Skip to main content

Attention and the Frontal Cortex

  • Chapter
  • First Online:
  • 5484 Accesses

Abstract

Sensory selective attention often occurs covertly, as a relatively automatic response to salient stimuli that occur in the environment. Demands for controlled processing increase as the number of targets and stimulus complexity increase and response demands become greater. Yet, many of the processes necessary for orienting, allocating, engaging, and shifting attention can occur automatically, without overt response intention or specific response demands. Yet, in everyday life, people routinely direct their attention to either external stimuli, particular responses (e.g., swinging a tennis racket), or cognitive operations based on their momentary disposition, motivation, and prevailing situational demands and reinforcements. At these times, their attention tends to be subjectively experienced as voluntary or intentional, and it usually occurs with conscious awareness.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Heilman, K. M., Pandya, D. N., Karol, E. A., & Geschwind, N. (1971). Auditory inattention. Archives of Neurology, 24, 323–325.

    PubMed  Google Scholar 

  2. Rosvold, H., & Szwarcbart, M. K. (1964). Neural structures involved in delayed response performance. In K. Akert & J. M. Warren (Eds.), Frontal granular cortex and behavior. New York, NY: McGraw-Hill.

    Google Scholar 

  3. Buffery, A. W. (1967). Learning and memory in baboons with bilateral lesions of frontal or inferotemporal cortex. Nature, 214(5092), 1054–1056.

    PubMed  Google Scholar 

  4. Stuss, D. T., & Benson, D. F. (1984). Neuropsychological studies of the frontal lobes. Psychological Bulletin, 95(1), 3–28.

    PubMed  Google Scholar 

  5. Stuss, D. T., Kaplan, E. F., Benson, D. F., Weir, W. S., Chiulli, S., & Sarazin, F. F. (1982). Evidence for the involvement of orbitofrontal cortex in memory functions: An interference effect. Journal of Comparative and Physiological Psychology, 96(6), 913–925.

    PubMed  Google Scholar 

  6. Wilkins, A. J., Shallice, T., & McCarthy, R. (1987). Frontal lesions and sustained attention. Neuropsychologia, 25(2), 359–365.

    PubMed  Google Scholar 

  7. Alexander, M., & Stuss, D. T. (2006). Frontal injury: Impairments of fundamental processes lead to functional consequences. Journal of the International Neuropsychological Society, 12(2), 192–193.

    PubMed  Google Scholar 

  8. Alexander, M. P., & Stuss, D. T. (2000). Disorders of frontal lobe functioning. Seminars in Neurology, 20(4), 427–437.

    PubMed  Google Scholar 

  9. Alexander, M. P., Stuss, D. T., Shallice, T., Picton, T. W., & Gillingham, S. (2005). Impaired concentration due to frontal lobe damage from two distinct lesion sites. Neurology, 65(4), 572–579.

    PubMed  Google Scholar 

  10. Cummings, J. L. (1995). Anatomic and behavioral aspects of frontal-subcortical circuits. Annals of the New York Academy of Sciences, 769, 1–13.

    PubMed  Google Scholar 

  11. Cummings, J. L. (1993). Frontal-subcortical circuits and human behavior. Archives of Neurology, 50(8), 873–880.

    PubMed  Google Scholar 

  12. Sanides, F. (1970). Functional architecture of motor and sensory cortices in primates in the light of a new concept of neocortex evolution. In C. R. N. Montagna (Ed.), The primate brain (pp. 137–208). New York, NY: Appleton.

    Google Scholar 

  13. Furster, J. (2008). The prefrontal cortex. Oxford: Academic.

    Google Scholar 

  14. Nauta, W. J. H. (1961). Fiber degeneration following lesions of the amygdaloid complex in the monkey. Journal of Anatomy, 95, 515–531.

    PubMed  Google Scholar 

  15. Nauta, W. J. H. (1962). Neural associations of the amygdaloid complex in the monkey. Brain, 85, 505–520.

    PubMed  Google Scholar 

  16. Nauta, W. J. H. (1964). Some efferent connections of the prefrontal cortex in the monkey. In J. W. K. Akert (Ed.), The frontal granular cortex and behavior (pp. 397–407). New York, NY: McGraw-Hill.

    Google Scholar 

  17. Nauta, W. J. H. (1972). Neural associations of the frontal cortex. Acta Neurobiologiae Experimentalis, 32, 125–140.

    PubMed  Google Scholar 

  18. Mesulam, M.-M. (Ed.). (2000). Principles of behavioral neurology (2nd ed.). New York, NY: Oxford University Press.

    Google Scholar 

  19. Harlow, J. M. (1868). Recovery from the passage of an iron bar through the head. Publications of the Massachusetts Medical Society, 2, 237–246.

    Google Scholar 

  20. Hebb, D. O., & Penfield, W. (1940). Human behavior after extensive bilateral removal from the frontal lobes. Psychiatry: Archives of Neurology and.

    Google Scholar 

  21. Hebb, D. O. (1945). Man’s frontal lobes: A critical review. Archives of Neurology and Psychiatry, 54, 10–24.

    Google Scholar 

  22. Hecaen, H., & Albert, M. L. (1975). Mental symptoms associated with tumors of the frontal lobe. In J. M. W. K. Akert (Ed.), The frontal granular cortex and behavior (pp. 335–352). New York, NY: McGraw Hill.

    Google Scholar 

  23. Hecaen, H., & Albert, M. L. (1975). Disorders of mental functioning related to frontal lobe pathology. In D. F. B. D. Blumer (Ed.), Psychiatric aspects of neurologic disease (pp. 137–149). New York, NY: Grune & Stratton.

    Google Scholar 

  24. Fuster, J. M. (1991). The prefrontal cortex and its relation to behavior. Progress in Brain Research, 87, 201–211.

    PubMed  Google Scholar 

  25. Fuster, J. M. (2000). Executive frontal functions. Experimental Brain Research. Experimentelle Hirnforschung, 133(1), 66–70.

    Google Scholar 

  26. Luria, A. R. (1966). Higher cortical functions in man. New York, NY: Basic Books.

    Google Scholar 

  27. Luria, A. R. (1939). Disturbances of perception in frontal lobe lesions (the problem of the frontal agnosias). Unpublished investigation.

    Google Scholar 

  28. Luria, A. R., & Khomskaya, E. D. (Eds.). (1966). The frontal lobes and regulation of psychological processes. Moscow: Moscow University Press.

    Google Scholar 

  29. Eslinger, P. J., & Damasio, A. R. (1985). Severe disturbance of higher cognition after bilateral frontal lobe ablation: Patient EVR. Neurology, 35(12), 1731–1741.

    PubMed  Google Scholar 

  30. Eslinger, P. J., & Grattan, L. M. (1993). Frontal lobe and frontal-striatal substrates for different forms of human cognitive flexibility. Neuropsychologia, 31(1), 17–28.

    PubMed  Google Scholar 

  31. Rylander, G., & Frey, H. (1939). Personality changes after operations on the frontal lobes; A clinical study of 32 cases. Copenhagen: E. Munksgaard; London: H. Milford, Oxford University Press.

    Google Scholar 

  32. Newcombe, V. F., Outtrim, J. G., Chatfield, D. A., et al. (2011). Parcellating the neuroanatomical basis of impaired decision-making in traumatic brain injury. Brain, 134(Pt 3), 759–768.

    PubMed  Google Scholar 

  33. Modirrousta, M., & Fellows, L. K. (2008). Medial prefrontal cortex plays a critical and selective role in ‘feeling of knowing’ meta-memory judgments. Neuropsychologia, 46(12), 2958–2965.

    PubMed  Google Scholar 

  34. Iaria, G., Fox, C. J., Waite, C. T., Aharon, I., & Barton, J. J. (2008). The contribution of the fusiform gyrus and superior temporal sulcus in processing facial attractiveness: Neuropsychological and neuroimaging evidence. Neuroscience, 155(2), 409–422.

    PubMed  Google Scholar 

  35. Clark, L., Bechara, A., Damasio, H., Aitken, M. R., Sahakian, B. J., & Robbins, T. W. (2008). Differential effects of insular and ventromedial prefrontal cortex lesions on risky decision-making. Brain, 131(Pt 5), 1311–1322.

    PubMed  Google Scholar 

  36. Fellows, L. K. (2007). The role of orbitofrontal cortex in decision making: A component process account. Annals of the New York Academy of Sciences, 1121, 421–430.

    PubMed  Google Scholar 

  37. Moll, J., & de Oliveira-Souza, R. (2007). Moral judgments, emotions and the utilitarian brain. Trends in Cognitive Sciences, 11(8), 319–321.

    PubMed  Google Scholar 

  38. Fellows, L. K., & Farah, M. J. (2007). The role of ventromedial prefrontal cortex in decision making: Judgment under uncertainty or judgment per se? Cerebral Cortex, 17(11), 2669–2674.

    PubMed  Google Scholar 

  39. Peretz, I., Brattico, E., Jarvenpaa, M., & Tervaniemi, M. (2009). The amusic brain: In tune, out of key, and unaware. Brain, 132(Pt 5), 1277–1286.

    PubMed  Google Scholar 

  40. Heberlein, A. S., & Saxe, R. R. (2005). Dissociation between emotion and personality judgments: Convergent evidence from functional neuroimaging. NeuroImage, 28(4), 770–777.

    PubMed  Google Scholar 

  41. Damasio, A. R., Tranel, D., & Damasio, H. (1990). Individuals with sociopathic behavior caused by frontal damage fail to respond autonomically to social stimuli. Behavioural Brain Research, 41(2), 81–94.

    PubMed  Google Scholar 

  42. Heberlein, A. S., Adolphs, R., Tranel, D., & Damasio, H. (2004). Cortical regions for judgments of emotions and personality traits from point-light walkers. Journal of Cognitive Neuroscience, 16(7), 1143–1158.

    PubMed  Google Scholar 

  43. Schnyer, D. M., Verfaellie, M., Alexander, M. P., LaFleche, G., Nicholls, L., & Kaszniak, A. W. (2004). A role for right medial prefrontal cortex in accurate feeling-of-knowing judgements: Evidence from patients with lesions to frontal cortex. Neuropsychologia, 42(7), 957–966.

    PubMed  Google Scholar 

  44. Hanten, G., Bartha, M., & Levin, H. S. (2000). Metacognition following pediatric traumatic brain injury: A preliminary study. Developmental Neuropsychology, 18(3), 383–398.

    PubMed  Google Scholar 

  45. Bird, C. M., Castelli, F., Malik, O., Frith, U., & Husain, M. (2004). The impact of extensive medial frontal lobe damage on ‘Theory of Mind’ and cognition. Brain, 127(Pt 4), 914–928.

    PubMed  Google Scholar 

  46. Jacobs, R., & Anderson, V. (2002). Planning and problem solving skills following focal frontal brain lesions in childhood: Analysis using the Tower of London. Child Neuropsychology, 8(2), 93–106.

    PubMed  Google Scholar 

  47. Bazanis, E., Rogers, R. D., Dowson, J. H., et al. (2002). Neurocognitive deficits in decision-making and planning of patients with DSM-III-R borderline personality disorder. Psychological Medicine, 32(8), 1395–1405.

    PubMed  Google Scholar 

  48. Mataro, M., Jurado, M. A., Garcia-Sanchez, C., Barraquer, L., Costa-Jussa, F. R., & Junque, C. (2001). Long-term effects of bilateral frontal brain lesion: 60 years after injury with an iron bar. Archives of Neurology, 58(7), 1139–1142.

    PubMed  Google Scholar 

  49. Zalla, T., Plassiart, C., Pillon, B., Grafman, J., & Sirigu, A. (2001). Action planning in a virtual context after prefrontal cortex damage. Neuropsychologia, 39(8), 759–770.

    PubMed  Google Scholar 

  50. Carlin, D., Bonerba, J., Phipps, M., Alexander, G., Shapiro, M., & Grafman, J. (2000). Planning impairments in frontal lobe dementia and frontal lobe lesion patients. Neuropsychologia, 38(5), 655–665.

    PubMed  Google Scholar 

  51. Dritschel, B. H., Kogan, L., Burton, A., Burton, E., & Goddard, L. (1998). Everyday planning difficulties following traumatic brain injury: A role for autobiographical memory. Brain Injury, 12(10), 875–886.

    PubMed  Google Scholar 

  52. Owen, A. M. (1997). Cognitive planning in humans: Neuropsychological, neuroanatomical and neuropharmacological perspectives. Progress in Neurobiology, 53(4), 431–450.

    PubMed  Google Scholar 

  53. Robbins, T. W. (1996). Dissociating executive functions of the prefrontal cortex. Philosophical Transactions of the Royal Society of London, 351(1346), 1463–1470. discussion 1470–1461.

    PubMed  Google Scholar 

  54. Cockburn, J. (1995). Performance on the Tower of London test after severe head injury. Journal of the International Neuropsychological Society, 1(6), 537–544.

    PubMed  Google Scholar 

  55. Karnath, H. O., & Wallesch, C. W. (1992). Inflexibility of mental planning: A characteristic disorder with prefrontal lobe lesions? Neuropsychologia, 30(11), 1011–1016.

    PubMed  Google Scholar 

  56. Karnath, H. O., Wallesch, C. W., & Zimmermann, P. (1991). Mental planning and anticipatory processes with acute and chronic frontal lobe lesions: A comparison of maze performance in routine and non-routine situations. Neuropsychologia, 29(4), 271–290.

    PubMed  Google Scholar 

  57. Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: A framework for understanding aspects of the functional anatomy of language. Cognition, 92(1–2), 67–99.

