Skip to main content

Neural Mechanisms of Attention

  • Chapter
  • First Online:

Abstract

Much of our current knowledge of the neural substrates of attention has come from neurophysiological investigations that initially focused on characterizing how sensory and motor system of the brain function. Studies of the neural bases of conditioning have provided a second important source of information. Only recently have direct neurophysiological investigations of attention been attempted, generally by extending findings obtained from sensory, motor, or conditioning paradigms. In this chapter, some experimental evidence regarding the neural basis of attention from three areas of neuroscientific research will be reviewed, including (1) sensory physiology and conditioning, (2) facilitatory and inhibitory control processes, and (3) specialized neural systems for attention.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Spinelli, D. N., & Jensen, F. E. (1979). Plasticity: The mirror of experience. Science, 203(4375), 75–78.

    PubMed  Google Scholar 

  2. Teyler, T. J., & Discenna, P. (1984). Long-term potentiation as a candidate mnemonic device. Brain Research, 319(1), 15–28.

    PubMed  Google Scholar 

  3. Shepherd, G. M., Brayton, R. K., Miller, J. P., Segev, I., Rinzel, J., & Rall, W. (1985). Signal enhancement in distal cortical dendrites by means of interactions between active dendritic spines. Proceedings of the National Academy of Sciences of the United States of America, 82(7), 2192–2195.

    PubMed  Google Scholar 

  4. Bakin, J. S., & Weinberger, N. M. (1990). Classical conditioning induces CS-specific receptive field plasticity in the auditory cortex of the guinea pig. Brain Research, 536(1–2), 271–286.

    PubMed  Google Scholar 

  5. Jung, M. W., Larson, J., & Lynch, G. (1990). Long-term potentiation of monosynaptic EPSPs in rat piriform cortex in vitro. Synapse, 6(3), 279–283.

    PubMed  Google Scholar 

  6. Geschwind, N. (1979). Specializations of the human brain. Scientific American, 241(3), 180–199.

    PubMed  Google Scholar 

  7. Pribram, K., & Mishkin, M. (1955). Simultaneous and successive visual discrimination by monkeys with inferotemporal lesions. Journal of Comparative and Physiological Psychology, 48(3), 198–202.

    PubMed  Google Scholar 

  8. Benton, A. L. (1973). Visuoconstructive disability in patients with cerebral disease: Its relationship to side of lesion and aphasic disorder. Documenta Ophthalmologica, 34(1), 67–76.

    PubMed  Google Scholar 

  9. Teuber, H. L. (1974). Functional recovery after lesions of the nervous system. II. Recovery of function after lesions of the central nervous system: History and prospects. Neurosciences Research Program Bulletin, 12(2), 197–211.

    PubMed  Google Scholar 

  10. Galambos, R., Sheatz, G., & Vernier, V. G. (1956). Electrophysiological correlates of a conditioned response in cats. Science, 123(3192), 376–377.

    PubMed  Google Scholar 

  11. Thompson, R., Berger, T. W., Berry, S. D., Clark, G. A., Kettner, R. E., Lavond, D. G., et al. (1982). Neuronal substrates of learning and memory: Hippocampus and other structures. In C. D. Woody (Ed.), Conditioning: Representation of involved neural functions. New York: Plenum Press.

    Google Scholar 

  12. Thompson, R. F., & Shaw, J. A. (1965). Behavioral correlates of evoked activity recorded from association areas of the cerebral cortex. Journal of Comparative and Physiological Psychology, 60(3), 329–339.

    PubMed  Google Scholar 

  13. Kamikawa, K., McIlwain, J. T., & Adey, W. R. (1964). Response pattern of thalamic neurons during classical conditioning. EEG & Clinical Neurophysiology, 17, 485–496.

    Google Scholar 

  14. Kotliar, B. I., & Eroshenko, T. M. (1969). Role of the proprioceptive impulses in the genesis of synchronized oscillations in the electroencephalogram of the rabbit. Nauchnye Doklady Vysshei Shkoly Biologicheskie Nauki.

    Google Scholar 

  15. Kotliar, B. I. (1969). Activity of the nervous cells at the time of the formation of a temporary connection. Nauchnye Doklady Vysshei Shkoly Biologicheskie Nauki, 12.

    Google Scholar 

  16. Kotliar, B. I., & Yeroshenko, T. (1971). Hypothalamic glucoreceptors: The phenomenon of plasticity. Physiology and Behavior, 7, 609–615.

    Google Scholar 

  17. Kotliar, B. I. (1971). Electrophysiological investigation of the formation of a temporary connection at the systemic and neuronal levels. Avtoref. dokt. diss. M.

    Google Scholar 

  18. Morrell, F. (1967). Electrical signs of sensory coding. New York: Rockefeller University Press.

    Google Scholar 

  19. Kotliar, B. E. (1983). Neural mechanism of conditioning. In N. M. Weinberger (Ed.). New York: Pergamon Press.

    Google Scholar 

  20. Sokolov, E. N. (1963). Perception and the conditioned reflex. Oxford: Pergamon Press.

    Google Scholar 

  21. Ramos, A., Schwartz, E. L., & John, E. R. (1976). Stable and plastic unit discharge patterns during behavioral generalization. Science, 192, 393–396.

    PubMed  Google Scholar 

  22. Thompson, R. F., Patterson, M. M., & Teyler, T. J. (1972). The neurophysiology of learning. Annual Review of Psychology, 23, 73–104.

    PubMed  Google Scholar 

  23. Woody, C. D. (1982). Conditioning: representation of involved neural functions. New York: Plenum Press.

    Google Scholar 

  24. Woody, C. D., Gruen, E., & Wang, X. F. (2003). Electrical properties affecting discharge of units of the mid and posterolateral thalamus of conscious cats. Neuroscience, 122(2), 531–539.

    PubMed  Google Scholar 

  25. Woody, C. D., Zotova, E., & Gruen, E. (2000). Multiple representations of information in the primary auditory cortex of cats. I. Stability and change in slow components of unit activity after conditioning with a click conditioned stimulus. Brain Research, 868(1), 56–65.

    PubMed  Google Scholar 

  26. Baranyi, A., Szente, M. B., & Woody, C. D. (1991). Properties of associative long-lasting potentiation induced by cellular conditioning in the motor cortex of conscious cats. Neuroscience, 42(2), 321–334.

    PubMed  Google Scholar 

  27. Lynch, G., Shepherd, G. M., Black, I. B., & Killackey, H. P. (1986). Synapses, circuits, and the beginnings of memory. Cambridge, MA: MIT Press.

    Google Scholar 

  28. Lynch, G., & Baudry, M. (1984). The biochemistry of memory: A new and specific hypothesis. Science, 224, 1057–1063.

    PubMed  Google Scholar 

  29. Jasper, H., Ricci, G., & Doane, B. (1962). Microelectrode analysis of discharges of cortical cells during the elaboration of conditioned defensive reflexes in monkeys. (Electroencephalographic investigation of higher nervous activity) M., Izd-vo AN SSSR.

    Google Scholar 

  30. Kimble, G. A., & Ost, P. (1961). A conditioned inhibitory process in eyelid conditioning. Journal of Experimental Psychology, 61, 150–156.

    PubMed  Google Scholar 

  31. O’Brien, J., & Fox, S. S. (1969). Single-cell activity in cat motor cortex. II. Functional characteristic of the cell related to conditioning changes. Journal of Neurophysiology, 32(3), 285–296.

    PubMed  Google Scholar 

  32. Grant, D., & Norris, E. B. (1947). Eyelid conditioning as influenced by the presence of sensitized beta-responses. Journal of Experimental Psychology, 37, 423–433.

    PubMed  Google Scholar 

  33. Woody, C. D., Vassilevsky, N. N., & Engel, J., Jr. (1970). Conditioned eye blink: Unit activity at coronal-precruciate cortex of the cat. Journal of Neurophysiology, 33(6), 851–864.

    PubMed  Google Scholar 

  34. Woody, C. D., & Brozek, G. (1969). Changes in evoked responses from facial nucleus of cat with conditioning and extinction of an eye blink. Journal of Neurophysiology, 32(5), 717–725.

    PubMed  Google Scholar 

  35. Kandel, E., & Spencer, V. A. (1968). Cellular neurophysiological approaches in the study of learning. Physiological Review, 48, 65–134.

    Google Scholar 

  36. Spencer, W., Thompson, R. F., & Nielson, D. R. (1966). Decrement of ventral root electronus and intracellularly recorded PSPs produced by iterated cutaneous afferent volleys. Journal of Neurophysiology, 29, 253–273.

    PubMed  Google Scholar 

  37. Castellucci, V., Pinsker, H., Kupfermann, I., & Kandel, E. R. (1970). Neuronal mechanisms of habituation and dishabituation of the gill-withdrawal reflex in Aplysia. Science, 167, 1745–1748.

    PubMed  Google Scholar 

  38. Castellucci, V. F., Carew, T. J., & Kandel, E. R. (1978). Cellular analysis of long-term habituation of the gill-withdrawal reflex of Aplysia californica. Science, 202(4374), 1306–1308.

    PubMed  Google Scholar 

  39. Hawkins, R. D., & Kandel, E. R. (1979). Is there a cell-biological alphabet for simple forms of learning? Psychological Review.

    Google Scholar 

  40. Hawkins, R. D., Abrams, T. W., Carew, T. J., & Kandel, E. R. (1983). A cellular mechanism of classical conditioning in Aplysia: Activity dependent amplification of presynaptic facilitation. Science, 219, 400–404.

    PubMed  Google Scholar 

  41. Hawkins, R. D., & Kandel, E. R. (1984). Steps toward a cell-biological alphabet for elementary forms of learning. In G. Lynch, J. L. McGaugh, & N. M. Weinberger (Eds.), Neurobiology of learning and memory (pp. 385–404). New York: The Guilford Press.

    Google Scholar 

  42. Hawkins, R. D., & Kandel, E. R. (1984). Is there a cell-biological alphabet for simple forms of learning? Psychological Review, 91(3), 375–391.

    PubMed  Google Scholar 

  43. Hawkins, R. D., Lalevic, N., Clark, G. A., & Kandel, E. R. (1989). Classical conditioning of the Aplysia siphon-withdrawal reflex exhibits response specificity. Proceedings of the National Academy of Sciences of the United States of America, 86(19), 7620–7624.

    PubMed  Google Scholar 

  44. Kandel, E., & Schwartz, J. H. (1982). Molecular biology of memory: Modulation of transmitter release. Science, 218, 433–443.

    PubMed  Google Scholar 

  45. Kandel, E. R., Abrams, T., Bernier, L., Carew, T. J., Hawkins, R. D., & Schwartz, J. H. (1983). Classical conditioning and sensitization share aspects of the same molecular cascade in Aplysia. Cold Spring Harbor Symposia on Quantitative Biology, 48(Pt 2), 821–830.

    PubMed  Google Scholar 

  46. Crow, T. J., & Alkon, D. L. (1980). Associative behavioral modification in Hermissenda: Cellular correlates. Science, 209(4454), 412–414.

    PubMed  Google Scholar 

  47. Libet, B. (1984). Heterosynaptic interaction at a sympathetic neuron as a model for induction and storage of a postsynaptic memory trace. In G. Lynch, J. L. McGaugh, & N. M. Weinberger (Eds.), Neurobiology of learning and memory. New York: Guilford Press.

    Google Scholar 

  48. Ashe, J. H., & Libet, B. (1981). Orthodromic production of non-cholinergic slow depolarizing response in the superior cervical ganglion of the rabbit. The Journal of Physiology, 320, 333–346.

    PubMed  Google Scholar 

  49. Libet, B. (1970). Generation of slow inhibitory and excitatory postsynaptic potentials. Federation Proceedings, 29, 1945–1956.

    PubMed  Google Scholar 

  50. Libet, B., & Owman, C. (1974). Concomitant changes in formaldehyde-induced fluorescence of dopamine interneurones and in slow inhibitory post-synaptic potentials of the rabbit superior cervical ganglion, induced by stimulation of the preganglionic nerve or by a muscarinic agent. The Journal of Physiology, 237(3), 635–662.

    PubMed  Google Scholar 

  51. Baudry, M., & Lynch, G. (1979). Regulation of glutamate receptors by cations. Nature, 282, 748–750.

    PubMed  Google Scholar 

  52. Baudry, M., & Lynch, G. (1984). Glutamate receptor regulation and the substrates of memory. In G. Lynch, J. L. McGaugh, & N. M. Weinberger (Eds.), Neurobiology of learning and memory (pp. 431–450). New York: Guilford Press.

    Google Scholar 

  53. Lynch, G. (1986). Synapses, circuits, and the beginnings of memory. Cambridge, MA: MIT Press.

    Google Scholar 

  54. Lynch, G., McGaugh, J. L., & Weinberger, N. M. (1984). Neurobiology of learning and memory. New York: Guilford Press.

    Google Scholar 

  55. Chen, W. R., Lee, S., Kato, K., Spencer, D. D., Shepherd, G. M., & Williamson, A. (1996). Long-term modifications of synaptic efficacy in the human inferior and middle temporal cortex. Proceedings of the National Academy of Sciences of the United States of America, 93(15), 8011–8015.

    PubMed  Google Scholar 

  56. Stanton, P. K. (1996). LTD, LTP, and the sliding threshold for long-term synaptic plasticity. Hippocampus, 6(1), 35–42.

    PubMed  Google Scholar 

  57. Wagner, J. J., & Alger, B. E. (1996). Homosynaptic LTD and depotentiation: Do they differ in name only? Hippocampus, 6(1), 24–29.

    PubMed  Google Scholar 

  58. Rison, R. A., & Stanton, P. K. (1995). Long-term potentiation and N-methyl-D-aspartate receptors: Foundations of memory and neurologic disease? Neuroscience and Biobehavioral Reviews, 19(4), 533–552.

    PubMed  Google Scholar 

  59. Shen, Y., Specht, S. M., De Saint Ghislain, I., & Li, R. (1994). The hippocampus: A biological model for studying learning and memory. Progress in Neurobiology, 44(5), 485–496.

    PubMed  Google Scholar 

  60. Malenka, R. C. (1991). The role of postsynaptic calcium in the induction of long-term potentiation. Molecular Neurobiology, 5(2–4), 289–295.

    PubMed  Google Scholar 

  61. Sahai, S. (1990). Glutamate in the mammalian CNS. European Archives of Psychiatry and Clinical Neuroscience, 240(2), 121–133.

    PubMed  Google Scholar 

  62. Kennedy, M. B. (1989). Regulation of synaptic transmission in the central nervous system: Long-term potentiation. Cell, 59(5), 777–787.

    PubMed  Google Scholar 

  63. Wang, H., Wang, X., & Scheich, H. (1996). LTD and LTP induced by transcranial magnetic stimulation in auditory cortex. Neuroreport, 7(2), 521–525.

    PubMed  Google Scholar 

  64. Norman, R. J., Buchwald, J. S., & Villablanca, J. R. (1977). Classical conditioning with auditory discrimination of the eyeblink in decerebrate cats. Science, 196, 551–553.

    PubMed  Google Scholar 

  65. Kim, J. J., & Thompson, R. F. (1997). Cerebellar circuits and synaptic mechanisms involved in classical eyeblink conditioning. Trends in Neurosciences, 20(4), 177–181.

    PubMed  Google Scholar 

  66. Thompson, R. F. (1988). The neural basis of basic associative learning of discrete behavioral responses. Trends in Neurosciences, 11(4), 152–155.

