425.
    Goard, M., & Dan, Y. (2009). Basal forebrain activation enhances cortical coding of natural scenes. Nature Neuroscience, 12(11), 1444–1449.PubMedGoogle Scholar
  426. 426.
    Mogenson, G. J., Takigawa, M., Robertson, A., & Wu, M. (1979). Self-stimulation of the nucleus accumbens and ventral tegmental area of Tsai attenuated by microinjections of spiroperidol into the nucleus accumbens. Brain Research, 171(2), 247–259.PubMedGoogle Scholar
  427. 427.
    Phillips, A. G., Mora, F., & Rolls, E. T. (1981). Intracerebral self-administration of amphetamine by rhesus monkeys. Neuroscience Letters, 24(1), 81–86.PubMedGoogle Scholar
  428. 428.
    Kokarovtseva, L., Jaciw-Zurakiwsky, T., Mendizabal Arbocco, R., Frantseva, M. V., & Perez Velazquez, J. L. (2009). Excitability and gap junction-mediated mechanisms in nucleus accumbens regulate self-stimulation reward in rats. Neuroscience, 159(4), 1257–1263.PubMedGoogle Scholar
  429. 429.
    He, S., Li, N., & Grasing, K. (2004). Long-term opiate effects on amphetamine-induced dopamine release in the nucleus accumbens core and conditioned place preference. Pharmacology, Biochemistry, and Behavior, 77(2), 327–335.PubMedGoogle Scholar
  430. 430.
    Li, W. M., Sato, A., Sato, Y., & Schmidt, R. F. (1996). Morphine microinjected into the nucleus tractus solitarius and rostral ventrolateral medullary nucleus enhances somatosympathetic A- and C- reflexes in anesthetized rats. Neuroscience Letters, 221(1), 53–56.PubMedGoogle Scholar
  431. 431.
    Fletcher, P. J. (1991). Opiate antagonists inhibit feeding induced by 8-OH-DPAT: Possible mediation in the nucleus accumbens. Brain Research, 560(1–2), 260–267.PubMedGoogle Scholar
  432. 432.
    Blake, M. J., & Stein, E. A. (1987). Brain stimulation of the ventral tegmental area attenuates footshock escape: An in vivo autoradiographic analysis of opiate receptors. Brain Research, 435(1–2), 181–194.PubMedGoogle Scholar
  433. 433.
    Wise, R. A. (1987). The role of reward pathways in the development of drug dependence. Pharmacology & Therapeutics, 35(1–2), 227–263.Google Scholar
  434. 434.
    Hernandez, G., Haines, E., & Shizgal, P. (2008). Potentiation of intracranial self-stimulation during prolonged subcutaneous infusion of cocaine. Journal of Neuroscience Methods, 175(1), 79–87.PubMedGoogle Scholar
  435. 435.
    Walker, Q. D., & Kuhn, C. M. (2008). Cocaine increases stimulated dopamine release more in periadolescent than adult rats. Neurotoxicology and Teratology, 30(5), 412–418.PubMedGoogle Scholar
  436. 436.
    Vetulani, J. (2001). Drug addiction. Part II. Neurobiology of addiction. Polish Journal of Pharmacology, 53(4), 303–317.PubMedGoogle Scholar
  437. 437.
    Lee, T. H., Gee, K. R., Ellinwood, E. H., & Seidler, F. J. (1998). Altered cocaine potency in the nucleus accumbens following 7-day withdrawal from intermittent but not continuous treatment: Voltammetric assessment of dopamine uptake in the rat. Psychopharmacology, 137(3), 303–310.PubMedGoogle Scholar
  438. 438.
    Hernandez, L., & Hoebel, B. G. (1988). Food reward and cocaine increase extracellular dopamine in the nucleus accumbens as measured by microdialysis. Life Sciences, 42(18), 1705–1712.PubMedGoogle Scholar
  439. 439.
    Barr, G. A., & Lithgow, T. (1986). Pharmaco-ontogeny of reward: Enhancement of self-stimulation by D-amphetamine and cocaine in 3- and 10-day-old rats. Brain Research, 389(1–2), 193–202.PubMedGoogle Scholar
  440. 440.