    PubMed  Google Scholar 

  58. Gershberg, F. B., & Shimamura, A. P. (1995). Impaired use of organizational strategies in free recall following frontal lobe damage. Neuropsychologia, 33(10), 1305–1333.

    PubMed  Google Scholar 

  59. Janowsky, J. S., & Thomas-Thrapp, L. J. (1993). Complex figure recall in the elderly: A deficit in memory or constructional strategy? Journal of Clinical and Experimental Neuropsychology, 15(2), 159–169.

    PubMed  Google Scholar 

  60. Alexander, M. P., Stuss, D. T., Picton, T., Shallice, T., & Gillingham, S. (2007). Regional frontal injuries cause distinct impairments in cognitive control. Neurology, 68(18), 1515–1523.

    PubMed  Google Scholar 

  61. Rogers, R. D., Sahakian, B. J., Hodges, J. R., Polkey, C. E., Kennard, C., & Robbins, T. W. (1998). Dissociating executive mechanisms of task control following frontal lobe damage and Parkinson’s disease. Brain, 121(Pt 5), 815–842.

    PubMed  Google Scholar 

  62. Hawley, C. A. (2005). Saint or sinner? Teacher perceptions of a child with traumatic brain injury. Pediatric Rehabilitation, 8(2), 117–129.

    PubMed  Google Scholar 

  63. Furuyashiki, T., & Gallagher, M. (2007). Neural encoding in the orbitofrontal cortex related to goal-directed behavior. Annals of the New York Academy of Sciences, 1121, 193–215.

    PubMed  Google Scholar 

  64. Glosser, G., & Goodglass, H. (1990). Disorders in executive control functions among aphasic and other brain-damaged patients. Journal of Clinical and Experimental Neuropsychology, 12(4), 485–501.

    PubMed  Google Scholar 

  65. Sandson, J., & Albert, M. L. (1984). Varieties of perseveration. Neuropsychologia, 22(6), 715–732.

    PubMed  Google Scholar 

  66. Koenigs, M., Holliday, J., Solomon, J., & Grafman, J. (2010). Left dorsomedial frontal brain damage is associated with insomnia. The Journal of Neuroscience, 30(47), 16041–16043.

    PubMed  Google Scholar 

  67. Cohen, R. A., Kaplan, R. F., Meadows, M. E., & Wilkinson, H. (1994). Habituation and sensitization of the orienting response following bilateral anterior cingulotomy. Neuropsychologia, 32(5), 609–617.

    PubMed  Google Scholar 

  68. Cohen, R. A., Kaplan, R. F., Moser, D. J., Jenkins, M. A., & Wilkinson, H. (1999). Impairments of attention after cingulotomy. Neurology, 53(4), 819–824.

    PubMed  Google Scholar 

  69. Cohen, R. A., Kaplan, R. F., Zuffante, P., et al. (Fall 1999). Alteration of intention and self-initiated action associated with bilateral anterior cingulotomy. The Journal of Neuropsychiatry and Clinical Neurosciences, 11(4), 444–453.

    Google Scholar 

  70. Cohen, R., McCrae, V., Phillips, K., & Wilkinson, H. (1990). Neurobehavioral consequences of bilateral medial cingulotomy. Neurology, 40(1), 198.

    Google Scholar 

  71. Hecaen, H., Penfield, W., Bertrand, C., & Malmo, R. (1956). The syndrome of apractagnosia due to lesions of the minor hemisphere. Archives of Neurology and Psychiatry, 75, 400–434.

    PubMed  Google Scholar 

  72. Kleist, K. (1907). Corticale (innervatorische) Apraxie. Journal of Psychiatry and Neurology, 28, 46–112.

    Google Scholar 

  73. Heilman, K. M., Bowers, D., Coslett, H. B., & Watson, R. T. (1983). Directional hypokinesia in neglect. Neurology, 2(33), 104.

    Google Scholar 

  74. Heilman, K. M., Bowers, D., Coslett, H. B., Whelan, H., & Watson, R. T. (1985). Directional hypokinesia: Prolonged reaction times for leftward movements in patients with right hemisphere lesions and neglect. Neurology, 35(6), 855–859.

    PubMed  Google Scholar 

  75. Heilman, K. M., & Valenstein, E. (1972). Frontal lobe neglect in man. Neurology, 22(6), 660–664.

    PubMed  Google Scholar 

  76. Coslett, H. B., Bowers, D., Fitzpatrick, E., Haws, B., & Heilman, K. M. (1990). Directional hypokinesia and hemispatial inattention in neglect. Brain, 113(Pt 2), 475–486.

    PubMed  Google Scholar 

  77. Franz, S. I. (1907). On the function of the cerebrum: The frontal lobes. Archives of Psychology, 2, 1–64.

    Google Scholar 

  78. Jacobsen, C. F. (1931). A study of cerebral function in learning: The frontal lobes. The Journal of Comparative Neurology, 52, 271–340.

    Google Scholar 

  79. Jacobsen, C. F. (1936). Studies of cerebral functions in primates: 1. The functions of the frontal association areas in monkeys. Comparative Psychology, 13, 3–60.

    Google Scholar 

  80. Jacobsen, C. F., & Nissen, H. W. (1937). Studies of cerebral function in primates: IV. The effects of frontal lobe lesions on the delayed alternation habit in monkeys. Journal of Comparative and Physiological Psychology, 23, 101–112.

    Google Scholar 

  81. Miller, M. H., & Orbach, J. (1972). Retention of spatial alternation following frontal lobe resections in stump-tailed macaques. Neuropsychologia, 10, 291–298.

    PubMed  Google Scholar 

  82. Kennard, M. A., Spencer, S., & Fountain, G. (1941). Hyperactivity in monkeys following lesions of the frontal lobes. Journal of Neurophysiology, 4, 512–524.

    Google Scholar 

  83. Kennard, M. A., & Ectors, L. (1938). Forced circling movements in monkeys following lesions of the frontal lobe. Journal of Neurophysiology, 1, 45–54.

    Google Scholar 

  84. Kennard, M. A. (1939). Alterations in response to visual stimuli following lesions of frontal lobe in monkeys. Archives of Neurology and Psychiatry, 41, 1153–1165.

    Google Scholar 

  85. Moratti, S., & Keil, A. (2005). Cortical activation during Pavlovian fear conditioning depends on heart rate response patterns: An MEG study. Brain Research, 25(2), 459–471.

    PubMed  Google Scholar 

  86. Hugdahl, K., Berardi, A., Thompson, W. L., et al. (1995). Brain mechanisms in human classical conditioning: A PET blood flow study. Neuroreport, 6(13), 1723–1728.

    PubMed  Google Scholar 

  87. Brennan, J. F., & Wisniewski, C. (1982). The efficacy of response prevention on avoidance behavior in young and adult rats with prefrontal cortical injury. Behavioural Brain Research, 4(2), 117–131.

    PubMed  Google Scholar 

  88. Balinska, H. (1966). Extinction of a food-reinforced response in rabbits with lesions of the frontal cortex. Acta Biologiae Experimentalis, 26(4), 419–423.

    PubMed  Google Scholar 

  89. Burgos-Robles, A., Vidal-Gonzalez, I., & Quirk, G. J. (2009). Sustained conditioned responses in prelimbic prefrontal neurons are correlated with fear expression and extinction failure. The Journal of Neuroscience, 29(26), 8474–8482.

    PubMed  Google Scholar 

  90. Winstanley, C. A., Theobald, D. E., Cardinal, R. N., & Robbins, T. W. (2004). Contrasting roles of basolateral amygdala and orbitofrontal cortex in impulsive choice. The Journal of Neuroscience, 24(20), 4718–4722.

    PubMed  Google Scholar 

  91. Taylor, C. L., Latimer, M. P., & Winn, P. (2003). Impaired delayed spatial win-shift behaviour on the eight arm radial maze following excitotoxic lesions of the medial prefrontal cortex in the rat. Behavioural Brain Research, 147(1–2), 107–114.

    PubMed  Google Scholar 

  92. Baunez, C., Salin, P., Nieoullon, A., & Amalric, M. (1998). Impaired performance in a conditioned reaction time task after thermocoagulatory lesions of the fronto-parietal cortex in rats. Cerebral Cortex, 8(4), 301–309.

    PubMed  Google Scholar 

  93. Grueninger, W. E., & Pribram, K. H. (1969). Effects of spatial and nonspatial distractors on performance latency of monkeys with frontal lesions. Journal of Comparative and Physiological Psychology, 68((2, Pt.1)), 203–209.

    PubMed  Google Scholar 

  94. Butter, C. M. (1964). Habituation of responses to novel stimuli in monkeys with selective frontal lesions. Science (New York, N.Y.), 144, 313–315.

    Google Scholar 

  95. Pribram, K. H. (1969). The primate frontal cortex. Neuropsychologia, 7(3), 259–266.

    Google Scholar 

  96. Kolb, B. (1974). Some tests of response habituation in rats with discrete lesions to the orbital or medial frontal cortex. Canadian Journal of Psychology, 28(2), 260–267.

    PubMed  Google Scholar 

  97. Rule, R. R., Shimamura, A. P., & Knight, R. T. (2002). Orbitofrontal cortex and dynamic filtering of emotional stimuli. Cognitive, Affective, & Behavioral Neuroscience, 2(3), 264–270.

    Google Scholar 

  98. Mishkin, M., & Pribram, K. H. (1955). Analysis of the effects of frontal lesions in monkeys: I. Variations of delayed alternations. Journal of Comparative and Physiological Psychology, 48(6), 492–495.

    PubMed  Google Scholar 

  99. Mishkin, M., & Pribram, K. H. (1956). Analysis of the effects of frontal lesions in monkey: II. Variations of delayed response. Journal of Comparative and Physiological Psychology, 49(1), 36–40.

    PubMed  Google Scholar 

  100. Pribram, K. H., Mishkin, M., Rosvold, H. E., & Kaplan, S. J. (1952). Effects on delayed-response performance of lesions of dorsolateral and ventromedial frontal cortex of baboons. Journal of Comparative and Physiological Psychology, 45, 565–575.

    PubMed  Google Scholar 

  101. Pribram, K. H., Konrad, K., & Gainsburg, D. (1966). Frontal lesions and behavioral instability. Journal of Comparative and Physiological Psychology, 62(1), 123–124.

    PubMed  Google Scholar 

  102. Pribram, K. H., Lim, H., Poppen, R., & Bagshaw, M. (1966). Limbic lesions and the temporal structure of redundancy. Journal of Comparative and Physiological Psychology, 61(3), 368–373.

    PubMed  Google Scholar 

  103. Pribram, K. H., & Mishkin, M. (1956). Analysis of the effects of frontal lesions in monkeys. III. Object alternation. Journal of Comparative and Physiological Psychology, 49(1), 41–45.

    PubMed  Google Scholar 

  104. Stuss, D. T., & Knight, R. T. (2002). Principles of frontal lobe function. Oxford: Oxford University Press.

    Google Scholar 

  105. Watanabe, M. (1981). Prefrontal unit activity during delayed conditional discriminations in the monkey. Brain Research, 225(1), 51–65.

    PubMed  Google Scholar 

  106. Watanabe, T., Kodama, N., Mori, T., & Suzuki, J. (1980). [Surgery of orbital tumor—analysis of location and appropriate operative approaches (author’s transl)]. No shinkei Geka. Neurological Surgery, 8(6), 545–549.

    PubMed  Google Scholar 

  107. Poucet, B. (1989). Object exploration, habituation, and response to a spatial change in rats following septal or medial frontal cortical damage. Behavioral Neuroscience, 103(5), 1009–1016.

    PubMed  Google Scholar 

  108. Mogensen, J., & Divac, I. (1993). Behavioural changes after ablation of subdivisions of the rat prefrontal cortex. Acta Neurobiologiae Experimentalis, 53(3), 439–449.

    PubMed  Google Scholar 

  109. Rosenkilde, C. E., Bauer, R. H., & Fuster, J. M. (1981). Single cell activity in ventral prefrontal cortex of behaving monkeys. Brain Research, 209(2), 375–394.

    PubMed  Google Scholar 

  110. Yamada, M., Pita, M. C., Iijima, T., & Tsutsui, K. (2010). Rule-dependent anticipatory activity in prefrontal neurons. Neuroscience Research, 67(2), 162–171.

    PubMed  Google Scholar 

  111. Phillips, A. N., & Segraves, M. A. (2010). Predictive activity in macaque frontal eye field neurons during natural scene searching. Journal of Neurophysiology, 103(3), 1238–1252.

    PubMed  Google Scholar 

  112. Mort, D. J., Perry, R. J., Mannan, S. K., et al. (2003). Differential cortical activation during voluntary and reflexive saccades in man. NeuroImage, 18(2), 231–246.

    PubMed  Google Scholar 

  113. Gitelman, D. R., Parrish, T. B., Friston, K. J., & Mesulam, M. M. (2002). Functional anatomy of visual search: Regional segregations within the frontal eye fields and effective connectivity of the superior colliculus. NeuroImage, 15(4), 970–982.

    PubMed  Google Scholar 

  114. Lalonde, R., & Badescu, R. (1995). Exploratory drive, frontal lobe function and adipsia in aging. Gerontology, 41(3), 134–144.

    PubMed  Google Scholar 

  115. Giovannini, M. G., Rakovska, A., Benton, R. S., Pazzagli, M., Bianchi, L., & Pepeu, G. (2001). Effects of novelty and habituation on acetylcholine, GABA, and glutamate release from the frontal cortex and hippocampus of freely moving rats. Neuroscience, 106(1), 43–53.