    PubMed  Google Scholar 

  67. Tsukahara, N. (1982). Brain plasticity: The themes and case studies of neuro-biophysics. Advances in Biophysics, 15, 131–172.

    PubMed  Google Scholar 

  68. Tsukahara, N. (1984). Classical conditioning mediated by the red nucleus: An approach beginning at the cellular level. In G. Lynch, J. L. McGaugh, & N. M. Weinberger (Eds.), Handbook of learning and memory (pp. 165–180). New York: Guilford.

    Google Scholar 

  69. Tsukahara, N., Oda, Y., & Notsu, T. (1981). Classical conditioning mediated by the red nucleus in the cat. The Journal of Neuroscience, 1(1), 72–79.

    PubMed  Google Scholar 

  70. Lnenicka, G. A., & Atwood, H. L. (1985). Long-term facilitation and long-term adaptation at synapses of a crayfish phasic motoneuron. Journal of Neurobiology, 16(2), 97–110.

    PubMed  Google Scholar 

  71. Sil’kis, I. G., Rapoport, S., & Veber, N. V. (1995). Long-term posttetantic changes in the reaction of neighboring neurons in microsegments of the cat motor cortex. Neuroscience and Behavioral Physiology, 25(1), 15–24.

    PubMed  Google Scholar 

  72. Hess, G., Aizenman, C. D., & Donoghue, J. P. (1996). Conditions for the induction of long-term potentiation in layer II/III horizontal connections of the rat motor cortex. Journal of Neurophysiology, 75(5), 1765–1778.

    PubMed  Google Scholar 

  73. Sil’kis, I. G., Rapoport, S., Veber, N. V., & Gushchin, A. M. (1994). Neurobiology of the integrative activity of the brain: Some properties of long-term posttetanic heterosynaptic depression in the motor cortex of the cat. Neuroscience and Behavioral Physiology, 24(6), 500–506.

    PubMed  Google Scholar 

  74. Charpier, S., Mahon, S., & Deniau, J. M. (1999). In vivo induction of striatal long-term potentiation by low-frequency stimulation of the cerebral cortex. Neuroscience, 91(4), 1209–1222.

    PubMed  Google Scholar 

  75. Aumann, T. D., Redman, S. J., & Horne, M. K. (2000). Long-term potentiation across rat cerebello-thalamic synapses in vitro. Neuroscience Letters, 287(2), 151–155.

    PubMed  Google Scholar 

  76. Herry, C., & Garcia, R. (2002). Prefrontal cortex long-term potentiation, but not long-term depression, is associated with the maintenance of extinction of learned fear in mice. The Journal of Neuroscience, 22(2), 577–583.

    PubMed  Google Scholar 

  77. Sacchetti, B., Scelfo, B., Tempia, F., & Strata, P. (2004). Long-term synaptic changes induced in the cerebellar cortex by fear conditioning. Neuron, 42(6), 973–982.

    PubMed  Google Scholar 

  78. Baumer, T., Bock, F., Koch, G., et al. (2006). Magnetic stimulation of human premotor or motor cortex produces interhemispheric facilitation through distinct pathways. The Journal of Physiology, 572(Pt 3), 857–868.

    PubMed  Google Scholar 

  79. Sil’kis, I. G. (2006). A possible mechanism for the effect of modifiable lateral inhibition in the striatum on the selection of conditioned reflex motor responses. Neuroscience and Behavioral Physiology, 36(6), 631–643.

    PubMed  Google Scholar 

  80. Barcal, J., Cendelin, J., & Vozeh, F. (2008). Hippocampal long-term potentiation in adult Lurcher mutant mice: Effect of embryonic cerebellar graft and motor training. Prague Medical Report, 109(1), 25–31.

    PubMed  Google Scholar 

  81. Furubayashi, T., Terao, Y., Arai, N., et al. (2008). Short and long duration transcranial direct current stimulation (tDCS) over the human hand motor area. Experimental Brain Research, 185(2), 279–286.

    PubMed  Google Scholar 

  82. Suppa, A., Bologna, M., Gilio, F., Lorenzano, C., Rothwell, J. C., & Berardelli, A. (2008). Preconditioning repetitive transcranial magnetic stimulation of premotor cortex can reduce but not enhance short-term facilitation of primary motor cortex. Journal of Neurophysiology, 99(2), 564–570.

    PubMed  Google Scholar 

  83. He, Y., Liu, M. G., Gong, K. R., & Chen, J. (2009). Differential effects of long and short train theta burst stimulation on LTP induction in rat anterior cingulate cortex slices: Multi-electrode array recordings. Neuroscience Bulletin, 25(5), 309–318.

    PubMed  Google Scholar 

  84. Wang, X., Chen, G., Gao, W., & Ebner, T. (2009). Long-term potentiation of the responses to parallel fiber stimulation in mouse cerebellar cortex in vivo. Neuroscience, 162(3), 713–722.

    PubMed  Google Scholar 

  85. Kenyon, G. T. (1997). A model of long-term memory storage in the cerebellar cortex: A possible role for plasticity at parallel fiber synapses onto stellate/basket interneurons. Proceedings of the National Academy of Sciences of the United States of America, 94(25), 14200–14205.

    PubMed  Google Scholar 

  86. Castro-Alamancos, M. A., Donoghue, J. P., & Connors, B. W. (1995). Different forms of synaptic plasticity in somatosensory and motor areas of the neocortex. The Journal of Neuroscience, 15(7 Pt 2), 5324–5333.

    PubMed  Google Scholar 

  87. Alkon, D. L. (1982). A biophysical basis for molluscan associative learning. In C. D. Woody (Ed.), Conditioning: Representation of involved neural function. New York: Plenum Press.

    Google Scholar 

  88. Oleson, T., Ashe, J., & Weinberger, N. M. (1975). Modification of auditory and somatosensory activity during pupillary conditioning in the paralyzed cat. Journal of Neurophysiology, 38, 1114–1139.

    PubMed  Google Scholar 

  89. Ryugo, D. K., & Weinberger, N. M. (1976). Corticofugal modulation of the medial geniculate body. Experimental Neurology, 51(2), 377–391.

    PubMed  Google Scholar 

  90. Gabriel, M., Miller, J. D., & Saltwick, S. E. (1976). Multiple unit activity of the rabbit medial geniculate nucleus in conditioning, extinction and reversal. Physiological Psychology, 4, 124–134.

    Google Scholar 

  91. Diamond, D. M., & Weinberger, N. M. (1984). Physiological plasticity of single neurons in auditory cortex of the cat during acquisition of the pupillary conditioned response: II. Secondary field (AII). Behavioral Neuroscience, 98(2), 189–210.

    PubMed  Google Scholar 

  92. Diamond, D. M., & Weinberger, N. M. (1986). Classical conditioning rapidly induces specific changes in frequency receptive fields of single neurons in secondary and ventral ectosylvian auditory cortical fields. Brain Research, 372(2), 357–360.

    PubMed  Google Scholar 

  93. Diamond, D. M., & Weinberger, N. M. (1989). Role of context in the expression of learning-induced plasticity of single neurons in auditory cortex. Behavioral Neuroscience, 103(3), 471–494.

    PubMed  Google Scholar 

  94. Benson, D. A., Hienz, R. D., & Goldstein, M. H., Jr. (1981). Single-unit activity in the auditory cortex of monkeys actively localizing sound sources: Spatial tuning and behavioral dependency. Brain Research, 219(2), 249–267.

    PubMed  Google Scholar 

  95. Edeline, J. M., & Weinberger, N. M. (1993). Receptive field plasticity in the auditory cortex during frequency discrimination training: Selective retuning independent of task difficulty. Behavioral Neuroscience, 107(1), 82–103.

    PubMed  Google Scholar 

  96. Hui, G. K., Wong, K. L., Chavez, C. M., Leon, M. I., Robin, K. M., & Weinberger, N. M. (2009). Conditioned tone control of brain reward behavior produces highly specific representational gain in the primary auditory cortex. Neurobiology of Learning and Memory, 92(1), 27–34.

    PubMed  Google Scholar 

  97. Ji, W., & Suga, N. (2008). Tone-specific and nonspecific plasticity of the auditory cortex elicited by pseudoconditioning: Role of acetylcholine receptors and the somatosensory cortex. Journal of Neurophysiology, 100(3), 1384–1396.

    PubMed  Google Scholar 

  98. Ji, W., & Suga, N. (2009). Tone-specific and nonspecific plasticity of inferior colliculus elicited by pseudo-conditioning: Role of acetylcholine and auditory and somatosensory cortices. Journal of Neurophysiology, 102(2), 941–952.

    PubMed  Google Scholar 

  99. Weinberger, N. M., & Bakin, J. S. (1998). Learning-induced physiological memory in adult primary auditory cortex: Receptive fields plasticity, model, and mechanisms. Audiology & Neuro-Otology, 3(2–3), 145–167.

    Google Scholar 

  100. Birt, D., & Olds, M. (1981). Associative response changes in lateral midbrain tegmentum and medial geniculate during differential appetitive conditioning. Journal of Neurophysiology, 46, 1039–1055.

    PubMed  Google Scholar 

  101. Weinberger, N. M., Hopkins, W., & Diamond, D. M. (1984). Physiological plasticity of single neurons in auditory cortex of the cat during acquisition of the pupillary conditioned response: I. Primary field (AI). Behavioral Neuroscience, 98(2), 171–188.

    PubMed  Google Scholar 

  102. Weinberger, N. M., McGaugh, J. L., & Lynch, G. (1985). Memory systems of the brain: Animal and human cognitive processes. New York: Guilford Press.

    Google Scholar 

  103. Fregnac, Y., & Shulz, D. E. (1999). Activity-dependent regulation of receptive field properties of cat area 17 by supervised Hebbian learning. Journal of Neurobiology, 41(1), 69–82.

    PubMed  Google Scholar 

  104. Chelazzi, L., Duncan, J., Miller, E. K., & Desimone, R. (1998). Responses of neurons in inferior temporal cortex during memory-guided visual search. Journal of Neurophysiology, 80(6), 2918–2940.

    PubMed  Google Scholar 

  105. Heinze, H. J., Hinrichs, H., Scholz, M., Burchert, W., & Mangun, G. R. (1998). Neural mechanisms of global and local processing. A combined PET and ERP study. Journal of Cognitive Neuroscience, 10(4), 485–498.

    PubMed  Google Scholar 

  106. Schmajuk, N. A., & Buhusi, C. V. (1997). Stimulus configuration, occasion setting, and the hippocampus. Behavioural Neuroscience, 111(2), 235–257; appendix 258.

    Google Scholar 

  107. Motter, B. C. (1994). Neural correlates of feature selective memory and pop-out in extrastriate area V4. The Journal of Neuroscience, 14(4), 2190–2199.

    PubMed  Google Scholar 

  108. Motter, B. C. (1994). Neural correlates of attentive selection for color or luminance in extrastriate area V4. The Journal of Neuroscience, 14(4), 2178–2189.

    PubMed  Google Scholar 

  109. Artim, J., & Bridgeman, B. (1989). The physiology of attention: Participation of cat striate cortex in behavioral choice. Psychological Research, 50(4), 223–228.

    PubMed  Google Scholar 

  110. Keil, A., Stolarova, M., Moratti, S., & Ray, W. J. (2007). Adaptation in human visual cortex as a mechanism for rapid discrimination of aversive stimuli. NeuroImage, 36(2), 472–479.

    PubMed  Google Scholar 

  111. Fritz, J. B., Elhilali, M., David, S. V., & Shamma, S. A. (2007). Does attention play a role in dynamic receptive field adaptation to changing acoustic salience in A1? Hearing Research, 229(1–2), 186–203.

    PubMed  Google Scholar 

  112. Lakatos, P., Szilagyi, N., Pincze, Z., Rajkai, C., Ulbert, I., & Karmos, G. (2004). Attention and arousal related modulation of spontaneous gamma-activity in the auditory cortex of the cat. Brain Research. Cognitive Brain Research, 19(1), 1–9.

    PubMed  Google Scholar 

  113. Armony, J. L., & Dolan, R. J. (2001). Modulation of auditory neural responses by a visual context in human fear conditioning. Neuroreport, 12(15), 3407–3411.

    PubMed  Google Scholar 

  114. Kandel, E. R. (1978). A cell-biological approach to learning. Bethesda, MD: Society for Neuroscience.

    Google Scholar 

  115. Wagner, A. R. (1979). Habituation and memory. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  116. Penfield, W. (1958). The excitable cortex in conscious man. Liverpool: Liverpool University Press.

    Google Scholar 

  117. Penfield, W., & Rasmussen, T. (1950). The cerebral cortex of man: A clinical study of localization of function. New York: Macmillan.

    Google Scholar 

  118. Penfield, W., & Roberts, L. (1959). Speech and brain-mechanisms. Princeton, NJ: Princeton University Press.

    Google Scholar 

  119. Penfield, W., & Milner, B. (1958). Memory deficit produced by bilateral lesions in the hippocampal zone. Archives of Neurology and Psychiatry, 79, 475–497.

    PubMed  Google Scholar 

  120. Penfield, W. R., & Rasmussen, T. (1950). The cerebral cortex of man. New York: Macmillan.

    Google Scholar 

  121. Wilson, C. L., Babb, T. L., Halgren, E., Wang, M. L., & Crandall, P. H. (1984). Habituation of human limbic neuronal response to sensory stimulation. Experimental Neurology, 84(1), 74–97.

    PubMed  Google Scholar 

  122. Babb, T. L., Halgren, E., Wilson, C., Engel, J., & Crandall, P. (1981). Neuronal firing patterns during the spread of an occipital lobe seizure to the temporal lobes in man. Electroencephalography and Clinical Neurophysiology, 51(1), 104–107.

    PubMed  Google Scholar 

  123. Halgren, E., Squires, N. K., Wilson, C. L., Rohrbaugh, J. W., Babb, T. L., & Crandall, P. H. (1980). Endogenous potentials generated in the human hippocampal formation and amygdala by infrequent events. Science, 210(4471), 803–805.

    PubMed  Google Scholar 

  124. Halgren, E., Babb, T. L., & Crandall, P. H. (1978). Activity of human hippocampal formation and amygdala neurons during memory testing. Electroencephalography and Clinical Neurophysiology, 45(5), 585–601.

    PubMed  Google Scholar 

  125. Halgren, E., Babb, T. L., & Crandall, P. H. (1978). Human hippocampal formation EEG desynchronizes during attentiveness and movement. Electroencephalography and Clinical Neurophysiology, 44(6), 778–781.

    PubMed  Google Scholar 

  126. Halgren, E., Babb, T. L., & Crandall, P. H. (1977). Responses of human limbic neurons to induced changes in blood gases. Brain Research, 132(1), 43–63.

    PubMed  Google Scholar 

  127. Lashley, K. S. (1963). Brain mechanisms and intelligence: A quantitative study of injuries to the brain. New York: Dover Publications.

    Google Scholar 

  128. Jacobsen, C. F. (1936). Studies of cerebral functions in primates: 1. The functions of the frontal association areas in monkeys. Comparative Psychology, 13, 3–60.

    Google Scholar 

  129. Jacobsen, C. F., & Nissen, H. W. (1937). Studies of cerebral function in primates: IV. The effects of frontal lobe lesions on the delayed alternation habit in monkeys. Journal of Comparative and Physiological Psychology, 23, 101–112.

    Google Scholar 

  130. Butters, N., & Pandya, D. (1969). Retention of delayed-alternation: Effect of selective lesions of sulcus principalis. Science, 165, l27l–l273l.