    Podet, A., Lee, M. J., Swann, A. C., & Dafny, N. (2010). Nucleus accumbens lesions modulate the effects of methylphenidate. Brain Research Bulletin, 82(5–6), 293–301.PubMedGoogle Scholar
  441. 441.
    McGregor, A., Baker, G., & Roberts, D. C. (1996). Effect of 6-hydroxydopamine lesions of the medial prefrontal cortex on intravenous cocaine self-administration under a progressive ratio schedule of reinforcement. Pharmacology, Biochemistry, and Behavior, 53(1), 5–9.PubMedGoogle Scholar
  442. 442.
    Roberts, D. C., & Koob, G. F. (1982). Disruption of cocaine self-administration following 6-hydroxydopamine lesions of the ventral tegmental area in rats. Pharmacology, Biochemistry, and Behavior, 17(5), 901–904.PubMedGoogle Scholar
  443. 443.
    McCleary, R. A. (1966). Response-modulating functions of the limbic system: Initiation and suppression. In E. S. J. M. Sprague (Ed.), Progress in physiological psychology (Vol. 1). New York, NY: Academic.Google Scholar
  444. 444.
    Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery, and Psychiatry, 20, 11–21.PubMedGoogle Scholar
  445. 445.
    Papez, J. W. (1937). A proposed mechanism of emotion. Archives of Neurology and Psychiatry, 38.Google Scholar
  446. 446.
    Kondo, H., Lavenex, P., & Amaral, D. G. (2008). Intrinsic connections of the macaque monkey hippocampal formation: I. Dentate gyrus. The Journal of Comparative Neurology, 511(4), 497–520.PubMedGoogle Scholar
  447. 447.
    Amaral, D. G., Scharfman, H. E., & Lavenex, P. (2007). The dentate gyrus: Fundamental neuroanatomical organization (dentate gyrus for dummies). Progress in Brain Research, 163, 3–22.PubMedGoogle Scholar
  448. 448.
    Mohedano-Moriano, A., Pro-Sistiaga, P., Arroyo-Jimenez, M. M., et al. (2007). Topographical and laminar distribution of cortical input to the monkey entorhinal cortex. Journal of Anatomy, 211(2), 250–260.PubMedGoogle Scholar
  449. 449.
    Lavenex, P., & Amaral, D. G. (2000). Hippocampal-neocortical interaction: A hierarchy of associativity. Hippocampus, 10(4), 420–430.PubMedGoogle Scholar
  450. 450.
    Berger, T. W., Rinaldi, P. C., Weisz, D. J., & Thompson, R. F. (1983). Single-unit analysis of different hippocampal cell types during classical conditioning of rabbit nictitating membrane response. Journal of Neurophysiology, 50(5), 1197–1219.PubMedGoogle Scholar
  451. 451.
    Teyler, T. J., & Discenna, P. (1984). Long-term potentiation as a candidate mnemonic device. Brain Research, 319(1), 15–28.PubMedGoogle Scholar
  452. 452.
    Hampson, R. E., & Deadwyler, S. A. (1992). Information processing in the dentate gyrus. Epilepsy Research, 7, 291–299.PubMedGoogle Scholar
  453. 453.
    Rao, B. S., Desiraju, T., Meti, B. L., & Raju, T. R. (1994). Plasticity of hippocampal and motor cortical pyramidal neurons induced by self-stimulation experience. Indian Journal of Physiology and Pharmacology, 38(1), 23–28.PubMedGoogle Scholar
  454. 454.
    Shors, T. J., & Matzel, L. D. (1997). Long-term potentiation: What’s learning got to do with it? The Behavioral and Brain Sciences, 20(4), 597–614. discussion 614–555.PubMedGoogle Scholar
  455. 455.
    Skrebitsky, V. G., & Chepkova, A. N. (1998). Hebbian synapses in cortical and hippocampal pathways. Reviews in the Neurosciences, 9(4), 243–264.PubMedGoogle Scholar
  456. 456.