    PubMed  Google Scholar 

  116. Himmelbach, M., Erb, M., & Karnath, H. O. (2006). Exploring the visual world: The neural substrate of spatial orienting. NeuroImage, 32(4), 1747–1759.

    PubMed  Google Scholar 

  117. Porrino, L. J. G., & Rakic, P. (1982). Brainstem innervation of prefrontal and anterior cingulate cortex in the rhesus monkey revealed by retrograde transport of HRP. The Journal of Comparative Neurology, 205, 63–76.

    PubMed  Google Scholar 

  118. Gentilucci, M., Bertolani, L., Benuzzi, F., Negrotti, A., Pavesi, G., & Gangitano, M. (2000). Impaired control of an action after supplementary motor area lesion: A case study. Neuropsychologia, 38(10), 1398–1404.

    PubMed  Google Scholar 

  119. Freund, H. J., & Hummelsheim, H. (1985). Lesions of premotor cortex in man. Brain, 108(Pt 3), 697–733.

    PubMed  Google Scholar 

  120. Gentile, A. M. (1972). Movement organization and delayed alternation behavior of monkeys following selective ablation of frontal cortex. Acta Neurobiologiae Experimentalis, 32(2), 277–304.

    PubMed  Google Scholar 

  121. Dick, J. P., Benecke, R., Rothwell, J. C., Day, B. L., & Marsden, C. D. (1986). Simple and complex movements in a patient with infarction of the right supplementary motor area. Movement Disorders, 1(4), 255–266.

    PubMed  Google Scholar 

  122. De Renzi, E., Faglioni, P., Lodesani, M., & Vecchi, A. (1983). Performance of left brain-damaged patients on imitation of single movements and motor sequences. Frontal and parietal-injured patients compared. Cortex; A Journal Devoted to the Study of the Nervous System and Behavior, 19(3), 333–343.

    PubMed  Google Scholar 

  123. Halsband, U., & Lange, R. K. (2006). Motor learning in man: A review of functional and clinical studies. Journal of Physiology, Paris, 99(4–6), 414–424.

    PubMed  Google Scholar 

  124. Boettiger, C. A., & D’Esposito, M. (2005). Frontal networks for learning and executing arbitrary stimulus–response associations. The Journal of Neuroscience, 25(10), 2723–2732.

    PubMed  Google Scholar 

  125. Walton, M. E., Bannerman, D. M., & Rushworth, M. F. (2002). The role of rat medial frontal cortex in effort-based decision making. The Journal of Neuroscience, 22(24), 10996–11003.

    PubMed  Google Scholar 

  126. Schubotz, R. I., & von Cramon, D. Y. (2001). Interval and ordinal properties of sequences are associated with distinct premotor areas. Cerebral Cortex, 11(3), 210–222.

    PubMed  Google Scholar 

  127. Gandhi, C. C., Kelly, R. M., Wiley, R. G., & Walsh, T. J. (2000). Impaired acquisition of a Morris water maze task following selective destruction of cerebellar purkinje cells with OX7-saporin. Behavioural Brain Research, 109(1), 37–47.

    PubMed  Google Scholar 

  128. Gaymard, B., Ploner, C. J., Rivaud-Pechoux, S., & Pierrot-Deseilligny, C. (1999). The frontal eye field is involved in spatial short-term memory but not in reflexive saccade inhibition. Experimental Brain Research. Experimentelle Hirnforschung, 129(2), 288–301.

    Google Scholar 

  129. Godefroy, O., Cabaret, M., Petit-Chenal, V., Pruvo, J. P., & Rousseaux, M. (1999). Control functions of the frontal lobes. Modularity of the central-supervisory system? Cortex; A Journal Devoted to the Study of the Nervous System and Behavior, 35(1), 1–20.

    PubMed  Google Scholar 

  130. Rushworth, M. F., Nixon, P. D., Wade, D. T., Renowden, S., & Passingham, R. E. (1998). The left hemisphere and the selection of learned actions. Neuropsychologia, 36(1), 11–24.

    PubMed  Google Scholar 

  131. Stoehr, J. D., Mobley, S. L., Roice, D., et al. (1997). The effects of selective cholinergic basal forebrain lesions and aging upon expectancy in the rat. Neurobiology of Learning and Memory, 67(3), 214–227.

    PubMed  Google Scholar 

  132. Beitel, R. E., & Kaas, J. H. (1993). Effects of bilateral and unilateral ablation of auditory cortex in cats on the unconditioned head orienting response to acoustic stimuli. Journal of Neurophysiology, 70(1), 351–369.

    PubMed  Google Scholar 

  133. Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1993). Dorsolateral prefrontal lesions and oculomotor delayed-response performance: Evidence for mnemonic “scotomas”. The Journal of Neuroscience, 13(4), 1479–1497.

    PubMed  Google Scholar 

  134. van Haaren, F., van Zijderveld, G., van Hest, A., de Bruin, J. P., van Eden, C. G., & van de Poll, N. E. (1988). Acquisition of conditional associations and operant delayed spatial response alternation: Effects of lesions in the medial prefrontal cortex. Behavioral Neuroscience, 102(4), 481–488.

    PubMed  Google Scholar 

  135. Ridley, R. M., Murray, T. K., Johnson, J. A., & Baker, H. F. (1986). Learning impairment following lesion of the basal nucleus of Meynert in the marmoset: Modification by cholinergic drugs. Brain Research, 376(1), 108–116.

    PubMed  Google Scholar 

  136. Koch, I., Reverberi, C., & Rumiati, R. I. (2006). Learning hierarchically structured action sequences is unaffected by prefrontal-cortex lesion. Experimental Brain Research. Experimentelle Hirnforschung, 175(4), 667–675.

    Google Scholar 

  137. Exner, C., Koschack, J., & Irle, E. (2002). The differential role of premotor frontal cortex and basal ganglia in motor sequence learning: Evidence from focal basal ganglia lesions. Learning & Memory (Cold Spring Harbor, N.Y.), 9(6), 376–386.

    Google Scholar 

  138. Lepage, M., Beaudoin, G., Boulet, C., et al. (1999). Frontal cortex and the programming of repetitive tapping movements in man: Lesion effects and functional neuroimaging. Brain Research, 8(1), 17–25.

    PubMed  Google Scholar 

  139. Fritts, M. E., Asbury, E. T., Horton, J. E., & Isaac, W. L. (1998). Medial prefrontal lesion deficits involving or sparing the prelimbic area in the rat. Physiology & Behavior, 64(3), 373–380.

    Google Scholar 

  140. Tanji, J. (1994). The supplementary motor area in the cerebral cortex. Neuroscience Research, 19(3), 251–268.

    PubMed  Google Scholar 

  141. Christie, D., Terry, P., & Oakley, D. A. (1990). The effect of unilateral anteromedial cortex lesions on prey-catching and spatio-motor behaviour in the rat. Behavioural Brain Research, 37(3), 263–268.

    PubMed  Google Scholar 

  142. Luthman, J., Fredriksson, A., Sundstrom, E., Jonsson, G., & Archer, T. (1989). Selective lesion of central dopamine or noradrenaline neuron systems in the neonatal rat: Motor behavior and monoamine alterations at adult stage. Behavioural Brain Research, 33(3), 267–277.

    PubMed  Google Scholar 

  143. Starkstein, S. E., Moran, T. H., Bowersox, J. A., & Robinson, R. G. (1988). Behavioral abnormalities induced by frontal cortical and nucleus accumbens lesions. Brain Research, 473(1), 74–80.

    PubMed  Google Scholar 

  144. van Hof, M. W., Hobbelen, J. F., & De Vos-Korthals, W. H. (1987). Motor behaviour and visual discrimination after neonatal and adult hemidecortication in the rabbit. Behavioural Brain Research, 25(3), 247–253.

    PubMed  Google Scholar 

  145. Oades, R. D., Taghzouti, K., Rivet, J. M., Simon, H., & Le Moal, M. (1986). Locomotor activity in relation to dopamine and noradrenaline in the nucleus accumbens, septal and frontal areas: A 6-hydroxydopamine study. Neuropsychobiology, 16(1), 37–42.

    PubMed  Google Scholar 

  146. Nonneman, A. J., & Corwin, J. V. (1981). Differential effects of prefrontal cortex ablation in neonatal, juvenile, and young adult rats. Journal of Comparative and Physiological Psychology, 95(4), 588–602.

    PubMed  Google Scholar 

  147. Fabre, M., & Buser, P. (1980). Structures involved in acquisition and performance of visually guided movements in the cat. Acta Neurobiologiae Experimentalis, 40(1), 95–116.

    PubMed  Google Scholar 

  148. Toni, I., Thoenissen, D., & Zilles, K. (2001). Movement preparation and motor intention. NeuroImage, 14(1 Pt 2), S110–S117.

    PubMed  Google Scholar 

  149. Rizzolatti, G., Matelli, M., & Pavesi, G. (1983). Deficits in attention and movement following the removal of postarcuate (area 6) and prearcuate (area 8) cortex in macaque monkeys. Brain, 106(Pt 3), 655–673.

    PubMed  Google Scholar 

  150. Mainero, C., Caramia, F., Pozzilli, C., et al. (2004). fMRI evidence of brain reorganization during attention and memory tasks in multiple sclerosis. NeuroImage, 21(3), 858–867.

    PubMed  Google Scholar 

  151. Muller, N. G., & Knight, R. T. (2006). The functional neuroanatomy of working memory: Contributions of human brain lesion studies. Neuroscience, 139(1), 51–58.

    PubMed  Google Scholar 

  152. Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science (New York, N.Y.), 283(5408), 1657–1661.

    Google Scholar 

  153. Smith, E. E., Jonides, J., Marshuetz, C., & Koeppe, R. A. (1998). Components of verbal working memory: Evidence from neuroimaging. Proceedings of the National Academy of Sciences of the United States of America, 95(3), 876–882.

    PubMed  Google Scholar 

  154. Smith, E. E., Jonides, J., & Koeppe, R. A. (1996). Dissociating verbal and spatial working memory using PET. Cerebral Cortex, 6(1), 11–20.

    PubMed  Google Scholar 

  155. Gunstad, J., Benitez, A., Hoth, K. F., et al. (2009). P-selectin 1087G/A polymorphism is associated with neuropsychological test performance in older adults with cardiovascular disease. Stroke, 40(9), 2969–2972.

    PubMed  Google Scholar 

  156. Haley, A. P., Sweet, L. H., Gunstad, J., et al. (2007). Verbal working memory and atherosclerosis in patients with cardiovascular disease: An fMRI study. Journal of Neuroimaging, 17(3), 227–233.

    PubMed  Google Scholar 

  157. Paskavitz, J. F., Sweet, L. H., Wellen, J., Helmer, K. G., Rao, S. M., & Cohen, R. A. (2010). Recruitment and stabilization of brain activation within a working memory task; an FMRI study. Brain Imaging and Behavior, 4(1), 5–21.

    PubMed  Google Scholar 

  158. Sweet, L. H., Mulligan, R. C., Finnerty, C. E., et al. (2010). Effects of nicotine withdrawal on verbal working memory and associated brain response. Psychiatry Research, 183(1), 69–74.

    PubMed  Google Scholar 

  159. Sweet, L. H., Paskavitz, J. F., Haley, A. P., et al. (2008). Imaging phonological similarity effects on verbal working memory. Neuropsychologia, 46(4), 1114–1123.

    PubMed  Google Scholar 

  160. Sweet, L. H., Rao, S. M., Primeau, M., Durgerian, S., & Cohen, R. A. (2006). Functional magnetic resonance imaging response to increased verbal working memory demands among patients with multiple sclerosis. Human Brain Mapping, 27(1), 28–36.

    PubMed  Google Scholar 

  161. Sweet, L. H., Rao, S. M., Primeau, M., Mayer, A. R., & Cohen, R. A. (2004). Functional magnetic resonance imaging of working memory among multiple sclerosis patients. Journal of Neuroimaging, 14(2), 150–157.

    PubMed  Google Scholar 

  162. Sweet, L. H., Vanderhill, S. D., Jerskey, B. A., Gordon, N. M., Paul, R. H., & Cohen, R. A. (2010). Subvocal articulatory rehearsal during verbal working memory in multiple sclerosis. Neurocase, 16(5), 418–425.

    PubMed  Google Scholar 

  163. Awh, E., Smith, E. E., & Jonides, J. (1995). Human rehearsal processes and the frontal lobes: PET evidence. Annals of the New York Academy of Sciences, 769, 97–117.

    PubMed  Google Scholar 

  164. Honey, G. D., Bullmore, E. T., Soni, W., Varatheesan, M., Williams, S. C., & Sharma, T. (1999). Differences in frontal cortical activation by a working memory task after substitution of risperidone for typical antipsychotic drugs in patients with schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 96(23), 13432–13437.

    PubMed  Google Scholar 

  165. Honey, G. D., Fu, C. H., Kim, J., et al. (2002). Effects of verbal working memory load on corticocortical connectivity modeled by path analysis of functional magnetic resonance imaging data. NeuroImage, 17(2), 573–582.

    PubMed  Google Scholar 

  166. Okada, Y. C., & Salenius, S. (1998). Roles of attention, memory, and motor preparation in modulating human brain activity in a spatial working memory task. Cerebral Cortex, 8(1), 80–96.

    PubMed  Google Scholar 

  167. Wojciulik, E., Husain, M., Clarke, K., & Driver, J. (2001). Spatial working memory deficit in unilateral neglect. Neuropsychologia, 39(4), 390–396.

    PubMed  Google Scholar 

  168. Braver, T. S., Cohen, J. D., Nystrom, L. E., Jonides, J., Smith, E. E., & Noll, D. C. (1997). A parametric study of prefrontal cortex involvement in human working memory. NeuroImage, 5(1), 49–62.

    PubMed  Google Scholar 

  169. Rosen, A. C., Rao, S. M., Caffarra, P., et al. (1999). Neural basis of endogenous and exogenous spatial orienting. A functional MRI study. Journal of Cognitive Neuroscience, 11(2), 135–152.

    PubMed  Google Scholar 

  170. Corbetta, M., Kincade, J. M., & Shulman, G. L. (2002). Neural systems for visual orienting and their relationships to spatial working memory. Journal of Cognitive Neuroscience, 14(3), 508–523.

    PubMed  Google Scholar 

  171. Barch, D. M., Braver, T. S., Nystrom, L. E., Forman, S. D., Noll, D. C., & Cohen, J. D. (1997). Dissociating working memory from task difficulty in human prefrontal cortex. Neuropsychologia, 35(10), 1373–1380.

    PubMed  Google Scholar 

  172. Rowe, J. B., & Passingham, R. E. (2001). Working memory for location and time: Activity in prefrontal area 46 relates to selection rather than maintenance in memory. NeuroImage, 14(1 Pt 1), 77–86.

    PubMed  Google Scholar 

  173. Teuber, H. L. (1960). Visual field defects after penetrating missile wounds of the brain. Cambridge: Harvard University Press (Published for the Commonwealth Fund).

    Google Scholar 

  174. Luria, A. R., & Homskaya, E. D. (1962). An objective study of ocular movements and their control. Psychologische Beitrage, 6, 598–606.

    Google Scholar 

  175. Luria, A. R., Karpov, B. A., & Yarbuss, A. L. (1966). Disturbances of active visual perception with lesions of the frontal lobes. Cortex, 2, 202–212.

    Google Scholar 

  176. Yarbus, A. (1965). The role of eye movements in the perception of pictures. Moscow: Nauka.

    Google Scholar 

  177. Butter, C. M. (1964). Habitation of responses to novel stimuli in monkeys with selective frontal lesions. Science (New York, N.Y.), l44, 3l3–3l5.

    Google Scholar 

  178. Butter, C. M. (1972). Detection of masked patterns in monkeys with inferotemporal, striate or dorsolateral frontal lesions. Neuropsychologia, 10(2), 241–243.

    PubMed  Google Scholar 

  179. Butter, C. M., Rapcsak, S., Watson, R. T., & Heilman, K. M. (1988). Changes in sensory inattention, directional motor neglect and “release” of the fixation reflex following a unilateral frontal lesion: A case report. Neuropsychologia, 26(4), 533–545.

    PubMed  Google Scholar 

  180. Butter, C. M., Mark, V. W., & Heilman, K. M. (1988). An experimental analysis of factors underlying neglect in line bisection. Journal of Neurology, Neurosurgery, and Psychiatry., 51(12), 1581–1583.

    PubMed  Google Scholar 

  181. Goldberg, M. E., & Bruce, C. J. (1986). The role of the arcuate frontal eye fields in the generation of saccadic eye movements. Progress in Brain Research, 64, 143–154.

    PubMed  Google Scholar 

  182. Goldberg, M. E., & Segraves, M. A. (1987). Visuospatial and motor attention in the monkey. Neuropsychologia, 25(1A), 107–118.

    PubMed  Google Scholar 

  183. Goldberg, M. E., & Bruce, C. J. (1985). Cerebral cortical activity associated with the orientation of visual attention in the rhesus monkey. Vision Research, 25(3), 471–481.

    PubMed  Google Scholar 

  184. Mannan, S. K., Mort, D. J., Hodgson, T. L., Driver, J., Kennard, C., & Husain, M. (2005). Revisiting previously searched locations in visual neglect: Role of right parietal and frontal lesions in misjudging old locations as new. Journal of Cognitive Neuroscience, 17(2), 340–354.

    PubMed  Google Scholar 

  185. Nagel-Leiby, S., Buchtel, H. A., & Welch, K. M. (1990). Cerebral control of directed visual attention and orienting saccades. Brain, 113(Pt 1), 237–276.

    PubMed  Google Scholar 

  186. Kaplan, R. F., Cohen, R. A., Rosengart, A., Elsner, A. E., Hedges, T. R., III, & Caplan, L. R. (1995). Extinction during time controlled direct retinal stimulation after recovery from right hemispheric stroke. Journal of Neurology, Neurosurgery, and Psychiatry, 59(5), 534–536.

    PubMed  Google Scholar 

  187. Goldberg, M. E., & Bushnell, M. D. (1981). Behavioral enhancement of visual response in monkey cerebral cortex. II. Modulation in frontal eye fields specifically related to saccades. Journal of Neurophysiology, 46, 773–787.

    PubMed  Google Scholar 

  188. Schiller, P. H., True, S. D., & Conway, J. L. (1979). Effects of frontal eye field and superior colliculus ablations on eye movements. Science (New York, N.Y.), 206(4418), 590–592.

    Google Scholar 

  189. Schiller, P. H., True, S. D., & Conway, J. L. (1980). Deficits in eye movements following frontal eye-field and superior colliculus ablations. Journal of Neurophysiology, 44(6), 1175–1189.

    PubMed  Google Scholar 

  190. Crowe, D. P., Yeo, C. H., & Russell, I. S. (1981). The effects of unilateral frontal eye field lesions in the monkey: Visual-motor guidance and avoidance behavior. Behavioural Brain Research, 2, 165–185.

    Google Scholar 

  191. Vecera, S. P., & Rizzo, M. (2004). What are you looking at? Impaired ‘social attention’ following frontal-lobe damage. Neuropsychologia, 42(12), 1657–1665.

    PubMed  Google Scholar 

  192. Walker, R., Husain, M., Hodgson, T. L., Harrison, J., & Kennard, C. (1998). Saccadic eye movement and working memory deficits following damage to human prefrontal cortex. Neuropsychologia, 36(11), 1141–1159.

    PubMed  Google Scholar 

  193. Matsushima, E., Kojima, T., Ohbayashi, S., Ando, H., Ando, K., & Shimazono, Y. (1992). Exploratory eye movements in schizophrenic patients and patients with frontal lobe lesions. European Archives of Psychiatry and Clinical Neuroscience, 241(4), 210–214.

    PubMed  Google Scholar 

  194. Nummenmaa, L., Passamonti, L., Rowe, J., Engell, A. D., & Calder, A. J. (2010). Connectivity analysis reveals a cortical network for eye gaze perception. Cerebral Cortex, 20(8), 1780–1787.

    PubMed  Google Scholar 

  195. McDowell, J. E., Dyckman, K. A., Austin, B. P., & Clementz, B. A. (2008). Neurophysiology and neuroanatomy of reflexive and volitional saccades: Evidence from studies of humans. Brain and Cognition, 68(3), 255–270.

    PubMed  Google Scholar 

  196. Morecraft, R. J., Geula, C., & Mesulam, M. M. (1993). Architecture of connectivity within a cingulo-fronto-parietal neurocognitive network for directed attention. Archives of Neurology, 50(3), 279–284.

    PubMed  Google Scholar 

  197. Shook, B. L., Schlag-Rey, M., & Schlag, J. (1991). Primate supplementary eye field. II. Comparative aspects of connections with the thalamus, corpus striatum, and related forebrain nuclei. The Journal of Comparative Neurology, 307(4), 562–583.

    PubMed  Google Scholar 

  198. Shook, B. L., Schlag-Rey, M., & Schlag, J. (1990). Primate supplementary eye field: I. Comparative aspects of mesencephalic and pontine connections. The Journal of Comparative Neurology, 301(4), 618–642.

    PubMed  Google Scholar 

  199. Leichnetz, G. R., & Goldberg, M. E. (1988). Higher centers concerned with eye movement and visual attention: Cerebral cortex and thalamus. Reviews of Oculomotor Research, 2, 365–429.

    PubMed  Google Scholar 

  200. Wolynski, B., Schott, B. H., Kanowski, M., & Hoffmann, M. B. (2009). Visuo-motor integration in humans: Cortical patterns of response lateralisation and functional connectivity. Neuropsychologia, 47(5), 1313–1322.

    PubMed  Google Scholar 

  201. Miller, L. M., Sun, F. T., Curtis, C. E., & D’Esposito, M. (2005). Functional interactions between oculomotor regions during prosaccades and antisaccades. Human Brain Mapping, 26(2), 119–127.

    PubMed  Google Scholar 

  202. Hinkley, L. B., Nagarajan, S. S., Dalal, S. S., Guggisberg, A. G., & Disbrow, E. A. (2011). Cortical temporal dynamics of visually guided behavior. Cerebral Cortex, 21(3), 519–529.

    PubMed  Google Scholar 

  203. Godefroy, O., & Rousseaux, M. (1996). Divided and focused attention in patients with lesion of the prefrontal cortex. Brain and Cognition, 30(2), 155–174.

    PubMed  Google Scholar 

  204. Gutling, E., Gonser, A., Regard, M., Glinz, W., & Landis, T. (1993). Dissociation of frontal and parietal components of somatosensory evoked potentials in severe head injury. Electroencephalography and Clinical Neurophysiology, 88(5), 369–376.

    PubMed  Google Scholar 

  205. Mataro, M., Poca, M. A., Sahuquillo, J., et al. (2001). Neuropsychological outcome in relation to the traumatic coma data bank classification of computed tomography imaging. Journal of Neurotrauma, 18(9), 869–879.

    PubMed  Google Scholar 

  206. Spikman, J. M., Deelman, B. G., & van Zomeren, A. H. (2000). Executive functioning, attention and frontal lesions in patients with chronic CHI. Journal of Clinical and Experimental Neuropsychology, 22(3), 325–338.

    PubMed  Google Scholar 

  207. Stablum, F., Leonardi, G., Mazzoldi, M., Umilta, C., & Morra, S. (1994). Attention and control deficits following closed head injury. Cortex; A Journal Devoted to the Study of the Nervous System and Behavior, 30(4), 603–618.

    PubMed  Google Scholar 

  208. Stuss, D. T., Stethem, L. L., Hugenholtz, H., Picton, T., Pivik, J., & Richard, M. T. (1989). Reaction time after head injury: Fatigue, divided and focused attention, and consistency of performance. Journal of Neurology, Neurosurgery, and Psychiatry, 52(6), 742–748.

    PubMed  Google Scholar 

  209. Vilkki, J. (1992). Cognitive flexibility and mental programming after closed head injuries and anterior or posterior cerebral excisions. Neuropsychologia, 30(9), 807–814.

    PubMed  Google Scholar 

  210. Vilkki, J., Virtanen, S., Surma-Aho, O., & Servo, A. (1996). Dual task performance after focal cerebral lesions and closed head injuries. Neuropsychologia, 34(11), 1051–1056.

    PubMed  Google Scholar 

  211. Zahn, T. P., & Mirsky, A. F. (1999). Reaction time indicators of attention deficits in closed head injury. Journal of Clinical and Experimental Neuropsychology, 21(3), 352–367.

    PubMed  Google Scholar 

  212. Robertson, I. H., Manly, T., Andrade, J., Baddeley, B. T., & Yiend, J. (1997). ‘Oops!’: Performance correlates of everyday attentional failures in traumatic brain injured and normal subjects. Neuropsychologia, 35(6), 747–758.

    PubMed  Google Scholar 

  213. Mitchell, D. J., McNaughton, N., Flanagan, D., & Kirk, I. J. (2008). Frontal-midline theta from the perspective of hippocampal “theta”. Progress in Neurobiology, 86(3), 156–185.

    PubMed  Google Scholar 

  214. Shallice, T., Stuss, D. T., Alexander, M. P., Picton, T. W., & Derkzen, D. (2008). The multiple dimensions of sustained attention. Cortex; A Journal Devoted to the Study of the Nervous System and Behavior, 44(7), 794–805.

    PubMed  Google Scholar 

  215. Mathias, J. L., Beall, J. A., & Bigler, E. D. (2004). Neuropsychological and information processing deficits following mild traumatic brain injury. Journal of the International Neuropsychological Society, 10(2), 286–297.

    PubMed  Google Scholar 

  216. Manly, T., Owen, A. M., McAvinue, L., et al. (2003). Enhancing the sensitivity of a sustained attention task to frontal damage: Convergent clinical and functional imaging evidence. Neurocase, 9(4), 340–349.

    PubMed  Google Scholar 

  217. Hinshaw, S. (1994). Attention deficit hyperactivity disorder in children. Thousand Oaks, CA: Sage.

    Google Scholar 

  218. Barkley, R. A. (1988). Attention. New York: Plenum.

    Google Scholar 

  219. Barkley, R. A. (1988). Attention. In M. Tramonthana & S. Hooper (Eds.), Assessment issues in child neuropsychology (pp. 115–154). New York, NY: Plenum.

    Google Scholar 

  220. Barkley, R. A. (1997). ADHD and the nature of self-control. New York, NY: Guilford Press.

    Google Scholar 

  221. Barkley, R. A., Edwards, G., Laneri, M., Fletcher, K., & Metevia, L. (2001). Executive functioning, temporal discounting, and sense of time in adolescents with attention deficit hyperactivity disorder (ADHD) and oppositional defiant disorder (ODD). Journal of Abnormal Child Psychology, 29(6), 541–556.

    PubMed  Google Scholar 

  222. Bush, G., Spencer, T. J., Holmes, J., et al. (2008). Functional magnetic resonance imaging of methylphenidate and placebo in attention-deficit/hyperactivity disorder during the multi-source interference task. Archives of General Psychiatry, 65(1), 102–114.

    PubMed  Google Scholar 

  223. Biederman, J., Makris, N., Valera, E. M., et al. (2008). Towards further understanding of the co-morbidity between attention deficit hyperactivity disorder and bipolar disorder: A MRI study of brain volumes. Psychological Medicine, 38(7), 1045–1056.

    PubMed  Google Scholar 

  224. Makris, N., Buka, S. L., Biederman, J., et al. (2008). Attention and executive systems abnormalities in adults with childhood ADHD: A DT-MRI study of connections. Cerebral Cortex, 18(5), 1210–1220.

    PubMed  Google Scholar 

  225. Johnson, K. A., Kelly, S. P., Bellgrove, M. A., et al. (2007). Response variability in attention deficit hyperactivity disorder: Evidence for neuropsychological heterogeneity. Neuropsychologia, 45(4), 630–638.

    PubMed  Google Scholar 

  226. Schecklmann, M., Schenk, E., Maisch, A., et al. (2011). Altered frontal and temporal brain function during olfactory stimulation in adult attention-deficit/hyperactivity disorder. Neuropsychobiology, 63(2), 66–76.

    PubMed  Google Scholar 

  227. Rubia, K., Halari, R., Smith, A. B., Mohammad, M., Scott, S., & Brammer, M. J. (2009). Shared and disorder-specific prefrontal abnormalities in boys with pure attention-deficit/hyperactivity disorder compared to boys with pure CD during interference inhibition and attention allocation. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 50(6), 669–678.

    PubMed  Google Scholar 

  228. Qiu, M. G., Ye, Z., Li, Q. Y., Liu, G. J., Xie, B., & Wang, J. (2011). Changes of brain structure and function in ADHD children. Brain Topography, 24(3–4), 243–252.

    PubMed  Google Scholar 

  229. Negoro, H., Sawada, M., Iida, J., Ota, T., Tanaka, S., & Kishimoto, T. (2010). Prefrontal dysfunction in attention-deficit/hyperactivity disorder as measured by near-infrared spectroscopy. Child Psychiatry and Human Development, 41(2), 193–203.

    PubMed  Google Scholar 

  230. Mazaheri, A., Coffey-Corina, S., Mangun, G. R., Bekker, E. M., Berry, A. S., & Corbett, B. A. (2010). Functional disconnection of frontal cortex and visual cortex in attention-deficit/hyperactivity disorder. Biological Psychiatry, 67(7), 617–623.

    PubMed  Google Scholar 

  231. Clark, L., Blackwell, A. D., Aron, A. R., et al. (2007). Association between response inhibition and working memory in adult ADHD: A link to right frontal cortex pathology? Biological Psychiatry, 61(12), 1395–1401.

    PubMed  Google Scholar 

  232. Cao, Q., Zang, Y., Zhu, C., et al. (2008). Alerting deficits in children with attention deficit/hyperactivity disorder: Event-related fMRI evidence. Brain Research, 1219, 159–168.

    PubMed  Google Scholar 

  233. Batty, M. J., Liddle, E. B., Pitiot, A., et al. (2010). Cortical gray matter in attention-deficit/hyperactivity disorder: A structural magnetic resonance imaging study. Journal of the American Academy of Child and Adolescent Psychiatry, 49(3), 229–238.

    PubMed  Google Scholar 

  234. Albrecht, B., Brandeis, D., Uebel, H., et al. (2008). Action monitoring in boys with attention-deficit/hyperactivity disorder, their nonaffected siblings, and normal control subjects: Evidence for an endophenotype. Biological Psychiatry, 64(7), 615–625.

    PubMed  Google Scholar 

  235. Molenberghs, P., Gillebert, C. R., Schoofs, H., Dupont, P., Peeters, R., & Vandenberghe, R. (2009). Lesion neuroanatomy of the Sustained Attention to Response task. Neuropsychologia, 47(13), 2866–2875.

    PubMed  Google Scholar 

  236. Maguire, A. M., & Ogden, J. A. (2002). MRI brain scan analyses and neuropsychological profiles of nine patients with persisting unilateral neglect. Neuropsychologia, 40(7), 879–887.

    PubMed  Google Scholar 

  237. Kertesz, A., Nicholson, I., Cancelliere, A., Kassa, K., & Black, S. E. (1985). Motor impersistence: A right-hemisphere syndrome. Neurology, 35(5), 662–666.

    PubMed  Google Scholar 

  238. Niki, C., Maruyama, T., Muragaki, Y., & Kumada, T. (2009). Disinhibition of sequential actions following right frontal lobe damage. Cognitive Neuropsychology, 26(3), 266–285.

    PubMed  Google Scholar 

  239. Lindner, M. D., Plone, M. A., Cain, C. K., et al. (1998). Dissociable long-term cognitive deficits after frontal versus sensorimotor cortical contusions. Journal of Neurotrauma, 15(3), 199–216.

    PubMed  Google Scholar 

  240. Kramer, M. E., Chiu, C. Y., Walz, N. C., et al. (2008). Long-term neural processing of attention following early childhood traumatic brain injury: fMRI and neurobehavioral outcomes. Journal of the International Neuropsychological Society, 14(3), 424–435.

    PubMed  Google Scholar 

  241. Anderson, V., & Catroppa, C. (2005). Recovery of executive skills following paediatric traumatic brain injury (TBI): A 2 year follow-up. Brain Injury, 19(6), 459–470.

    PubMed  Google Scholar 

  242. Solbakk, A. K., Reinvang, I., Nielsen, C., & Sundet, K. (1999). ERP indicators of disturbed attention in mild closed head injury: A frontal lobe syndrome? Psychophysiology, 36(6), 802–817.

    PubMed  Google Scholar 

  243. Whyte, J., Fleming, M., Polansky, M., Cavallucci, C., & Coslett, H. B. (1997). Phasic arousal in response to auditory warnings after traumatic brain injury. Neuropsychologia, 35(3), 313–324.

    PubMed  Google Scholar 

  244. Stuss, D. (1987). Contribution of frontal lobe injury to cognitive impairment after closed head injury: Methods of assessment and recent findings. In H. S. Levin, J. Grafman, & H. M. Eisenberg (Eds.), Neurobehavioral recovery from head injury (pp. 166–177). New York, NY: Oxford University Press.

    Google Scholar 

  245. Parasuraman, R., Mutter, S. A., & Molloy, R. (1991). Sustained attention following mild closed-head injury. Journal of Clinical and Experimental Neuropsychology, 13(5), 789–811.

    PubMed  Google Scholar 

  246. Berardi, A., Parasuraman, R., & Haxby, J. V. (2001). Overall vigilance and sustained attention decrements in healthy aging. Experimental Aging Research, 27(1), 19–39.

    PubMed  Google Scholar 

  247. Parasuraman, R., Nestor, P., & Greenwood, P. (1989). Sustained-attention capacity in young and older adults. Psychology and Aging, 4(3), 339–345.

    PubMed  Google Scholar 

  248. Parasuraman, R., & Nestor, P. G. (1991). Attention and driving skills in aging and Alzheimer’s disease. Human Factors, 33(5), 539–557.

    PubMed  Google Scholar 

  249. Stuss, D. T. (2006). Frontal lobes and attention: Processes and networks, fractionation and integration. Journal of the International Neuropsychological Society, 12(2), 261–271.

    PubMed  Google Scholar 

  250. Stuss, D. T., Alexander, M. P., Shallice, T., et al. (2005). Multiple frontal systems controlling response speed. Neuropsychologia, 43(3), 396–417.

    PubMed  Google Scholar 

  251. Chao, L. L., & Knight, R. T. (1997). Age-related prefrontal alterations during auditory memory. Neurobiology of Aging, 18(1), 87–95.

    PubMed  Google Scholar 

  252. Chao, L. L., & Knight, R. T. (1996). Prefrontal and posterior cortical activation during auditory working memory. Brain Research. Cognitive Brain Research, 4(1), 27–37.

    PubMed  Google Scholar 

  253. Chao, L. L., & Knight, R. T. (1998). Contribution of human prefrontal cortex to delay performance. Journal of Cognitive Neuroscience, 10(2), 167–177.

    PubMed  Google Scholar 

  254. Godefroy, O., Lhullier, C., & Rousseaux, M. (1996). Non-spatial attention disorders in patients with frontal or posterior brain damage. Brain, 119(Pt 1), 191–202.

    PubMed  Google Scholar 

  255. Murray, L. L., Holland, A. L., & Beeson, P. M. (1997). Auditory processing in individuals with mild aphasia: A study of resource allocation. Journal of Speech, Language, and Hearing Research, 40(4), 792–808.

    PubMed  Google Scholar 

  256. Vilkki, J., & Holst, P. (1991). Mental programming after frontal lobe lesions: Results on digit symbol performance with self-selected goals. Cortex; A Journal Devoted to the Study of the Nervous System and Behavior, 27(2), 203–211.

    PubMed  Google Scholar 

  257. Nakahachi, T., Ishii, R., Iwase, M., et al. (2008). Frontal activity during the digit symbol substitution test determined by multichannel near-infrared spectroscopy. Neuropsychobiology, 57(4), 151–158.

    PubMed  Google Scholar 

  258. Meguro, K., Shimada, M., Yamaguchi, S., et al. (2001). Cognitive function and frontal lobe atrophy in normal elderly adults: Implications for dementia not as aging-related disorders and the reserve hypothesis. Psychiatry and Clinical Neurosciences, 55(6), 565–572.

    PubMed  Google Scholar 

  259. Smith, E. E., & Jonides, J. (1997). Working memory: A view from neuroimaging. Cognitive Psychology, 33(1), 5–42.

    PubMed  Google Scholar 

  260. Vidor, M. (1951). Personality changes following prefrontal leucotomy as reflected by the Minnesota multiphasic personality inventory and the results of psychometric testing. The Journal of Mental Science, 97(406), 159–173.

    PubMed  Google Scholar 

  261. Hamlin, R. M. (1970). Intellectual function 14 years after frontal lobe surgery. Cortex; A Journal Devoted to the Study of the Nervous System and Behavior, 6(3), 299–307.

    PubMed  Google Scholar 

  262. Janowsky, J. S., Shimamura, A. P., Kritchevsky, M., & Squire, L. R. (1989). Cognitive impairment following frontal lobe damage and its relevance to human amnesia. Behavioral Neuroscience, 103(3), 548–560.

    PubMed  Google Scholar 

  263. Shimamura, A. P., Janowsky, J. S., & Squire, L. R. (1990). Memory for the temporal order of events in patients with frontal lobe lesions and amnesic patients. Neuropsychologia, 28(8), 803–813.

    PubMed  Google Scholar 

  264. Janowsky, J. S., Shimamura, A. P., & Squire, L. R. (1989). Source memory impairment in patients with frontal lobe lesions. Neuropsychologia, 27(8), 1043–1056.

    PubMed  Google Scholar 

  265. Jonides, J., Smith, E. E., Marshuetz, C., Koeppe, R. A., & Reuter-Lorenz, P. A. (1998). Inhibition in verbal working memory revealed by brain activation. Proceedings of the National Academy of Sciences of the United States of America, 95(14), 8410–8413.

    PubMed  Google Scholar 

  266. Mottaghy, F. M., Pascual-Leone, A., Kemna, L. J., et al. (2003). Modulation of a brain-behavior relationship in verbal working memory by rTMS. Brain Research. Cognitive Brain Research, 15(3), 241–249.

    PubMed  Google Scholar 

  267. Mottaghy, F. M., Doring, T., Muller-Gartner, H. W., Topper, R., & Krause, B. J. (2002). Bilateral parieto-frontal network for verbal working memory: An interference approach using repetitive transcranial magnetic stimulation (rTMS). The European Journal of Neuroscience, 16(8), 1627–1632.

    PubMed  Google Scholar 

  268. Ziemus, B., Baumann, O., Luerding, R., et al. (2007). Impaired working-memory after cerebellar infarcts paralleled by changes in BOLD signal of a cortico-cerebellar circuit. Neuropsychologia, 45(9), 2016–2024.

    PubMed  Google Scholar 

  269. du Boisgueheneuc, F., Levy, R., Volle, E., et al. (2006). Functions of the left superior frontal gyrus in humans: A lesion study. Brain, 129(Pt 12), 3315–3328.

    PubMed  Google Scholar 

  270. Stopford, C. L., Thompson, J. C., Neary, D., Richardson, A. M., & Snowden, J. S. (2012). Working memory, attention, and executive function in Alzheimer’s disease and frontotemporal dementia. Cortex; A Journal Devoted to the Study of the Nervous System and Behavior, 48(4), 429–446.

    PubMed  Google Scholar 

  271. Kessels, R. P., Postma, A., Wijnalda, E. M., & de Haan, E. H. (2000). Frontal-lobe involvement in spatial memory: Evidence from PET, fMRI, and lesion studies. Neuropsychology Review, 10(2), 101–113.

    PubMed  Google Scholar 

  272. McDowell, S., Whyte, J., & D’Esposito, M. (1997). Working memory impairments in traumatic brain injury: Evidence from a dual-task paradigm. Neuropsychologia, 35(10), 1341–1353.