    Google Scholar 

  131. Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery & Psychiatry, 20, 11–21.

    Google Scholar 

  132. Squire, L. (1987). Memory and brain. New York: Oxford University Press.

    Google Scholar 

  133. Squire, L. R. (2004). Memory systems of the brain: A brief history and current perspective. Neurobiology of Learning and Memory, 82(3), 171–177.

    PubMed  Google Scholar 

  134. O’Donnell, B. F., Cohen, R. A., Hokama, H., et al. (1993). Electrical source analysis of auditory ERPs in medial temporal lobe amnestic syndrome. Electroencephalography and Clinical Neurophysiology, 87(6), 394–402.

    PubMed  Google Scholar 

  135. Butters, N., Lewis, R., Cermak, L. S., & Goodglass, H. (1973). Material-specific memory deficits in alcoholic Korsakoff patients. Neuropsychologia, 11(3), 291–299.

    PubMed  Google Scholar 

  136. Cermak, L. S., Butters, N., & Goodglass, H. (1971). The extent of memory loss in Korsakoff patients. Neuropsychologia, 9(3), 307–315.

    PubMed  Google Scholar 

  137. Squire, L. R. (1977). ECT and memory loss. The American Journal of Psychiatry, 134(9), 997–1001.

    PubMed  Google Scholar 

  138. Squire, L. R., Slater, P. C., & Miller, P. L. (1981). Retrograde amnesia and bilateral electroconvulsive therapy. Long-term follow-up. Archives of General Psychiatry, 38(1), 89–95.

    PubMed  Google Scholar 

  139. Taylor, J. R., Tompkins, R., Demers, R., & Anderson, D. (1982). Electroconvulsive therapy and memory dysfunction: Is there evidence for prolonged defects? Biological Psychiatry, 17(10), 1169–1193.

    PubMed  Google Scholar 

  140. Isseroff, A., Rosvold, H. E., Galkin, T. W., & Goldman-Rakic, P. S. (1982). Spatial memory impairment following damage to the mediodorsal nucleus in the thalamus of rhesus monkeys. Brain Research, 232, 97–113.

    PubMed  Google Scholar 

  141. Zola-Morgan, S., & Squire, L. R. (1985). Amnesia in monkeys following lesions of the mediodorsal nucleus of the thalamus. Annals of Neurology, 17, 558–564.

    PubMed  Google Scholar 

  142. Zola-Morgan, S., Squire, L. R., & Mishkin, M. (1982). The neuroanatomy of amnesia: Amygdala-hippocampus versus temporal stem. Science, 218(4579), 1337–1339.

    PubMed  Google Scholar 

  143. Zola-Morgan, S., & Squire, L. R. (1986). Memory impairment in monkeys following lesions of the hippocampus. Behavioral Neuroscience, 100, 155–160.

    PubMed  Google Scholar 

  144. Zola-Morgan, S., & Squire, L. R. (1984). Preserved learning in monkeys with medial temporal lesions: Sparing of motor and cognitive skills. Journal of Neuroscience, 4, 1072–1085.

    PubMed  Google Scholar 

  145. Uhlhaas, P. J., & Singer, W. (2006). Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology. Neuron, 52(1), 155–168.

    PubMed  Google Scholar 

  146. Watts, A. G., Khan, A. M., Sanchez-Watts, G., Salter, D., & Neuner, C. M. (2006). Activation in neural networks controlling ingestive behaviors: What does it mean, and how do we map and measure it? Physiology and Behavior, 89(4), 501–510.

    PubMed  Google Scholar 

  147. He, B. J., Snyder, A. Z., Vincent, J. L., Epstein, A., Shulman, G. L., & Corbetta, M. (2007). Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron, 53(6), 905–918.

    PubMed  Google Scholar 

  148. Knight, R. T. (2007). Neuroscience. Neural networks debunk phrenology. Science, 316(5831), 1578–1579.

    PubMed  Google Scholar 

  149. Mesulam, M. (2009). Defining neurocognitive networks in the BOLD new world of computed connectivity. Neuron, 62(1), 1–3.

    PubMed  Google Scholar 

  150. Rumelhart, D., & McClelland, J. L. (1986). Parallel distributed processing: Explorations in the microstructure of cognition (Vols. 1 & 2). Cambridge, MA: MIT Press.

    Google Scholar 

  151. Mishkin, M., Ungerleiter, L. G., & Macko, K. A. (1983). Object vision and spatial vision: Two cortical pathways. Trends in Neurosciences, 6, 414–417.

    Google Scholar 

  152. Mishkin, M., & Bachevalier, J. (1983). Object recognition impaired by ventromedial but not dorsolateral prefrontal cortical lesions in monkeys. Society for Neuroscience Abstract, 9, 29.

    Google Scholar 

  153. Mishkin, M., Lewis, M. E., & Ungerleider, L. G. (1982). Equivalence of parieto-preoccipital subareas for visuospatial ability in monkeys. Behavioural Brain Research, 6(1), 41–55.

    PubMed  Google Scholar 

  154. Ungerleider, L., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behaviour (pp. 549–586). Cambridge, MA: MIT Press.

    Google Scholar 

  155. Bellebaum, C., & Daum, I. (2007). Cerebellar involvement in executive control. Cerebellum, 6(3), 184–192.

    PubMed  Google Scholar 

  156. Ben-Yehudah, G., Guediche, S., & Fiez, J. A. (2007). Cerebellar contributions to verbal working memory: Beyond cognitive theory. Cerebellum, 6(3), 193–201.

    PubMed  Google Scholar 

  157. De Bartolo, P., Mandolesi, L., Federico, F., et al. (2009). Cerebellar involvement in cognitive flexibility. Neurobiology of Learning and Memory, 92(3), 310–317.

    PubMed  Google Scholar 

  158. Fujiwara, A., Kakizawa, S., & Iino, M. (2007). Induction of cerebellar long-term depression requires activation of calcineurin in Purkinje cells. Neuropharmacology, 52(8), 1663–1670.

    PubMed  Google Scholar 

  159. Glickstein, M., & Doron, K. (2008). Cerebellum: Connections and functions. Cerebellum, 7(4), 589–594.

    PubMed  Google Scholar 

  160. Halverson, H. E., Lee, I., & Freeman, J. H. (2010). Associative plasticity in the medial auditory thalamus and cerebellar interpositus nucleus during eyeblink conditioning. The Journal of Neuroscience, 30(26), 8787–8796.

    PubMed  Google Scholar 

  161. Hayter, A. L., Langdon, D. W., & Ramnani, N. (2007). Cerebellar contributions to working memory. NeuroImage, 36(3), 943–954.

    PubMed  Google Scholar 

  162. Hirano, T. (2006). Motor control mechanism by the cerebellum. Cerebellum, 5(4), 296–300.

    PubMed  Google Scholar 

  163. Hubert, V., Beaunieux, H., Chetelat, G., et al. (2007). The dynamic network subserving the three phases of cognitive procedural learning. Human Brain Mapping, 28(12), 1415–1429.

    PubMed  Google Scholar 

  164. Ioffe, M. E., Chernikova, L. A., & Ustinova, K. I. (2007). Role of cerebellum in learning postural tasks. Cerebellum, 6(1), 87–94.

    PubMed  Google Scholar 

  165. Jorntell, H., & Hansel, C. (2006). Synaptic memories upside down: Bidirectional plasticity at cerebellar parallel fiber-Purkinje cell synapses. Neuron, 52(2), 227–238.

    PubMed  Google Scholar 

  166. Mostofsky, S. H., Powell, S. K., Simmonds, D. J., Goldberg, M. C., Caffo, B., & Pekar, J. J. (2009). Decreased connectivity and cerebellar activity in autism during motor task performance. Brain, 132(Pt 9), 2413–2425.

    PubMed  Google Scholar 

  167. Porrill, J., & Dean, P. (2007). Cerebellar motor learning: When is cortical plasticity not enough? PLoS Computational Biology, 3(10), 1935–1950.

    PubMed  Google Scholar 

  168. Porrill, J., & Dean, P. (2007). Recurrent cerebellar loops simplify adaptive control of redundant and nonlinear motor systems. Neural Computation, 19(1), 170–193.

    PubMed  Google Scholar 

  169. Strata, P. (2009). David Marr’s theory of cerebellar learning: 40 years later. The Journal of Physiology, 587(Pt 23), 5519–5520.

    PubMed  Google Scholar 

  170. Thompson, R. F., & Steinmetz, J. E. (2009). The role of the cerebellum in classical conditioning of discrete behavioral responses. Neuroscience, 162(3), 732–755.

    PubMed  Google Scholar 

  171. Timmann, D., & Daum, I. (2007). Cerebellar contributions to cognitive functions: A progress report after two decades of research. Cerebellum, 6(3), 159–162.

    PubMed  Google Scholar 

  172. Torriero, S., Oliveri, M., Koch, G., et al. (2007). Cortical networks of procedural learning: Evidence from cerebellar damage. Neuropsychologia, 45(6), 1208–1214.

    PubMed  Google Scholar 

  173. Dunnett, S. B., Fuller, A., Rosser, A. E., & Brooks, S. P. (2012). A novel extended sequence learning task (ESLeT) for rodents: Validation and the effects of amphetamine, scopolamine and striatal lesions. Brain Research Bulletin, 88(2–3), 237–250.

    PubMed  Google Scholar 

  174. Hershey, T., Campbell, M. C., Videen, T. O., et al. (2010). Mapping Go-No-Go performance within the subthalamic nucleus region. Brain, 133(Pt 12), 3625–3634.

    PubMed  Google Scholar 

  175. Desmurget, M., & Turner, R. S. (2010). Motor sequences and the basal ganglia: Kinematics, not habits. The Journal of Neuroscience, 30(22), 7685–7690.

    PubMed  Google Scholar 

  176. Flores, L. C., & Disterhoft, J. F. (2009). Caudate nucleus is critically involved in trace eyeblink conditioning. The Journal of Neuroscience, 29(46), 14511–14520.

    PubMed  Google Scholar 

  177. Wachter, T., Rohrich, S., Frank, A., et al. (2010). Motor skill learning depends on protein synthesis in the dorsal striatum after training. Experimental Brain Research, 200(3–4), 319–323.

    Google Scholar 

  178. McCormick, D. A., Lavond, D. G., & Thompson, R. F. (1983). Neuronal responses of the rabbit brainstem during performance of the classically conditioned nictitating membrane (NM)/eyelid response. Brain Research, 271(1), 73–88.

    PubMed  Google Scholar 

  179. Oakley, D. A., & Russell, I. S. (1972). Neocortical lesions and Pavlovian conditioning. Physiology and Behavior, 8(5), 915–926.

    PubMed  Google Scholar 

  180. Oakley, D. A., & Russell, I. S. (1975). Role of cortex in Pavlovian discrimination learning. Physiology and Behavior, 15(3), 315–321.

    PubMed  Google Scholar 

  181. Oakley, D. A., & Russell, I. S. (1976). Subcortical nature of Pavlovian differentiation in the rabbit. Physiology and Behavior, 17(6), 947–954.

    PubMed  Google Scholar 

  182. Oakley, D. A., & Russell, I. S. (1977). Subcortical storage of Pavlovian conditioning in the rabbit. Physiology and Behavior, 18(5), 931–937.

    PubMed  Google Scholar 

  183. Oakley, D. A., & Russell, I. S. (1978). Performance of neodecorticated rabbits in a free-operant situation. Physiology and Behavior, 20(2), 157–170.

    PubMed  Google Scholar 

  184. Frings, M., Gaertner, K., Buderath, P., et al. (2010). Timing of conditioned eyeblink responses is impaired in children with attention-deficit/hyperactivity disorder. Experimental Brain Research, 201(2), 167–176.

    PubMed  Google Scholar 

  185. Safo, P., & Regehr, W. G. (2008). Timing dependence of the induction of cerebellar LTD. Neuropharmacology, 54(1), 213–218.

    PubMed  Google Scholar 

  186. Fino, E., & Venance, L. (2011). Spike-timing dependent plasticity in striatal interneurons. Neuropharmacology, 60(5), 780–788.

    PubMed  Google Scholar 

  187. Jones, C. R., Malone, T. J., Dirnberger, G., Edwards, M., & Jahanshahi, M. (2008). Basal ganglia, dopamine and temporal processing: Performance on three timing tasks on and off medication in Parkinson’s disease. Brain and Cognition, 68(1), 30–41.

    PubMed  Google Scholar 

  188. Bottjer, S. W. (2005). Timing and prediction the code from basal ganglia to thalamus. Neuron, 46(1), 4–7.

    PubMed  Google Scholar 

  189. Olds, J., Mink, W. D., & Best, P. J. (1969). Single unit patterns during anticipatory behavior. EEG & Clinical Neurophysiology, 26(2), 144–158.

    Google Scholar 

  190. Olds, J., & Milner, P. (1954). Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. Journal of Comparative and Physiological Psychology, 47, 419–427.

    PubMed  Google Scholar 

  191. Olds, M. E. (1973). Short-term changes in the firing pattern of hypothalamic neurons during Pavlovian conditioning. Brain Research, 58(1), 95–116.

    PubMed  Google Scholar 

  192. Phillips, M. I., & Olds, J. (1969). Unit activity: Motivation-dependent response from midbrain neurons. Science, 165, 1269–1271.

    PubMed  Google Scholar 

  193. Buchanan, S. L. (1994). Mediodorsal thalamic lesions impair acquisition of an eyeblink avoidance response in rabbits. Behavioural Brain Research, 65(2), 173–179.

    PubMed  Google Scholar 

  194. Buchanan, S. L., & Thompson, R. H. (1990). Mediodorsal thalamic lesions and Pavlovian conditioning of heart rate and eyeblink responses in the rabbit. Behavioral Neuroscience, 104(6), 912–918.

    PubMed  Google Scholar 

  195. Lelord, G., & Maho, C. (1969). [Changes in cortical and thalamic evoked activity during sensory conditioning. I. Localization of the responses and variation with vigilance]. Electroencephalography and Clinical Neurophysiology, 27(3), 258–269.

    PubMed  Google Scholar 

  196. McAlonan, K., Brown, V. J., & Bowman, E. M. (2000). Thalamic reticular nucleus activation reflects attentional gating during classical conditioning. The Journal of Neuroscience, 20(23), 8897–8901.

    PubMed  Google Scholar 

  197. Nicholson, D. A., & Freeman, J. H., Jr. (2002). Medial dorsal thalamic lesions impair blocking and latent inhibition of the conditioned eyeblink response in rats. Behavioral Neuroscience, 116(2), 276–285.

    PubMed  Google Scholar 

  198. Sparenborg, S., & Gabriel, M. (1990). Neuronal encoding of conditional stimulus duration in the cingulate cortex and the limbic thalamus of rabbits. Behavioral Neuroscience, 104(6), 919–933.

    PubMed  Google Scholar 

  199. Stolar, N., Sparenborg, S., Donchin, E., & Gabriel, M. (1989). Conditional stimulus probability and activity of hippocampal, cingulate cortical, and limbic thalamic neurons during avoidance conditioning in rabbits. Behavioral Neuroscience, 103(5), 919–934.

    PubMed  Google Scholar 

  200. Mayer, A. R., Hanlon, F. M., Franco, A. R., et al. (2009). The neural networks underlying auditory sensory gating. NeuroImage, 44(1), 182–189.

    PubMed  Google Scholar 

  201. Yang, S., & Cox, C. L. (2008). Excitatory and anti-oscillatory actions of nitric oxide in thalamus. The Journal of Physiology, 586(Pt 15), 3617–3628.

    PubMed  Google Scholar 

  202. Murakami, M., Kashiwadani, H., Kirino, Y., & Mori, K. (2005). State-dependent sensory gating in olfactory cortex. Neuron, 46(2), 285–296.

    PubMed  Google Scholar 

  203. Steriade, M. (2004). Local gating of information processing through the thalamus. Neuron, 41(4), 493–494.

    PubMed  Google Scholar 

  204. Rauch, S. L., Whalen, P. J., Curran, T., et al. (2001). Probing striato-thalamic function in obsessive-compulsive disorder and Tourette syndrome using neuroimaging methods. Advances in Neurology, 85, 207–224.

    PubMed  Google Scholar 

  205. Ahissar, E., Sosnik, R., & Haidarliu, S. (2000). Transformation from temporal to rate coding in a somatosensory thalamocortical pathway. Nature, 406(6793), 302–306.

    PubMed  Google Scholar 

  206. Morrow, T. J., & Casey, K. L. (2000). Attention-related, cross-modality modulation of somatosensory neurons in primate ventrobasal (VB) thalamus. Somatosensory and Motor Research, 17(2), 133–144.

    PubMed  Google Scholar 

  207. Crick, F. (1984). Function of the thalamic reticular complex: The searchlight hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 81(14), 4586–4590.

    PubMed  Google Scholar 

  208. Kornblith, C., & Olds, J. (1973). Unit activity in brain stem reticular formation of the rat during learning. Journal of Neurophysiology, 36(3), 489–501.

    PubMed  Google Scholar 

  209. Puryear, C. B., & Mizumori, S. J. (2008). Reward prediction error signals by reticular formation neurons. Learning and Memory, 15(12), 895–898.

    PubMed  Google Scholar 

  210. Schepens, B., Stapley, P., & Drew, T. (2008). Neurons in the pontomedullary reticular formation signal posture and movement both as an integrated behavior and independently. Journal of Neurophysiology, 100(4), 2235–2253.

    PubMed  Google Scholar 

  211. Moxon, K. A., Gerhardt, G. A., Bickford, P. C., et al. (1999). Multiple single units and population responses during inhibitory gating of hippocampal auditory response in freely-moving rats. Brain Research, 825(1–2), 75–85.

    PubMed  Google Scholar 

  212. Gabriel, M., Gregg, B., Clancy, A., Kittrell, M., & Dailey, W. (1986). Brain stem reticular formation neuronal correlates of stimulus significance and behavior during discriminative avoidance conditioning in rabbits. Behavioral Neuroscience, 100(2), 171–184.

    PubMed  Google Scholar 

  213. Gonzalez-Lima, F., & Scheich, H. (1986). Classical conditioning of tone-signaled bradycardia modifies 2-deoxyglucose uptake patterns in cortex, thalamus, habenula, caudate-putamen and hippocampal formation. Brain Research, 363(2), 239–256.

    PubMed  Google Scholar 

  214. Muller, K., & Klingberg, F. (1986). Lesions in the mesencephalic part of pedunculopontine nuclei modify goal-directed behaviour. Biomedica Biochimica Acta, 45(9), 1159–1165.

    PubMed  Google Scholar 

  215. Gonzalez-Lima, F., & Scheich, H. (1984). Neural substrates for tone-conditioned bradycardia demonstrated with 2-deoxyglucose. I. Activation of auditory nuclei. Behavioural Brain Research, 14(3), 213–233.

    PubMed  Google Scholar 

  216. McKenzie, J. S., & Rogers, D. K. (1981). Unit responses of intralaminar thalamus to midbrain and medullary stimulation and effects of conditioning caudate and hippocampal stimuli. Brain Research Bulletin, 7(4), 345–352.

    PubMed  Google Scholar 

  217. Lecas, J. C., & Maho, C. (1981). Reticular multiple-unit activity and motor changes during DRL learning in cats. Physiology and Behavior, 26(3), 451–459.

    PubMed  Google Scholar 

  218. Kim, J. H., & Richardson, R. (2010). New findings on extinction of conditioned fear early in development: Theoretical and clinical implications. Biological Psychiatry, 67(4), 297–303.

    PubMed  Google Scholar 

  219. Milad, M. R., Pitman, R. K., Ellis, C. B., et al. (2009). Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biological Psychiatry, 66(12), 1075–1082.

    PubMed  Google Scholar 

  220. Kim, J. H., Hamlin, A. S., & Richardson, R. (2009). Fear extinction across development: The involvement of the medial prefrontal cortex as assessed by temporary inactivation and immunohistochemistry. The Journal of Neuroscience, 29(35), 10802–10808.

    PubMed  Google Scholar 

  221. Bernal, S., Miner, P., Abayev, Y., et al. (2009). Role of amygdala dopamine D1 and D2 receptors in the acquisition and expression of fructose-conditioned flavor preferences in rats. Behavioural Brain Research, 205(1), 183–190.

    PubMed  Google Scholar 

  222. Burgos-Robles, A., Vidal-Gonzalez, I., & Quirk, G. J. (2009). Sustained conditioned responses in prelimbic prefrontal neurons are correlated with fear expression and extinction failure. The Journal of Neuroscience, 29(26), 8474–8482.

    PubMed  Google Scholar 

  223. Langton, J. M., & Richardson, R. (2009). The role of context in the re-extinction of learned fear. Neurobiology of Learning and Memory, 92(4), 496–503.

    PubMed  Google Scholar 

  224. Olds, J., & Hirano, T. (1969). Conditioned responses of hippocampal and other neurons. EEG & Clinical Neurophysiology, 26, 159–166.

    Google Scholar 

  225. Segal, M. (1973). Flow of conditioned responses in limbic telencephalic system of the rat. Journal of Neurophysiology, 36, 840–854.

    PubMed  Google Scholar 

  226. Segal, M. (1973). Dissecting a short-term memory circuit in the rat brain. I. Changes in entorhinal unit activity and responsiveness of the hippocampal units in the process of classical conditioning. Brain Research, 64, 281–292.

    PubMed  Google Scholar 

  227. Berger, T. W., Rinaldi, P. C., Weisz, D. J., & Thompson, R. F. (1983). Single-unit analysis of different hippocampal cell types during classical conditioning of rabbit nictitating membrane response. Journal of Neurophysiology, 50(5), 1197–1219.

    PubMed  Google Scholar 

  228. Bloch, V., & Laroche, S. (1981). Conditioning of hippocampal cells: Its acceleration and long-term facilitation by post-trial reticular stimulation. Behavioural Brain Research, 3(1), 23–42.

    PubMed  Google Scholar 

  229. Brace, H. M., Jefferys, J. G., & Mellanby, J. (1985). Long-term changes in hippocampal physiology and learning ability of rats after intrahippocampal tetanus toxin. The Journal of Physiology, 368, 343–357.

    PubMed  Google Scholar 

  230. Cammarota, M., Bernabeu, R., Izquierdo, I., & Medina, J. H. (1996). Reversible changes in hippocampal 3H-AMPA binding following inhibitory avoidance training in the rat. Neurobiology of Learning and Memory, 66(1), 85–88.

    PubMed  Google Scholar 

  231. Edeline, J. M., Dutrieux, G., & Neuenschwander-el Massioui, N. (1988). Multiunit changes in hippocampus and medial geniculate body in free-behaving rats during acquisition and retention of a conditioned response to a tone. Behavioral and Neural Biology, 50(1), 61–79.

    PubMed  Google Scholar 

  232. Sakurai, Y. (1996). Hippocampal and neocortical cell assemblies encode memory processes for different types of stimuli in the rat. The Journal of Neuroscience, 16(8), 2809–2819.

    PubMed  Google Scholar 

  233. Thompson, L. T., Moyer, J. R., Jr., & Disterhoft, J. F. (1996). Transient changes in excitability of rabbit CA3 neurons with a time course appropriate to support memory consolidation. Journal of Neurophysiology, 76(3), 1836–1849.

    PubMed  Google Scholar 

  234. Wu, Z., Desmond, N. L., & Levy, W. B. (1998). Homosynaptic long-term depression of CA3-CA3 synapses in the in vivo hippocampus. Brain Research, 789(2), 335–338.

    PubMed  Google Scholar 

  235. Ruusuvirta, T., Korhonen, T., Penttonen, M., Arikoski, J., & Kivirikko, K. (1995). Behavioral and hippocampal evoked responses in an auditory oddball situation when an unconditioned stimulus is paired with deviant tones in the cat: Experiment II. International Journal of Psychophysiology, 20(1), 41–47.

    PubMed  Google Scholar 

  236. Woodworth, R. S. (1973). Dynamic psychology. New York: Arno Press.

    Google Scholar 

  237. Cermak, L. S. (1984). The episodic-semantic distinction in amnesia. New York: Guilford Press.

    Google Scholar 

  238. Moscovitch, M. (1982). Multiple dissociations of function in amnesia. In L. Cermak (Ed.), Human memory and amnesia (pp. 337–370). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  239. Schacter, D. L. (1985). Multiple forms of memory in humans and animals. In N. M. Weinberger, J. L. McGaugh, & G. Lynch (Eds.), Memory systems of the brain: Animal and human cognitive processes (pp. 351–379). New York: Guilford Press.

    Google Scholar 

  240. Squire, L. R., & Butters, N. (1984). Neuropsychology of memory. New York: Guilford Press.

    Google Scholar 

  241. Hull, C. L. (1970). Mathematico deductive theory of rote learning: A study in scientific methodology. Westport, CT: Greenwood Press.

    Google Scholar 

  242. Brunton, T. L. (1883). On the nature of inhibition, and the action of drugs upon it. Nature, 27, 419–422.

    Google Scholar 

  243. Sherrington, C. S. (1947). The integrative action of the nervous system (7th ed.). London: Cambridge University Press.

    Google Scholar 

  244. Eccles, J. C. (1964). The physiology of the synapses. Berlin: Springer.

    Google Scholar 

  245. Shepherd, G. M. (2004). The synaptic organization of the brain (5th ed.). Oxford: Oxford University Press.

    Google Scholar 

  246. Konorski, J. (1967). Integrative activity of the brain (second printing ed.). Chicago: The University of Chicago Press.

    Google Scholar 

  247. Konorski, J. (1968). Conditioned reflexes and neuron organization. Fascism reprint of the 1948 ed. New York: Hafner Publishing.

    Google Scholar 

  248. Konorski, J. (1972). Physiological mechanisms of internal inhibition. In R. A. Boakes & M. S. Halliday (Eds.), Inhibition and learning. London: Academic.

    Google Scholar 

  249. Konorski, J., Dickinson, A., & Boakes, R. A. (1979). Mechanisms of learning and motivation: A memorial volume to Jerzy Konorski. Hillsdale, NJ: Lawrence Erlbaum; distributed by Halsted Press Division of Wiley.

    Google Scholar 

  250. Hubel, D., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. The Journal of Physiology, 195, 215–243.

    PubMed  Google Scholar 

  251. Hubel, D. H., & Wiesel, T. N. (1977). Functional architecture of macaque monkey visual cortex. Proceedings of the Royal Society of London, 198, 1–59.

    PubMed  Google Scholar 

  252. Pollen, D., & Ronner, S. F. (1975). Periodic excitability changes across the receptive fields of complex cells in the striate and parastriate cortex of the cat. The Journal of Physiology, 245, 667–697.

    PubMed  Google Scholar 

  253. Lloyd, D. P. C. (1941). A direct central inhibitory action of dromically conducted impulses. Journal of Neurophysiology, 4, 184–190.

    Google Scholar 

  254. Lloyd, D. P. C. (1946). Facilitation and inhibition of spinal motoneurons. Journal of Neurophysiology, 9, 421–438.

    PubMed  Google Scholar 

  255. Nakamura, Y., Goldberg, L. J., & Clemente, C. D. (1967). Nature of suppression of the masseteric monosynaptic reflex induced by stimulation of the orbital gyrus of the cat. Brain Research, 6, 184–198.

    PubMed  Google Scholar 

  256. Sechenov, L. M. (1956). Selected physiological and psychological works. Moscow: Foreign Languages Publishing House.

    Google Scholar 

  257. Jackson, J. H. (1958). Selected writings. New York: Basic Books.

    Google Scholar 

  258. Ferris, C. F., Singer, E. A., Meenan, D. M. J., & Albers, H. E. (1988). Inhibition of vasopressin-stimulated flank marking behavior by V2-receptor antagonists. European Journal of Pharmacology, 154, 153–159.

    PubMed  Google Scholar 

  259. Ferris, C. F., & Albers, H. E. (1984). Effect of peptides on flank gland grooming following microinjection into the medial preoptic area of golden hamsters. Neurosciences Abstracts, 10, 170.

    Google Scholar 

  260. Ferris, C. F., Axelson, J. F., Shinto, L. H., & Albers, H. E. (1987). Scent marking and the maintenance of dominant/subordinate status in male golden hamsters. Physiology and Behavior, 40(5), 661–664.

    PubMed  Google Scholar 

  261. Ferris, C. F., Meenan, D. M., Axelson, J. F., & Albers, H. E. (1986). A vasopressin antagonist can reverse dominant/subordinate behavior in hamsters. Physiology and Behavior, 38(1), 135–138.

    PubMed  Google Scholar 

  262. Ferris, C. F., Pollock, J., Albers, H. E., & Leeman, S. E. (1985). Inhibition of flank-marking behavior in golden hamsters by microinjection of a vasopressin antagonist into the hypothalamus. Neuroscience Letters, 55(2), 239–243.

    PubMed  Google Scholar 

  263. Hess, W. R. (1957). The functional organization of the diencephalon. New York: Grune and Stratton.

    Google Scholar 

  264. Hess, W. R. (1969). Hypothalamus and thalamus: Experimental documentation. Stuttgart: Georg Thieme Verlag.

    Google Scholar 

  265. Thomas, E. (1972). Excitatory and inhibitory processes. In R. A. Boakes & M. S. Halliday (Eds.), Inhibition and learning. London: Academic.

    Google Scholar 

  266. Bradford, H. F., Bennett, G. W., & Thomas, A. J. (1973). Depolarizing stimuli and the release of physiologically active amino acids from suspensions of mammalian synaptosomes. Journal of Neurochemistry, 21(3), 495–505.

    PubMed  Google Scholar 

  267. Thomas, E., & Evans, G. J. (1983). Septal inhibition of aversive emotional states. Physiology and Behavior, 31(5), 673–678.

    PubMed  Google Scholar 

  268. Thomas, J. B., & Thomas, K. A. (1972). Running-wheel avoidance behavior following septal area lesions in rats. Journal of Comparative and Physiological Psychology, 81(1), 143–148.

    PubMed  Google Scholar 

  269. Thomas, M. R., & Calaresu, F. R. (1972). Responses of single units in the medial hypothalamus to electrical stimulation of the carotid sinus nerve in the cat. Brain Research, 44(1), 49–62.

    PubMed  Google Scholar 

  270. Thomas, S., & Anand, B. K. (1970). Effect of electrical stimulation of the hypothalamus on thyroid secretion in monkeys. Journal of Neuro-Visceral Relations, 31(4), 399–408.

    PubMed  Google Scholar 

  271. Thomas, E., & Basbaum, C. (1972). Excitatory and inhibitory processes in hypothalamic conditioning in cats: Role of the history of the negative stimulus. Journal of Comparative and Physiological Psychology, 79(3), 419–424.