    Cavazos, J. E., Jones, S. M., & Cross, D. J. (2004). Sprouting and synaptic reorganization in the subiculum and CA1 region of the hippocampus in acute and chronic models of partial-onset epilepsy. Neuroscience, 126(3), 677–688.PubMedGoogle Scholar
  457. 457.
    Blitzer, R. D., Iyengar, R., & Landau, E. M. (2005). Postsynaptic signaling networks: Cellular cogwheels underlying long-term plasticity. Biological Psychiatry, 57(2), 113–119.PubMedGoogle Scholar
  458. 458.
    Martin, E. D., & Buno, W. (2005). Stabilizing effects of extracellular ATP on synaptic efficacy and plasticity in hippocampal pyramidal neurons. 21(4), 936–944.Google Scholar
  459. 459.
    Bruel-Jungerman, E., Davis, S., Rampon, C., & Laroche, S. (2006). Long-term potentiation enhances neurogenesis in the adult dentate gyrus. Journal of Neuroscience, 26(22), 5888–5893.PubMedGoogle Scholar
  460. 460.
    Buck, N., Cali, S., & Behr, J. (2006). Enhancement of long-term potentiation at CA1-subiculum synapses in MK-801-treated rats. Neuroscience Letters, 392(1–2), 5–9.PubMedGoogle Scholar
  461. 461.
    Egashira, Y., Tanaka, T., Soni, P., Sakuragi, S., Tominaga-Yoshino, K., & Ogura, A. (2010). Involvement of the p75(NTR) signaling pathway in persistent synaptic suppression coupled with synapse elimination following repeated long-term depression induction. Journal of Neuroscience Research, 88(16), 3433–3446.PubMedGoogle Scholar
  462. 462.
    Gorman, J. M., & Docherty, J. P. (2010, Summer). A hypothesized role for dendritic remodeling in the etiology of mood and anxiety disorders. The Journal of Neuropsychiatry and Clinical Neurosciences, 22(3):256–264.Google Scholar
  463. 463.
    Monti, M. C., Almiron, R. S., Bignante, E. A., & Ramirez, O. A. (2010). Changes in hippocampal arc protein expression and synaptic plasticity by the presentation of contextual cues linked to drug experience. Synapse (New York, N.Y.), 64(1), 39–46.Google Scholar
  464. 464.
    Mukai, H., Kimoto, T., Hojo, Y., et al. (2010). Modulation of synaptic plasticity by brain estrogen in the hippocampus. Biochimica et Biophysica Acta, 1800(10), 1030–1044.PubMedGoogle Scholar
  465. 465.
    Woldeit, M. L., & Korz, V. (2010). Theta oscillations during holeboard training in rats: Different learning strategies entail different context-dependent modulations in the hippocampus. Neuroscience, 165(3), 642–653.PubMedGoogle Scholar
  466. 466.
    Zhang, L., & Luo, X. P. (2011). Plasticity and metaplasticity of lateral perforant path in hippocampal dentate gyrus in a rat model of febrile seizure. Sheng Li Xue Bao, 63(2), 124–130.PubMedGoogle Scholar
  467. 467.
    Smith, A. P., Stephan, K. E., Rugg, M. D., & Dolan, R. J. (2006). Task and content modulate amygdala-hippocampal connectivity in emotional retrieval. Neuron, 49(4), 631–638.PubMedGoogle Scholar
  468. 468.
    Terry, A. V., Jr. (2006). Muscarinic receptor antagonists in rats. In E. D. Levin & J. J. Buccafusco (Eds.), Animal models of cognitive impairment. Boca Raton, FL: CRC Press.Google Scholar
  469. 469.
    Mandel, R. J. (2010). CERE-110, an adeno-associated virus-based gene delivery vector expressing human nerve growth factor for the treatment of Alzheimer’s disease. Current Opinion in Molecular Therapeutics, 12(2), 240–247.PubMedGoogle Scholar
  470. 470.
    Ginestet, L., Ferrario, J. E., Raisman-Vozari, R., Hirsch, E. C., & Debeir, T. (2007). Donepezil induces a cholinergic sprouting in basocortical degeneration. Journal of Neurochemistry, 102(2), 434–440.PubMedGoogle Scholar
  471. 471.
    Payette, D. J., Xie, J., & Guo, Q. (2007). Reduction in CHT1-mediated choline uptake in primary neurons from presenilin-1 M146V mutant knock-in mice. Brain Research, 1135(1), 12–21.PubMedGoogle Scholar
  472. 472.
    Korczyn, A. D., & Reichmann, H. (2006). Dementia with Lewy bodies. Journal of the Neurological Sciences, 248(1–2), 3–8.PubMedGoogle Scholar
  473. 473.
    Swanson, L. W. (1977). The anatomical organization of septo-hippocampal projections. CIBA Foundation Symposium, 58, 25–48.PubMedGoogle Scholar
  474. 474.
    Milner, B. (1965). Visually-guided maze learnign in man: Effects of bilateral hippocampal, bilateral frontal and unilateral cerebral lesions. Neuropsychologia, 3, 317–338.Google Scholar
  475. 475.
    Milner, B. (1967). Brain machanisms suggested by studies of temporal lobes. In F. L. Darley (Ed.), Brain mechanisms underlying speech and language (pp. 122–145). New York, NY: Grune & Stratton.Google Scholar
  476. 476.
    Squire, L., & Butters, N. (1984). Neuropsychology of memory. New York, NY: Guilford Press.Google Scholar
  477. 477.
    Squire, L. R. (1980). Specifying the defect in human amnesia: Storage, retrieval and semantics. Neuropsychologia, 18(3), 369–372.PubMedGoogle Scholar
  478. 478.
    Squire, L. R. (2004). Memory systems of the brain: A brief history and current perspective. Neurobiology of Learning and Memory, 82(3), 171–177.PubMedGoogle Scholar
  479. 479.
    Squire, L. R. (2006). Lost forever or temporarily misplaced? The long debate about the nature of memory impairment. Learning & Memory (Cold Spring Harbor, N.Y.) , 13(5), 522–529.Google Scholar
  480. 480.
    Kaplan, R. F., Meadows, M. E., Verfaellie, M., et al. (1994). Lateralization of memory for the visual attributes of objects: Evidence from the posterior cerebral artery amobarbital test. Neurology, 44(6), 1069–1073.PubMedGoogle Scholar
  481. 481.
    O’Donnell, B. F., Cohen, R. A., Hokama, H., et al. (1993). Electrical source analysis of auditory ERPs in medial temporal lobe amnestic syndrome. Electroencephalography and Clinical Neurophysiology, 87(6), 394–402.PubMedGoogle Scholar
  482. 482.
    Mishkin, M. (1978). Memory in monkeys severely impaired by combined but not by separate removal of amygdala and hippocampus. Nature, 273, 297–298.PubMedGoogle Scholar
  483. 483.
    Zola-Morgan, S., Squire, L. R., & Mishkin, M. (1982). The neuroanatomy of amnesia: Amygdala-hippocampus versus temporal stem. Science (New York, N.Y.), 218(4579), 1337–1339.Google Scholar
  484. 484.
    Zola-Morgan, S. S. L. (1986). Memory impairment in monkeys following lesions of the hippocampus. Behavioral Neuroscience, 100, 155–160.PubMedGoogle Scholar
  485. 485.
    Press, G. A., Amaral, D. G., & Squire, L. R. (1989). Hippocampal abnormalities in amnesic patients revealed by high-resolution magnetic resonance imaging. Nature, 341(6237), 54–57.PubMedGoogle Scholar
  486. 486.
    Zola-Morgan, S., Squire, L. R., & Amaral, D. G. (1989). Lesions of the hippocampal formation but not lesions of the fornix or the mammillary nuclei produce long-lasting memory impairment in monkeys. Journal of Neuroscience, 9(3), 898–913.PubMedGoogle Scholar
  487. 487.
    Zola-Morgan, S., Squire, L. R., Rempel, N. L., Clower, R. P., & Amaral, D. G. (1992). Enduring memory impairment in monkeys after ischemic damage to the hippocampus. Journal of Neuroscience, 12(7), 2582–2596.PubMedGoogle Scholar
  488. 488.
    Suzuki, W. A., Zola-Morgan, S., Squire, L. R., & Amaral, D. G. (1993). Lesions of the perirhinal and parahippocampal cortices in the monkey produce long-lasting memory impairment in the visual and tactual modalities. Journal of Neuroscience, 13(6), 2430–2451.PubMedGoogle Scholar
  489. 489.
    Kobayashi, Y., & Amaral, D. G. (2003). Macaque monkey retrosplenial cortex: II. Cortical afferents. The Journal of Comparative Neurology, 466(1), 48–79.PubMedGoogle Scholar
  490. 490.
    Buckmaster, C. A., Eichenbaum, H., Amaral, D. G., Suzuki, W. A., & Rapp, P. R. (2004). Entorhinal cortex lesions disrupt the relational organization of memory in monkeys. Journal of Neuroscience, 24(44), 9811–9825.PubMedGoogle Scholar
  491. 491.
    Lavenex, P. B., Amaral, D. G., & Lavenex, P. (2006). Hippocampal lesion prevents spatial relational learning in adult macaque monkeys. Journal of Neuroscience, 26(17), 4546–4558.PubMedGoogle Scholar
  492. 492.
    Chrobak, J. J., & Amaral, A. (2007). Entorhinal cortex of the monkey: VII. Intrinsic connections. The Journal of Comparative Neurology, 500(4), 612–633.PubMedGoogle Scholar
  493. 493.
    Beason-Held, L. L., Rosene, D. L., Killiany, R. J., & Moss, M. B. (1999). Hippocampal formation lesions produce memory impairment in the rhesus monkey. Hippocampus, 9(5), 562–574.PubMedGoogle Scholar
  494. 494.
    Mishkin, M. (1982). A memory system in the monkey. Philosophical Transactions of the Royal Society of London, 298(1089), 83–95.PubMedGoogle Scholar
  495. 495.
    Mishkin, M., Malamut, B., & Bachevalier, J. (1984). Memories and habits: Two neural systems. In G. Lynch, J. L. McGaugh, & N. M. Weinberger (Eds.), Neurobiology of learning and memory (pp. 65–77). New York, NY: The Guilford Press.Google Scholar
  496. 496.
    Baxter, M. G., & Murray, E. A. (2001). Opposite relationship of hippocampal and rhinal cortex damage to delayed nonmatching-to-sample deficits in monkeys. Hippocampus, 11(1), 61–71.PubMedGoogle Scholar
  497. 497.
    Moss, M., Mahut, H., & Zola-Morgan, S. (1981). Concurrent discrimination learning of monkeys after hippocampal, entorhinal, or fornix lesions. Journal of Neuroscience, 1(3), 227–240.PubMedGoogle Scholar
  498. 498.
    Ridley, R. M., Samson, N. A., Baker, H. F., & Johnson, J. A. (1988). Visuospatial learning impairment following lesion of the cholinergic projection to the hippocampus. Brain Research, 456(1), 71–87.PubMedGoogle Scholar
  499. 499.
    Van Hoesen, G. W., Hyman, B. T., & Damasio, A. R. (1991). Entorhinal cortex pathology in Alzheimer’s disease. Hippocampus, 1(1), 1–8.PubMedGoogle Scholar
  500. 500.
    Douglas, R. J., & Isaacson, R. (1964). L. Hippocampal lesions and activity. Psychonomic Science., 1, 187–188.Google Scholar
  501. 501.
    Douglas, R. J. (1967). The hippocampus and behavior. Psychological Bulletin, 67, 416–422.PubMedGoogle Scholar
  502. 502.
    Douglas, R. J. (1969). Hippocampal theta and disinhibition: A counterreply. Psychological Reports, 24(2), 583–586.PubMedGoogle Scholar
  503. 503.
    Douglas, R. J., & Pribram, K. H. (1969). Distraction and habituation in monkeys with limbic lesions. Journal of Comparative and Physiological Psychology, 69(3), 473–480.PubMedGoogle Scholar
  504. 504.
    Douglas, R. M., Goddard, G. V., & Riives, M. (1982). Inhibitory modulation of long-term potentiation: Evidence for a postsynaptic locus of control. Brain Research, 240(2), 259–272.PubMedGoogle Scholar
  505. 505.
    Kimble, D. P., Kirkby, R. J., & Stein, D. G. (1966). Response perseveration interpretation of passive avoidance deficits in hippocampectomized rats. Journal of Comparative and Physiological Psychology., 61, 141–143.PubMedGoogle Scholar
  506. 506.
    Kimble, D. P. (1968). Hippocampus and internal inhibition. Psychological Bulletin, 70, 285–295.PubMedGoogle Scholar
  507. 507.
    Kimble, D. P. (1970). & Kimble, R. J. The effect of hippocampal lesions on extinction and “hypothesis” behavior in rats. Physiology & Behavior, 5, 735–738.Google Scholar
  508. 508.
    Dalland, T. (1970). Response and stimulus perseveration in rats with septal and dorsal hippocampal lesions. Journal of Comparative and Physiological Psychology, 71, 114–118.PubMedGoogle Scholar
  509. 509.
    Dalland, T. (1976). Response perseveration of rats with dorsal hippocampal lesions. Vision Research, 17, 473–484.Google Scholar
  510. 510.
    Kimble, D. P. G., & Greene, E. G. (1968). Absence of latent learning in rats with hippocampal lesions. Psychonomic Science, 11, 99–100.Google Scholar
  511. 511.
    O’Keefe, J. (1993). Hippocampus, theta, and spatial memory. Current Opinion in Neurobiology, 3(6), 917–924.PubMedGoogle Scholar
  512. 512.
    O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Oxford University Press.Google Scholar
  513. 513.
    Suess, W. M., & Berlyne, D. E. (1978). Exploratory behavior as a function of hippocampal damage, stimulus complexity, and stimulus novelty in the hooded rat. Behavioral Biology, 23(4), 487–499.PubMedGoogle Scholar
  514. 514.
    Hamilton, D. A., Driscoll, I., & Sutherland, R. J. (2002). Human place learning in a virtual Morris water task: Some important constraints on the flexibility of place navigation. Behavioural Brain Research, 129(1–2), 159–170.PubMedGoogle Scholar
  515. 515.
    Hepner, I. J., Mohamed, A., Fulham, M. J., & Miller, L. A. (2007). Topographical, autobiographical and semantic memory in a patient with bilateral mesial temporal and retrosplenial infarction. Neurocase, 13(2), 97–114.PubMedGoogle Scholar
  516. 516.
    Hetherington, P. A., & Shapiro, M. L. (1993). A simple network model simulates hippocampal place fields: II. Computing goal-directed trajectories and memory fields. Behavioral Neuroscience, 107(3), 434–443.PubMedGoogle Scholar
  517. 517.
    Hudon, C., Dore, F. Y., & Goulet, S. (2002). Spatial memory and choice behavior in the radial arm maze after fornix transection. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 26(6), 1113–1123.Google Scholar
  518. 518.
    Kubie, J. L., Fenton, A., Novikov, N., Touretzky, D., & Muller, R. U. (2007). Changes in goal selection induced by cue conflicts are in register with predictions from changes in place cell field locations. Behavioral Neuroscience, 121(4), 751–763.PubMedGoogle Scholar
  519. 519.
    Muller, R. U., Stead, M., & Pach, J. (1996). The hippocampus as a cognitive graph. The Journal of General Physiology, 107(6), 663–694.PubMedGoogle Scholar
  520. 520.
    Ryan, L., Lin, C. Y., Ketcham, K., & Nadel, L. (2010). The role of medial temporal lobe in retrieving spatial and nonspatial relations from episodic and semantic memory. Hippocampus, 20(1), 11–18.PubMedGoogle Scholar
  521. 521.
    Santin, L. J., Rubio, S., Begega, A., Miranda, R., & Arias, J. L. (2000). Spatial learning and the hippocampus. Revista de Neurologia, 31(5), 455–462.PubMedGoogle Scholar
  522. 522.
    Moser, E. I., Kropff, E., & Moser, M. B. (2008). Place cells, grid cells, and the brain’s spatial representation system. Annual Review of Neuroscience, 31, 69–89.PubMedGoogle Scholar
  523. 523.
    Isaacson, R. L. (1982). The limbic system (2nd ed.). New York: Plenum Press.Google Scholar
  524. 524.
    Isaacson, R. L. (1982). The hippocampal formation and its regulation of attention and behavior. In E. G. P. Molnar (Ed.), Sensory functions: Advances in physiological sciences (Vol. 16). New York, NY: Pergamon Press.Google Scholar
  525. 525.
    Wickelgren, W. O., & Isaacson, R. L. (1963). Effect of the Introduction of an Irrelevant Stimulus on Runway Performance of the Hippocampectomized Rat. Nature, 200, 48–50.PubMedGoogle Scholar
  526. 526.
    Bauer, R. H. (1974). Brightness discrimination of pretrained and nonpretrained hippocampal rats reinforced for choosing brighter or dimmer alternatives. Journal of Comparative and Physiological Psychology, 87, 987–996.PubMedGoogle Scholar
  527. 527.
    Kaplan, J. (1968). Approach and inhibitory reactions in rats after bilateral hippocampal damage. Journal of Comparative and Physiological Psychology, 65, 274–281.Google Scholar
  528. 528.
    Good, M., & Honey, R. C. (1991). Conditioning and contextual retrieval in hippocampal rats. Behavioral Neuroscience, 105(4), 499–509.PubMedGoogle Scholar
  529. 529.
    Holscher, C., Jacob, W., & Mallot, H. A. (2003). Reward modulates neuronal activity in the hippocampus of the rat. Behavioural Brain Research, 142(1–2), 181–191.PubMedGoogle Scholar
  530. 530.
    Liu, Z., & Richmond, B. J. (2000). Response differences in monkey TE and perirhinal cortex: Stimulus association related to reward schedules. Journal of Neurophysiology, 83(3), 1677–1692.PubMedGoogle Scholar
  531. 531.
    Muzzio, I. A., Levita, L., Kulkarni, J., et al. (2009). Attention enhances the retrieval and stability of visuospatial and olfactory representations in the dorsal hippocampus. PLoS Biology, 7(6), e1000140.PubMedGoogle Scholar
  532. 532.
    Kamin, L. J. (1968). “Attention-like” processes in classical conditioning. In M. R. Jones (Ed.), Miami symposium on the prediction of behavior: Aversive stimulation. Miami: University of Miami Press.Google Scholar
  533. 533.
    Kamin, L. J. (1969). Predictability, surprise, attention, and conditioning. In R. C. B. Campbell (Ed.), Punishment and aversive behavior (pp. 279–296). New York, NY: Appleton-Century-Crofts.Google Scholar
  534. 534.
    Andreano, J., Liang, K., Kong, L., Hubbard, D., Wiederhold, B. K., & Wiederhold, M. D. (2009). Auditory cues increase the hippocampal response to unimodal virtual reality. Cyberpsychology & Behavior, 12(3), 309–313.Google Scholar
  535. 535.
    Vanni-Mercier, G., Mauguiere, F., Isnard, J., & Dreher, J. C. (2009). The hippocampus codes the uncertainty of cue-outcome associations: An intracranial electrophysiological study in humans. Journal of Neuroscience, 29(16), 5287–5294.PubMedGoogle Scholar
  536. 536.
    Fenton, A. A., Lytton, W. W., Barry, J. M., et al. (2010). Attention-like modulation of hippocampus place cell discharge. Journal of Neuroscience, 30(13), 4613–4625.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ronald A. Cohen
    • 1
    • 2
    • 3
  1. 1.Departments of Neurology, Psychiatry and AgingGainesvilleUSA
  2. 2.Center for Cognitive Aging and MemoryUniversity of Florida College of MedicineGainesvilleUSA
  3. 3.Department of Psychiatry and Human Behavior Warren Alpert School of MedicineBrown UniversityProvidenceUSA

Personalised recommendations