    PubMed  Google Scholar 

  273. Luria, A. R. (1943). Psychological analysis of the premotor syndrome. (Unpublished Investigation).

    Google Scholar 

  274. Luria, A. R. (1973). The frontal lobes and the regulation of behavior. In K. H. Pribram & A. R. Luria (Eds.), Psychophysiology of the frontal lobes. Oxford: Academic.

    Google Scholar 

  275. Pribram, K. H. (1961). A further experimental analysis of the behavioral deficit that follows injury to the primate frontal cortex. Experimental Neurology, 3, 432–466.

    PubMed  Google Scholar 

  276. Pribram, K. H., Wilson, W. A., Jr., & Connors, J. (1962). Effects of lesions of the medial forebrain on alternation behavior of rhesus monkeys. Experimental Neurology, 6, 36–47.

    PubMed  Google Scholar 

  277. Goldberg, T. E., Berman, K. F., Mohr, E., & Weinberger, D. R. (1990). Regional cerebral blood flow and cognitive function in Huntington’s disease and schizophrenia. A comparison of patients matched for performance on a prefrontal-type task. Archives of Neurology, 47(4), 418–422.

    PubMed  Google Scholar 

  278. Wolfe, N., Linn, R., Babikian, V. L., Knoefel, J. E., & Albert, M. L. (1990). Frontal systems impairment following multiple lacunar infarcts. Archives of Neurology, 47(2), 129–132.

    PubMed  Google Scholar 

  279. Heilman, K. (2003). Valenstein E clinical neuropsychology (4th ed.). New York, NY: Oxford University Press.

    Google Scholar 

  280. Posner, M., & DiGiralamo, G. J. (1998). Executive attention: Conflict, target detection and cognitive control. In R. Parasuraman (Ed.), The attentive brain. Cambridge, MA: MIT Press.

    Google Scholar 

  281. Shallice, T., & Burgess, P. (1996). The domain of supervisory processes and temporal organization of behaviour. Philosophical Transactions of the Royal Society of London, 351(1346), 1405–1411. discussion 1411–1402.

    PubMed  Google Scholar 

  282. Gurd, J. M., Weiss, P. H., Amunts, K., & Fink, G. R. (2003). Within-task switching in the verbal domain. NeuroImage, 20(Suppl 1), S50–S57.

    PubMed  Google Scholar 

  283. Swainson, R., Cunnington, R., Jackson, G. M., et al. (2003). Cognitive control mechanisms revealed by ERP and fMRI: Evidence from repeated task-switching. Journal of Cognitive Neuroscience, 15(6), 785–799.

    PubMed  Google Scholar 

  284. Aron, A. R., Watkins, L., Sahakian, B. J., Monsell, S., Barker, R. A., & Robbins, T. W. (2003). Task-set switching deficits in early-stage Huntington’s disease: Implications for basal ganglia function. Journal of Cognitive Neuroscience, 15(5), 629–642.

    PubMed  Google Scholar 

  285. Rushworth, M. F., Passingham, R. E., & Nobre, A. C. (2002). Components of switching intentional set. Journal of Cognitive Neuroscience, 14(8), 1139–1150.

    PubMed  Google Scholar 

  286. Sylvester, C. Y., Wager, T. D., Lacey, S. C., et al. (2003). Switching attention and resolving interference: fMRI measures of executive functions. Neuropsychologia, 41(3), 357–370.

    PubMed  Google Scholar 

  287. Pollmann, S. (2001). Switching between dimensions, locations, and responses: The role of the left frontopolar cortex. NeuroImage, 14(1 Pt 2), S118–S124.

    PubMed  Google Scholar 

  288. Loose, R., Kaufmann, C., Tucha, O., Auer, D. P., & Lange, K. W. (2006). Neural networks of response shifting: Influence of task speed and stimulus material. Brain Research, 1090(1), 146–155.

    PubMed  Google Scholar 

  289. Kenner, N. M., Mumford, J. A., Hommer, R. E., Skup, M., Leibenluft, E., & Poldrack, R. A. (2010). Inhibitory motor control in response stopping and response switching. The Journal of Neuroscience, 30(25), 8512–8518.

    PubMed  Google Scholar 

  290. Pessoa, L., Rossi, A., Japee, S., Desimone, R., & Ungerleider, L. G. (2009). Attentional control during the transient updating of cue information. Brain Research, 1247, 149–158.

    PubMed  Google Scholar 

  291. Rossi, A. F., Pessoa, L., Desimone, R., & Ungerleider, L. G. (2009). The prefrontal cortex and the executive control of attention. Experimental Brain Research. Experimentelle Hirnforschung, 192(3), 489–497.

    Google Scholar 

  292. Robbins, T. W. (2007). Shifting and stopping: Fronto-striatal substrates, neurochemical modulation and clinical implications. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362(1481), 917–932.

    PubMed  Google Scholar 

  293. Gu, B. M., Park, J. Y., Kang, D. H., et al. (2008). Neural correlates of cognitive inflexibility during task-switching in obsessive-compulsive disorder. Brain, 131(Pt 1), 155–164.

    PubMed  Google Scholar 

  294. Derrfuss, J., Brass, M., & von Cramon, D. Y. (2004). Cognitive control in the posterior frontolateral cortex: Evidence from common activations in task coordination, interference control, and working memory. NeuroImage, 23(2), 604–612.

    PubMed  Google Scholar 

  295. Dennis, M., Guger, S., Roncadin, C., Barnes, M., & Schachar, R. (2001). Attentional-inhibitory control and social-behavioral regulation after childhood closed head injury: Do biological, developmental, and recovery variables predict outcome? Journal of the International Neuropsychological Society, 7(6), 683–692.

    PubMed  Google Scholar 

  296. Dimoska, A., Johnstone, S. J., Barry, R. J., & Clarke, A. R. (2003). Inhibitory motor control in children with attention-deficit/hyperactivity disorder: Event-related potentials in the stop-signal paradigm. Biological Psychiatry, 54(12), 1345–1354.

    PubMed  Google Scholar 

  297. Szatkowska, I., Szymanska, O., Bojarski, P., & Grabowska, A. (2007). Cognitive inhibition in patients with medial orbitofrontal damage. Experimental Brain Research. Experimentelle Hirnforschung, 181(1), 109–115.

    Google Scholar 

  298. Ruge, H., Braver, T., & Meiran, N. (2009). Attention, intention, and strategy in preparatory control. Neuropsychologia, 47(7), 1670–1685.

    PubMed  Google Scholar 

  299. Bien, N., Roebroeck, A., Goebel, R., & Sack, A. T. (2009). The brain’s intention to imitate: The neurobiology of intentional versus automatic imitation. Cerebral Cortex, 19(10), 2338–2351.

    PubMed  Google Scholar 

  300. Evans, D. W., Lewis, M. D., & Iobst, E. (2004). The role of the orbitofrontal cortex in normally developing compulsive-like behaviors and obsessive-compulsive disorder. Brain and Cognition, 55(1), 220–234.

    PubMed  Google Scholar 

  301. Ashburner, E. A. (1906). Review of on a new method for the study of concurrent mental operations and of mental fatigue. Psychological Bulletin, 3(9), 306–308.

    Google Scholar 

  302. Sokolov, E. N. (1990). The orienting response, and future directions of its development. The Pavlovian Journal of Biological Science, 25(3), 142–150.

    PubMed  Google Scholar 

  303. Lindsley, D. B. (1960). Attention, consciousness, sleep and wakefulness. In J. Field, H. W. Magoun, & V. C. Hall (Eds.), Handbook of physiology (Vol. 3, pp. 1553–1593). Washington, DC: American Physiological Society.

    Google Scholar 

  304. De Renzi, E., & Faglioni, P. (1966). [Influence of sleep deprivation and work on performance in vigilance tests]. Archivio di Psicologia, Neurologia e Psichiatria, 27(6), 552–566.

    PubMed  Google Scholar 

  305. Heilman, K. M., Schwartz, H. D., & Watson, R. T. (1978). Hypoarousal in patients with the neglect syndrome and emotional indifference. Neurology, 28(3), 229–232.

    PubMed  Google Scholar 

  306. Pribram, K., & McGuinness, D. (1975). Arousal, activation, and effort in the control of attention. Psychological Review, 82(2), 116–149.

    PubMed  Google Scholar 

  307. Heilman, K. M., & Valenstein, E. (2003). Clinical neuropsychology (4th ed.). Oxford: Oxford University Press.

    Google Scholar 

  308. Moruzzi, G., & Magoun, H. W. (1949). Brain stem reticular formation and activation of the EEG. Electroencephalography and Clinical Neurophysiology, 1, 455–473.

    PubMed  Google Scholar 

  309. Yerkes, R., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit formation. Journal of Comparative Neurology and Psychology, 18, 459–482.

    Google Scholar 

  310. Yingling, C. D., & Skinner, J. E. (1975). Regulation of unit activity in nucleus reticularis thalami by the mesencephalic reticular formation and the frontal granular cortex. Electroencephalography and Clinical Neurophysiology, 39(6), 635–642.

    PubMed  Google Scholar 

  311. Kinghorn, E. W., & Fleming, D. E. (1985). The effects of frontal lesions on brain hypersynchronous bursting and behavioral activity. Physiology & Behavior, 35(2), 261–265.

    Google Scholar 

  312. Cohen, R., Kaplan, R. F., Meadows, M. E., Kwan, E., & Ehrenberg, B. L. (1996). Comparison of the orienting response during the intracarotid and posterior cerebral artery amobarbital tests: A case study. Neurocase, 2(2), 93–98.

    Google Scholar 

  313. Pribram, K. H. (1950). Some aspects of experimental psychosurgery; the effect of scarring frontal cortex on complex behavior. Surgical Forum, 315–318.

    Google Scholar 

  314. Pribram, K. H., & Mishkin, M. (1956). Analysis of the effects of frontal lesions in monkey. III. Object alternation. Journal of Comparative Physiology and Psychology, 49, 41–45.

    Google Scholar 

  315. Pribram, K. H., & Weiskrantz, L. (1957). A comparison of the effects of medial and lateral cerebral resections on conditioned avoidance behavior of monkeys. Journal of Comparative and Physiological Psychology, 50, 74–80.

    PubMed  Google Scholar 

  316. Pribram, K. H. (1973). The primate frontal cortex: Executive of the brain. In K. H. Pribram & A. R. Luria (Eds.), Psychophysiology of the frontal lobes. Oxford: Academic.

    Google Scholar 

  317. Cohen, R. A., & Waters, W. F. (1985). Psychophysiological correlates of levels and states of cognitive processing. Neuropsychologia, 23(2), 243–256.

    PubMed  Google Scholar 

  318. Kimble, D., Bagshaw, M. H., & Pribram, K. H. (1965). The GSR of monkeys during orienting and attention after selective ablation of the cingulate and frontal cortex. Neuropsychologia, 3, 121–128.

    Google Scholar 

  319. Butter, C. M. (1969). Perseveration in extinction and in discrimination reversal tasks following selective frontal ablations in Macaca mulatta. Physiology & Behavior, 4, 163–171.

    Google Scholar 

  320. Bauer, R. H. (1974). Brightness discrimination of pretrained and nonpretrained hippocampal rats reinforced for choosing brighter or dimmer alternatives. Journal of Comparative and Physiological Psychology, 87, 987–996.

    PubMed  Google Scholar 

  321. Bauer, R. H., & Fuster, J. M. (1976). Delayed-matching and delayed-response deficit from cooling dorsolateral prefrontal cortex in monkeys. Journal of Comparative and Physiological Psychology, 90(3), 293–302.

    PubMed  Google Scholar 

  322. Bauer, R. H., & Fuster, J. M. (1978). Effects of d-amphetamine and prefrontal cortical cooling on delayed matching-to-sample behavior. Pharmacology, Biochemistry, and Behavior, 8(3), 243–249.

    PubMed  Google Scholar 

  323. Bauer, R. H., & Fuster, J. M. (1978). The effect of ambient illumination on delayed-matching and delayed-response deficits from cooling dorsolateral prefrontal cortex. Behavioral Biology, 22(1), 60–66.

    PubMed  Google Scholar 

  324. Fuster, J. M. (1973). Unit activity in prefrontal cortex during delayed-response performance: Neuronal correlates of transient memory. Journal of Neurophysiology, 36(1), 61–78.

    PubMed  Google Scholar 

  325. Fuster, J. M., Bauer, R. H., & Jervey, J. P. (Sep 1982). Cellular discharge in the dorsolateral prefrontal cortex of the monkey in cognitive tasks. Experimental Neurology, 77(3), 679–694.

    Google Scholar 

  326. Fuster, J. M., Bauer, R. H., & Jervey, J. P. (1985). Functional interactions between inferotemporal and prefrontal cortex in a cognitive task. Brain Research, 330(2), 299–307.

    PubMed  Google Scholar 

  327. Pragay, E. B., Mirsky, A. F., & Nakamura, R. K. (1987). Attention-related unit activity in the frontal association cortex during a go/no-go visual discrimination task. Experimental Neurology, 96(3), 481–500.

    PubMed  Google Scholar 

  328. Radley, J. J., Arias, C. M., & Sawchenko, P. E. (2006). Regional differentiation of the medial prefrontal cortex in regulating adaptive responses to acute emotional stress. The Journal of Neuroscience, 26(50), 12967–12976.

    PubMed  Google Scholar 

  329. Resstel, L. B., Joca, S. R., Guimaraes, F. G., & Correa, F. M. (2006). Involvement of medial prefrontal cortex neurons in behavioral and cardiovascular responses to contextual fear conditioning. Neuroscience, 143(2), 377–385.

    PubMed  Google Scholar 

  330. Resstel, L. B., Fernandes, K. B., & Correa, F. M. (2004). Medial prefrontal cortex modulation of the baroreflex parasympathetic component in the rat. Brain Research, 1015(1–2), 136–144.

    PubMed  Google Scholar 

  331. Bussey, T. J., Wise, S. P., & Murray, E. A. (2001). The role of ventral and orbital prefrontal cortex in conditional visuomotor learning and strategy use in rhesus monkeys (Macaca mulatta). Behavioral Neuroscience, 115(5), 971–982.

    PubMed  Google Scholar 

  332. Holson, R. R. (1986). Mesial prefrontal cortical lesions and timidity in rats. I. Reactivity to aversive stimuli. Physiology & Behavior, 37(2), 221–230.

    Google Scholar 

  333. Holson, R. R., & Walker, C. (1986). Mesial prefrontal cortical lesions and timidity in rats. II. Reactivity to novel stimuli. Physiology & Behavior, 37(2), 231–238.

    Google Scholar 

  334. Holson, R. R. (1986). Mesial prefrontal cortical lesions and timidity in rats. III. Behavior in a semi-natural environment. Physiology & Behavior, 37(2), 239–247.

    Google Scholar 

  335. Critchley, H. D., Elliott, R., Mathias, C. J., & Dolan, R. J. (2000). Neural activity relating to generation and representation of galvanic skin conductance responses: A functional magnetic resonance imaging study. The Journal of Neuroscience, 20(8), 3033–3040.

    PubMed  Google Scholar 

  336. Chudasama, Y., Passetti, F., Rhodes, S. E., Lopian, D., Desai, A., & Robbins, T. W. (2003). Dissociable aspects of performance on the 5-choice serial reaction time task following lesions of the dorsal anterior cingulate, infralimbic and orbitofrontal cortex in the rat: Differential effects on selectivity, impulsivity and compulsivity. Behavioural Brain Research, 146(1–2), 105–119.

    PubMed  Google Scholar 

  337. Bissonette, G. B., Martins, G. J., Franz, T. M., Harper, E. S., Schoenbaum, G., & Powell, E. M. (2008). Double dissociation of the effects of medial and orbital prefrontal cortical lesions on attentional and affective shifts in mice. The Journal of Neuroscience, 28(44), 11124–11130.

    PubMed  Google Scholar 

  338. Meyer, D. R., & Harlow, H. F. (1952). Effects of multiple variables on delayed response performance by monkeys. The Journal of Genetic Psychology, 81, 53–61.

    PubMed  Google Scholar 

  339. Glick, S. D., Goldfarb, T. L., & Jarvik, M. E. (1969). Recovery of delayed matching performance following lateral frontal lesions in monkeys. Communications in Behavioral Biology, 3, 299–303.

    Google Scholar 

  340. Malmo, R. B. (1942). Interference factors in delayed response in monkeys after removal of frontal lobes. Journal of Neurophysiology, 5, 295–308.

    Google Scholar 

  341. Bartus, R. T., & Dean, R. L. (1979). Recent memory in aged non-human primates: Hypersensitivity to visual interference during retention. Experimental Aging Research, 5(5), 385–400.

    PubMed  Google Scholar 

  342. Bartus, R. T., & Levere, T. E. (1977). Frontal decortication in rhesus monkeys: A test of the interference hypothesis. Brain Research, 119(1), 233–248.

    PubMed  Google Scholar 

  343. Mishkin, M., Rosvold, H. E., & Pribram, K. H. (1953). Effects of Nembutal in baboons with frontal lesions. Journal of Neurophysiology, 16, 155–159.

    PubMed  Google Scholar 

  344. Baleydier, C., & Mauguiere, F. (1987). Network organization of the connectivity between parietal area 7, posterior cingulate cortex and medial pulvinar nucleus: A double fluorescent tracer study in monkey. Experimental Brain Research. Experimentelle Hirnforschung, 66(2), 385–393.

    Google Scholar 

  345. Baleydier, C., & Mauguiere, F. (1980). The duality of the cingulate gyrus in monkey. Neuroanatomical study and functional hypothesis. Brain, 103(3), 525–554.

    PubMed  Google Scholar 

  346. Musil, S. Y., & Olson, C. R. (1988). Organization of cortical and subcortical projections to medial prefrontal cortex in the cat. The Journal of Comparative Neurology, 272(2), 219–241.

    PubMed  Google Scholar 

  347. Musil, S. Y., & Olson, C. R. (1988). Organization of cortical and subcortical projections to anterior cingulate cortex in the cat. The Journal of Comparative Neurology, 272(2), 203–218.

    PubMed  Google Scholar 

  348. Musil, S. Y., & Olson, C. R. (1991). Cortical areas in the medial frontal lobe of the cat delineated by quantitative analysis of thalamic afferents. The Journal of Comparative Neurology, 308(3), 457–466.

    PubMed  Google Scholar 

  349. Olson, C. R., & Jeffers, I. (1987). Organization of cortical and subcortical projections to area 6m of the cat. The Journal of Comparative Neurology, 266(1), 73–94.

    PubMed  Google Scholar 

  350. Olson, C. R., & Lawler, K. (1987). Cortical and subcortical afferent connections of a posterior division of feline area 7 (area 7p). The Journal of Comparative Neurology, 259(1), 13–30.

    PubMed  Google Scholar 

  351. Olson, C. R., & Musil, S. Y. (1992). Topographic organization of cortical and subcortical projections to posterior cingulate cortex in the cat: Evidence for somatic, ocular, and complex subregions. The Journal of Comparative Neurology, 324(2), 237–260.

    PubMed  Google Scholar 

  352. Mesulam, M.-M. (1985). Principles of behavioral neurology. Philadelphia, PA: F. A. Davis.

    Google Scholar 

  353. Turner, M. S., Cipolotti, L., Yousry, T. A., & Shallice, T. (2008). Confabulation: Damage to a specific inferior medial prefrontal system. Cortex; A Journal Devoted to the Study of the Nervous System and Behavior, 44(6), 637–648.

    PubMed  Google Scholar 

  354. Giannakopoulos, P., Hof, P. R., Giannakopoulos, A. S., Herrmann, F. R., Michel, J. P., & Bouras, C. (1995). Regional distribution of neurofibrillary tangles and senile plaques in the cerebral cortex of very old patients. Archives of Neurology, 52(12), 1150–1159.

    PubMed  Google Scholar 

  355. Del Sole, A., Clerici, F., Chiti, A., et al. (2008). Individual cerebral metabolic deficits in Alzheimer’s disease and amnestic mild cognitive impairment: An FDG PET study. European Journal of Nuclear Medicine and Molecular Imaging, 35(7), 1357–1366.

    PubMed  Google Scholar 

  356. Kiehl, K. A. (2006). A cognitive neuroscience perspective on psychopathy: Evidence for paralimbic system dysfunction. Psychiatry Research, 142(2–3), 107–128.

    PubMed  Google Scholar 

  357. Woo, M. A., Macey, P. M., Fonarow, G. C., Hamilton, M. A., & Harper, R. M. (2003). Regional brain gray matter loss in heart failure. Journal of Applied Physiology, 95(2), 677–684.

    PubMed  Google Scholar 

  358. Tatemichi, T. K., Desmond, D. W., & Prohovnik, I. (1995). Strategic infarcts in vascular dementia. A clinical and brain imaging experience. Arzneimittel-Forschung, 45(3A), 371–385.

    PubMed  Google Scholar 

  359. Giannakopoulos, P., Duc, M., Gold, G., Hof, P. R., Michel, J. P., & Bouras, C. (1998). Pathologic correlates of apraxia in Alzheimer disease. Archives of Neurology, 55(5), 689–695.

    PubMed  Google Scholar 

  360. Minoshima, S., Giordani, B., Berent, S., Frey, K. A., Foster, N. L., & Kuhl, D. E. (1997). Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Annals of Neurology, 42(1), 85–94.

    PubMed  Google Scholar 

  361. Reiman, E. M., Caselli, R. J., Chen, K., Alexander, G. E., Bandy, D., & Frost, J. (2001). Declining brain activity in cognitively normal apolipoprotein E epsilon 4 heterozygotes: A foundation for using positron emission tomography to efficiently test treatments to prevent Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 98(6), 3334–3339.

    PubMed  Google Scholar 

  362. Okamura, N., Shinkawa, M., Arai, H., et al. (2000). [Prediction of progression in patients with mild cognitive impairment using IMP-SPECT]. Nippon Ronen Igakkai Zasshi, 37(12), 974–978.

    PubMed  Google Scholar 

  363. Small, G. W., Ercoli, L. M., Silverman, D. H., et al. (2000). Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 97(11), 6037–6042.

    PubMed  Google Scholar 

  364. Friston, K. J., Grasby, P. M., Bench, C. J., et al. (1992). Measuring the neuromodulatory effects of drugs in man with positron emission tomography. Neuroscience Letters, 141(1), 106–110.

    PubMed  Google Scholar 

  365. Barris, R. W., & Schuman, H. R. (1953). Bilateral anterior cingulate gyrus lesions; syndrome of the anterior cingulate gyri. Neurology, 3(1), 44–52.

    PubMed  Google Scholar 

  366. Corkin, S., Twitchell, T. E., & Sullivan, E. V. (1979). Safety and efficacy of cingulotomy for pain and psychiatric disorder. In E. R. Hitchcock, H. T. Ballantine, & B. A. Meyerson (Eds.), Modern concepts in psychiatric surgery. New York, NY: Elsevier Press.

    Google Scholar 

  367. Ballentine, H. T., Jr., Levey, B. A., Dagi, T. F., & Diriunas, I. B. (1977). Cingulotomy for psychiatric illness: Report of l3 years experience. In W. H. Sweet, S. Obrador, & J. G. Martin-Rodriguez (Eds.), Neurosurgical treatment in psychiatry, pain and epilepsy (pp. 333–353). Baltimore, MD: University Park Press.

    Google Scholar 

  368. Corkin, S. (1979). Hidden-figures-test performance: Lasting effects of unilateral penetrating head injury and transient effects of bilateral cingulotomy. Neuropsychologia, 17(6), 585–605.

    PubMed  Google Scholar 

  369. Laplane, D., Degos, J. D., Baulac, M., & Gray, F. (1981). Bilateral infarction of the anterior cingulate gyri and of the fornices. Report of a case. Journal of the Neurological Sciences, 51(2), 289–300.

    PubMed  Google Scholar 

  370. Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M., & Raichle, M. E. (1988). Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature, 331(6157), 585–589.

    PubMed  Google Scholar 

  371. Siegel, B. V., Jr., Nuechterlein, K. H., Abel, L., Wu, J. C., & Buchsbaum, M. S. (1995). Glucose metabolic correlates of continuous performance test performance in adults with a history of infantile autism, schizophrenics, and controls. Schizophrenia Research, 17(1), 85–94.

    PubMed  Google Scholar 

  372. Lawrence, N. S., Ross, T. J., Hoffmann, R., Garavan, H., & Stein, E. A. (2003). Multiple neuronal networks mediate sustained attention. Journal of Cognitive Neuroscience, 15(7), 1028–1038.

    PubMed  Google Scholar 

  373. Dehaene, S., Sergent, C., & Changeux, J. P. (2003). A neuronal network model linking subjective reports and objective physiological data during conscious perception. Proceedings of the National Academy of Sciences of the United States of America, 100(14), 8520–8525.

    PubMed  Google Scholar 

  374. Peyron, R., Laurent, B., & Garcia-Larrea, L. (2000). Functional imaging of brain responses to pain. A review and meta-analysis. Neurophysiologie Clinique = Clinical Neurophysiology, 30(5), 263–288.

    PubMed  Google Scholar 

  375. Johannsen, P., Jakobsen, J., Bruhn, P., & Gjedde, A. (1999). Cortical responses to sustained and divided attention in Alzheimer’s disease. NeuroImage, 10(3 Pt 1), 269–281.

    PubMed  Google Scholar 

  376. Goldstein, R. Z., Tomasi, D., Alia-Klein, N., Zhang, L., Telang, F., & Volkow, N. D. (2007). The effect of practice on a sustained attention task in cocaine abusers. NeuroImage, 35(1), 194–206.

    PubMed  Google Scholar 

  377. Pardo, J. V., Pardo, P. J., Janer, K. W., & Raichle, M. E. (1990). The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proceedings of the National Academy of Sciences of the United States of America, 87(1), 256–259.

    PubMed  Google Scholar 

  378. Peterson, B. S., Skudlarski, P., Gatenby, J. C., Zhang, H., Anderson, A. W., & Gore, J. C. (1999). An fMRI study of Stroop word-color interference: Evidence for cingulate subregions subserving multiple distributed attentional systems. Biological Psychiatry, 45(10), 1237–1258.

    PubMed  Google Scholar 

  379. Janer, K., & Pardo, J. V. (1991). Deficits in selective attention following bilateral anterior cingulotomy. Journal of Cognitive Neuroscience, 3(3), 231–241.

    PubMed  Google Scholar 

  380. Heilman, K. M., & Valenstein, E. (1979). Mechanisms underlying hemispatial neglect. Annals of Neurology, 5, 166–170.

    PubMed  Google Scholar 

  381. Heilman, K. M., Valenstein, E., & Watson, R. T. (2000). Neglect and related disorders. Seminars in Neurology, 20(4), 463–470.

    PubMed  Google Scholar 

  382. Watson, R. T., Miller, B. D., & Heilman, K. M. (1978). Nonsensory neglect. Annals of Neurology, 3(6), 505–508.

    PubMed  Google Scholar 

  383. Waters, W. F., & McDonald, D. G. (1974). Effects of “below-zero” habituation on spontaneous recovery and dishabituation of the orienting response. Psychophysiology, 11(5), 548–558.

    PubMed  Google Scholar 

  384. Waters, W. F., & McDonald, D. G. (1976). Repeated habituation and overhabituation of the orienting response. Psychophysiology, 13(3), 231–235.

    PubMed  Google Scholar 

  385. Waters, W. F., McDonald, D. G., & Koresko, R. L. (1977). Habituation of the orienting response: A gating mechanism subserving selective attention. Psychophysiology, 14(3), 228–236.

    PubMed  Google Scholar 

  386. Mennemeier, M. S., Chatterjee, A., Watson, R. T., Wertman, E., Carter, L. P., & Heilman, K. M. (1994). Contributions of the parietal and frontal lobes to sustained attention and habituation. Neuropsychologia, 32(6), 703–716.

    PubMed  Google Scholar 

  387. Thompson, R. F., & Spencer, W. A. (1966). Habituation: A model phenomenon for the study of neuronal substrates of behavior. Psychological Review, 73(1), 16–43.

    PubMed  Google Scholar 

  388. Waters, W. F., & Wright, J. W. (1979). Maintenance and habituation of the phasic orienting response to competing stimuli in selective attention. The orienting reflex in humans. New York, NY: Lawrence Erlbaum.

    Google Scholar 

  389. Waters, W. F., McDonald, D. G., & Good, R. (1975). Stimulus and temporal variables in the “below-zero” habituation of the orienting response. Psychophysiology, 12(4), 461–464.

    PubMed  Google Scholar 

  390. Groves, P. M., & Thompson, R. F. (1970). Habituation: A dual-process theory. Psychological Review, 77(5), 419–450.

    PubMed  Google Scholar 

  391. Jung, H. H., Kim, C. H., Chang, J. H., Park, Y. G., Chung, S. S., & Chang, J. W. (2006). Bilateral anterior cingulotomy for refractory obsessive-compulsive disorder: Long-term follow-up results. Stereotactic and Functional Neurosurgery, 84(4), 184–189.

    PubMed  Google Scholar 

  392. Kim, C. H., Chang, J. W., Koo, M. S., et al. (2003). Anterior cingulotomy for refractory obsessive-compulsive disorder. Acta Psychiatrica Scandinavica, 107(4), 283–290.

    PubMed  Google Scholar 

  393. Kim, M. C., Lee, T. K., & Choi, C. R. (2002). Review of long-term results of stereotactic psychosurgery. Neurologia Medico-Chirurgica, 42(9), 365–371.

    PubMed  Google Scholar 

  394. Dougherty, D. D., Baer, L., Cosgrove, G. R., et al. (2002). Prospective long-term follow-up of 44 patients who received cingulotomy for treatment-refractory obsessive-compulsive disorder. The American Journal of Psychiatry, 159(2), 269–275.

    PubMed  Google Scholar 

  395. Jenike, M. A. (1998). Neurosurgical treatment of obsessive-compulsive disorder. The British Journal of Psychiatry, 35, 79–90.

    Google Scholar 

  396. Baer, L., Rauch, S. L., Ballantine, H. T., Jr., et al. (1995). Cingulotomy for intractable obsessive-compulsive disorder. Prospective long-term follow-up of 18 patients. Archives of General Psychiatry, 52(5), 384–392.

    PubMed  Google Scholar 

  397. Wilkinson, H. A., Davidson, K. M., & Davidson, R. I. (1999). Bilateral anterior cingulotomy for chronic noncancer pain. Neurosurgery, 45(5), 1129–1134. discussion 1134–1126.

    PubMed  Google Scholar 

  398. Wong, E. T., Gunes, S., Gaughan, E., et al. (1997). Palliation of intractable cancer pain by MRI-guided cingulotomy. The Clinical Journal of Pain, 13(3), 260–263.

    PubMed  Google Scholar 

  399. Pillay, P. K., & Hassenbusch, S. J. (1992). Bilateral MRI-guided stereotactic cingulotomy for intractable pain. Stereotactic and Functional Neurosurgery, 59(1–4), 33–38.

    PubMed  Google Scholar 

  400. Hassenbusch, S. J., Pillay, P. K., & Barnett, G. H. (1990). Radiofrequency cingulotomy for intractable cancer pain using stereotaxis guided by magnetic resonance imaging. Neurosurgery, 27(2), 220–223.

    PubMed  Google Scholar 

  401. Lenhard, T., Brassen, S., Tost, H., & Braus, D. F. (2005). Long-term behavioural changes after unilateral stereotactic cingulotomy in a case of therapy-resistant alcohol dependence. The World Journal of Biological Psychiatry, 6(4), 264–266.

    PubMed  Google Scholar 

  402. Stelten, B. M., Noblesse, L. H., Ackermans, L., Temel, Y., & Visser-Vandewalle, V. (2008). The neurosurgical treatment of addiction. Neurosurgical Focus, 25(1), E5.

    PubMed  Google Scholar 

  403. Cohen, R. A., Paul, R., Zawacki, T. M., Moser, D. J., Sweet, L., & Wilkinson, H. (2001). Emotional and personality changes following cingulotomy. Emotion (Washington, D.C.), 1(1), 38–50.

    Google Scholar 

  404. Valenstein, E. (1973). Brain control: Critical examination of brain stimulation and psychosurgery. New York, NY: Wiley.

    Google Scholar 

  405. Devinsky, O., Morrell, M. J., & Vogt, B. A. (1995). Contributions of anterior cingulate cortex to behaviour. Brain, 118(Pt 1), 279–306.

    PubMed  Google Scholar 

  406. Burns, S. M., & Wyss, J. M. (1985). The involvement of the anterior cingulate cortex in blood pressure control. Brain Research, 340(1), 71–77.

    PubMed  Google Scholar 

  407. Brog, J. S., Salyapongse, A., Deutch, A. Y., & Zahm, D. S. (1993). The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: Immunohistochemical detection of retrogradely transported fluoro-gold. The Journal of Comparative Neurology, 338(2), 255–278.

    PubMed  Google Scholar 

  408. Kunishio, K., & Haber, S. N. (1994). Primate cingulostriatal projection: Limbic striatal versus sensorimotor striatal input. The Journal of Comparative Neurology, 350(3), 337–356.

    PubMed  Google Scholar 

  409. Thomas, K. L., & Everitt, B. J. (2001). Limbic-cortical-ventral striatal activation during retrieval of a discrete cocaine-associated stimulus: A cellular imaging study with gamma protein kinase C expression. The Journal of Neuroscience, 21(7), 2526–2535.

    PubMed  Google Scholar 

  410. Magno, E., Simoes-Franklin, C., Robertson, I. H., & Garavan, H. (2009). The role of the dorsal anterior cingulate in evaluating behavior for achieving gains and avoiding losses. Journal of Cognitive Neuroscience, 21(12), 2328–2342.

    PubMed  Google Scholar 

  411. Morgane, P. J., Galler, J. R., & Mokler, D. J. (2005). A review of systems and networks of the limbic forebrain/limbic midbrain. Progress in Neurobiology, 75(2), 143–160.

    PubMed  Google Scholar 

  412. Yu, A. J., Dayan, P., & Cohen, J. D. (2009). Dynamics of attentional selection under conflict: Toward a rational Bayesian account. Journal of Experimental Psychology. Human Perception and Performance, 35(3), 700–717.

    PubMed  Google Scholar 

  413. Pochon, J. B., Riis, J., Sanfey, A. G., Nystrom, L. E., & Cohen, J. D. (2008). Functional imaging of decision conflict. The Journal of Neuroscience, 28(13), 3468–3473.

    PubMed  Google Scholar 

  414. di Pellegrino, G., Ciaramelli, E., & Ladavas, E. (2007). The regulation of cognitive control following rostral anterior cingulate cortex lesion in humans. Journal of Cognitive Neuroscience, 19(2), 275–286.

    PubMed  Google Scholar 

  415. Stahl, J., & Gibbons, H. (2007). Dynamics of response-conflict monitoring and individual differences in response control and behavioral control: An electrophysiological investigation using a stop-signal task. Clinical Neurophysiology, 118(3), 581–596.

    PubMed  Google Scholar 

  416. Yeung, N., & Cohen, J. D. (2006). The impact of cognitive deficits on conflict monitoring. Predictable dissociations between the error-related negativity and N2. Psychological Science, 17(2), 164–171.

    PubMed  Google Scholar 

  417. Kerns, J. G., Cohen, J. D., MacDonald, A. W., III, et al. (2005). Decreased conflict- and error-related activity in the anterior cingulate cortex in subjects with schizophrenia. The American Journal of Psychiatry, 162(10), 1833–1839.

    PubMed  Google Scholar 

  418. Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8(12), 539–546.

    PubMed  Google Scholar 

  419. van Veen, V., Holroyd, C. B., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2004). Errors without conflict: Implications for performance monitoring theories of anterior cingulate cortex. Brain and Cognition, 56(2), 267–276.

    PubMed  Google Scholar 

  420. Yeung, N., Botvinick, M. M., & Cohen, J. D. (2004). The neural basis of error detection: Conflict monitoring and the error-related negativity. Psychological Review, 111(4), 931–959.

    PubMed  Google Scholar 

  421. Kerns, J. G., Cohen, J. D., MacDonald, A. W., III, Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science (New York, N.Y), 303(5660), 1023–1026.

    Google Scholar 

  422. Erickson, K. I., Milham, M. P., Colcombe, S. J., et al. (2004). Behavioral conflict, anterior cingulate cortex, and experiment duration: Implications of diverging data. Human Brain Mapping, 21(2), 98–107.

    PubMed  Google Scholar 

  423. Jones, A. D., Cho, R. Y., Nystrom, L. E., Cohen, J. D., & Braver, T. S. (2002). A computational model of anterior cingulate function in speeded response tasks: Effects of frequency, sequence, and conflict. Cognitive, Affective, & Behavioral Neuroscience, 2(4), 300–317.

    Google Scholar 

  424. van Veen, V., Cohen, J. D., Botvinick, M. M., Stenger, V. A., & Carter, C. S. (2001). Anterior cingulate cortex, conflict monitoring, and levels of processing. NeuroImage, 14(6), 1302–1308.

    PubMed  Google Scholar 

  425. Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624–652.

    PubMed  Google Scholar 

  426. Botvinick, M., Nystrom, L. E., Fissell, K., Carter, C. S., & Cohen, J. D. (1999). Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature, 402(6758), 179–181.

    PubMed  Google Scholar 

  427. Pinel, P., Dehaene, S., Riviere, D., & LeBihan, D. (2001). Modulation of parietal activation by semantic distance in a number comparison task. NeuroImage, 14(5), 1013–1026.

    PubMed  Google Scholar 

  428. Grossman, M., Cooke, A., DeVita, C., et al. (2002). Sentence processing strategies in healthy seniors with poor comprehension: An fMRI study. Brain and Language, 80(3), 296–313.

    PubMed  Google Scholar 

  429. Greicius, M. D., & Menon, V. (2004). Default-mode activity during a passive sensory task: Uncoupled from deactivation but impacting activation. Journal of Cognitive Neuroscience, 16(9), 1484–1492.

    PubMed  Google Scholar 

  430. Greicius, M. D., Srivastava, G., Reiss, A. L., & Menon, V. (2004). Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: Evidence from functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 101(13), 4637–4642.

    PubMed  Google Scholar 

  431. Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 253–258.

    PubMed  Google Scholar 

  432. Fransson, P., & Marrelec, G. (2008). The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: Evidence from a partial correlation network analysis. NeuroImage, 42(3), 1178–1184.

    PubMed  Google Scholar 

  433. Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38.

    PubMed  Google Scholar 

  434. Sambataro, F., Murty, V. P., Callicott, J. H., et al. (2010). Age-related alterations in default mode network: Impact on working memory performance. Neurobiology of Aging, 31(5), 839–852.

    PubMed  Google Scholar 

  435. Pomarol-Clotet, E., Salvador, R., Sarro, S., et al. (2008). Failure to deactivate in the prefrontal cortex in schizophrenia: Dysfunction of the default mode network? Psychological Medicine, 38(8), 1185–1193.

    PubMed  Google Scholar 

  436. Zhang, L. J., Yang, G., Yin, J., Liu, Y., & Qi, J. (2007). Abnormal default-mode network activation in cirrhotic patients: A functional magnetic resonance imaging study. Acta Radiologica, 48(7), 781–787.

    PubMed  Google Scholar 

  437. Firbank, M. J., Blamire, A. M., Krishnan, M. S., et al. (2007). Atrophy is associated with posterior cingulate white matter disruption in dementia with Lewy bodies and Alzheimer’s disease. NeuroImage, 36(1), 1–7.

    PubMed  Google Scholar 

  438. Garrity, A. G., Pearlson, G. D., McKiernan, K., Lloyd, D., Kiehl, K. A., & Calhoun, V. D. (2007). Aberrant “default mode” functional connectivity in schizophrenia. The American Journal of Psychiatry, 164(3), 450–457.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cohen, R.A. (2014). Attention and the Frontal Cortex. In: The Neuropsychology of Attention. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-72639-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-72639-7_13

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-72638-0

  • Online ISBN: 978-0-387-72639-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics