Attention and the Frontal Cortex

  • Ronald A. Cohen


Sensory selective attention often occurs covertly, as a relatively automatic response to salient stimuli that occur in the environment. Demands for controlled processing increase as the number of targets and stimulus complexity increase and response demands become greater. Yet, many of the processes necessary for orienting, allocating, engaging, and shifting attention can occur automatically, without overt response intention or specific response demands. Yet, in everyday life, people routinely direct their attention to either external stimuli, particular responses (e.g., swinging a tennis racket), or cognitive operations based on their momentary disposition, motivation, and prevailing situational demands and reinforcements. At these times, their attention tends to be subjectively experienced as voluntary or intentional, and it usually occurs with conscious awareness.


Prefrontal Cortex Frontal Cortex Frontal Lobe Anterior Cingulate Cortex Executive Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Heilman, K. M., Pandya, D. N., Karol, E. A., & Geschwind, N. (1971). Auditory inattention. Archives of Neurology, 24, 323–325.PubMedGoogle Scholar
  2. 2.
    Rosvold, H., & Szwarcbart, M. K. (1964). Neural structures involved in delayed response performance. In K. Akert & J. M. Warren (Eds.), Frontal granular cortex and behavior. New York, NY: McGraw-Hill.Google Scholar
  3. 3.
    Buffery, A. W. (1967). Learning and memory in baboons with bilateral lesions of frontal or inferotemporal cortex. Nature, 214(5092), 1054–1056.PubMedGoogle Scholar
  4. 4.
    Stuss, D. T., & Benson, D. F. (1984). Neuropsychological studies of the frontal lobes. Psychological Bulletin, 95(1), 3–28.PubMedGoogle Scholar
  5. 5.
    Stuss, D. T., Kaplan, E. F., Benson, D. F., Weir, W. S., Chiulli, S., & Sarazin, F. F. (1982). Evidence for the involvement of orbitofrontal cortex in memory functions: An interference effect. Journal of Comparative and Physiological Psychology, 96(6), 913–925.PubMedGoogle Scholar
  6. 6.
    Wilkins, A. J., Shallice, T., & McCarthy, R. (1987). Frontal lesions and sustained attention. Neuropsychologia, 25(2), 359–365.PubMedGoogle Scholar
  7. 7.
    Alexander, M., & Stuss, D. T. (2006). Frontal injury: Impairments of fundamental processes lead to functional consequences. Journal of the International Neuropsychological Society, 12(2), 192–193.PubMedGoogle Scholar
  8. 8.
    Alexander, M. P., & Stuss, D. T. (2000). Disorders of frontal lobe functioning. Seminars in Neurology, 20(4), 427–437.PubMedGoogle Scholar
  9. 9.
    Alexander, M. P., Stuss, D. T., Shallice, T., Picton, T. W., & Gillingham, S. (2005). Impaired concentration due to frontal lobe damage from two distinct lesion sites. Neurology, 65(4), 572–579.PubMedGoogle Scholar
  10. 10.
    Cummings, J. L. (1995). Anatomic and behavioral aspects of frontal-subcortical circuits. Annals of the New York Academy of Sciences, 769, 1–13.PubMedGoogle Scholar
  11. 11.
    Cummings, J. L. (1993). Frontal-subcortical circuits and human behavior. Archives of Neurology, 50(8), 873–880.PubMedGoogle Scholar
  12. 12.
    Sanides, F. (1970). Functional architecture of motor and sensory cortices in primates in the light of a new concept of neocortex evolution. In C. R. N. Montagna (Ed.), The primate brain (pp. 137–208). New York, NY: Appleton.Google Scholar
  13. 13.
    Furster, J. (2008). The prefrontal cortex. Oxford: Academic.Google Scholar
  14. 14.
    Nauta, W. J. H. (1961). Fiber degeneration following lesions of the amygdaloid complex in the monkey. Journal of Anatomy, 95, 515–531.PubMedGoogle Scholar
  15. 15.
    Nauta, W. J. H. (1962). Neural associations of the amygdaloid complex in the monkey. Brain, 85, 505–520.PubMedGoogle Scholar
  16. 16.
    Nauta, W. J. H. (1964). Some efferent connections of the prefrontal cortex in the monkey. In J. W. K. Akert (Ed.), The frontal granular cortex and behavior (pp. 397–407). New York, NY: McGraw-Hill.Google Scholar
  17. 17.
    Nauta, W. J. H. (1972). Neural associations of the frontal cortex. Acta Neurobiologiae Experimentalis, 32, 125–140.PubMedGoogle Scholar
  18. 18.
    Mesulam, M.-M. (Ed.). (2000). Principles of behavioral neurology (2nd ed.). New York, NY: Oxford University Press.Google Scholar
  19. 19.
    Harlow, J. M. (1868). Recovery from the passage of an iron bar through the head. Publications of the Massachusetts Medical Society, 2, 237–246.Google Scholar
  20. 20.
    Hebb, D. O., & Penfield, W. (1940). Human behavior after extensive bilateral removal from the frontal lobes. Psychiatry: Archives of Neurology and.Google Scholar
  21. 21.
    Hebb, D. O. (1945). Man’s frontal lobes: A critical review. Archives of Neurology and Psychiatry, 54, 10–24.Google Scholar
  22. 22.
    Hecaen, H., & Albert, M. L. (1975). Mental symptoms associated with tumors of the frontal lobe. In J. M. W. K. Akert (Ed.), The frontal granular cortex and behavior (pp. 335–352). New York, NY: McGraw Hill.Google Scholar
  23. 23.
    Hecaen, H., & Albert, M. L. (1975). Disorders of mental functioning related to frontal lobe pathology. In D. F. B. D. Blumer (Ed.), Psychiatric aspects of neurologic disease (pp. 137–149). New York, NY: Grune & Stratton.Google Scholar
  24. 24.
    Fuster, J. M. (1991). The prefrontal cortex and its relation to behavior. Progress in Brain Research, 87, 201–211.PubMedGoogle Scholar
  25. 25.
    Fuster, J. M. (2000). Executive frontal functions. Experimental Brain Research. Experimentelle Hirnforschung, 133(1), 66–70.Google Scholar
  26. 26.
    Luria, A. R. (1966). Higher cortical functions in man. New York, NY: Basic Books.Google Scholar
  27. 27.
    Luria, A. R. (1939). Disturbances of perception in frontal lobe lesions (the problem of the frontal agnosias). Unpublished investigation.Google Scholar
  28. 28.
    Luria, A. R., & Khomskaya, E. D. (Eds.). (1966). The frontal lobes and regulation of psychological processes. Moscow: Moscow University Press.Google Scholar
  29. 29.
    Eslinger, P. J., & Damasio, A. R. (1985). Severe disturbance of higher cognition after bilateral frontal lobe ablation: Patient EVR. Neurology, 35(12), 1731–1741.PubMedGoogle Scholar
  30. 30.
    Eslinger, P. J., & Grattan, L. M. (1993). Frontal lobe and frontal-striatal substrates for different forms of human cognitive flexibility. Neuropsychologia, 31(1), 17–28.PubMedGoogle Scholar
  31. 31.
    Rylander, G., & Frey, H. (1939). Personality changes after operations on the frontal lobes; A clinical study of 32 cases. Copenhagen: E. Munksgaard; London: H. Milford, Oxford University Press.Google Scholar
  32. 32.
    Newcombe, V. F., Outtrim, J. G., Chatfield, D. A., et al. (2011). Parcellating the neuroanatomical basis of impaired decision-making in traumatic brain injury. Brain, 134(Pt 3), 759–768.PubMedGoogle Scholar
  33. 33.
    Modirrousta, M., & Fellows, L. K. (2008). Medial prefrontal cortex plays a critical and selective role in ‘feeling of knowing’ meta-memory judgments. Neuropsychologia, 46(12), 2958–2965.PubMedGoogle Scholar
  34. 34.
    Iaria, G., Fox, C. J., Waite, C. T., Aharon, I., & Barton, J. J. (2008). The contribution of the fusiform gyrus and superior temporal sulcus in processing facial attractiveness: Neuropsychological and neuroimaging evidence. Neuroscience, 155(2), 409–422.PubMedGoogle Scholar
  35. 35.
    Clark, L., Bechara, A., Damasio, H., Aitken, M. R., Sahakian, B. J., & Robbins, T. W. (2008). Differential effects of insular and ventromedial prefrontal cortex lesions on risky decision-making. Brain, 131(Pt 5), 1311–1322.PubMedGoogle Scholar
  36. 36.
    Fellows, L. K. (2007). The role of orbitofrontal cortex in decision making: A component process account. Annals of the New York Academy of Sciences, 1121, 421–430.PubMedGoogle Scholar
  37. 37.
    Moll, J., & de Oliveira-Souza, R. (2007). Moral judgments, emotions and the utilitarian brain. Trends in Cognitive Sciences, 11(8), 319–321.PubMedGoogle Scholar
  38. 38.
    Fellows, L. K., & Farah, M. J. (2007). The role of ventromedial prefrontal cortex in decision making: Judgment under uncertainty or judgment per se? Cerebral Cortex, 17(11), 2669–2674.PubMedGoogle Scholar
  39. 39.
    Peretz, I., Brattico, E., Jarvenpaa, M., & Tervaniemi, M. (2009). The amusic brain: In tune, out of key, and unaware. Brain, 132(Pt 5), 1277–1286.PubMedGoogle Scholar
  40. 40.
    Heberlein, A. S., & Saxe, R. R. (2005). Dissociation between emotion and personality judgments: Convergent evidence from functional neuroimaging. NeuroImage, 28(4), 770–777.PubMedGoogle Scholar
  41. 41.
    Damasio, A. R., Tranel, D., & Damasio, H. (1990). Individuals with sociopathic behavior caused by frontal damage fail to respond autonomically to social stimuli. Behavioural Brain Research, 41(2), 81–94.PubMedGoogle Scholar
  42. 42.
    Heberlein, A. S., Adolphs, R., Tranel, D., & Damasio, H. (2004). Cortical regions for judgments of emotions and personality traits from point-light walkers. Journal of Cognitive Neuroscience, 16(7), 1143–1158.PubMedGoogle Scholar
  43. 43.
    Schnyer, D. M., Verfaellie, M., Alexander, M. P., LaFleche, G., Nicholls, L., & Kaszniak, A. W. (2004). A role for right medial prefrontal cortex in accurate feeling-of-knowing judgements: Evidence from patients with lesions to frontal cortex. Neuropsychologia, 42(7), 957–966.PubMedGoogle Scholar
  44. 44.
    Hanten, G., Bartha, M., & Levin, H. S. (2000). Metacognition following pediatric traumatic brain injury: A preliminary study. Developmental Neuropsychology, 18(3), 383–398.PubMedGoogle Scholar
  45. 45.
    Bird, C. M., Castelli, F., Malik, O., Frith, U., & Husain, M. (2004). The impact of extensive medial frontal lobe damage on ‘Theory of Mind’ and cognition. Brain, 127(Pt 4), 914–928.PubMedGoogle Scholar
  46. 46.
    Jacobs, R., & Anderson, V. (2002). Planning and problem solving skills following focal frontal brain lesions in childhood: Analysis using the Tower of London. Child Neuropsychology, 8(2), 93–106.PubMedGoogle Scholar
  47. 47.
    Bazanis, E., Rogers, R. D., Dowson, J. H., et al. (2002). Neurocognitive deficits in decision-making and planning of patients with DSM-III-R borderline personality disorder. Psychological Medicine, 32(8), 1395–1405.PubMedGoogle Scholar
  48. 48.
    Mataro, M., Jurado, M. A., Garcia-Sanchez, C., Barraquer, L., Costa-Jussa, F. R., & Junque, C. (2001). Long-term effects of bilateral frontal brain lesion: 60 years after injury with an iron bar. Archives of Neurology, 58(7), 1139–1142.PubMedGoogle Scholar
  49. 49.
    Zalla, T., Plassiart, C., Pillon, B., Grafman, J., & Sirigu, A. (2001). Action planning in a virtual context after prefrontal cortex damage. Neuropsychologia, 39(8), 759–770.PubMedGoogle Scholar
  50. 50.
    Carlin, D., Bonerba, J., Phipps, M., Alexander, G., Shapiro, M., & Grafman, J. (2000). Planning impairments in frontal lobe dementia and frontal lobe lesion patients. Neuropsychologia, 38(5), 655–665.PubMedGoogle Scholar
  51. 51.
    Dritschel, B. H., Kogan, L., Burton, A., Burton, E., & Goddard, L. (1998). Everyday planning difficulties following traumatic brain injury: A role for autobiographical memory. Brain Injury, 12(10), 875–886.PubMedGoogle Scholar
  52. 52.
    Owen, A. M. (1997). Cognitive planning in humans: Neuropsychological, neuroanatomical and neuropharmacological perspectives. Progress in Neurobiology, 53(4), 431–450.PubMedGoogle Scholar
  53. 53.
    Robbins, T. W. (1996). Dissociating executive functions of the prefrontal cortex. Philosophical Transactions of the Royal Society of London, 351(1346), 1463–1470. discussion 1470–1461.PubMedGoogle Scholar
  54. 54.
    Cockburn, J. (1995). Performance on the Tower of London test after severe head injury. Journal of the International Neuropsychological Society, 1(6), 537–544.PubMedGoogle Scholar
  55. 55.
    Karnath, H. O., & Wallesch, C. W. (1992). Inflexibility of mental planning: A characteristic disorder with prefrontal lobe lesions? Neuropsychologia, 30(11), 1011–1016.PubMedGoogle Scholar
  56. 56.
    Karnath, H. O., Wallesch, C. W., & Zimmermann, P. (1991). Mental planning and anticipatory processes with acute and chronic frontal lobe lesions: A comparison of maze performance in routine and non-routine situations. Neuropsychologia, 29(4), 271–290.PubMedGoogle Scholar
  57. 57.
    Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: A framework for understanding aspects of the functional anatomy of language. Cognition, 92(1–2), 67–99.PubMedGoogle Scholar
  58. 58.
    Gershberg, F. B., & Shimamura, A. P. (1995). Impaired use of organizational strategies in free recall following frontal lobe damage. Neuropsychologia, 33(10), 1305–1333.PubMedGoogle Scholar
  59. 59.
    Janowsky, J. S., & Thomas-Thrapp, L. J. (1993). Complex figure recall in the elderly: A deficit in memory or constructional strategy? Journal of Clinical and Experimental Neuropsychology, 15(2), 159–169.PubMedGoogle Scholar
  60. 60.
    Alexander, M. P., Stuss, D. T., Picton, T., Shallice, T., & Gillingham, S. (2007). Regional frontal injuries cause distinct impairments in cognitive control. Neurology, 68(18), 1515–1523.PubMedGoogle Scholar
  61. 61.
    Rogers, R. D., Sahakian, B. J., Hodges, J. R., Polkey, C. E., Kennard, C., & Robbins, T. W. (1998). Dissociating executive mechanisms of task control following frontal lobe damage and Parkinson’s disease. Brain, 121(Pt 5), 815–842.PubMedGoogle Scholar
  62. 62.
    Hawley, C. A. (2005). Saint or sinner? Teacher perceptions of a child with traumatic brain injury. Pediatric Rehabilitation, 8(2), 117–129.PubMedGoogle Scholar
  63. 63.
    Furuyashiki, T., & Gallagher, M. (2007). Neural encoding in the orbitofrontal cortex related to goal-directed behavior. Annals of the New York Academy of Sciences, 1121, 193–215.PubMedGoogle Scholar
  64. 64.
    Glosser, G., & Goodglass, H. (1990). Disorders in executive control functions among aphasic and other brain-damaged patients. Journal of Clinical and Experimental Neuropsychology, 12(4), 485–501.PubMedGoogle Scholar
  65. 65.
    Sandson, J., & Albert, M. L. (1984). Varieties of perseveration. Neuropsychologia, 22(6), 715–732.PubMedGoogle Scholar
  66. 66.
    Koenigs, M., Holliday, J., Solomon, J., & Grafman, J. (2010). Left dorsomedial frontal brain damage is associated with insomnia. The Journal of Neuroscience, 30(47), 16041–16043.PubMedGoogle Scholar
  67. 67.
    Cohen, R. A., Kaplan, R. F., Meadows, M. E., & Wilkinson, H. (1994). Habituation and sensitization of the orienting response following bilateral anterior cingulotomy. Neuropsychologia, 32(5), 609–617.PubMedGoogle Scholar
  68. 68.
    Cohen, R. A., Kaplan, R. F., Moser, D. J., Jenkins, M. A., & Wilkinson, H. (1999). Impairments of attention after cingulotomy. Neurology, 53(4), 819–824.PubMedGoogle Scholar
  69. 69.
    Cohen, R. A., Kaplan, R. F., Zuffante, P., et al. (Fall 1999). Alteration of intention and self-initiated action associated with bilateral anterior cingulotomy. The Journal of Neuropsychiatry and Clinical Neurosciences, 11(4), 444–453.Google Scholar
  70. 70.
    Cohen, R., McCrae, V., Phillips, K., & Wilkinson, H. (1990). Neurobehavioral consequences of bilateral medial cingulotomy. Neurology, 40(1), 198.Google Scholar
  71. 71.
    Hecaen, H., Penfield, W., Bertrand, C., & Malmo, R. (1956). The syndrome of apractagnosia due to lesions of the minor hemisphere. Archives of Neurology and Psychiatry, 75, 400–434.PubMedGoogle Scholar
  72. 72.
    Kleist, K. (1907). Corticale (innervatorische) Apraxie. Journal of Psychiatry and Neurology, 28, 46–112.Google Scholar
  73. 73.
    Heilman, K. M., Bowers, D., Coslett, H. B., & Watson, R. T. (1983). Directional hypokinesia in neglect. Neurology, 2(33), 104.Google Scholar
  74. 74.
    Heilman, K. M., Bowers, D., Coslett, H. B., Whelan, H., & Watson, R. T. (1985). Directional hypokinesia: Prolonged reaction times for leftward movements in patients with right hemisphere lesions and neglect. Neurology, 35(6), 855–859.PubMedGoogle Scholar
  75. 75.
    Heilman, K. M., & Valenstein, E. (1972). Frontal lobe neglect in man. Neurology, 22(6), 660–664.PubMedGoogle Scholar
  76. 76.
    Coslett, H. B., Bowers, D., Fitzpatrick, E., Haws, B., & Heilman, K. M. (1990). Directional hypokinesia and hemispatial inattention in neglect. Brain, 113(Pt 2), 475–486.PubMedGoogle Scholar
  77. 77.
    Franz, S. I. (1907). On the function of the cerebrum: The frontal lobes. Archives of Psychology, 2, 1–64.Google Scholar
  78. 78.
    Jacobsen, C. F. (1931). A study of cerebral function in learning: The frontal lobes. The Journal of Comparative Neurology, 52, 271–340.Google Scholar
  79. 79.
    Jacobsen, C. F. (1936). Studies of cerebral functions in primates: 1. The functions of the frontal association areas in monkeys. Comparative Psychology, 13, 3–60.Google Scholar
  80. 80.
    Jacobsen, C. F., & Nissen, H. W. (1937). Studies of cerebral function in primates: IV. The effects of frontal lobe lesions on the delayed alternation habit in monkeys. Journal of Comparative and Physiological Psychology, 23, 101–112.Google Scholar
  81. 81.
    Miller, M. H., & Orbach, J. (1972). Retention of spatial alternation following frontal lobe resections in stump-tailed macaques. Neuropsychologia, 10, 291–298.PubMedGoogle Scholar
  82. 82.
    Kennard, M. A., Spencer, S., & Fountain, G. (1941). Hyperactivity in monkeys following lesions of the frontal lobes. Journal of Neurophysiology, 4, 512–524.Google Scholar
  83. 83.
    Kennard, M. A., & Ectors, L. (1938). Forced circling movements in monkeys following lesions of the frontal lobe. Journal of Neurophysiology, 1, 45–54.Google Scholar
  84. 84.
    Kennard, M. A. (1939). Alterations in response to visual stimuli following lesions of frontal lobe in monkeys. Archives of Neurology and Psychiatry, 41, 1153–1165.Google Scholar
  85. 85.
    Moratti, S., & Keil, A. (2005). Cortical activation during Pavlovian fear conditioning depends on heart rate response patterns: An MEG study. Brain Research, 25(2), 459–471.PubMedGoogle Scholar
  86. 86.
    Hugdahl, K., Berardi, A., Thompson, W. L., et al. (1995). Brain mechanisms in human classical conditioning: A PET blood flow study. Neuroreport, 6(13), 1723–1728.PubMedGoogle Scholar
  87. 87.
    Brennan, J. F., & Wisniewski, C. (1982). The efficacy of response prevention on avoidance behavior in young and adult rats with prefrontal cortical injury. Behavioural Brain Research, 4(2), 117–131.PubMedGoogle Scholar
  88. 88.
    Balinska, H. (1966). Extinction of a food-reinforced response in rabbits with lesions of the frontal cortex. Acta Biologiae Experimentalis, 26(4), 419–423.PubMedGoogle Scholar
  89. 89.
    Burgos-Robles, A., Vidal-Gonzalez, I., & Quirk, G. J. (2009). Sustained conditioned responses in prelimbic prefrontal neurons are correlated with fear expression and extinction failure. The Journal of Neuroscience, 29(26), 8474–8482.PubMedGoogle Scholar
  90. 90.
    Winstanley, C. A., Theobald, D. E., Cardinal, R. N., & Robbins, T. W. (2004). Contrasting roles of basolateral amygdala and orbitofrontal cortex in impulsive choice. The Journal of Neuroscience, 24(20), 4718–4722.PubMedGoogle Scholar
  91. 91.
    Taylor, C. L., Latimer, M. P., & Winn, P. (2003). Impaired delayed spatial win-shift behaviour on the eight arm radial maze following excitotoxic lesions of the medial prefrontal cortex in the rat. Behavioural Brain Research, 147(1–2), 107–114.PubMedGoogle Scholar
  92. 92.
    Baunez, C., Salin, P., Nieoullon, A., & Amalric, M. (1998). Impaired performance in a conditioned reaction time task after thermocoagulatory lesions of the fronto-parietal cortex in rats. Cerebral Cortex, 8(4), 301–309.PubMedGoogle Scholar
  93. 93.
    Grueninger, W. E., & Pribram, K. H. (1969). Effects of spatial and nonspatial distractors on performance latency of monkeys with frontal lesions. Journal of Comparative and Physiological Psychology, 68((2, Pt.1)), 203–209.PubMedGoogle Scholar
  94. 94.
    Butter, C. M. (1964). Habituation of responses to novel stimuli in monkeys with selective frontal lesions. Science (New York, N.Y.), 144, 313–315.Google Scholar
  95. 95.
    Pribram, K. H. (1969). The primate frontal cortex. Neuropsychologia, 7(3), 259–266.Google Scholar
  96. 96.
    Kolb, B. (1974). Some tests of response habituation in rats with discrete lesions to the orbital or medial frontal cortex. Canadian Journal of Psychology, 28(2), 260–267.PubMedGoogle Scholar
  97. 97.
    Rule, R. R., Shimamura, A. P., & Knight, R. T. (2002). Orbitofrontal cortex and dynamic filtering of emotional stimuli. Cognitive, Affective, & Behavioral Neuroscience, 2(3), 264–270.Google Scholar
  98. 98.
    Mishkin, M., & Pribram, K. H. (1955). Analysis of the effects of frontal lesions in monkeys: I. Variations of delayed alternations. Journal of Comparative and Physiological Psychology, 48(6), 492–495.PubMedGoogle Scholar
  99. 99.
    Mishkin, M., & Pribram, K. H. (1956). Analysis of the effects of frontal lesions in monkey: II. Variations of delayed response. Journal of Comparative and Physiological Psychology, 49(1), 36–40.PubMedGoogle Scholar
  100. 100.
    Pribram, K. H., Mishkin, M., Rosvold, H. E., & Kaplan, S. J. (1952). Effects on delayed-response performance of lesions of dorsolateral and ventromedial frontal cortex of baboons. Journal of Comparative and Physiological Psychology, 45, 565–575.PubMedGoogle Scholar
  101. 101.
    Pribram, K. H., Konrad, K., & Gainsburg, D. (1966). Frontal lesions and behavioral instability. Journal of Comparative and Physiological Psychology, 62(1), 123–124.PubMedGoogle Scholar
  102. 102.
    Pribram, K. H., Lim, H., Poppen, R., & Bagshaw, M. (1966). Limbic lesions and the temporal structure of redundancy. Journal of Comparative and Physiological Psychology, 61(3), 368–373.PubMedGoogle Scholar
  103. 103.
    Pribram, K. H., & Mishkin, M. (1956). Analysis of the effects of frontal lesions in monkeys. III. Object alternation. Journal of Comparative and Physiological Psychology, 49(1), 41–45.PubMedGoogle Scholar
  104. 104.
    Stuss, D. T., & Knight, R. T. (2002). Principles of frontal lobe function. Oxford: Oxford University Press.Google Scholar
  105. 105.
    Watanabe, M. (1981). Prefrontal unit activity during delayed conditional discriminations in the monkey. Brain Research, 225(1), 51–65.PubMedGoogle Scholar
  106. 106.
    Watanabe, T., Kodama, N., Mori, T., & Suzuki, J. (1980). [Surgery of orbital tumor—analysis of location and appropriate operative approaches (author’s transl)]. No shinkei Geka. Neurological Surgery, 8(6), 545–549.PubMedGoogle Scholar
  107. 107.
    Poucet, B. (1989). Object exploration, habituation, and response to a spatial change in rats following septal or medial frontal cortical damage. Behavioral Neuroscience, 103(5), 1009–1016.PubMedGoogle Scholar
  108. 108.
    Mogensen, J., & Divac, I. (1993). Behavioural changes after ablation of subdivisions of the rat prefrontal cortex. Acta Neurobiologiae Experimentalis, 53(3), 439–449.PubMedGoogle Scholar
  109. 109.
    Rosenkilde, C. E., Bauer, R. H., & Fuster, J. M. (1981). Single cell activity in ventral prefrontal cortex of behaving monkeys. Brain Research, 209(2), 375–394.PubMedGoogle Scholar
  110. 110.
    Yamada, M., Pita, M. C., Iijima, T., & Tsutsui, K. (2010). Rule-dependent anticipatory activity in prefrontal neurons. Neuroscience Research, 67(2), 162–171.PubMedGoogle Scholar
  111. 111.
    Phillips, A. N., & Segraves, M. A. (2010). Predictive activity in macaque frontal eye field neurons during natural scene searching. Journal of Neurophysiology, 103(3), 1238–1252.PubMedGoogle Scholar
  112. 112.
    Mort, D. J., Perry, R. J., Mannan, S. K., et al. (2003). Differential cortical activation during voluntary and reflexive saccades in man. NeuroImage, 18(2), 231–246.PubMedGoogle Scholar
  113. 113.
    Gitelman, D. R., Parrish, T. B., Friston, K. J., & Mesulam, M. M. (2002). Functional anatomy of visual search: Regional segregations within the frontal eye fields and effective connectivity of the superior colliculus. NeuroImage, 15(4), 970–982.PubMedGoogle Scholar
  114. 114.
    Lalonde, R., & Badescu, R. (1995). Exploratory drive, frontal lobe function and adipsia in aging. Gerontology, 41(3), 134–144.PubMedGoogle Scholar
  115. 115.
    Giovannini, M. G., Rakovska, A., Benton, R. S., Pazzagli, M., Bianchi, L., & Pepeu, G. (2001). Effects of novelty and habituation on acetylcholine, GABA, and glutamate release from the frontal cortex and hippocampus of freely moving rats. Neuroscience, 106(1), 43–53.PubMedGoogle Scholar
  116. 116.
    Himmelbach, M., Erb, M., & Karnath, H. O. (2006). Exploring the visual world: The neural substrate of spatial orienting. NeuroImage, 32(4), 1747–1759.PubMedGoogle Scholar
  117. 117.
    Porrino, L. J. G., & Rakic, P. (1982). Brainstem innervation of prefrontal and anterior cingulate cortex in the rhesus monkey revealed by retrograde transport of HRP. The Journal of Comparative Neurology, 205, 63–76.PubMedGoogle Scholar
  118. 118.
    Gentilucci, M., Bertolani, L., Benuzzi, F., Negrotti, A., Pavesi, G., & Gangitano, M. (2000). Impaired control of an action after supplementary motor area lesion: A case study. Neuropsychologia, 38(10), 1398–1404.PubMedGoogle Scholar
  119. 119.
    Freund, H. J., & Hummelsheim, H. (1985). Lesions of premotor cortex in man. Brain, 108(Pt 3), 697–733.PubMedGoogle Scholar
  120. 120.
    Gentile, A. M. (1972). Movement organization and delayed alternation behavior of monkeys following selective ablation of frontal cortex. Acta Neurobiologiae Experimentalis, 32(2), 277–304.PubMedGoogle Scholar
  121. 121.
    Dick, J. P., Benecke, R., Rothwell, J. C., Day, B. L., & Marsden, C. D. (1986). Simple and complex movements in a patient with infarction of the right supplementary motor area. Movement Disorders, 1(4), 255–266.PubMedGoogle Scholar
  122. 122.
    De Renzi, E., Faglioni, P., Lodesani, M., & Vecchi, A. (1983). Performance of left brain-damaged patients on imitation of single movements and motor sequences. Frontal and parietal-injured patients compared. Cortex; A Journal Devoted to the Study of the Nervous System and Behavior, 19(3), 333–343.PubMedGoogle Scholar
  123. 123.
    Halsband, U., & Lange, R. K. (2006). Motor learning in man: A review of functional and clinical studies. Journal of Physiology, Paris, 99(4–6), 414–424.PubMedGoogle Scholar
  124. 124.
    Boettiger, C. A., & D’Esposito, M. (2005). Frontal networks for learning and executing arbitrary stimulus–response associations. The Journal of Neuroscience, 25(10), 2723–2732.PubMedGoogle Scholar
  125. 125.
    Walton, M. E., Bannerman, D. M., & Rushworth, M. F. (2002). The role of rat medial frontal cortex in effort-based decision making. The Journal of Neuroscience, 22(24), 10996–11003.PubMedGoogle Scholar
  126. 126.
    Schubotz, R. I., & von Cramon, D. Y. (2001). Interval and ordinal properties of sequences are associated with distinct premotor areas. Cerebral Cortex, 11(3), 210–222.PubMedGoogle Scholar
  127. 127.
    Gandhi, C. C., Kelly, R. M., Wiley, R. G., & Walsh, T. J. (2000). Impaired acquisition of a Morris water maze task following selective destruction of cerebellar purkinje cells with OX7-saporin. Behavioural Brain Research, 109(1), 37–47.PubMedGoogle Scholar
  128. 128.
    Gaymard, B., Ploner, C. J., Rivaud-Pechoux, S., & Pierrot-Deseilligny, C. (1999). The frontal eye field is involved in spatial short-term memory but not in reflexive saccade inhibition. Experimental Brain Research. Experimentelle Hirnforschung, 129(2), 288–301.Google Scholar
  129. 129.
    Godefroy, O., Cabaret, M., Petit-Chenal, V., Pruvo, J. P., & Rousseaux, M. (1999). Control functions of the frontal lobes. Modularity of the central-supervisory system? Cortex; A Journal Devoted to the Study of the Nervous System and Behavior, 35(1), 1–20.PubMedGoogle Scholar
  130. 130.
    Rushworth, M. F., Nixon, P. D., Wade, D. T., Renowden, S., & Passingham, R. E. (1998). The left hemisphere and the selection of learned actions. Neuropsychologia, 36(1), 11–24.PubMedGoogle Scholar
  131. 131.
    Stoehr, J. D., Mobley, S. L., Roice, D., et al. (1997). The effects of selective cholinergic basal forebrain lesions and aging upon expectancy in the rat. Neurobiology of Learning and Memory, 67(3), 214–227.PubMedGoogle Scholar
  132. 132.
    Beitel, R. E., & Kaas, J. H. (1993). Effects of bilateral and unilateral ablation of auditory cortex in cats on the unconditioned head orienting response to acoustic stimuli. Journal of Neurophysiology, 70(1), 351–369.PubMedGoogle Scholar
  133. 133.
    Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1993). Dorsolateral prefrontal lesions and oculomotor delayed-response performance: Evidence for mnemonic “scotomas”. The Journal of Neuroscience, 13(4), 1479–1497.PubMedGoogle Scholar
  134. 134.
    van Haaren, F., van Zijderveld, G., van Hest, A., de Bruin, J. P., van Eden, C. G., & van de Poll, N. E. (1988). Acquisition of conditional associations and operant delayed spatial response alternation: Effects of lesions in the medial prefrontal cortex. Behavioral Neuroscience, 102(4), 481–488.PubMedGoogle Scholar
  135. 135.
    Ridley, R. M., Murray, T. K., Johnson, J. A., & Baker, H. F. (1986). Learning impairment following lesion of the basal nucleus of Meynert in the marmoset: Modification by cholinergic drugs. Brain Research, 376(1), 108–116.PubMedGoogle Scholar
  136. 136.
    Koch, I., Reverberi, C., & Rumiati, R. I. (2006). Learning hierarchically structured action sequences is unaffected by prefrontal-cortex lesion. Experimental Brain Research. Experimentelle Hirnforschung, 175(4), 667–675.Google Scholar
  137. 137.
    Exner, C., Koschack, J., & Irle, E. (2002). The differential role of premotor frontal cortex and basal ganglia in motor sequence learning: Evidence from focal basal ganglia lesions. Learning & Memory (Cold Spring Harbor, N.Y.), 9(6), 376–386.Google Scholar
  138. 138.
    Lepage, M., Beaudoin, G., Boulet, C., et al. (1999). Frontal cortex and the programming of repetitive tapping movements in man: Lesion effects and functional neuroimaging. Brain Research, 8(1), 17–25.PubMedGoogle Scholar
  139. 139.
    Fritts, M. E., Asbury, E. T., Horton, J. E., & Isaac, W. L. (1998). Medial prefrontal lesion deficits involving or sparing the prelimbic area in the rat. Physiology & Behavior, 64(3), 373–380.Google Scholar
  140. 140.
    Tanji, J. (1994). The supplementary motor area in the cerebral cortex. Neuroscience Research, 19(3), 251–268.PubMedGoogle Scholar
  141. 141.
    Christie, D., Terry, P., & Oakley, D. A. (1990). The effect of unilateral anteromedial cortex lesions on prey-catching and spatio-motor behaviour in the rat. Behavioural Brain Research, 37(3), 263–268.PubMedGoogle Scholar
  142. 142.
    Luthman, J., Fredriksson, A., Sundstrom, E., Jonsson, G., & Archer, T. (1989). Selective lesion of central dopamine or noradrenaline neuron systems in the neonatal rat: Motor behavior and monoamine alterations at adult stage. Behavioural Brain Research, 33(3), 267–277.PubMedGoogle Scholar
  143. 143.
    Starkstein, S. E., Moran, T. H., Bowersox, J. A., & Robinson, R. G. (1988). Behavioral abnormalities induced by frontal cortical and nucleus accumbens lesions. Brain Research, 473(1), 74–80.PubMedGoogle Scholar
  144. 144.
    van Hof, M. W., Hobbelen, J. F., & De Vos-Korthals, W. H. (1987). Motor behaviour and visual discrimination after neonatal and adult hemidecortication in the rabbit. Behavioural Brain Research, 25(3), 247–253.PubMedGoogle Scholar
  145. 145.
    Oades, R. D., Taghzouti, K., Rivet, J. M., Simon, H., & Le Moal, M. (1986). Locomotor activity in relation to dopamine and noradrenaline in the nucleus accumbens, septal and frontal areas: A 6-hydroxydopamine study. Neuropsychobiology, 16(1), 37–42.PubMedGoogle Scholar
  146. 146.
    Nonneman, A. J., & Corwin, J. V. (1981). Differential effects of prefrontal cortex ablation in neonatal, juvenile, and young adult rats. Journal of Comparative and Physiological Psychology, 95(4), 588–602.PubMedGoogle Scholar
  147. 147.
    Fabre, M., & Buser, P. (1980). Structures involved in acquisition and performance of visually guided movements in the cat. Acta Neurobiologiae Experimentalis, 40(1), 95–116.PubMedGoogle Scholar
  148. 148.
    Toni, I., Thoenissen, D., & Zilles, K. (2001). Movement preparation and motor intention. NeuroImage, 14(1 Pt 2), S110–S117.PubMedGoogle Scholar
  149. 149.
    Rizzolatti, G., Matelli, M., & Pavesi, G. (1983). Deficits in attention and movement following the removal of postarcuate (area 6) and prearcuate (area 8) cortex in macaque monkeys. Brain, 106(Pt 3), 655–673.PubMedGoogle Scholar
  150. 150.
    Mainero, C., Caramia, F., Pozzilli, C., et al. (2004). fMRI evidence of brain reorganization during attention and memory tasks in multiple sclerosis. NeuroImage, 21(3), 858–867.PubMedGoogle Scholar
  151. 151.
    Muller, N. G., & Knight, R. T. (2006). The functional neuroanatomy of working memory: Contributions of human brain lesion studies. Neuroscience, 139(1), 51–58.PubMedGoogle Scholar
  152. 152.
    Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science (New York, N.Y.), 283(5408), 1657–1661.Google Scholar
  153. 153.
    Smith, E. E., Jonides, J., Marshuetz, C., & Koeppe, R. A. (1998). Components of verbal working memory: Evidence from neuroimaging. Proceedings of the National Academy of Sciences of the United States of America, 95(3), 876–882.PubMedGoogle Scholar
  154. 154.
    Smith, E. E., Jonides, J., & Koeppe, R. A. (1996). Dissociating verbal and spatial working memory using PET. Cerebral Cortex, 6(1), 11–20.PubMedGoogle Scholar
  155. 155.
    Gunstad, J., Benitez, A., Hoth, K. F., et al. (2009). P-selectin 1087G/A polymorphism is associated with neuropsychological test performance in older adults with cardiovascular disease. Stroke, 40(9), 2969–2972.PubMedGoogle Scholar
  156. 156.
    Haley, A. P., Sweet, L. H., Gunstad, J., et al. (2007). Verbal working memory and atherosclerosis in patients with cardiovascular disease: An fMRI study. Journal of Neuroimaging, 17(3), 227–233.PubMedGoogle Scholar
  157. 157.
    Paskavitz, J. F., Sweet, L. H., Wellen, J., Helmer, K. G., Rao, S. M., & Cohen, R. A. (2010). Recruitment and stabilization of brain activation within a working memory task; an FMRI study. Brain Imaging and Behavior, 4(1), 5–21.PubMedGoogle Scholar
  158. 158.
    Sweet, L. H., Mulligan, R. C., Finnerty, C. E., et al. (2010). Effects of nicotine withdrawal on verbal working memory and associated brain response. Psychiatry Research, 183(1), 69–74.PubMedGoogle Scholar
  159. 159.
    Sweet, L. H., Paskavitz, J. F., Haley, A. P., et al. (2008). Imaging phonological similarity effects on verbal working memory. Neuropsychologia, 46(4), 1114–1123.PubMedGoogle Scholar
  160. 160.
    Sweet, L. H., Rao, S. M., Primeau, M., Durgerian, S., & Cohen, R. A. (2006). Functional magnetic resonance imaging response to increased verbal working memory demands among patients with multiple sclerosis. Human Brain Mapping, 27(1), 28–36.PubMedGoogle Scholar
  161. 161.
    Sweet, L. H., Rao, S. M., Primeau, M., Mayer, A. R., & Cohen, R. A. (2004). Functional magnetic resonance imaging of working memory among multiple sclerosis patients. Journal of Neuroimaging, 14(2), 150–157.PubMedGoogle Scholar
  162. 162.
    Sweet, L. H., Vanderhill, S. D., Jerskey, B. A., Gordon, N. M., Paul, R. H., & Cohen, R. A. (2010). Subvocal articulatory rehearsal during verbal working memory in multiple sclerosis. Neurocase, 16(5), 418–425.PubMedGoogle Scholar
  163. 163.
    Awh, E., Smith, E. E., & Jonides, J. (1995). Human rehearsal processes and the frontal lobes: PET evidence. Annals of the New York Academy of Sciences, 769, 97–117.PubMedGoogle Scholar
  164. 164.
    Honey, G. D., Bullmore, E. T., Soni, W., Varatheesan, M., Williams, S. C., & Sharma, T. (1999). Differences in frontal cortical activation by a working memory task after substitution of risperidone for typical antipsychotic drugs in patients with schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 96(23), 13432–13437.PubMedGoogle Scholar
  165. 165.
    Honey, G. D., Fu, C. H., Kim, J., et al. (2002). Effects of verbal working memory load on corticocortical connectivity modeled by path analysis of functional magnetic resonance imaging data. NeuroImage, 17(2), 573–582.PubMedGoogle Scholar
  166. 166.
    Okada, Y. C., & Salenius, S. (1998). Roles of attention, memory, and motor preparation in modulating human brain activity in a spatial working memory task. Cerebral Cortex, 8(1), 80–96.PubMedGoogle Scholar
  167. 167.
    Wojciulik, E., Husain, M., Clarke, K., & Driver, J. (2001). Spatial working memory deficit in unilateral neglect. Neuropsychologia, 39(4), 390–396.PubMedGoogle Scholar
  168. 168.
    Braver, T. S., Cohen, J. D., Nystrom, L. E., Jonides, J., Smith, E. E., & Noll, D. C. (1997). A parametric study of prefrontal cortex involvement in human working memory. NeuroImage, 5(1), 49–62.PubMedGoogle Scholar
  169. 169.
    Rosen, A. C., Rao, S. M., Caffarra, P., et al. (1999). Neural basis of endogenous and exogenous spatial orienting. A functional MRI study. Journal of Cognitive Neuroscience, 11(2), 135–152.PubMedGoogle Scholar
  170. 170.
    Corbetta, M., Kincade, J. M., & Shulman, G. L. (2002). Neural systems for visual orienting and their relationships to spatial working memory. Journal of Cognitive Neuroscience, 14(3), 508–523.PubMedGoogle Scholar
  171. 171.
    Barch, D. M., Braver, T. S., Nystrom, L. E., Forman, S. D., Noll, D. C., & Cohen, J. D. (1997). Dissociating working memory from task difficulty in human prefrontal cortex. Neuropsychologia, 35(10), 1373–1380.PubMedGoogle Scholar
  172. 172.
    Rowe, J. B., & Passingham, R. E. (2001). Working memory for location and time: Activity in prefrontal area 46 relates to selection rather than maintenance in memory. NeuroImage, 14(1 Pt 1), 77–86.PubMedGoogle Scholar
  173. 173.
    Teuber, H. L. (1960). Visual field defects after penetrating missile wounds of the brain. Cambridge: Harvard University Press (Published for the Commonwealth Fund).Google Scholar
  174. 174.
    Luria, A. R., & Homskaya, E. D. (1962). An objective study of ocular movements and their control. Psychologische Beitrage, 6, 598–606.Google Scholar
  175. 175.
    Luria, A. R., Karpov, B. A., & Yarbuss, A. L. (1966). Disturbances of active visual perception with lesions of the frontal lobes. Cortex, 2, 202–212.Google Scholar
  176. 176.
    Yarbus, A. (1965). The role of eye movements in the perception of pictures. Moscow: Nauka.Google Scholar
  177. 177.
    Butter, C. M. (1964). Habitation of responses to novel stimuli in monkeys with selective frontal lesions. Science (New York, N.Y.), l44, 3l3–3l5.Google Scholar
  178. 178.
    Butter, C. M. (1972). Detection of masked patterns in monkeys with inferotemporal, striate or dorsolateral frontal lesions. Neuropsychologia, 10(2), 241–243.PubMedGoogle Scholar
  179. 179.
    Butter, C. M., Rapcsak, S., Watson, R. T., & Heilman, K. M. (1988). Changes in sensory inattention, directional motor neglect and “release” of the fixation reflex following a unilateral frontal lesion: A case report. Neuropsychologia, 26(4), 533–545.PubMedGoogle Scholar
  180. 180.
    Butter, C. M., Mark, V. W., & Heilman, K. M. (1988). An experimental analysis of factors underlying neglect in line bisection. Journal of Neurology, Neurosurgery, and Psychiatry., 51(12), 1581–1583.PubMedGoogle Scholar
  181. 181.
    Goldberg, M. E., & Bruce, C. J. (1986). The role of the arcuate frontal eye fields in the generation of saccadic eye movements. Progress in Brain Research, 64, 143–154.PubMedGoogle Scholar
  182. 182.
    Goldberg, M. E., & Segraves, M. A. (1987). Visuospatial and motor attention in the monkey. Neuropsychologia, 25(1A), 107–118.PubMedGoogle Scholar
  183. 183.
    Goldberg, M. E., & Bruce, C. J. (1985). Cerebral cortical activity associated with the orientation of visual attention in the rhesus monkey. Vision Research, 25(3), 471–481.PubMedGoogle Scholar
  184. 184.
    Mannan, S. K., Mort, D. J., Hodgson, T. L., Driver, J., Kennard, C., & Husain, M. (2005). Revisiting previously searched locations in visual neglect: Role of right parietal and frontal lesions in misjudging old locations as new. Journal of Cognitive Neuroscience, 17(2), 340–354.PubMedGoogle Scholar
  185. 185.
    Nagel-Leiby, S., Buchtel, H. A., & Welch, K. M. (1990). Cerebral control of directed visual attention and orienting saccades. Brain, 113(Pt 1), 237–276.PubMedGoogle Scholar
  186. 186.
    Kaplan, R. F., Cohen, R. A., Rosengart, A., Elsner, A. E., Hedges, T. R., III, & Caplan, L. R. (1995). Extinction during time controlled direct retinal stimulation after recovery from right hemispheric stroke. Journal of Neurology, Neurosurgery, and Psychiatry, 59(5), 534–536.PubMedGoogle Scholar
  187. 187.
    Goldberg, M. E., & Bushnell, M. D. (1981). Behavioral enhancement of visual response in monkey cerebral cortex. II. Modulation in frontal eye fields specifically related to saccades. Journal of Neurophysiology, 46, 773–787.PubMedGoogle Scholar
  188. 188.
    Schiller, P. H., True, S. D., & Conway, J. L. (1979). Effects of frontal eye field and superior colliculus ablations on eye movements. Science (New York, N.Y.), 206(4418), 590–592.Google Scholar
  189. 189.
    Schiller, P. H., True, S. D., & Conway, J. L. (1980). Deficits in eye movements following frontal eye-field and superior colliculus ablations. Journal of Neurophysiology, 44(6), 1175–1189.PubMedGoogle Scholar
  190. 190.
    Crowe, D. P., Yeo, C. H., & Russell, I. S. (1981). The effects of unilateral frontal eye field lesions in the monkey: Visual-motor guidance and avoidance behavior. Behavioural Brain Research, 2, 165–185.Google Scholar
  191. 191.
    Vecera, S. P., & Rizzo, M. (2004). What are you looking at? Impaired ‘social attention’ following frontal-lobe damage. Neuropsychologia, 42(12), 1657–1665.PubMedGoogle Scholar
  192. 192.
    Walker, R., Husain, M., Hodgson, T. L., Harrison, J., & Kennard, C. (1998). Saccadic eye movement and working memory deficits following damage to human prefrontal cortex. Neuropsychologia, 36(11), 1141–1159.PubMedGoogle Scholar
  193. 193.
    Matsushima, E., Kojima, T., Ohbayashi, S., Ando, H., Ando, K., & Shimazono, Y. (1992). Exploratory eye movements in schizophrenic patients and patients with frontal lobe lesions. European Archives of Psychiatry and Clinical Neuroscience, 241(4), 210–214.PubMedGoogle Scholar
  194. 194.
    Nummenmaa, L., Passamonti, L., Rowe, J., Engell, A. D., & Calder, A. J. (2010). Connectivity analysis reveals a cortical network for eye gaze perception. Cerebral Cortex, 20(8), 1780–1787.PubMedGoogle Scholar
  195. 195.
    McDowell, J. E., Dyckman, K. A., Austin, B. P., & Clementz, B. A. (2008). Neurophysiology and neuroanatomy of reflexive and volitional saccades: Evidence from studies of humans. Brain and Cognition, 68(3), 255–270.PubMedGoogle Scholar
  196. 196.
    Morecraft, R. J., Geula, C., & Mesulam, M. M. (1993). Architecture of connectivity within a cingulo-fronto-parietal neurocognitive network for directed attention. Archives of Neurology, 50(3), 279–284.PubMedGoogle Scholar
  197. 197.
    Shook, B. L., Schlag-Rey, M., & Schlag, J. (1991). Primate supplementary eye field. II. Comparative aspects of connections with the thalamus, corpus striatum, and related forebrain nuclei. The Journal of Comparative Neurology, 307(4), 562–583.PubMedGoogle Scholar
  198. 198.
    Shook, B. L., Schlag-Rey, M., & Schlag, J. (1990). Primate supplementary eye field: I. Comparative aspects of mesencephalic and pontine connections. The Journal of Comparative Neurology, 301(4), 618–642.PubMedGoogle Scholar
  199. 199.
    Leichnetz, G. R., & Goldberg, M. E. (1988). Higher centers concerned with eye movement and visual attention: Cerebral cortex and thalamus. Reviews of Oculomotor Research, 2, 365–429.PubMedGoogle Scholar
  200. 200.
    Wolynski, B., Schott, B. H., Kanowski, M., & Hoffmann, M. B. (2009). Visuo-motor integration in humans: Cortical patterns of response lateralisation and functional connectivity. Neuropsychologia, 47(5), 1313–1322.PubMedGoogle Scholar
  201. 201.
    Miller, L. M., Sun, F. T., Curtis, C. E., & D’Esposito, M. (2005). Functional interactions between oculomotor regions during prosaccades and antisaccades. Human Brain Mapping, 26(2), 119–127.PubMedGoogle Scholar
  202. 202.
    Hinkley, L. B., Nagarajan, S. S., Dalal, S. S., Guggisberg, A. G., & Disbrow, E. A. (2011). Cortical temporal dynamics of visually guided behavior. Cerebral Cortex, 21(3), 519–529.PubMedGoogle Scholar
  203. 203.
    Godefroy, O., & Rousseaux, M. (1996). Divided and focused attention in patients with lesion of the prefrontal cortex. Brain and Cognition, 30(2), 155–174.PubMedGoogle Scholar
  204. 204.
    Gutling, E., Gonser, A., Regard, M., Glinz, W., & Landis, T. (1993). Dissociation of frontal and parietal components of somatosensory evoked potentials in severe head injury. Electroencephalography and Clinical Neurophysiology, 88(5), 369–376.PubMedGoogle Scholar
  205. 205.
    Mataro, M., Poca, M. A., Sahuquillo, J., et al. (2001). Neuropsychological outcome in relation to the traumatic coma data bank classification of computed tomography imaging. Journal of Neurotrauma, 18(9), 869–879.PubMedGoogle Scholar
  206. 206.
    Spikman, J. M., Deelman, B. G., & van Zomeren, A. H. (2000). Executive functioning, attention and frontal lesions in patients with chronic CHI. Journal of Clinical and Experimental Neuropsychology, 22(3), 325–338.PubMedGoogle Scholar
  207. 207.
    Stablum, F., Leonardi, G., Mazzoldi, M., Umilta, C., & Morra, S. (1994). Attention and control deficits following closed head injury. Cortex; A Journal Devoted to the Study of the Nervous System and Behavior, 30(4), 603–618.PubMedGoogle Scholar
  208. 208.
    Stuss, D. T., Stethem, L. L., Hugenholtz, H., Picton, T., Pivik, J., & Richard, M. T. (1989). Reaction time after head injury: Fatigue, divided and focused attention, and consistency of performance. Journal of Neurology, Neurosurgery, and Psychiatry, 52(6), 742–748.PubMedGoogle Scholar
  209. 209.
    Vilkki, J. (1992). Cognitive flexibility and mental programming after closed head injuries and anterior or posterior cerebral excisions. Neuropsychologia, 30(9), 807–814.PubMedGoogle Scholar
  210. 210.
    Vilkki, J., Virtanen, S., Surma-Aho, O., & Servo, A. (1996). Dual task performance after focal cerebral lesions and closed head injuries. Neuropsychologia, 34(11), 1051–1056.PubMedGoogle Scholar
  211. 211.
    Zahn, T. P., & Mirsky, A. F. (1999). Reaction time indicators of attention deficits in closed head injury. Journal of Clinical and Experimental Neuropsychology, 21(3), 352–367.PubMedGoogle Scholar
  212. 212.
    Robertson, I. H., Manly, T., Andrade, J., Baddeley, B. T., & Yiend, J. (1997). ‘Oops!’: Performance correlates of everyday attentional failures in traumatic brain injured and normal subjects. Neuropsychologia, 35(6), 747–758.PubMedGoogle Scholar
  213. 213.
    Mitchell, D. J., McNaughton, N., Flanagan, D., & Kirk, I. J. (2008). Frontal-midline theta from the perspective of hippocampal “theta”. Progress in Neurobiology, 86(3), 156–185.PubMedGoogle Scholar
  214. 214.
    Shallice, T., Stuss, D. T., Alexander, M. P., Picton, T. W., & Derkzen, D. (2008). The multiple dimensions of sustained attention. Cortex; A Journal Devoted to the Study of the Nervous System and Behavior, 44(7), 794–805.PubMedGoogle Scholar
  215. 215.
    Mathias, J. L., Beall, J. A., & Bigler, E. D. (2004). Neuropsychological and information processing deficits following mild traumatic brain injury. Journal of the International Neuropsychological Society, 10(2), 286–297.PubMedGoogle Scholar
  216. 216.
    Manly, T., Owen, A. M., McAvinue, L., et al. (2003). Enhancing the sensitivity of a sustained attention task to frontal damage: Convergent clinical and functional imaging evidence. Neurocase, 9(4), 340–349.PubMedGoogle Scholar
  217. 217.
    Hinshaw, S. (1994). Attention deficit hyperactivity disorder in children. Thousand Oaks, CA: Sage.Google Scholar
  218. 218.
    Barkley, R. A. (1988). Attention. New York: Plenum.Google Scholar
  219. 219.
    Barkley, R. A. (1988). Attention. In M. Tramonthana & S. Hooper (Eds.), Assessment issues in child neuropsychology (pp. 115–154). New York, NY: Plenum.Google Scholar
  220. 220.
    Barkley, R. A. (1997). ADHD and the nature of self-control. New York, NY: Guilford Press.Google Scholar
  221. 221.
    Barkley, R. A., Edwards, G., Laneri, M., Fletcher, K., & Metevia, L. (2001). Executive functioning, temporal discounting, and sense of time in adolescents with attention deficit hyperactivity disorder (ADHD) and oppositional defiant disorder (ODD). Journal of Abnormal Child Psychology, 29(6), 541–556.PubMedGoogle Scholar
  222. 222.
    Bush, G., Spencer, T. J., Holmes, J., et al. (2008). Functional magnetic resonance imaging of methylphenidate and placebo in attention-deficit/hyperactivity disorder during the multi-source interference task. Archives of General Psychiatry, 65(1), 102–114.PubMedGoogle Scholar
  223. 223.
    Biederman, J., Makris, N., Valera, E. M., et al. (2008). Towards further understanding of the co-morbidity between attention deficit hyperactivity disorder and bipolar disorder: A MRI study of brain volumes. Psychological Medicine, 38(7), 1045–1056.PubMedGoogle Scholar
  224. 224.
    Makris, N., Buka, S. L., Biederman, J., et al. (2008). Attention and executive systems abnormalities in adults with childhood ADHD: A DT-MRI study of connections. Cerebral Cortex, 18(5), 1210–1220.PubMedGoogle Scholar
  225. 225.
    Johnson, K. A., Kelly, S. P., Bellgrove, M. A., et al. (2007). Response variability in attention deficit hyperactivity disorder: Evidence for neuropsychological heterogeneity. Neuropsychologia, 45(4), 630–638.PubMedGoogle Scholar
  226. 226.
    Schecklmann, M., Schenk, E., Maisch, A., et al. (2011). Altered frontal and temporal brain function during olfactory stimulation in adult attention-deficit/hyperactivity disorder. Neuropsychobiology, 63(2), 66–76.PubMedGoogle Scholar
  227. 227.
    Rubia, K., Halari, R., Smith, A. B., Mohammad, M., Scott, S., & Brammer, M. J. (2009). Shared and disorder-specific prefrontal abnormalities in boys with pure attention-deficit/hyperactivity disorder compared to boys with pure CD during interference inhibition and attention allocation. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 50(6), 669–678.PubMedGoogle Scholar
  228. 228.
    Qiu, M. G., Ye, Z., Li, Q. Y., Liu, G. J., Xie, B., & Wang, J. (2011). Changes of brain structure and function in ADHD children. Brain Topography, 24(3–4), 243–252.PubMedGoogle Scholar
  229. 229.
    Negoro, H., Sawada, M., Iida, J., Ota, T., Tanaka, S., & Kishimoto, T. (2010). Prefrontal dysfunction in attention-deficit/hyperactivity disorder as measured by near-infrared spectroscopy. Child Psychiatry and Human Development, 41(2), 193–203.PubMedGoogle Scholar
  230. 230.
    Mazaheri, A., Coffey-Corina, S., Mangun, G. R., Bekker, E. M., Berry, A. S., & Corbett, B. A. (2010). Functional disconnection of frontal cortex and visual cortex in attention-deficit/hyperactivity disorder. Biological Psychiatry, 67(7), 617–623.PubMedGoogle Scholar
  231. 231.
    Clark, L., Blackwell, A. D., Aron, A. R., et al. (2007). Association between response inhibition and working memory in adult ADHD: A link to right frontal cortex pathology? Biological Psychiatry, 61(12), 1395–1401.PubMedGoogle Scholar
  232. 232.
    Cao, Q., Zang, Y., Zhu, C., et al. (2008). Alerting deficits in children with attention deficit/hyperactivity disorder: Event-related fMRI evidence. Brain Research, 1219, 159–168.PubMedGoogle Scholar
  233. 233.
    Batty, M. J., Liddle, E. B., Pitiot, A., et al. (2010). Cortical gray matter in attention-deficit/hyperactivity disorder: A structural magnetic resonance imaging study. Journal of the American Academy of Child and Adolescent Psychiatry, 49(3), 229–238.PubMedGoogle Scholar
  234. 234.
    Albrecht, B., Brandeis, D., Uebel, H., et al. (2008). Action monitoring in boys with attention-deficit/hyperactivity disorder, their nonaffected siblings, and normal control subjects: Evidence for an endophenotype. Biological Psychiatry, 64(7), 615–625.PubMedGoogle Scholar
  235. 235.
    Molenberghs, P., Gillebert, C. R., Schoofs, H., Dupont, P., Peeters, R., & Vandenberghe, R. (2009). Lesion neuroanatomy of the Sustained Attention to Response task. Neuropsychologia, 47(13), 2866–2875.PubMedGoogle Scholar
  236. 236.
    Maguire, A. M., & Ogden, J. A. (2002). MRI brain scan analyses and neuropsychological profiles of nine patients with persisting unilateral neglect. Neuropsychologia, 40(7), 879–887.PubMedGoogle Scholar
  237. 237.
    Kertesz, A., Nicholson, I., Cancelliere, A., Kassa, K., & Black, S. E. (1985). Motor impersistence: A right-hemisphere syndrome. Neurology, 35(5), 662–666.PubMedGoogle Scholar
  238. 238.
    Niki, C., Maruyama, T., Muragaki, Y., & Kumada, T. (2009). Disinhibition of sequential actions following right frontal lobe damage. Cognitive Neuropsychology, 26(3), 266–285.PubMedGoogle Scholar
  239. 239.
    Lindner, M. D., Plone, M. A., Cain, C. K., et al. (1998). Dissociable long-term cognitive deficits after frontal versus sensorimotor cortical contusions. Journal of Neurotrauma, 15(3), 199–216.PubMedGoogle Scholar
  240. 240.
    Kramer, M. E., Chiu, C. Y., Walz, N. C., et al. (2008). Long-term neural processing of attention following early childhood traumatic brain injury: fMRI and neurobehavioral outcomes. Journal of the International Neuropsychological Society, 14(3), 424–435.PubMedGoogle Scholar
  241. 241.
    Anderson, V., & Catroppa, C. (2005). Recovery of executive skills following paediatric traumatic brain injury (TBI): A 2 year follow-up. Brain Injury, 19(6), 459–470.PubMedGoogle Scholar
  242. 242.
    Solbakk, A. K., Reinvang, I., Nielsen, C., & Sundet, K. (1999). ERP indicators of disturbed attention in mild closed head injury: A frontal lobe syndrome? Psychophysiology, 36(6), 802–817.PubMedGoogle Scholar
  243. 243.
    Whyte, J., Fleming, M., Polansky, M., Cavallucci, C., & Coslett, H. B. (1997). Phasic arousal in response to auditory warnings after traumatic brain injury. Neuropsychologia, 35(3), 313–324.PubMedGoogle Scholar
  244. 244.
    Stuss, D. (1987). Contribution of frontal lobe injury to cognitive impairment after closed head injury: Methods of assessment and recent findings. In H. S. Levin, J. Grafman, & H. M. Eisenberg (Eds.), Neurobehavioral recovery from head injury (pp. 166–177). New York, NY: Oxford University Press.Google Scholar
  245. 245.
    Parasuraman, R., Mutter, S. A., & Molloy, R. (1991). Sustained attention following mild closed-head injury. Journal of Clinical and Experimental Neuropsychology, 13(5), 789–811.PubMedGoogle Scholar
  246. 246.
    Berardi, A., Parasuraman, R., & Haxby, J. V. (2001). Overall vigilance and sustained attention decrements in healthy aging. Experimental Aging Research, 27(1), 19–39.PubMedGoogle Scholar
  247. 247.
    Parasuraman, R., Nestor, P., & Greenwood, P. (1989). Sustained-attention capacity in young and older adults. Psychology and Aging, 4(3), 339–345.PubMedGoogle Scholar
  248. 248.
    Parasuraman, R., & Nestor, P. G. (1991). Attention and driving skills in aging and Alzheimer’s disease. Human Factors, 33(5), 539–557.PubMedGoogle Scholar
  249. 249.
    Stuss, D. T. (2006). Frontal lobes and attention: Processes and networks, fractionation and integration. Journal of the International Neuropsychological Society, 12(2), 261–271.PubMedGoogle Scholar
  250. 250.
    Stuss, D. T., Alexander, M. P., Shallice, T., et al. (2005). Multiple frontal systems controlling response speed. Neuropsychologia, 43(3), 396–417.PubMedGoogle Scholar
  251. 251.
    Chao, L. L., & Knight, R. T. (1997). Age-related prefrontal alterations during auditory memory. Neurobiology of Aging, 18(1), 87–95.PubMedGoogle Scholar
  252. 252.
    Chao, L. L., & Knight, R. T. (1996). Prefrontal and posterior cortical activation during auditory working memory. Brain Research. Cognitive Brain Research, 4(1), 27–37.PubMedGoogle Scholar
  253. 253.
    Chao, L. L., & Knight, R. T. (1998). Contribution of human prefrontal cortex to delay performance. Journal of Cognitive Neuroscience, 10(2), 167–177.PubMedGoogle Scholar
  254. 254.
    Godefroy, O., Lhullier, C., & Rousseaux, M. (1996). Non-spatial attention disorders in patients with frontal or posterior brain damage. Brain, 119(Pt 1), 191–202.PubMedGoogle Scholar
  255. 255.
    Murray, L. L., Holland, A. L., & Beeson, P. M. (1997). Auditory processing in individuals with mild aphasia: A study of resource allocation. Journal of Speech, Language, and Hearing Research, 40(4), 792–808.PubMedGoogle Scholar
  256. 256.
    Vilkki, J., & Holst, P. (1991). Mental programming after frontal lobe lesions: Results on digit symbol performance with self-selected goals. Cortex; A Journal Devoted to the Study of the Nervous System and Behavior, 27(2), 203–211.PubMedGoogle Scholar
  257. 257.
    Nakahachi, T., Ishii, R., Iwase, M., et al. (2008). Frontal activity during the digit symbol substitution test determined by multichannel near-infrared spectroscopy. Neuropsychobiology, 57(4), 151–158.PubMedGoogle Scholar
  258. 258.
    Meguro, K., Shimada, M., Yamaguchi, S., et al. (2001). Cognitive function and frontal lobe atrophy in normal elderly adults: Implications for dementia not as aging-related disorders and the reserve hypothesis. Psychiatry and Clinical Neurosciences, 55(6), 565–572.PubMedGoogle Scholar
  259. 259.
    Smith, E. E., & Jonides, J. (1997). Working memory: A view from neuroimaging. Cognitive Psychology, 33(1), 5–42.PubMedGoogle Scholar
  260. 260.
    Vidor, M. (1951). Personality changes following prefrontal leucotomy as reflected by the Minnesota multiphasic personality inventory and the results of psychometric testing. The Journal of Mental Science, 97(406), 159–173.PubMedGoogle Scholar
  261. 261.
    Hamlin, R. M. (1970). Intellectual function 14 years after frontal lobe surgery. Cortex; A Journal Devoted to the Study of the Nervous System and Behavior, 6(3), 299–307.PubMedGoogle Scholar
  262. 262.
    Janowsky, J. S., Shimamura, A. P., Kritchevsky, M., & Squire, L. R. (1989). Cognitive impairment following frontal lobe damage and its relevance to human amnesia. Behavioral Neuroscience, 103(3), 548–560.PubMedGoogle Scholar
  263. 263.
    Shimamura, A. P., Janowsky, J. S., & Squire, L. R. (1990). Memory for the temporal order of events in patients with frontal lobe lesions and amnesic patients. Neuropsychologia, 28(8), 803–813.PubMedGoogle Scholar
  264. 264.
    Janowsky, J. S., Shimamura, A. P., & Squire, L. R. (1989). Source memory impairment in patients with frontal lobe lesions. Neuropsychologia, 27(8), 1043–1056.PubMedGoogle Scholar
  265. 265.
    Jonides, J., Smith, E. E., Marshuetz, C., Koeppe, R. A., & Reuter-Lorenz, P. A. (1998). Inhibition in verbal working memory revealed by brain activation. Proceedings of the National Academy of Sciences of the United States of America, 95(14), 8410–8413.PubMedGoogle Scholar
  266. 266.
    Mottaghy, F. M., Pascual-Leone, A., Kemna, L. J., et al. (2003). Modulation of a brain-behavior relationship in verbal working memory by rTMS. Brain Research. Cognitive Brain Research, 15(3), 241–249.PubMedGoogle Scholar
  267. 267.
    Mottaghy, F. M., Doring, T., Muller-Gartner, H. W., Topper, R., & Krause, B. J. (2002). Bilateral parieto-frontal network for verbal working memory: An interference approach using repetitive transcranial magnetic stimulation (rTMS). The European Journal of Neuroscience, 16(8), 1627–1632.PubMedGoogle Scholar
  268. 268.
    Ziemus, B., Baumann, O., Luerding, R., et al. (2007). Impaired working-memory after cerebellar infarcts paralleled by changes in BOLD signal of a cortico-cerebellar circuit. Neuropsychologia, 45(9), 2016–2024.PubMedGoogle Scholar
  269. 269.
    du Boisgueheneuc, F., Levy, R., Volle, E., et al. (2006). Functions of the left superior frontal gyrus in humans: A lesion study. Brain, 129(Pt 12), 3315–3328.PubMedGoogle Scholar
  270. 270.
    Stopford, C. L., Thompson, J. C., Neary, D., Richardson, A. M., & Snowden, J. S. (2012). Working memory, attention, and executive function in Alzheimer’s disease and frontotemporal dementia. Cortex; A Journal Devoted to the Study of the Nervous System and Behavior, 48(4), 429–446.PubMedGoogle Scholar
  271. 271.
    Kessels, R. P., Postma, A., Wijnalda, E. M., & de Haan, E. H. (2000). Frontal-lobe involvement in spatial memory: Evidence from PET, fMRI, and lesion studies. Neuropsychology Review, 10(2), 101–113.PubMedGoogle Scholar
  272. 272.
    McDowell, S., Whyte, J., & D’Esposito, M. (1997). Working memory impairments in traumatic brain injury: Evidence from a dual-task paradigm. Neuropsychologia, 35(10), 1341–1353.PubMedGoogle Scholar
  273. 273.
    Luria, A. R. (1943). Psychological analysis of the premotor syndrome. (Unpublished Investigation).Google Scholar
  274. 274.
    Luria, A. R. (1973). The frontal lobes and the regulation of behavior. In K. H. Pribram & A. R. Luria (Eds.), Psychophysiology of the frontal lobes. Oxford: Academic.Google Scholar
  275. 275.
    Pribram, K. H. (1961). A further experimental analysis of the behavioral deficit that follows injury to the primate frontal cortex. Experimental Neurology, 3, 432–466.PubMedGoogle Scholar
  276. 276.
    Pribram, K. H., Wilson, W. A., Jr., & Connors, J. (1962). Effects of lesions of the medial forebrain on alternation behavior of rhesus monkeys. Experimental Neurology, 6, 36–47.PubMedGoogle Scholar
  277. 277.
    Goldberg, T. E., Berman, K. F., Mohr, E., & Weinberger, D. R. (1990). Regional cerebral blood flow and cognitive function in Huntington’s disease and schizophrenia. A comparison of patients matched for performance on a prefrontal-type task. Archives of Neurology, 47(4), 418–422.PubMedGoogle Scholar
  278. 278.
    Wolfe, N., Linn, R., Babikian, V. L., Knoefel, J. E., & Albert, M. L. (1990). Frontal systems impairment following multiple lacunar infarcts. Archives of Neurology, 47(2), 129–132.PubMedGoogle Scholar
  279. 279.
    Heilman, K. (2003). Valenstein E clinical neuropsychology (4th ed.). New York, NY: Oxford University Press.Google Scholar
  280. 280.
    Posner, M., & DiGiralamo, G. J. (1998). Executive attention: Conflict, target detection and cognitive control. In R. Parasuraman (Ed.), The attentive brain. Cambridge, MA: MIT Press.Google Scholar
  281. 281.
    Shallice, T., & Burgess, P. (1996). The domain of supervisory processes and temporal organization of behaviour. Philosophical Transactions of the Royal Society of London, 351(1346), 1405–1411. discussion 1411–1402.PubMedGoogle Scholar
  282. 282.
    Gurd, J. M., Weiss, P. H., Amunts, K., & Fink, G. R. (2003). Within-task switching in the verbal domain. NeuroImage, 20(Suppl 1), S50–S57.PubMedGoogle Scholar
  283. 283.
    Swainson, R., Cunnington, R., Jackson, G. M., et al. (2003). Cognitive control mechanisms revealed by ERP and fMRI: Evidence from repeated task-switching. Journal of Cognitive Neuroscience, 15(6), 785–799.PubMedGoogle Scholar
  284. 284.
    Aron, A. R., Watkins, L., Sahakian, B. J., Monsell, S., Barker, R. A., & Robbins, T. W. (2003). Task-set switching deficits in early-stage Huntington’s disease: Implications for basal ganglia function. Journal of Cognitive Neuroscience, 15(5), 629–642.PubMedGoogle Scholar
  285. 285.
    Rushworth, M. F., Passingham, R. E., & Nobre, A. C. (2002). Components of switching intentional set. Journal of Cognitive Neuroscience, 14(8), 1139–1150.PubMedGoogle Scholar
  286. 286.
    Sylvester, C. Y., Wager, T. D., Lacey, S. C., et al. (2003). Switching attention and resolving interference: fMRI measures of executive functions. Neuropsychologia, 41(3), 357–370.PubMedGoogle Scholar
  287. 287.
    Pollmann, S. (2001). Switching between dimensions, locations, and responses: The role of the left frontopolar cortex. NeuroImage, 14(1 Pt 2), S118–S124.PubMedGoogle Scholar
  288. 288.
    Loose, R., Kaufmann, C., Tucha, O., Auer, D. P., & Lange, K. W. (2006). Neural networks of response shifting: Influence of task speed and stimulus material. Brain Research, 1090(1), 146–155.PubMedGoogle Scholar
  289. 289.
    Kenner, N. M., Mumford, J. A., Hommer, R. E., Skup, M., Leibenluft, E., & Poldrack, R. A. (2010). Inhibitory motor control in response stopping and response switching. The Journal of Neuroscience, 30(25), 8512–8518.PubMedGoogle Scholar
  290. 290.
    Pessoa, L., Rossi, A., Japee, S., Desimone, R., & Ungerleider, L. G. (2009). Attentional control during the transient updating of cue information. Brain Research, 1247, 149–158.PubMedGoogle Scholar
  291. 291.
    Rossi, A. F., Pessoa, L., Desimone, R., & Ungerleider, L. G. (2009). The prefrontal cortex and the executive control of attention. Experimental Brain Research. Experimentelle Hirnforschung, 192(3), 489–497.Google Scholar
  292. 292.
    Robbins, T. W. (2007). Shifting and stopping: Fronto-striatal substrates, neurochemical modulation and clinical implications. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362(1481), 917–932.PubMedGoogle Scholar
  293. 293.
    Gu, B. M., Park, J. Y., Kang, D. H., et al. (2008). Neural correlates of cognitive inflexibility during task-switching in obsessive-compulsive disorder. Brain, 131(Pt 1), 155–164.PubMedGoogle Scholar
  294. 294.
    Derrfuss, J., Brass, M., & von Cramon, D. Y. (2004). Cognitive control in the posterior frontolateral cortex: Evidence from common activations in task coordination, interference control, and working memory. NeuroImage, 23(2), 604–612.PubMedGoogle Scholar
  295. 295.
    Dennis, M., Guger, S., Roncadin, C., Barnes, M., & Schachar, R. (2001). Attentional-inhibitory control and social-behavioral regulation after childhood closed head injury: Do biological, developmental, and recovery variables predict outcome? Journal of the International Neuropsychological Society, 7(6), 683–692.PubMedGoogle Scholar
  296. 296.
    Dimoska, A., Johnstone, S. J., Barry, R. J., & Clarke, A. R. (2003). Inhibitory motor control in children with attention-deficit/hyperactivity disorder: Event-related potentials in the stop-signal paradigm. Biological Psychiatry, 54(12), 1345–1354.PubMedGoogle Scholar
  297. 297.
    Szatkowska, I., Szymanska, O., Bojarski, P., & Grabowska, A. (2007). Cognitive inhibition in patients with medial orbitofrontal damage. Experimental Brain Research. Experimentelle Hirnforschung, 181(1), 109–115.Google Scholar
  298. 298.
    Ruge, H., Braver, T., & Meiran, N. (2009). Attention, intention, and strategy in preparatory control. Neuropsychologia, 47(7), 1670–1685.PubMedGoogle Scholar
  299. 299.
    Bien, N., Roebroeck, A., Goebel, R., & Sack, A. T. (2009). The brain’s intention to imitate: The neurobiology of intentional versus automatic imitation. Cerebral Cortex, 19(10), 2338–2351.PubMedGoogle Scholar
  300. 300.
    Evans, D. W., Lewis, M. D., & Iobst, E. (2004). The role of the orbitofrontal cortex in normally developing compulsive-like behaviors and obsessive-compulsive disorder. Brain and Cognition, 55(1), 220–234.PubMedGoogle Scholar
  301. 301.
    Ashburner, E. A. (1906). Review of on a new method for the study of concurrent mental operations and of mental fatigue. Psychological Bulletin, 3(9), 306–308.Google Scholar
  302. 302.
    Sokolov, E. N. (1990). The orienting response, and future directions of its development. The Pavlovian Journal of Biological Science, 25(3), 142–150.PubMedGoogle Scholar
  303. 303.
    Lindsley, D. B. (1960). Attention, consciousness, sleep and wakefulness. In J. Field, H. W. Magoun, & V. C. Hall (Eds.), Handbook of physiology (Vol. 3, pp. 1553–1593). Washington, DC: American Physiological Society.Google Scholar
  304. 304.
    De Renzi, E., & Faglioni, P. (1966). [Influence of sleep deprivation and work on performance in vigilance tests]. Archivio di Psicologia, Neurologia e Psichiatria, 27(6), 552–566.PubMedGoogle Scholar
  305. 305.
    Heilman, K. M., Schwartz, H. D., & Watson, R. T. (1978). Hypoarousal in patients with the neglect syndrome and emotional indifference. Neurology, 28(3), 229–232.PubMedGoogle Scholar
  306. 306.
    Pribram, K., & McGuinness, D. (1975). Arousal, activation, and effort in the control of attention. Psychological Review, 82(2), 116–149.PubMedGoogle Scholar
  307. 307.
    Heilman, K. M., & Valenstein, E. (2003). Clinical neuropsychology (4th ed.). Oxford: Oxford University Press.Google Scholar
  308. 308.
    Moruzzi, G., & Magoun, H. W. (1949). Brain stem reticular formation and activation of the EEG. Electroencephalography and Clinical Neurophysiology, 1, 455–473.PubMedGoogle Scholar
  309. 309.
    Yerkes, R., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit formation. Journal of Comparative Neurology and Psychology, 18, 459–482.Google Scholar
  310. 310.
    Yingling, C. D., & Skinner, J. E. (1975). Regulation of unit activity in nucleus reticularis thalami by the mesencephalic reticular formation and the frontal granular cortex. Electroencephalography and Clinical Neurophysiology, 39(6), 635–642.PubMedGoogle Scholar
  311. 311.
    Kinghorn, E. W., & Fleming, D. E. (1985). The effects of frontal lesions on brain hypersynchronous bursting and behavioral activity. Physiology & Behavior, 35(2), 261–265.Google Scholar
  312. 312.
    Cohen, R., Kaplan, R. F., Meadows, M. E., Kwan, E., & Ehrenberg, B. L. (1996). Comparison of the orienting response during the intracarotid and posterior cerebral artery amobarbital tests: A case study. Neurocase, 2(2), 93–98.Google Scholar
  313. 313.
    Pribram, K. H. (1950). Some aspects of experimental psychosurgery; the effect of scarring frontal cortex on complex behavior. Surgical Forum, 315–318.Google Scholar
  314. 314.
    Pribram, K. H., & Mishkin, M. (1956). Analysis of the effects of frontal lesions in monkey. III. Object alternation. Journal of Comparative Physiology and Psychology, 49, 41–45.Google Scholar
  315. 315.
    Pribram, K. H., & Weiskrantz, L. (1957). A comparison of the effects of medial and lateral cerebral resections on conditioned avoidance behavior of monkeys. Journal of Comparative and Physiological Psychology, 50, 74–80.PubMedGoogle Scholar
  316. 316.
    Pribram, K. H. (1973). The primate frontal cortex: Executive of the brain. In K. H. Pribram & A. R. Luria (Eds.), Psychophysiology of the frontal lobes. Oxford: Academic.Google Scholar
  317. 317.
    Cohen, R. A., & Waters, W. F. (1985). Psychophysiological correlates of levels and states of cognitive processing. Neuropsychologia, 23(2), 243–256.PubMedGoogle Scholar
  318. 318.
    Kimble, D., Bagshaw, M. H., & Pribram, K. H. (1965). The GSR of monkeys during orienting and attention after selective ablation of the cingulate and frontal cortex. Neuropsychologia, 3, 121–128.Google Scholar
  319. 319.
    Butter, C. M. (1969). Perseveration in extinction and in discrimination reversal tasks following selective frontal ablations in Macaca mulatta. Physiology & Behavior, 4, 163–171.Google Scholar
  320. 320.
    Bauer, R. H. (1974). Brightness discrimination of pretrained and nonpretrained hippocampal rats reinforced for choosing brighter or dimmer alternatives. Journal of Comparative and Physiological Psychology, 87, 987–996.PubMedGoogle Scholar
  321. 321.
    Bauer, R. H., & Fuster, J. M. (1976). Delayed-matching and delayed-response deficit from cooling dorsolateral prefrontal cortex in monkeys. Journal of Comparative and Physiological Psychology, 90(3), 293–302.PubMedGoogle Scholar
  322. 322.
    Bauer, R. H., & Fuster, J. M. (1978). Effects of d-amphetamine and prefrontal cortical cooling on delayed matching-to-sample behavior. Pharmacology, Biochemistry, and Behavior, 8(3), 243–249.PubMedGoogle Scholar
  323. 323.
    Bauer, R. H., & Fuster, J. M. (1978). The effect of ambient illumination on delayed-matching and delayed-response deficits from cooling dorsolateral prefrontal cortex. Behavioral Biology, 22(1), 60–66.PubMedGoogle Scholar
  324. 324.
    Fuster, J. M. (1973). Unit activity in prefrontal cortex during delayed-response performance: Neuronal correlates of transient memory. Journal of Neurophysiology, 36(1), 61–78.PubMedGoogle Scholar
  325. 325.
    Fuster, J. M., Bauer, R. H., & Jervey, J. P. (Sep 1982). Cellular discharge in the dorsolateral prefrontal cortex of the monkey in cognitive tasks. Experimental Neurology, 77(3), 679–694.Google Scholar
  326. 326.
    Fuster, J. M., Bauer, R. H., & Jervey, J. P. (1985). Functional interactions between inferotemporal and prefrontal cortex in a cognitive task. Brain Research, 330(2), 299–307.PubMedGoogle Scholar
  327. 327.
    Pragay, E. B., Mirsky, A. F., & Nakamura, R. K. (1987). Attention-related unit activity in the frontal association cortex during a go/no-go visual discrimination task. Experimental Neurology, 96(3), 481–500.PubMedGoogle Scholar
  328. 328.
    Radley, J. J., Arias, C. M., & Sawchenko, P. E. (2006). Regional differentiation of the medial prefrontal cortex in regulating adaptive responses to acute emotional stress. The Journal of Neuroscience, 26(50), 12967–12976.PubMedGoogle Scholar
  329. 329.
    Resstel, L. B., Joca, S. R., Guimaraes, F. G., & Correa, F. M. (2006). Involvement of medial prefrontal cortex neurons in behavioral and cardiovascular responses to contextual fear conditioning. Neuroscience, 143(2), 377–385.PubMedGoogle Scholar
  330. 330.
    Resstel, L. B., Fernandes, K. B., & Correa, F. M. (2004). Medial prefrontal cortex modulation of the baroreflex parasympathetic component in the rat. Brain Research, 1015(1–2), 136–144.PubMedGoogle Scholar
  331. 331.
    Bussey, T. J., Wise, S. P., & Murray, E. A. (2001). The role of ventral and orbital prefrontal cortex in conditional visuomotor learning and strategy use in rhesus monkeys (Macaca mulatta). Behavioral Neuroscience, 115(5), 971–982.PubMedGoogle Scholar
  332. 332.
    Holson, R. R. (1986). Mesial prefrontal cortical lesions and timidity in rats. I. Reactivity to aversive stimuli. Physiology & Behavior, 37(2), 221–230.Google Scholar
  333. 333.
    Holson, R. R., & Walker, C. (1986). Mesial prefrontal cortical lesions and timidity in rats. II. Reactivity to novel stimuli. Physiology & Behavior, 37(2), 231–238.Google Scholar
  334. 334.
    Holson, R. R. (1986). Mesial prefrontal cortical lesions and timidity in rats. III. Behavior in a semi-natural environment. Physiology & Behavior, 37(2), 239–247.Google Scholar
  335. 335.
    Critchley, H. D., Elliott, R., Mathias, C. J., & Dolan, R. J. (2000). Neural activity relating to generation and representation of galvanic skin conductance responses: A functional magnetic resonance imaging study. The Journal of Neuroscience, 20(8), 3033–3040.PubMedGoogle Scholar
  336. 336.
    Chudasama, Y., Passetti, F., Rhodes, S. E., Lopian, D., Desai, A., & Robbins, T. W. (2003). Dissociable aspects of performance on the 5-choice serial reaction time task following lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: Differential effects on selectivity, impulsivity and compulsivity. Behavioural Brain Research, 146(1–2), 105–119.PubMedGoogle Scholar
  337. 337.
    Bissonette, G. B., Martins, G. J., Franz, T. M., Harper, E. S., Schoenbaum, G., & Powell, E. M. (2008). Double dissociation of the effects of medial and orbital prefrontal cortical lesions on attentional and affective shifts in mice. The Journal of Neuroscience, 28(44), 11124–11130.PubMedGoogle Scholar
  338. 338.
    Meyer, D. R., & Harlow, H. F. (1952). Effects of multiple variables on delayed response performance by monkeys. The Journal of Genetic Psychology, 81, 53–61.PubMedGoogle Scholar
  339. 339.
    Glick, S. D., Goldfarb, T. L., & Jarvik, M. E. (1969). Recovery of delayed matching performance following lateral frontal lesions in monkeys. Communications in Behavioral Biology, 3, 299–303.Google Scholar
  340. 340.
    Malmo, R. B. (1942). Interference factors in delayed response in monkeys after removal of frontal lobes. Journal of Neurophysiology, 5, 295–308.Google Scholar
  341. 341.
    Bartus, R. T., & Dean, R. L. (1979). Recent memory in aged non-human primates: Hypersensitivity to visual interference during retention. Experimental Aging Research, 5(5), 385–400.PubMedGoogle Scholar
  342. 342.
    Bartus, R. T., & Levere, T. E. (1977). Frontal decortication in rhesus monkeys: A test of the interference hypothesis. Brain Research, 119(1), 233–248.PubMedGoogle Scholar
  343. 343.
    Mishkin, M., Rosvold, H. E., & Pribram, K. H. (1953). Effects of Nembutal in baboons with frontal lesions. Journal of Neurophysiology, 16, 155–159.PubMedGoogle Scholar
  344. 344.
    Baleydier, C., & Mauguiere, F. (1987). Network organization of the connectivity between parietal area 7, posterior cingulate cortex and medial pulvinar nucleus: A double fluorescent tracer study in monkey. Experimental Brain Research. Experimentelle Hirnforschung, 66(2), 385–393.Google Scholar
  345. 345.
    Baleydier, C., & Mauguiere, F. (1980). The duality of the cingulate gyrus in monkey. Neuroanatomical study and functional hypothesis. Brain, 103(3), 525–554.PubMedGoogle Scholar
  346. 346.
    Musil, S. Y., & Olson, C. R. (1988). Organization of cortical and subcortical projections to medial prefrontal cortex in the cat. The Journal of Comparative Neurology, 272(2), 219–241.PubMedGoogle Scholar
  347. 347.
    Musil, S. Y., & Olson, C. R. (1988). Organization of cortical and subcortical projections to anterior cingulate cortex in the cat. The Journal of Comparative Neurology, 272(2), 203–218.PubMedGoogle Scholar
  348. 348.
    Musil, S. Y., & Olson, C. R. (1991). Cortical areas in the medial frontal lobe of the cat delineated by quantitative analysis of thalamic afferents. The Journal of Comparative Neurology, 308(3), 457–466.PubMedGoogle Scholar
  349. 349.
    Olson, C. R., & Jeffers, I. (1987). Organization of cortical and subcortical projections to area 6m of the cat. The Journal of Comparative Neurology, 266(1), 73–94.PubMedGoogle Scholar
  350. 350.
    Olson, C. R., & Lawler, K. (1987). Cortical and subcortical afferent connections of a posterior division of feline area 7 (area 7p). The Journal of Comparative Neurology, 259(1), 13–30.PubMedGoogle Scholar
  351. 351.
    Olson, C. R., & Musil, S. Y. (1992). Topographic organization of cortical and subcortical projections to posterior cingulate cortex in the cat: Evidence for somatic, ocular, and complex subregions. The Journal of Comparative Neurology, 324(2), 237–260.PubMedGoogle Scholar
  352. 352.
    Mesulam, M.-M. (1985). Principles of behavioral neurology. Philadelphia, PA: F. A. Davis.Google Scholar
  353. 353.
    Turner, M. S., Cipolotti, L., Yousry, T. A., & Shallice, T. (2008). Confabulation: Damage to a specific inferior medial prefrontal system. Cortex; A Journal Devoted to the Study of the Nervous System and Behavior, 44(6), 637–648.PubMedGoogle Scholar
  354. 354.
    Giannakopoulos, P., Hof, P. R., Giannakopoulos, A. S., Herrmann, F. R., Michel, J. P., & Bouras, C. (1995). Regional distribution of neurofibrillary tangles and senile plaques in the cerebral cortex of very old patients. Archives of Neurology, 52(12), 1150–1159.PubMedGoogle Scholar
  355. 355.
    Del Sole, A., Clerici, F., Chiti, A., et al. (2008). Individual cerebral metabolic deficits in Alzheimer’s disease and amnestic mild cognitive impairment: An FDG PET study. European Journal of Nuclear Medicine and Molecular Imaging, 35(7), 1357–1366.PubMedGoogle Scholar
  356. 356.
    Kiehl, K. A. (2006). A cognitive neuroscience perspective on psychopathy: Evidence for paralimbic system dysfunction. Psychiatry Research, 142(2–3), 107–128.PubMedGoogle Scholar
  357. 357.
    Woo, M. A., Macey, P. M., Fonarow, G. C., Hamilton, M. A., & Harper, R. M. (2003). Regional brain gray matter loss in heart failure. Journal of Applied Physiology, 95(2), 677–684.PubMedGoogle Scholar
  358. 358.
    Tatemichi, T. K., Desmond, D. W., & Prohovnik, I. (1995). Strategic infarcts in vascular dementia. A clinical and brain imaging experience. Arzneimittel-Forschung, 45(3A), 371–385.PubMedGoogle Scholar
  359. 359.
    Giannakopoulos, P., Duc, M., Gold, G., Hof, P. R., Michel, J. P., & Bouras, C. (1998). Pathologic correlates of apraxia in Alzheimer disease. Archives of Neurology, 55(5), 689–695.PubMedGoogle Scholar
  360. 360.
    Minoshima, S., Giordani, B., Berent, S., Frey, K. A., Foster, N. L., & Kuhl, D. E. (1997). Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Annals of Neurology, 42(1), 85–94.PubMedGoogle Scholar
  361. 361.
    Reiman, E. M., Caselli, R. J., Chen, K., Alexander, G. E., Bandy, D., & Frost, J. (2001). Declining brain activity in cognitively normal apolipoprotein E epsilon 4 heterozygotes: A foundation for using positron emission tomography to efficiently test treatments to prevent Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 98(6), 3334–3339.PubMedGoogle Scholar
  362. 362.
    Okamura, N., Shinkawa, M., Arai, H., et al. (2000). [Prediction of progression in patients with mild cognitive impairment using IMP-SPECT]. Nippon Ronen Igakkai Zasshi, 37(12), 974–978.PubMedGoogle Scholar
  363. 363.
    Small, G. W., Ercoli, L. M., Silverman, D. H., et al. (2000). Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 97(11), 6037–6042.PubMedGoogle Scholar
  364. 364.
    Friston, K. J., Grasby, P. M., Bench, C. J., et al. (1992). Measuring the neuromodulatory effects of drugs in man with positron emission tomography. Neuroscience Letters, 141(1), 106–110.PubMedGoogle Scholar
  365. 365.
    Barris, R. W., & Schuman, H. R. (1953). Bilateral anterior cingulate gyrus lesions; syndrome of the anterior cingulate gyri. Neurology, 3(1), 44–52.PubMedGoogle Scholar
  366. 366.
    Corkin, S., Twitchell, T. E., & Sullivan, E. V. (1979). Safety and efficacy of cingulotomy for pain and psychiatric disorder. In E. R. Hitchcock, H. T. Ballantine, & B. A. Meyerson (Eds.), Modern concepts in psychiatric surgery. New York, NY: Elsevier Press.Google Scholar
  367. 367.
    Ballentine, H. T., Jr., Levey, B. A., Dagi, T. F., & Diriunas, I. B. (1977). Cingulotomy for psychiatric illness: Report of l3 years experience. In W. H. Sweet, S. Obrador, & J. G. Martin-Rodriguez (Eds.), Neurosurgical treatment in psychiatry, pain and epilepsy (pp. 333–353). Baltimore, MD: University Park Press.Google Scholar
  368. 368.
    Corkin, S. (1979). Hidden-figures-test performance: Lasting effects of unilateral penetrating head injury and transient effects of bilateral cingulotomy. Neuropsychologia, 17(6), 585–605.PubMedGoogle Scholar
  369. 369.
    Laplane, D., Degos, J. D., Baulac, M., & Gray, F. (1981). Bilateral infarction of the anterior cingulate gyri and of the fornices. Report of a case. Journal of the Neurological Sciences, 51(2), 289–300.PubMedGoogle Scholar
  370. 370.
    Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M., & Raichle, M. E. (1988). Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature, 331(6157), 585–589.PubMedGoogle Scholar
  371. 371.
    Siegel, B. V., Jr., Nuechterlein, K. H., Abel, L., Wu, J. C., & Buchsbaum, M. S. (1995). Glucose metabolic correlates of continuous performance test performance in adults with a history of infantile autism, schizophrenics, and controls. Schizophrenia Research, 17(1), 85–94.PubMedGoogle Scholar
  372. 372.
    Lawrence, N. S., Ross, T. J., Hoffmann, R., Garavan, H., & Stein, E. A. (2003). Multiple neuronal networks mediate sustained attention. Journal of Cognitive Neuroscience, 15(7), 1028–1038.PubMedGoogle Scholar
  373. 373.
    Dehaene, S., Sergent, C., & Changeux, J. P. (2003). A neuronal network model linking subjective reports and objective physiological data during conscious perception. Proceedings of the National Academy of Sciences of the United States of America, 100(14), 8520–8525.PubMedGoogle Scholar
  374. 374.
    Peyron, R., Laurent, B., & Garcia-Larrea, L. (2000). Functional imaging of brain responses to pain. A review and meta-analysis. Neurophysiologie Clinique = Clinical Neurophysiology, 30(5), 263–288.PubMedGoogle Scholar
  375. 375.
    Johannsen, P., Jakobsen, J., Bruhn, P., & Gjedde, A. (1999). Cortical responses to sustained and divided attention in Alzheimer’s disease. NeuroImage, 10(3 Pt 1), 269–281.PubMedGoogle Scholar
  376. 376.
    Goldstein, R. Z., Tomasi, D., Alia-Klein, N., Zhang, L., Telang, F., & Volkow, N. D. (2007). The effect of practice on a sustained attention task in cocaine abusers. NeuroImage, 35(1), 194–206.PubMedGoogle Scholar
  377. 377.
    Pardo, J. V., Pardo, P. J., Janer, K. W., & Raichle, M. E. (1990). The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proceedings of the National Academy of Sciences of the United States of America, 87(1), 256–259.PubMedGoogle Scholar
  378. 378.
    Peterson, B. S., Skudlarski, P., Gatenby, J. C., Zhang, H., Anderson, A. W., & Gore, J. C. (1999). An fMRI study of Stroop word-color interference: Evidence for cingulate subregions subserving multiple distributed attentional systems. Biological Psychiatry, 45(10), 1237–1258.PubMedGoogle Scholar
  379. 379.
    Janer, K., & Pardo, J. V. (1991). Deficits in selective attention following bilateral anterior cingulotomy. Journal of Cognitive Neuroscience, 3(3), 231–241.PubMedGoogle Scholar
  380. 380.
    Heilman, K. M., & Valenstein, E. (1979). Mechanisms underlying hemispatial neglect. Annals of Neurology, 5, 166–170.PubMedGoogle Scholar
  381. 381.
    Heilman, K. M., Valenstein, E., & Watson, R. T. (2000). Neglect and related disorders. Seminars in Neurology, 20(4), 463–470.PubMedGoogle Scholar
  382. 382.
    Watson, R. T., Miller, B. D., & Heilman, K. M. (1978). Nonsensory neglect. Annals of Neurology, 3(6), 505–508.PubMedGoogle Scholar
  383. 383.
    Waters, W. F., & McDonald, D. G. (1974). Effects of “below-zero” habituation on spontaneous recovery and dishabituation of the orienting response. Psychophysiology, 11(5), 548–558.PubMedGoogle Scholar
  384. 384.
    Waters, W. F., & McDonald, D. G. (1976). Repeated habituation and overhabituation of the orienting response. Psychophysiology, 13(3), 231–235.PubMedGoogle Scholar
  385. 385.
    Waters, W. F., McDonald, D. G., & Koresko, R. L. (1977). Habituation of the orienting response: A gating mechanism subserving selective attention. Psychophysiology, 14(3), 228–236.PubMedGoogle Scholar
  386. 386.
    Mennemeier, M. S., Chatterjee, A., Watson, R. T., Wertman, E., Carter, L. P., & Heilman, K. M. (1994). Contributions of the parietal and frontal lobes to sustained attention and habituation. Neuropsychologia, 32(6), 703–716.PubMedGoogle Scholar
  387. 387.
    Thompson, R. F., & Spencer, W. A. (1966). Habituation: A model phenomenon for the study of neuronal substrates of behavior. Psychological Review, 73(1), 16–43.PubMedGoogle Scholar
  388. 388.
    Waters, W. F., & Wright, J. W. (1979). Maintenance and habituation of the phasic orienting response to competing stimuli in selective attention. The orienting reflex in humans. New York, NY: Lawrence Erlbaum.Google Scholar
  389. 389.
    Waters, W. F., McDonald, D. G., & Good, R. (1975). Stimulus and temporal variables in the “below-zero” habituation of the orienting response. Psychophysiology, 12(4), 461–464.PubMedGoogle Scholar
  390. 390.
    Groves, P. M., & Thompson, R. F. (1970). Habituation: A dual-process theory. Psychological Review, 77(5), 419–450.PubMedGoogle Scholar
  391. 391.
    Jung, H. H., Kim, C. H., Chang, J. H., Park, Y. G., Chung, S. S., & Chang, J. W. (2006). Bilateral anterior cingulotomy for refractory obsessive-compulsive disorder: Long-term follow-up results. Stereotactic and Functional Neurosurgery, 84(4), 184–189.PubMedGoogle Scholar
  392. 392.
    Kim, C. H., Chang, J. W., Koo, M. S., et al. (2003). Anterior cingulotomy for refractory obsessive-compulsive disorder. Acta Psychiatrica Scandinavica, 107(4), 283–290.PubMedGoogle Scholar
  393. 393.
    Kim, M. C., Lee, T. K., & Choi, C. R. (2002). Review of long-term results of stereotactic psychosurgery. Neurologia Medico-Chirurgica, 42(9), 365–371.PubMedGoogle Scholar
  394. 394.
    Dougherty, D. D., Baer, L., Cosgrove, G. R., et al. (2002). Prospective long-term follow-up of 44 patients who received cingulotomy for treatment-refractory obsessive-compulsive disorder. The American Journal of Psychiatry, 159(2), 269–275.PubMedGoogle Scholar
  395. 395.
    Jenike, M. A. (1998). Neurosurgical treatment of obsessive-compulsive disorder. The British Journal of Psychiatry, 35, 79–90.Google Scholar
  396. 396.
    Baer, L., Rauch, S. L., Ballantine, H. T., Jr., et al. (1995). Cingulotomy for intractable obsessive-compulsive disorder. Prospective long-term follow-up of 18 patients. Archives of General Psychiatry, 52(5), 384–392.PubMedGoogle Scholar
  397. 397.
    Wilkinson, H. A., Davidson, K. M., & Davidson, R. I. (1999). Bilateral anterior cingulotomy for chronic noncancer pain. Neurosurgery, 45(5), 1129–1134. discussion 1134–1126.PubMedGoogle Scholar
  398. 398.
    Wong, E. T., Gunes, S., Gaughan, E., et al. (1997). Palliation of intractable cancer pain by MRI-guided cingulotomy. The Clinical Journal of Pain, 13(3), 260–263.PubMedGoogle Scholar
  399. 399.
    Pillay, P. K., & Hassenbusch, S. J. (1992). Bilateral MRI-guided stereotactic cingulotomy for intractable pain. Stereotactic and Functional Neurosurgery, 59(1–4), 33–38.PubMedGoogle Scholar
  400. 400.
    Hassenbusch, S. J., Pillay, P. K., & Barnett, G. H. (1990). Radiofrequency cingulotomy for intractable cancer pain using stereotaxis guided by magnetic resonance imaging. Neurosurgery, 27(2), 220–223.PubMedGoogle Scholar
  401. 401.
    Lenhard, T., Brassen, S., Tost, H., & Braus, D. F. (2005). Long-term behavioural changes after unilateral stereotactic cingulotomy in a case of therapy-resistant alcohol dependence. The World Journal of Biological Psychiatry, 6(4), 264–266.PubMedGoogle Scholar
  402. 402.
    Stelten, B. M., Noblesse, L. H., Ackermans, L., Temel, Y., & Visser-Vandewalle, V. (2008). The neurosurgical treatment of addiction. Neurosurgical Focus, 25(1), E5.PubMedGoogle Scholar
  403. 403.
    Cohen, R. A., Paul, R., Zawacki, T. M., Moser, D. J., Sweet, L., & Wilkinson, H. (2001). Emotional and personality changes following cingulotomy. Emotion (Washington, D.C.), 1(1), 38–50.Google Scholar
  404. 404.
    Valenstein, E. (1973). Brain control: Critical examination of brain stimulation and psychosurgery. New York, NY: Wiley.Google Scholar
  405. 405.
    Devinsky, O., Morrell, M. J., & Vogt, B. A. (1995). Contributions of anterior cingulate cortex to behaviour. Brain, 118(Pt 1), 279–306.PubMedGoogle Scholar
  406. 406.
    Burns, S. M., & Wyss, J. M. (1985). The involvement of the anterior cingulate cortex in blood pressure control. Brain Research, 340(1), 71–77.PubMedGoogle Scholar
  407. 407.
    Brog, J. S., Salyapongse, A., Deutch, A. Y., & Zahm, D. S. (1993). The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: Immunohistochemical detection of retrogradely transported fluoro-gold. The Journal of Comparative Neurology, 338(2), 255–278.PubMedGoogle Scholar
  408. 408.
    Kunishio, K., & Haber, S. N. (1994). Primate cingulostriatal projection: Limbic striatal versus sensorimotor striatal input. The Journal of Comparative Neurology, 350(3), 337–356.PubMedGoogle Scholar
  409. 409.
    Thomas, K. L., & Everitt, B. J. (2001). Limbic-cortical-ventral striatal activation during retrieval of a discrete cocaine-associated stimulus: A cellular imaging study with gamma protein kinase C expression. The Journal of Neuroscience, 21(7), 2526–2535.PubMedGoogle Scholar
  410. 410.
    Magno, E., Simoes-Franklin, C., Robertson, I. H., & Garavan, H. (2009). The role of the dorsal anterior cingulate in evaluating behavior for achieving gains and avoiding losses. Journal of Cognitive Neuroscience, 21(12), 2328–2342.PubMedGoogle Scholar
  411. 411.
    Morgane, P. J., Galler, J. R., & Mokler, D. J. (2005). A review of systems and networks of the limbic forebrain/limbic midbrain. Progress in Neurobiology, 75(2), 143–160.PubMedGoogle Scholar
  412. 412.
    Yu, A. J., Dayan, P., & Cohen, J. D. (2009). Dynamics of attentional selection under conflict: Toward a rational Bayesian account. Journal of Experimental Psychology. Human Perception and Performance, 35(3), 700–717.PubMedGoogle Scholar
  413. 413.
    Pochon, J. B., Riis, J., Sanfey, A. G., Nystrom, L. E., & Cohen, J. D. (2008). Functional imaging of decision conflict. The Journal of Neuroscience, 28(13), 3468–3473.PubMedGoogle Scholar
  414. 414.
    di Pellegrino, G., Ciaramelli, E., & Ladavas, E. (2007). The regulation of cognitive control following rostral anterior cingulate cortex lesion in humans. Journal of Cognitive Neuroscience, 19(2), 275–286.PubMedGoogle Scholar
  415. 415.
    Stahl, J., & Gibbons, H. (2007). Dynamics of response-conflict monitoring and individual differences in response control and behavioral control: An electrophysiological investigation using a stop-signal task. Clinical Neurophysiology, 118(3), 581–596.PubMedGoogle Scholar
  416. 416.
    Yeung, N., & Cohen, J. D. (2006). The impact of cognitive deficits on conflict monitoring. Predictable dissociations between the error-related negativity and N2. Psychological Science, 17(2), 164–171.PubMedGoogle Scholar
  417. 417.
    Kerns, J. G., Cohen, J. D., MacDonald, A. W., III, et al. (2005). Decreased conflict- and error-related activity in the anterior cingulate cortex in subjects with schizophrenia. The American Journal of Psychiatry, 162(10), 1833–1839.PubMedGoogle Scholar
  418. 418.
    Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8(12), 539–546.PubMedGoogle Scholar
  419. 419.
    van Veen, V., Holroyd, C. B., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2004). Errors without conflict: Implications for performance monitoring theories of anterior cingulate cortex. Brain and Cognition, 56(2), 267–276.PubMedGoogle Scholar
  420. 420.
    Yeung, N., Botvinick, M. M., & Cohen, J. D. (2004). The neural basis of error detection: Conflict monitoring and the error-related negativity. Psychological Review, 111(4), 931–959.PubMedGoogle Scholar
  421. 421.
    Kerns, J. G., Cohen, J. D., MacDonald, A. W., III, Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science (New York, N.Y), 303(5660), 1023–1026.Google Scholar
  422. 422.
    Erickson, K. I., Milham, M. P., Colcombe, S. J., et al. (2004). Behavioral conflict, anterior cingulate cortex, and experiment duration: Implications of diverging data. Human Brain Mapping, 21(2), 98–107.PubMedGoogle Scholar
  423. 423.
    Jones, A. D., Cho, R. Y., Nystrom, L. E., Cohen, J. D., & Braver, T. S. (2002). A computational model of anterior cingulate function in speeded response tasks: Effects of frequency, sequence, and conflict. Cognitive, Affective, & Behavioral Neuroscience, 2(4), 300–317.Google Scholar
  424. 424.
    van Veen, V., Cohen, J. D., Botvinick, M. M., Stenger, V. A., & Carter, C. S. (2001). Anterior cingulate cortex, conflict monitoring, and levels of processing. NeuroImage, 14(6), 1302–1308.PubMedGoogle Scholar
  425. 425.
    Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624–652.PubMedGoogle Scholar
  426. 426.
    Botvinick, M., Nystrom, L. E., Fissell, K., Carter, C. S., & Cohen, J. D. (1999). Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature, 402(6758), 179–181.PubMedGoogle Scholar
  427. 427.
    Pinel, P., Dehaene, S., Riviere, D., & LeBihan, D. (2001). Modulation of parietal activation by semantic distance in a number comparison task. NeuroImage, 14(5), 1013–1026.PubMedGoogle Scholar
  428. 428.
    Grossman, M., Cooke, A., DeVita, C., et al. (2002). Sentence processing strategies in healthy seniors with poor comprehension: An fMRI study. Brain and Language, 80(3), 296–313.PubMedGoogle Scholar
  429. 429.
    Greicius, M. D., & Menon, V. (2004). Default-mode activity during a passive sensory task: Uncoupled from deactivation but impacting activation. Journal of Cognitive Neuroscience, 16(9), 1484–1492.PubMedGoogle Scholar
  430. 430.
    Greicius, M. D., Srivastava, G., Reiss, A. L., & Menon, V. (2004). Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: Evidence from functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 101(13), 4637–4642.PubMedGoogle Scholar
  431. 431.
    Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 253–258.PubMedGoogle Scholar
  432. 432.
    Fransson, P., & Marrelec, G. (2008). The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: Evidence from a partial correlation network analysis. NeuroImage, 42(3), 1178–1184.PubMedGoogle Scholar
  433. 433.
    Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38.PubMedGoogle Scholar
  434. 434.
    Sambataro, F., Murty, V. P., Callicott, J. H., et al. (2010). Age-related alterations in default mode network: Impact on working memory performance. Neurobiology of Aging, 31(5), 839–852.PubMedGoogle Scholar
  435. 435.
    Pomarol-Clotet, E., Salvador, R., Sarro, S., et al. (2008). Failure to deactivate in the prefrontal cortex in schizophrenia: Dysfunction of the default mode network? Psychological Medicine, 38(8), 1185–1193.PubMedGoogle Scholar
  436. 436.
    Zhang, L. J., Yang, G., Yin, J., Liu, Y., & Qi, J. (2007). Abnormal default-mode network activation in cirrhotic patients: A functional magnetic resonance imaging study. Acta Radiologica, 48(7), 781–787.PubMedGoogle Scholar
  437. 437.
    Firbank, M. J., Blamire, A. M., Krishnan, M. S., et al. (2007). Atrophy is associated with posterior cingulate white matter disruption in dementia with Lewy bodies and Alzheimer’s disease. NeuroImage, 36(1), 1–7.PubMedGoogle Scholar
  438. 438.
    Garrity, A. G., Pearlson, G. D., McKiernan, K., Lloyd, D., Kiehl, K. A., & Calhoun, V. D. (2007). Aberrant “default mode” functional connectivity in schizophrenia. The American Journal of Psychiatry, 164(3), 450–457.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ronald A. Cohen
    • 1
    • 2
    • 3
  1. 1.Departments of Neurology, Psychiatry and AgingGainesvilleUSA
  2. 2.Center for Cognitive Aging and MemoryUniversity of Florida College of MedicineGainesvilleUSA
  3. 3.Department of Psychiatry and Human Behavior Warren Alpert School of MedicineBrown UniversityProvidenceUSA

Personalised recommendations