    PubMed  Google Scholar 

  272. Adamec, R. E. (1993). Partial limbic kindling—Brain, behavior, and the benzodiazepine receptor. Physiology and Behavior, 54(3), 531–545.

    PubMed  Google Scholar 

  273. Gautier, J. F., Chen, K., Salbe, A. D., et al. (2000). Differential brain responses to satiation in obese and lean men. Diabetes, 49(5), 838–846.

    PubMed  Google Scholar 

  274. Ghashghaei, H. T., & Barbas, H. (2002). Pathways for emotion: Interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience, 115(4), 1261–1279.

    PubMed  Google Scholar 

  275. Goldin, P. R., McRae, K., Ramel, W., & Gross, J. J. (2008). The neural bases of emotion regulation: Reappraisal and suppression of negative emotion. Biological Psychiatry, 63(6), 577–586.

    PubMed  Google Scholar 

  276. Gray, J. A. (1972). The structure of the emotions and the limbic system. Ciba Foundation Symposium, 8, 87–120.

    PubMed  Google Scholar 

  277. McNaughton, N., & Corr, P. J. (2004). A two-dimensional neuropsychology of defense: Fear/anxiety and defensive distance. Neuroscience and Biobehavioral Reviews, 28(3), 285–305.

    PubMed  Google Scholar 

  278. Timms, R. J. (1977). Cortical inhibition and facilitation of the defence reaction [proceedings]. The Journal of Physiology, 266(1), 98P–99P.

    PubMed  Google Scholar 

  279. Zbrozyna, A. W., & Westwood, D. M. (1991). Stimulation in prefrontal cortex inhibits conditioned increase in blood pressure and avoidance bar pressing in rats. Physiology and Behavior, 49(4), 705–708.

    PubMed  Google Scholar 

  280. Grastyan, E., Szabo, I., Molnar, P., & Kolta, P. (1968). Rebound, reinforcement and self-stimulation. Communications in Behavioral Biology, 2, 235–266.

    Google Scholar 

  281. Young, C. K., Koke, S. J., Kiss, Z. H., & Bland, B. H. (2009). Deep brain stimulation of the posterior hypothalamic nucleus reverses akinesia in bilaterally 6-hydroxydopamine-lesioned rats. Neuroscience, 162(1), 1–4.

    PubMed  Google Scholar 

  282. Welkenhuysen, M., Van Kuyck, K., Das, J., Sciot, R., & Nuttin, B. (2008). Electrical stimulation in the lateral hypothalamus in rats in the activity-based anorexia model. Neurosurgical Focus, 25(1), E7.

    PubMed  Google Scholar 

  283. Pichon, S., de Gelder, B., & Grezes, J. (2008). Emotional modulation of visual and motor areas by dynamic body expressions of anger. Social Neuroscience, 3(3–4), 199–212.

    PubMed  Google Scholar 

  284. Neal, J. K., & Wade, J. (2007). Courtship and copulation in the adult male green anole: Effects of season, hormone and female contact on reproductive behavior and morphology. Behavioural Brain Research, 177(2), 177–185.

    PubMed  Google Scholar 

  285. Bland, B. H., Bird, J., Jackson, J., & Natsume, K. (2006). Medial septal modulation of the ascending brainstem hippocampal synchronizing pathways in the freely moving rat. Hippocampus, 16(1), 11–19.

    PubMed  Google Scholar 

  286. Portillo, W., Basanez, E., & Paredes, R. G. (2003). Permanent changes in sexual behavior induced by medial preoptic area kindling-like stimulation. Brain Research, 961(1), 10–14.

    PubMed  Google Scholar 

  287. Ikemoto, S., Witkin, B. M., & Morales, M. (2003). Rewarding injections of the cholinergic agonist carbachol into the ventral tegmental area induce locomotion and c-Fos expression in the retrosplenial area and supramammillary nucleus. Brain Research, 969(1–2), 78–87.

    PubMed  Google Scholar 

  288. Wayner, M. J. (2002). Craving for alcohol in the rat: Adjunctive behavior and the lateral hypothalamus. Pharmacology Biochemistry and Behavior, 73(1), 27–43.

    Google Scholar 

  289. Bussey, T. J., Wise, S. P., & Murray, E. A. (2001). The role of ventral and orbital prefrontal cortex in conditional visuomotor learning and strategy use in rhesus monkeys (Macaca mulatta). Behavioral Neuroscience, 115(5), 971–982.

    PubMed  Google Scholar 

  290. Morgan, H. D., Watchus, J. A., Milgram, N. W., & Fleming, A. S. (1999). The long lasting effects of electrical simulation of the medial preoptic area and medial amygdala on maternal behavior in female rats. Behavioural Brain Research, 99(1), 61–73.

    PubMed  Google Scholar 

  291. Shankaranarayana Rao, B. S., Raju, T. R., & Meti, B. L. (1998). Self-stimulation of lateral hypothalamus and ventral tegmentum increases the levels of noradrenaline, dopamine, glutamate, and AChE activity, but not 5-hydroxytryptamine and GABA levels in hippocampus and motor cortex. Neurochemical Research, 23(8), 1053–1059.

    PubMed  Google Scholar 

  292. Nolan, P. C., & Waldrop, T. G. (1997). Integrative role of medullary neurons of the cat during exercise. Experimental Physiology, 82(3), 547–558.

    PubMed  Google Scholar 

  293. Pavlova, I. V., Volkov, I. V., & Mats, V. N. (1996). Influence of stimulation of the medial hypothalamus on the interaction of neurons of the rabbit neocortex. Neuroscience and Behavioral Physiology, 26(4), 313–320.

    PubMed  Google Scholar 

  294. Kravtsov, A. N., & Sudakov, S. K. (1996). Reaction of sensorimotor cortex neurons to stimulation of the lateral hypothalamus in conditions of microiontophoretic application of tetragastrin and bradykinin: The role of food reinforcement. Neuroscience and Behavioral Physiology, 26(6), 493–499.

    PubMed  Google Scholar 

  295. Duan, Y. F., Winters, R., McCabe, P. M., Green, E. J., Huang, Y., & Schneiderman, N. (1996). Behavioral characteristics of defense and vigilance reactions elicited by electrical stimulation of the hypothalamus in rabbits. Behavioural Brain Research, 81(1–2), 33–41.

    PubMed  Google Scholar 

  296. Arita, H., Kita, I., & Sakamoto, M. (1995). Two distinct descending inputs to the cricothyroid motoneuron in the medulla originating from the amygdala and the lateral hypothalamic area. Advances in Experimental Medicine and Biology, 393, 53–58.

    PubMed  Google Scholar 

  297. Rao, B. S., Desiraju, T., Meti, B. L., & Raju, T. R. (1994). Plasticity of hippocampal and motor cortical pyramidal neurons induced by self-stimulation experience. Indian Journal of Physiology and Pharmacology, 38(1), 23–28.

    PubMed  Google Scholar 

  298. Takigawa, M., Ueyama, K., Fukuzako, H., Maeda, H., & Matsumoto, K. (1993). Intracranial self-stimulation and locomotor traces as indicators for evaluating the homopantothenic acid. The Japanese Journal of Psychiatry and Neurology, 47(4), 915–920.

    PubMed  Google Scholar 

  299. Osborne, P. G., Mataga, N., Onoe, H., & Watanabe, Y. (1993). Behavioral activation by stimulation of a GABAergic mechanism in the preoptic area of rat. Neuroscience Letters, 158(2), 201–204.

    PubMed  Google Scholar 

  300. Bauco, P., Wang, Y., & Wise, R. A. (1993). Lack of sensitization or tolerance to the facilitating effect of ventral tegmental area morphine on lateral hypothalamic brain stimulation reward. Brain Research, 617(2), 303–308.

    PubMed  Google Scholar 

  301. Adams, D. B., Boudreau, W., Cowan, C. W., Kokonowski, C., Oberteuffer, K., & Yohay, K. (1993). Offense produced by chemical stimulation of the anterior hypothalamus of the rat. Physiology and Behavior, 53(6), 1127–1132.

    PubMed  Google Scholar 

  302. Sinnamon, H. M. (1992). Microstimulation mapping of the basal forebrain in the anesthetized rat: The “preoptic locomotor region”. Neuroscience, 50(1), 197–207.

    PubMed  Google Scholar 

  303. Leyton, M., & Stewart, J. (1992). The stimulation of central kappa opioid receptors decreases male sexual behavior and locomotor activity. Brain Research, 594(1), 56–74.

    PubMed  Google Scholar 

  304. Davydova, E. K., & Grigor’yan, G. A. (1992). Role of the lateral and medial hypothalamus in the reproduction of the motoric reaction which is a signal during the development of classical conditioned reflexes. Neuroscience and Behavioral Physiology, 22(1), 17–25.

    PubMed  Google Scholar 

  305. Davydova, E. K., & Grigor’yan, G. A. (1992). Role of the lateral and medial hypothalamus in the reproduction of alimentary and defensive instrumental reactions. Neuroscience and Behavioral Physiology, 22(2), 104–112.

    PubMed  Google Scholar 

  306. Brandao, M. L., Rees, H., Witt, S., & Roberts, M. H. (1991). Central antiaversive and antinociceptive effects of anterior pretectal nucleus stimulation: Attenuation of autonomic and aversive effects of medial hypothalamic stimulation. Brain Research, 542(2), 266–272.

    PubMed  Google Scholar 

  307. Sklow, B., & Sinnamon, H. M. (1990). Initiation and execution of locomotion elicited by diencephalic stimulation: Regional differences in response to nembutal. Pharmacology Biochemistry and Behavior, 36(4), 719–724.

    Google Scholar 

  308. Sinnamon, H. M., & Sklow, B. (1990). Latency to initiate locomotion elicited by stimulation of the diencephalon positively correlates in awake and anesthetized rats. Pharmacology Biochemistry and Behavior, 36(4), 725–728.

    Google Scholar 

  309. Yamamoto, T., Matsuo, R., Kiyomitsu, Y., & Kitamura, R. (1989). Response properties of lateral hypothalamic neurons during ingestive behavior with special reference to licking of various taste solutions. Brain Research, 481(2), 286–297.

    PubMed  Google Scholar 

  310. Isaacson, R. L., & Pribram, K. H. (1975). The hippocampus. New York: Plenum Press.

    Google Scholar 

  311. Lissak, K., Grastyan, E., Molnar, L., Kekesi, F., Szabo, J., & Vereby, G. (1957). [Significance of the hypothalamus and hippocampus in the higher nervous activity]. Ceskoslovenská Fysiologie, 6(4), 461–466.

    PubMed  Google Scholar 

  312. Parent, M. A., Wang, L., Su, J., Netoff, T., & Yuan, L. L. (2009). Identification of the hippocampal input to medial prefrontal cortex in vitro. Cerebral Cortex, 20(2), 393–403.

    PubMed  Google Scholar 

  313. Roberts, A. C., Tomic, D. L., Parkinson, C. H., et al. (2007). Forebrain connectivity of the prefrontal cortex in the marmoset monkey (Callithrix jacchus): An anterograde and retrograde tract-tracing study. The Journal of Comparative Neurology, 502(1), 86–112.

    PubMed  Google Scholar 

  314. McIntosh, A. R., & Gonzalez-Lima, F. (1998). Large-scale functional connectivity in associative learning: Interrelations of the rat auditory, visual, and limbic systems. Journal of Neurophysiology, 80(6), 3148–3162.

    PubMed  Google Scholar 

  315. Bouille, C., Layton, B., & Renaud, L. P. (1981). Influence of dorsal hippocampus stimulation on the excitability of medial hypothalamic neurons in the rat. Neuroendocrinology, 33(6), 321–327.

    PubMed  Google Scholar 

  316. Clark, C. V., & Isaacson, R. L. (1965). Effect of bilateral hippocampal ablation on DRL performance. Journal of Comparative and Physiological Psychology, 59, 137–140.

    PubMed  Google Scholar 

  317. Schmalz, L., & IIsaacson, R. L. (1966). The effects of preliminary training conditions upon DRL 20 performance in the hippocampectomized rat. Physiology and Behavior, 1, 175–182.

    Google Scholar 

  318. Isaacson, R. L. (1972). Neural systems of the limbic brain and behavioral inhibition. In R. A. Boakes & M. S. Halliday (Eds.), Inhibition and learning. New York: Academic.

    Google Scholar 

  319. Isaacson, R. L. (1982). The hippocampal formation and its regulation of attention and behavior. In E. Grastyan & P. Molnar (Eds.), Sensory functions: Advances in physiological sciences (Vol. 16). New York: Pergamon Press.

    Google Scholar 

  320. Gray, J. A. (1970). Sodium amobarbital, the hippocampal theta rhythm, and the partial reinforcement extinction effect. Psychological Review, 77, 465–480.

    PubMed  Google Scholar 

  321. Molnar, P., & Grastyan, E. (1972). Inhibition in motivation and reinforcement. In R. A. Boakes & M. S. Halliday (Eds.), Inhibition and learning. London: Academic.

    Google Scholar 

  322. Vinogradova, O. S., & Strafekhina, V. S. (1974). [Dynamic characteristics of neuronal reactions in the limbic cortex of the rabbit]. Zhurnal Vyssheĭ Nervnoĭ Deiatelnosti Imeni I P Pavlova, 24(2), 337–346.

    PubMed  Google Scholar 

  323. Vinogradova, O. S., & Zolotukhina, L. I. (1972). [Sensory characteristics of the neurons of the medial and lateral septal nuclei]. Zhurnal Vyssheĭ Nervnoĭ Deiatelnosti Imeni I P Pavlova, 22(6), 1260–1269.

    PubMed  Google Scholar 

  324. Sokolov, E. N. (2002). The orienting response in information processing. Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  325. Groves, P. M., De Marco, R., & Thompson, R. F. (1969). Habituation and sensitization of spinal interneuron activity in acute spinal cat. Brain Research, 14(2), 521–525.

    PubMed  Google Scholar 

  326. Hendrickson, C. W., Kimble, R. J., & Kimble, D. P. (1969). Hippocampal lesions and the orienting response. Journal of Comparative and Physiological Psychology, 67(2), 220–227.

    PubMed  Google Scholar 

  327. Oswald, C. J., Yee, B. K., Rawlins, J. N., Bannerman, D. B., Good, M., & Honey, R. C. (2002). The influence of selective lesions to components of the hippocampal system on the orienting [correction of orientating] response, habituation and latent inhibition. European Journal of Neuroscience, 15(12), 1983–1990.

    PubMed  Google Scholar 

  328. Polyanskii, V. B., Evtikhin, D. V., & Sokolov, E. N. (2004). Reflection of an orienting reflex in the phases of evoked potentials in the rabbit visual cortex and hippocampus during substitution of stimulus intensity. Neuroscience and Behavioral Physiology, 34(1), 19–28.

    PubMed  Google Scholar 

  329. Cohen, R., Kaplan, R. F., Meadows, M. E., & Kwan, E. (1996). Comparison of the orienting response during the intracarotid and posterior cerebral artery amobarbital tests: A case study. Neurocase, 2, 93–98.

    Google Scholar 

  330. Williams, L. M., Brammer, M. J., Skerrett, D., et al. (2000). The neural correlates of orienting: An integration of fMRI and skin conductance orienting. Neuroreport, 11(13), 3011–3015.

    PubMed  Google Scholar 

  331. Yamaguchi, S., Hale, L. A., D’Esposito, M., & Knight, R. T. (2004). Rapid prefrontal-hippocampal habituation to novel events. The Journal of Neuroscience, 24(23), 5356–5363.

    PubMed  Google Scholar 

  332. Williams, L. M., Felmingham, K., Kemp, A. H., et al. (2007). Mapping frontal-limbic correlates of orienting to change detection. Neuroreport, 18(3), 197–202.

    PubMed  Google Scholar 

  333. Dowman, R., Darcey, T., Barkan, H., Thadani, V., & Roberts, D. (2007). Human intracranially-recorded cortical responses evoked by painful electrical stimulation of the sural nerve. NeuroImage, 34(2), 743–763.

    PubMed  Google Scholar 

  334. Valenstein, E. S., & Valenstein, T. (1964). Interaction of positive and negative reinforcing neural systems. Science, 145, 1456–1458.

    PubMed  Google Scholar 

  335. Kemble, E. D., & Beckman, G. J. (1970). Vicarious trial and error following amygdaloid lesions in rats. Neuropsychologia, 8, 161–169.

    PubMed  Google Scholar 

  336. Pribram, K. H. (1969). The neurobehavioral analysis of limbic forebrain mechanisms: Revision and progress report. In D. S. Lehrman, R. A. Hinde, & E. Shaw (Eds.), Advances in the study of behavior (Vol. 2). New York: Academic.

    Google Scholar 

  337. Bagshaw, M. H., Kimble, D. P., & Pribram, K. H. (1965). The GSR of monkeys during orienting and habituation and after ablation of the amygdala, hippocampus and inferotemporal cortex. Neuropsychologia, 3, 111–119.

    Google Scholar 

  338. Bagshaw, M. H., & Pribram, J. D. (1968). Effect of amygdalectomy on stimulus threshold of the monkey. Experimental Neurology, 20, 197–202.

    PubMed  Google Scholar 

  339. Bagshaw, M. H., Mackworth, N. H., & Pribram, K. H. (1972). The effect of resections of the inferotemporal cortex or the amygdala on visual orienting and habituation. Neuropsychologia, 10, 153–162.

    PubMed  Google Scholar 

  340. Bagshaw, M. H., & Pribram, K. H. (1965). Effect of amygdalectomy on transfer of training in monkeys. Journal of Comparative and Physiological Psychology, 59, 118–121.

    PubMed  Google Scholar 

  341. Mishkin, M. (1978). Memory in monkeys severely impaired by combined but not by separate removal of amygdala and hippocampus. Nature, 273, 297–298.

    PubMed  Google Scholar 

  342. Mishkin, M., Malamut, B., & Bachevalier, J. (1984). Memories and habits: Two neural systems. In G. Lynch, J. L. McGaugh, & N. M. Weinberger (Eds.), Neurobiology of learning and memory (pp. 65–77). New York: Guilford Press.

    Google Scholar 

  343. Murray, E. A., & Mishkin, M. (1984). Severe tactual as well as visual memory deficits following combined removal of the amygdala and hippocampus in monkeys. Journal of Neuroscience, 4, 2565–2580.

    PubMed  Google Scholar 

  344. Murray, E. A., & Mishkin, M. (1985). Amygdalectomy impairs crossmodel association in monkeys. Science, 228, 601–605.

    Google Scholar 

  345. Murray, E. A., & Mishkin, M. (1983). A further examination of the medial temporal lobe structures involved in recognition memory in the monkey. Society for Neuroscience Abstract, 9, 27.

    Google Scholar 

  346. Murray, E. A., & Mishkin, M. (1986). Visual recognition in monkeys following rhinal cortical ablations combined with either amygdalectomy or hippocampectomy. Journal of Neuroscience, 6, 1991–2003.

    PubMed  Google Scholar 

  347. Spiegler, B. J., & Mishkin, M. (1981). Evidence for the sequential participation of inferior temporal cortex and amygdala in the acquisition of stimulus-reward associations. Behavioural Brain Research, 3(3), 303–317.

    PubMed  Google Scholar 

  348. Breiter, H. C., Etcoff, N. L., Whalen, P. J., et al. (1996). Response and habituation of the human amygdala during visual processing of facial expression. Neuron, 17(5), 875–887.

    PubMed  Google Scholar 

  349. Morris, J. S., Frith, C. D., Perrett, D. I., et al. (1996). A differential neural response in the human amygdala to fearful and happy facial expressions. Nature, 383(6603), 812–815.

    PubMed  Google Scholar 

  350. Adolphs, R., Tranel, D., Damasio, H., & Damasio, A. R. (1995). Fear and the human amygdala. The Journal of Neuroscience, 15(9), 5879–5891.

    PubMed  Google Scholar 

  351. LeDoux, J. E. (1993). Emotional memory systems in the brain. Behavioural Brain Research, 58(1–2), 69–79.

    PubMed  Google Scholar 

  352. Grossberg, S., & Merrill, J. W. (1992). A neural network model of adaptively timed reinforcement learning and hippocampal dynamics. Brain Research. Cognitive Brain Research, 1(1), 3–38.

    PubMed  Google Scholar 

  353. Ono, T., Tamura, R., Nishijo, H., Nakamura, K., & Tabuchi, E. (1989). Contribution of amygdalar and lateral hypothalamic neurons to visual information processing of food and nonfood in monkey. Physiology and Behavior, 45(2), 411–421.

    PubMed  Google Scholar 

  354. Milner, P. M. (1991). Brain-stimulation reward: A review. Canadian Journal of Psychology, 45(1), 1–36.

    PubMed  Google Scholar 

  355. Dickinson, A. (1972). Septal damage and response output. In R. A. Boakes & M. S. Halliday (Eds.), Inhibition and learning. London: Academic.

    Google Scholar 

  356. Raphaelson, A. C., Isaacson, R. L., & Douglas, R. J. (1966). The effect of limbic damage on the retention and performance of a runway response. Neuropsychologia, 4, 253–264.

    Google Scholar 

  357. Schwartzbaum, J. S., Kellicut, M. H., Spieth, T. M., & Thompson, J. B. (1964). Effects of septal lesions in rats on response inhibition associated with food reinforced behavior. Journal of Comparative and Physiological Psychology, 58, 217–224.

    PubMed  Google Scholar 

  358. Dickinson, A. (1972). Disruption of free-operant successive discriminations by septal damage in rats. Quarterly Journal of Experimental Psychology, 24(4), 524–535.

    PubMed  Google Scholar 

  359. Carlson, N. R., & Cole, J. R. (1970). Enhanced alternation performance following septal lesions in mice. Journal of Comparative and Physiological Psychology, 73, 157–161.

    Google Scholar 

  360. Carlson, N. R., & Norman, R. J. (1971). Enhanced go, no-go single-lever alternation of mice with septal lesions. Journal of Comparative and Physiological Psychology, 75(3), 508–512.

    PubMed  Google Scholar 

  361. Carlson, N. R., & Vallante, M. A. (1974). Enhanced cue function of olfactory stimulation in mice with septal lesions. Journal of Comparative and Physiological Psychology, 87(2), 237–248.

    PubMed  Google Scholar 

  362. Grossman, S. P. (1976). Behavioral functions of the septum: A re-analysis. In J. F. DeFrance (Ed.), The septal nuclei. New York: Plenum Press.

    Google Scholar 

  363. Macdougall, J. M., Van Hoesen, G. W., & Mitchell, J. C. (1969). Anatomical organization of septal projections in maintenance of DRL behavior in rats. Journal of Comparative and Physiological Psychology, 68(4), 568–575.

    PubMed  Google Scholar 

  364. Van Hoesen, G. W., MacDougall, J. M., & Mitchell, J. C. (1969). Anatomical specificity of septal projections in active and passive avoidance behavior in rats. Journal of Comparative and Physiological Psychology, 68(1), 80–89.

    PubMed  Google Scholar 

  365. Dickinson, A. (1975). Suppressive and enhancing effects of footshock on food-reinforced operant responding following septal lesions in rats. Journal of Comparative and Physiological Psychology, 88(2), 851–861.

    PubMed  Google Scholar 

  366. Fuxjager, M. J., Forbes-Lorman, R. M., Coss, D. J., Auger, C. J., Auger, A. P., & Marler, C. A. (2010). Winning territorial disputes selectively enhances androgen sensitivity in neural pathways related to motivation and social aggression. Proceedings of the National Academy of Sciences of the United States of America, 107(27), 12393–12398.

    PubMed  Google Scholar 

  367. Jalabert, M., Aston-Jones, G., Herzog, E., Manzoni, O., & Georges, F. (2009). Role of the bed nucleus of the stria terminalis in the control of ventral tegmental area dopamine neurons. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 33(8), 1336–1346.

    Google Scholar 

  368. McElligott, Z. A., & Winder, D. G. (2009). Modulation of glutamatergic synaptic transmission in the bed nucleus of the stria terminalis. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 33(8), 1329–1335.

    Google Scholar 

  369. Shearman, E., Fallon, S., Sershen, H., & Lajtha, A. (2008). Nicotine-induced monoamine neurotransmitter changes in the brain of young rats. Brain Research Bulletin, 76(6), 626–639.

    PubMed  Google Scholar 

  370. Grueter, B. A., Gosnell, H. B., Olsen, C. M., et al. (2006). Extracellular-signal regulated kinase 1-dependent metabotropic glutamate receptor 5-induced long-term depression in the bed nucleus of the stria terminalis is disrupted by cocaine administration. The Journal of Neuroscience, 26(12), 3210–3219.

    PubMed  Google Scholar 

  371. Dumont, E. C., Mark, G. P., Mader, S., & Williams, J. T. (2005). Self-administration enhances excitatory synaptic transmission in the bed nucleus of the stria terminalis. Nature Neuroscience, 8(4), 413–414.

    PubMed  Google Scholar 

  372. Dong, H. W., & Swanson, L. W. (2003). Projections from the rhomboid nucleus of the bed nuclei of the stria terminalis: Implications for cerebral hemisphere regulation of ingestive behaviors. The Journal of Comparative Neurology, 463(4), 434–472.

    PubMed  Google Scholar 

  373. Eiler, W. J., II, Seyoum, R., Foster, K. L., Mailey, C., & June, H. L. (2003). D1 dopamine receptor regulates alcohol-motivated behaviors in the bed nucleus of the stria terminalis in alcohol-preferring (P) rats. Synapse, 48(1), 45–56.

    PubMed  Google Scholar 

  374. Gong, W., Neill, D. B., & Justice, J. B., Jr. (1995). Increased sensitivity to cocaine place-preference conditioning by septal lesions in rats. Brain Research, 683(2), 221–227.

    PubMed  Google Scholar 

  375. Igelstrom, K. M., Herbison, A. E., & Hyland, B. I. (2010). Enhanced c-Fos expression in superior colliculus, paraventricular thalamus and septum during learning of cue-reward association. Neuroscience, 168(3), 706–714.

    PubMed  Google Scholar 

  376. Zhao, Y., Dayas, C. V., Aujla, H., Baptista, M. A., Martin-Fardon, R., & Weiss, F. (2006). Activation of group II metabotropic glutamate receptors attenuates both stress and cue-induced ethanol-seeking and modulates c-fos expression in the hippocampus and amygdala. The Journal of Neuroscience, 26(39), 9967–9974.

    PubMed  Google Scholar 

  377. Balboa, R. M., & Grzywacz, N. M. (2000). The role of early retinal lateral inhibition: More than maximizing luminance information. Visual Neuroscience, 17(1), 77–89.

    PubMed  Google Scholar 

  378. Kim, J., & Wilson, H. R. (1997). Motion integration over space: Interaction of the center and surround motion. Vision Research, 37(8), 991–1005.

    PubMed  Google Scholar 

  379. Kurtenbach, W., & Magnussen, S. (1981). Inhibition, disinhibition, and summation among orientation detectors in human vision. Experimental Brain Research, 43(2), 193–198.

    PubMed  Google Scholar 

  380. Rizzolatti, G., & Camarda, R. (1975). Inhibition of visual responses of single units in the cat visual area of the lateral suprasylvian gyrus (Clare-Bishop area) by the introduction of a second visual stimulus. Brain Research, 88(2), 357–361.

    PubMed  Google Scholar 

  381. von Bekesy, G. (1967). Mach band type lateral inhibition in different sense organs. Journal of General Physiology, 50(3), 519–532.

    Google Scholar 

  382. Kuffler, S. W. (1952). Neurons in the retina: Organization, inhibition and excitation problems. Cold Spring Harbor Symposia on Quantitative Biology, 17, 281–292.

    PubMed  Google Scholar 

  383. Kuffler, S. W. (1953). Discharge patterns and functional organization of mammalian retina. Journal of Neurophysiology, 16(1), 37–68.

    PubMed  Google Scholar 

  384. Barinaga, M. (1997). Visual system provides clues to how the brain perceives. Science, 275(5306), 1583–1585.

    PubMed  Google Scholar 

  385. Fujita, I., Tanaka, K., Ito, M., & Cheng, K. (1992). Columns for visual features of objects in monkey inferotemporal cortex. Nature, 360(6402), 343–346.

    PubMed  Google Scholar 

  386. Grosof, D. H., Shapley, R. M., & Hawken, M. J. (1993). Macaque V1 neurons can signal ‘illusory’ contours. Nature, 365(6446), 550–552.

    PubMed  Google Scholar 

  387. Jennings, C. (1995). Visual neuroscience. Reflections on transparent motion. Nature, 373(6515), 563.

    PubMed  Google Scholar 

  388. Logothetis, N. K., & Schall, J. D. (1989). Neuronal correlates of subjective visual perception. Science, 245(4919), 761–763.

    PubMed  Google Scholar 

  389. Pack, C. C., Berezovskii, V. K., & Born, R. T. (2001). Dynamic properties of neurons in cortical area MT in alert and anaesthetized macaque monkeys. Nature, 414(6866), 905–908.

    PubMed  Google Scholar 

  390. Salzman, C. D., & Newsome, W. T. (1994). Neural mechanisms for forming a perceptual decision. Science, 264(5156), 231–237.

    PubMed  Google Scholar 

  391. Mesulam, M.-M. (Ed.). (2000). Principles of behavioral neurology (2nd ed.). New York, NY: Oxford University Press.

    Google Scholar 

  392. Mesulam, M. M., & Geula, C. (1994). Chemoarchitectonics of axonal and perikaryal acetylcholinesterase along information processing systems of the human cerebral cortex. Brain Research Bulletin, 33(2), 137–153.

    PubMed  Google Scholar 

  393. Zeki, S., & Shipp, S. (1988). The functional logic of cortical connections. Nature, 335, 311–317.

    PubMed  Google Scholar 

  394. Khayat, P. S., Spekreijse, H., & Roelfsema, P. R. (2006). Attention lights up new object representations before the old ones fade away. The Journal of Neuroscience, 26(1), 138–142.

    PubMed  Google Scholar 

  395. McAdams, C. J., & Reid, R. C. (2005). Attention modulates the responses of simple cells in monkey primary visual cortex. The Journal of Neuroscience, 25(47), 11023–11033.

    PubMed  Google Scholar 

  396. Thiele, A. (2004). Perceptual learning: Is V1 up to the task? Current Biology, 14(16), R671–R673.

    PubMed  Google Scholar 

  397. Series, P., Georges, S., Lorenceau, J., & Fregnac, Y. (2002). Orientation dependent modulation of apparent speed: A model based on the dynamics of feed-forward and horizontal connectivity in V1 cortex. Vision Research, 42(25), 2781–2797.

    PubMed  Google Scholar 

  398. Lee, T. S., Yang, C. F., Romero, R. D., & Mumford, D. (2002). Neural activity in early visual cortex reflects behavioral experience and higher-order perceptual saliency. Nature Neuroscience, 5(6), 589–597.

    PubMed  Google Scholar 

  399. Fallah, M., & Reynolds, J. H. (2001). Attention! V1 neurons lining up for inspection. Neuron, 31(5), 674–675.

    PubMed  Google Scholar 

  400. Kastner, S., De Weerd, P., Pinsk, M. A., Elizondo, M. I., Desimone, R., & Ungerleider, L. G. (2001). Modulation of sensory suppression: Implications for receptive field sizes in the human visual cortex. Journal of Neurophysiology, 86(3), 1398–1411.

    PubMed  Google Scholar 

  401. Gilbert, C., Ito, M., Kapadia, M., & Westheimer, G. (2000). Interactions between attention, context and learning in primary visual cortex. Vision Research, 40(10–12), 1217–1226.

    PubMed  Google Scholar 

  402. Lamme, V. A., & Spekreijse, H. (2000). Modulations of primary visual cortex activity representing attentive and conscious scene perception. Frontiers in Bioscience, 5, D232–D243.

    PubMed  Google Scholar 

  403. Ito, M., & Gilbert, C. D. (1999). Attention modulates contextual influences in the primary visual cortex of alert monkeys. Neuron, 22(3), 593–604.

    PubMed  Google Scholar 

  404. McAdams, C. J., & Maunsell, J. H. (1999). Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. The Journal of Neuroscience, 19(1), 431–441.

    PubMed  Google Scholar 

  405. Gallant, J. L., Connor, C. E., & Van Essen, D. C. (1998). Neural activity in areas V1, V2 and V4 during free viewing of natural scenes compared to controlled viewing. Neuroreport, 9(9), 2153–2158.

    PubMed  Google Scholar 

  406. Vidyasagar, T. R. (1998). Gating of neuronal responses in macaque primary visual cortex by an attentional spotlight. Neuroreport, 9(9), 1947–1952.

    PubMed  Google Scholar 

  407. Gallant, J. L., Connor, C. E., & Van Essen, D. C. (1998). Neural activity in areas V1, V2 and V4 during free viewing of natural scenes compared to controlled viewing. Neuroreport, 9(7), 1673–1678.

    PubMed  Google Scholar 

  408. Luck, S. J., Chelazzi, L., Hillyard, S. A., & Desimone, R. (1997). Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. Journal of Neurophysiology, 77(1), 24–42.

    PubMed  Google Scholar 

  409. Vogels, R., & Orban, G. A. (1994). Activity of inferior temporal neurons during orientation discrimination with successively presented gratings. Journal of Neurophysiology, 71(4), 1428–1451.

    PubMed  Google Scholar 

  410. Chalk, M., Herrero, J. L., Gieselmann, M. A., Delicato, L. S., Gotthardt, S., & Thiele, A. (2010). Attention reduces stimulus-driven gamma frequency oscillations and spike field coherence in V1. Neuron, 66(1), 114–125.

    PubMed  Google Scholar 

  411. Lima, B., Singer, W., Chen, N. H., & Neuenschwander, S. (2010). Synchronization dynamics in response to plaid stimuli in monkey V1. Cerebral Cortex, 20(7), 1556–1573.

    PubMed  Google Scholar 

  412. Roberts, M., Delicato, L. S., Herrero, J., Gieselmann, M. A., & Thiele, A. (2007). Attention alters spatial integration in macaque V1 in an eccentricity-dependent manner. Nature Neuroscience, 10(11), 1483–1491.

    PubMed  Google Scholar 

  413. Munneke, J., Heslenfeld, D. J., & Theeuwes, J. (2008). Directing attention to a location in space results in retinotopic activation in primary visual cortex. Brain Research, 1222, 184–191.

    PubMed  Google Scholar 

  414. Bartels, A. (2009). Visual perception: Converging mechanisms of attention, binding, and segmentation? Current Biology, 19(7), R300–R302.

    PubMed  Google Scholar 

  415. Wagatsuma, N., Shimizu, R., & Sakai, K. (2008). Spatial attention in early vision for the perception of border ownership. Journal of Vision, 8(7), 22.1–22.19.

    Google Scholar 

  416. Chen, Y., Martinez-Conde, S., Macknik, S. L., Bereshpolova, Y., Swadlow, H. A., & Alonso, J. M. (2008). Task difficulty modulates the activity of specific neuronal populations in primary visual cortex. Nature Neuroscience, 11(8), 974–982.

    PubMed  Google Scholar 

  417. Poort, J., & Roelfsema, P. R. (2009). Noise correlations have little influence on the coding of selective attention in area V1. Cerebral Cortex, 19(3), 543–553.

    PubMed  Google Scholar 

  418. Fischer, J., & Whitney, D. (2009). Attention narrows position tuning of population responses in V1. Current Biology, 19(16), 1356–1361.

    PubMed  Google Scholar 

  419. Murray, S. O. (2008). The effects of spatial attention in early human visual cortex are stimulus independent. Journal of Vision, 8(10), 2.1–2.11.

    Google Scholar 

  420. Serences, J. T., & Saproo, S. (2010). Population response profiles in early visual cortex are biased in favor of more valuable stimuli. Journal of Neurophysiology, 104(1), 76–87.

    PubMed  Google Scholar 

  421. Yoshor, D., Ghose, G. M., Bosking, W. H., Sun, P., & Maunsell, J. H. (2007). Spatial attention does not strongly modulate neuronal responses in early human visual cortex. The Journal of Neuroscience, 27(48), 13205–13209.

    PubMed  Google Scholar 

  422. Moro, S. I., Tolboom, M., Khayat, P. S., & Roelfsema, P. R. (2010). Neuronal activity in the visual cortex reveals the temporal order of cognitive operations. The Journal of Neuroscience, 30(48), 16293–16303.

    PubMed  Google Scholar 

  423. Buffalo, E. A., Fries, P., Landman, R., Liang, H., & Desimone, R. (2010). A backward progression of attentional effects in the ventral stream. Proceedings of the National Academy of Sciences of the United States of America, 107(1), 361–365.

    PubMed  Google Scholar 

  424. Wurtz, R. H., Goldberg, M. E., & Robinson, D. L. (1982). Brain mechanisms of visual attention. Scientific American, 246(6), 124–135.

    PubMed  Google Scholar 

  425. Bushnell, M. C., Goldberg, M. E., & Robinson, D. L. (1981). Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention. Journal of Neurophysiology, 46(4), 755–772.

    PubMed  Google Scholar 

  426. Goldberg, M. E., & Bruce, C. J. (1985). Cerebral cortical activity associated with the orientation of visual attention in the rhesus monkey. Vision Research, 25(3), 471–481.

    PubMed  Google Scholar 

  427. Goldberg, M. E., & Segraves, M. A. (1987). Visuospatial and motor attention in the monkey. Neuropsychologia, 25(1A), 107–118.

    PubMed  Google Scholar 

  428. Posner, M. I., Cohen, Y., & Rafal, R. D. (1982). Neural systems control of spatial orienting. Philosophical Transactions of the Royal Society of London, B298, 187–198.

    Google Scholar 

  429. Robinson, D., & Petersen, S. E. (1986). The neurobiology of attention. In W. Hirst & J. Ledoux (Eds.), Mind and brain: Dialogues in cognitive neuroscience (pp. 142–171). New York: Cambridge University Press.

    Google Scholar 

  430. Robinson, D. L., Bowman, E. M., & Kertzman, C. (1995). Covert orienting of attention in macaques. II. Contributions of parietal cortex. Journal of Neurophysiology, 74(2), 698–712.

    PubMed  Google Scholar 

  431. Mountcastle, V. (1978). Brain mechanisms for directed attention. Journal of the Royal Society of Medicine, 71, 14–27.

    PubMed  Google Scholar 

  432. Mountcastle, V. B., Motter, B. C., Steinmetz, M. A., & Duffy, C. J. (1984). Dynamic aspects of neocortical functions. In G. M. Edelman, W. E. Gall, & W. M. Cowan (Eds.) (pp. 159–193). New York: Wiley.

    Google Scholar 

  433. Mountcastle, V. B., Anderson, R. A., & Motter, B. C. (1981). The influence of attentive fixation upon the excitability of the light sensitive neurons of the posterior parietal cortex. Journal of Neuroscience, 1, 1218–1235.

    PubMed  Google Scholar 

  434. Soga, M., & Kashimori, Y. (2009). Functional connections between visual areas in extracting object features critical for a visual categorization task. Vision Research, 49(3), 337–347.

    PubMed  Google Scholar 

  435. Spitzer, H., Desimone, R., & Moran, J. (1988). Increased attention enhances both behavioral and neuronal performance. Science, 240(4850), 338–340.

    PubMed  Google Scholar 

  436. Reynolds, J. H., Chelazzi, L., & Desimone, R. (1999). Competitive mechanisms subserve attention in macaque areas V2 and V4. The Journal of Neuroscience, 19(5), 1736–1753.

    PubMed  Google Scholar 

  437. Desimone, R. (1998). Visual attention mediated by biased competition in extrastriate visual cortex. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 353(1373), 1245–1255.

    PubMed  Google Scholar 

  438. Desimone, R. (1996). Neural mechanisms for visual memory and their role in attention. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 13494–13499.

    PubMed  Google Scholar 

  439. Posner, M. I. (1980). Orienting of attention: The VIIth Sir Frederic Bartlett Lecture. Quarterly Journal of Experimental Psychology, 32, 3–25.

    PubMed  Google Scholar 

  440. Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology. General, 109, 160–174.

    Google Scholar 

  441. Posner, M. I., & Cohen, Y. (1984). Facilitation and inhibition in shifts of visual attention. In H. Bowhuis & H. Bourna (Eds.), Attention and performance (Vol. X). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  442. Posner, M. I., Walker, J. A., Friedrich, F. J., & Rafal, R. D. (1984). Effects of parietal lobe injury on covert orienting of visual attention. Journal of Neuroscience, 4(7), 1863–1874.

    PubMed  Google Scholar 

  443. Posner, M. I., Walker, J. A., Friedrich, F. A., & Rafal, R. D. (1987). How do the parietal lobes direct covert attention. Neuropsychologia, 25(1A), 135–145.

    PubMed  Google Scholar 

  444. Posner, M. I., Petersen, S. E., Fox, P. T., & Raichle, M. E. (1988). Localization of cognitive operations in the human brain. Science, 240, 1627–1631.

    PubMed  Google Scholar 

  445. Kelley, T. A., Serences, J. T., Giesbrecht, B., & Yantis, S. (2008). Cortical mechanisms for shifting and holding visuospatial attention. Cerebral Cortex, 18(1), 114–125.

    PubMed  Google Scholar 

  446. Quraishi, S., Heider, B., & Siegel, R. M. (2007). Attentional modulation of receptive field structure in area 7a of the behaving monkey. Cerebral Cortex, 17(8), 1841–1857.

    PubMed  Google Scholar 

  447. Pourtois, G., Schwartz, S., Seghier, M. L., Lazeyras, F., & Vuilleumier, P. (2006). Neural systems for orienting attention to the location of threat signals: An event-related fMRI study. NeuroImage, 31(2), 920–933.

    PubMed  Google Scholar 

  448. Ling, S., & Carrasco, M. (2006). Sustained and transient covert attention enhance the signal via different contrast response functions. Vision Research, 46(8–9), 1210–1220.

    PubMed  Google Scholar 

  449. Eimer, M., Forster, B., & Van Velzen, J. (2003). Anterior and posterior attentional control systems use different spatial reference frames: ERP evidence from covert tactile-spatial orienting. Psychophysiology, 40(6), 924–933.

    PubMed  Google Scholar 

  450. Wascher, E., & Wolber, M. (2004). Attentional and intentional cueing in a Simon task: An EEG-based approach. Psychological Research, 68(1), 18–30.

    PubMed  Google Scholar 

  451. Yamaguchi, S., Tsuchiya, H., & Kobayashi, S. (1998). Visuospatial attention shift and motor responses in cerebellar disorders. Journal of Cognitive Neuroscience, 10(1), 95–107.

    PubMed  Google Scholar 

  452. Bowman, E. M., Brown, V. J., Kertzman, C., Schwarz, U., & Robinson, D. L. (1993). Covert orienting of attention in macaques. I. Effects of behavioral context. Journal of Neurophysiology, 70(1), 431–443.

    PubMed  Google Scholar 

  453. Steinmetz, M. A., Connor, C. E., Constantinidis, C., & McLaughlin, J. R. (1994). Covert attention suppresses neuronal responses in area 7a of the posterior parietal cortex. Journal of Neurophysiology, 72(2), 1020–1023.

    PubMed  Google Scholar 

  454. Cutrell, E. B., & Marrocco, R. T. (2002). Electrical microstimulation of primate posterior parietal cortex initiates orienting and alerting components of covert attention. Experimental Brain Research, 144(1), 103–113.

    PubMed  Google Scholar 

  455. Goldberg, M. E., & Bushnell, M. D. (1981). Behavioral enhancement of visual response in monkey cerebral cortex. II. Modulation in frontal eye fields specifically related to saccades. Journal of Neurophysiology, 46, 773–787.

    PubMed  Google Scholar 

  456. Goldberg, M. E., & Bruce, C. J. (1986). The role of the arcuate frontal eye fields in the generation of saccadic eye movements. Progress in Brain Research, 64, 143–154.

    PubMed  Google Scholar 

  457. Goldberg, M. E., Bisley, J. W., Powell, K. D., & Gottlieb, J. (2006). Saccades, salience and attention: The role of the lateral intraparietal area in visual behavior. Progress in Brain Research, 155, 157–175.

    PubMed  Google Scholar 

  458. Goldberg, M. E., & Bruce, C. J. (1990). Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal. Journal of Neurophysiology, 64(2), 489–508.

    PubMed  Google Scholar 

  459. Goldberg, M. E., Bushnell, M. C., & Bruce, C. J. (1986). The effect of attentive fixation on eye movements evoked by electrical stimulation of the frontal eye fields. Experimental Brain Research, 61(3), 579–584.

    PubMed  Google Scholar 

  460. Graziano, M. S., & Gross, C. G. (1998). Visual responses with and without fixation: Neurons in premotor cortex encode spatial locations independently of eye position. Experimental Brain Research, 118(3), 373–380.

    Google Scholar 

  461. Kodaka, Y., Mikami, A., & Kubota, K. (1997). Neuronal activity in the frontal eye field of the monkey is modulated while attention is focused on to a stimulus in the peripheral visual field, irrespective of eye movement. Neurosciences Research, 28(4), 291–298.

    Google Scholar 

  462. Olson, C. R., Gettner, S. N., Ventura, V., Carta, R., & Kass, R. E. (2000). Neuronal activity in macaque supplementary eye field during planning of saccades in response to pattern and spatial cues. Journal of Neurophysiology, 84(3), 1369–1384.

    PubMed  Google Scholar 

  463. Sato, T. R., & Schall, J. D. (2003). Effects of stimulus-response compatibility on neural selection in frontal eye field. Neuron, 38(4), 637–648.

    PubMed  Google Scholar 

  464. Sommer, M. A., & Wurtz, R. H. (2001). Frontal eye field sends delay activity related to movement, memory, and vision to the superior colliculus. Journal of Neurophysiology, 85(4), 1673–1685.

    PubMed  Google Scholar 

  465. Lynch, J. C., Mountcastle, V. B., Talbot, W. H., & Yin, T. C. (1977). Parietal lobe mechanisms for directed visual attention. Journal of Neurophysiology, 40(2), 362–389.

    PubMed  Google Scholar 

  466. Atkin, A. (1969). Shifting fixation to another pursuit target: Selective and anticipatory control of ocular pursuit initiation. Experimental Neurology, 23(2), 157–173.

    PubMed  Google Scholar 

  467. Kawano, K., Shidara, M., Watanabe, Y., & Yamane, S. (1994). Neural activity in cortical area MST of alert monkey during ocular following responses. Journal of Neurophysiology, 71(6), 2305–2324.

    PubMed  Google Scholar 

  468. Ilg, U. J., & Schumann, S. (2007). Primate area MST-l is involved in the generation of goal-directed eye and hand movements. Journal of Neurophysiology, 97(1), 761–771.

    PubMed  Google Scholar 

  469. Inaba, N., Shinomoto, S., Yamane, S., Takemura, A., & Kawano, K. (2007). MST neurons code for visual motion in space independent of pursuit eye movements. Journal of Neurophysiology, 97(5), 3473–3483.

    PubMed  Google Scholar 

  470. Galletti, C., & Fattori, P. (2003). Neuronal mechanisms for detection of motion in the field of view. Neuropsychologia, 41(13), 1717–1727.

    PubMed  Google Scholar 

  471. Valenstein, E., Watson, R. T., Van den Abell, T., Carter, R., & Heilman, K. M. (1987). Response time in monkeys with unilateral neglect. Archives of Neurology, 44(5), 517–520.

    PubMed  Google Scholar 

  472. Valenstein, E., Heilman, K. M., Watson, R. T., & Van Den Abell, T. (1982). Nonsensory neglect from parietotemporal lesions in monkeys. Neurology, 32(10), 1198–1201.

    PubMed  Google Scholar 

  473. Watson, R. T., Miller, B. D., & Heilman, K. M. (1978). Nonsensory neglect. Annals of Neurology, 3(6), 505–508.

    PubMed  Google Scholar 

  474. Bien, N., Roebroeck, A., Goebel, R., & Sack, A. T. (2009). The brain’s intention to imitate: The neurobiology of intentional versus automatic imitation. Cerebral Cortex, 19(10), 2338–2351.

    PubMed  Google Scholar 

  475. Day, B. L., Rothwell, J. C., Thompson, P. D., et al. (1989). Delay in the execution of voluntary movement by electrical or magnetic brain stimulation in intact man. Evidence for the storage of motor programs in the brain. Brain, 112(Pt 3), 649–663.

    PubMed  Google Scholar 

  476. Hommel, B. (2009). Action control according to TEC (theory of event coding). Psychological Research, 73(4), 512–526.

    PubMed  Google Scholar 

  477. Isomura, Y., Ito, Y., Akazawa, T., Nambu, A., & Takada, M. (2003). Neural coding of “attention for action” and “response selection” in primate anterior cingulate cortex. The Journal of Neuroscience, 23(22), 8002–8012.

    PubMed  Google Scholar 

  478. Merchant, H., Zainos, A., Hernandez, A., Salinas, E., & Romo, R. (1997). Functional properties of primate putamen neurons during the categorization of tactile stimuli. Journal of Neurophysiology, 77(3), 1132–1154.

    PubMed  Google Scholar 

  479. Olson, C. R., & Gettner, S. N. (2002). Neuronal activity related to rule and conflict in macaque supplementary eye field. Physiology and Behavior, 77(4–5), 663–670.

    PubMed  Google Scholar 

  480. Snyder, L. H., Batista, A. P., & Andersen, R. A. (1998). Change in motor plan, without a change in the spatial locus of attention, modulates activity in posterior parietal cortex. Journal of Neurophysiology, 79(5), 2814–2819.

    PubMed  Google Scholar 

  481. Spengler, S., Brass, M., Kuhn, S., & Schutz-Bosbach, S. (2010). Minimizing motor mimicry by myself: Self-focus enhances online action-control mechanisms during motor contagion. Consciousness and Cognition, 19(1), 98–106.

    PubMed  Google Scholar 

  482. Wise, S. P., Weinrich, M., & Mauritz, K. H. (1983). Motor aspects of cue-related neuronal activity in premotor cortex of the rhesus monkey. Brain Research, 260(2), 301–305.

    PubMed  Google Scholar 

  483. Yamada, M., Pita, M. C., Iijima, T., & Tsutsui, K. (2010). Rule-dependent anticipatory activity in prefrontal neurons. Neurosciences Research, 67(2), 162–171.

    Google Scholar 

  484. Young, L., Bechara, A., Tranel, D., Damasio, H., Hauser, M., & Damasio, A. (2010). Damage to ventromedial prefrontal cortex impairs judgment of harmful intent. Neuron, 65(6), 845–851.

    PubMed  Google Scholar 

  485. Wurtz, R., Richmond, B. J., & Newsome, W. T. (1984). Modulation of cortical visual processing by attention, perception, and movement. In G. Edelman, W. M. Cowan, & W. E. Gall (Eds.), Dynamic aspects of neocortical function. New York, NY: Wiley.

    Google Scholar 

  486. Fabre, M., Rolls, E. T., Ashton, J. P., & Williams, G. (1983). Activity of neurons in the ventral tegmental region of the behaving monkey. Behavioural Brain Research, 9(2), 213–235.

    PubMed  Google Scholar 

  487. Mesulam, M. M., Van Hoesen, G. W., Pandya, D. N., & Geschwind, N. (1977). Limbic and sensory connections of the inferior parietal lobule (area PG) in the rhesus monkey: A study with a new method for horseradish peroxidase histochemistry. Brain Research, 136(3), 393–414.

    PubMed  Google Scholar 

  488. Raybourn, M. S., & Keller, E. L. (1977). Colliculoreticular organization in primate oculomotor system. Journal of Neurophysiology, 40(4), 861–878.

    PubMed  Google Scholar 

  489. Clark, C. R., Geffen, G. M., & Geffen, L. B. (1987). Catecholamines and attention. I: Animal and clinical studies. Neuroscience & Biobehavioral Reviews, 11(4), 341–352.

    Google Scholar 

  490. Pragay, E. B., Mirsky, A. F., & Nakamura, R. K. (1987). Attention-related unit activity in the frontal association cortex during a go/no-go visual discrimination task. Experimental Neurology, 96(3), 481–500.

    PubMed  Google Scholar 

  491. Heilman, K. M., & Valenstein, E. (1979). Mechanisms underlying hemispatial neglect. Annals of Neurology, 5(2), 166–170.

    PubMed  Google Scholar 

  492. Watson, R. T., Heilman, K. M., Miller, B. D., & King, F. A. (1974). Neglect after mesencephalic reticular formation lesions. Neurology, 24(3), 294–298.

    PubMed  Google Scholar 

  493. Watson, R. T., Valenstein, E., & Heilman, K. M. (1981). Thalamic neglect. Possible role of the medial thalamus and nucleus reticularis in behavior. Archives of Neurology, 38(8), 501–506.

    PubMed  Google Scholar 

  494. McAlonan, K., Cavanaugh, J., & Wurtz, R. H. (2008). Guarding the gateway to cortex with attention in visual thalamus. Nature, 456(7220), 391–394.

    PubMed  Google Scholar 

  495. McAlonan, K., Cavanaugh, J., & Wurtz, R. H. (2006). Attentional modulation of thalamic reticular neurons. The Journal of Neuroscience, 26(16), 4444–4450.

    PubMed  Google Scholar 

  496. Guillery, R. W., Feig, S. L., & Lozsadi, D. A. (1998). Paying attention to the thalamic reticular nucleus. Trends in Neurosciences, 21(1), 28–32.

    PubMed  Google Scholar 

  497. Torterolo, P., & Vanini, G. (2010). [New concepts in relation to generating and maintaining arousal]. Revista de Neurologia, 50(12), 747–758.

    PubMed  Google Scholar 

  498. Treisman, A. M. (1964). Selective attention in man. British Medical Bulletin, 20, 12–16.

    PubMed  Google Scholar 

  499. Treisman, A. M. (1969). Strategies and models of selective attention. Psychological Review, 76(3), 282–299.

    PubMed  Google Scholar 

  500. Heilman, K. M., Pandya, D. N., Karol, E. A., & Geschwind, N. (1971). Auditory inattention. Archives of Neurology, 24(4), 323–325.

    PubMed  Google Scholar 

  501. Heilman, K. M., & Valenstein, E. (1972). Auditory neglect in man. Archives of Neurology, 26(1), 32–35.

    PubMed  Google Scholar 

  502. Bellmann, A., Meuli, R., & Clarke, S. (2001). Two types of auditory neglect. Brain, 124(Pt 4), 676–687.

    PubMed  Google Scholar 

  503. Clarke, S., & Thiran, A. B. (2004). Auditory neglect: What and where in auditory space. Cortex, 40(2), 291–300.

    PubMed  Google Scholar 

  504. Puel, J. L., Bonfils, P., & Pujol, R. (1988). Selective attention modifies the active micromechanical properties of the cochlea. Brain Research, 447(2), 380–383.

    PubMed  Google Scholar 

  505. Pollack, G. S. (1988). Selective attention in an insect auditory neuron. The Journal of Neuroscience, 8(7), 2635–2639.

    PubMed  Google Scholar 

  506. Li, L., & Kelly, J. B. (1992). Inhibitory influence of the dorsal nucleus of the lateral lemniscus on binaural responses in the rat’s inferior colliculus. The Journal of Neuroscience, 12(11), 4530–4539.

    PubMed  Google Scholar 

  507. Vaadia, E. (1989). Single-unit activity related to active localization of acoustic and visual stimuli in the frontal cortex of the rhesus monkey. Brain, Behavior and Evolution, 33(2–3), 127–131.

    PubMed  Google Scholar 

  508. Mirenowicz, J., & Schultz, W. (1994). Importance of unpredictability for reward responses in primate dopamine neurons. Journal of Neurophysiology, 72(2), 1024–1027.

    PubMed  Google Scholar 

  509. Grant, S. J., Aston-Jones, G., & Redmond, D. E., Jr. (1988). Responses of primate locus coeruleus neurons to simple and complex sensory stimuli. Brain Research Bulletin, 21(3), 401–410.

    PubMed  Google Scholar 

  510. Rauschecker, J. P. (1998). Cortical processing of complex sounds. Current Opinion in Neurobiology, 8(4), 516–521.

    PubMed  Google Scholar 

  511. Cohen, Y. E., Russ, B. E., & Gifford, G. W., III. (2005). Auditory processing in the posterior parietal cortex. Behavioral and Cognitive Neuroscience Reviews, 4(3), 218–231.

    PubMed  Google Scholar 

  512. Mecklinger, A., Opitz, B., & Friederici, A. D. (1997). Semantic aspects of novelty detection in humans. Neuroscience Letters, 235(1–2), 65–68.

    PubMed  Google Scholar 

  513. Benowitz, L. I., Bear, D. M., Rosenthal, R., Mesulam, M. M., Zaidel, E., & Sperry, R. W. (1983). Hemispheric specialization in nonverbal communication. Cortex, 19(1), 5–11.

    PubMed  Google Scholar 

  514. Brosch, T., Grandjean, D., Sander, D., & Scherer, K. R. (2008). Behold the voice of wrath: Cross-modal modulation of visual attention by anger prosody. Cognition, 106(3), 1497–1503.

    PubMed  Google Scholar 

  515. Gandour, J., Tong, Y., Wong, D., et al. (2004). Hemispheric roles in the perception of speech prosody. NeuroImage, 23(1), 344–357.

    PubMed  Google Scholar 

  516. Grandjean, D., Sander, D., Lucas, N., Scherer, K. R., & Vuilleumier, P. (2008). Effects of emotional prosody on auditory extinction for voices in patients with spatial neglect. Neuropsychologia, 46(2), 487–496.

    PubMed  Google Scholar 

  517. Mitchell, R. L., & Ross, E. D. (2008). fMRI evidence for the effect of verbal complexity on lateralisation of the neural response associated with decoding prosodic emotion. Neuropsychologia, 46(12), 2880–2887.

    PubMed  Google Scholar 

  518. Sander, D., Grandjean, D., Pourtois, G., et al. (2005). Emotion and attention interactions in social cognition: Brain regions involved in processing anger prosody. NeuroImage, 28(4), 848–858.

    PubMed  Google Scholar 

  519. Strelnikov, K. N., Vorobyev, V. A., Chernigovskaya, T. V., & Medvedev, S. V. (2006). Prosodic clues to syntactic processing—A PET and ERP study. NeuroImage, 29(4), 1127–1134.

    PubMed  Google Scholar 

  520. Tremblay, N., Bushnell, M. C., & Duncan, G. H. (1993). Thalamic VPM nucleus in the behaving monkey. II. Response to air-puff stimulation during discrimination and attention tasks. Journal of Neurophysiology, 69(3), 753–763.

    PubMed  Google Scholar 

  521. Burton, H., Sinclair, R. J., Hong, S. Y., Pruett, J. R., Jr., & Whang, K. C. (1997). Tactile-spatial and cross-modal attention effects in the second somatosensory and 7b cortical areas of rhesus monkeys. Somatosensory and Motor Research, 14(4), 237–267.

    PubMed  Google Scholar 

  522. Steinmetz, P. N., Roy, A., Fitzgerald, P. J., Hsiao, S. S., Johnson, K. O., & Niebur, E. (2000). Attention modulates synchronized neuronal firing in primate somatosensory cortex. Nature, 404(6774), 187–190.

    PubMed  Google Scholar 

  523. Sripati, A. P., & Johnson, K. O. (2006). Dynamic gain changes during attentional modulation. Neural Computation, 18(8), 1847–1867.

    PubMed  Google Scholar 

  524. Burton, H., & Sinclair, R. J. (2000). Attending to and remembering tactile stimuli: A review of brain imaging data and single-neuron responses. Journal of Clinical Neurophysiology, 17(6), 575–591.

    PubMed  Google Scholar 

  525. Jones, S. R., Kerr, C. E., Wan, Q., Pritchett, D. L., Hamalainen, M., & Moore, C. I. (2010). Cued spatial attention drives functionally relevant modulation of the mu rhythm in primary somatosensory cortex. The Journal of Neuroscience, 30(41), 13760–13765.

    PubMed  Google Scholar 

  526. Chapman, C. E., & el Meftah, M. (2005). Independent controls of attentional influences in primary and secondary somatosensory cortex. Journal of Neurophysiology, 94(6), 4094–4107.

    PubMed  Google Scholar 

  527. Spence, C., Kettenmann, B., Kobal, G., & McGlone, F. P. (2000). Selective attention to the chemosensory modality. Perception & Psychophysics, 62(6), 1265–1271.

    Google Scholar 

  528. Ashkenazi, A., & Marks, L. E. (2004). Effect of endogenous attention on detection of weak gustatory and olfactory flavors. Perception & Psychophysics, 66(4), 596–608.

    Google Scholar 

  529. Williams, G. V., Rolls, E. T., Leonard, C. M., & Stern, C. (1993). Neuronal responses in the ventral striatum of the behaving macaque. Behavioural Brain Research, 55(2), 243–252.

    PubMed  Google Scholar 

  530. Lundstrom, J. N., Olsson, M. J., Schaal, B., & Hummel, T. (2006). A putative social chemosignal elicits faster cortical responses than perceptually similar odorants. NeuroImage, 30(4), 1340–1346.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cohen, R.A. (2014). Neural Mechanisms of Attention. In: The Neuropsychology of Attention. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-72639-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-72639-7_10

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-72638-0

  • Online ISBN: 978-0-387-72639-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics