Neural Mechanisms of Attention

  • Ronald A. Cohen


Much of our current knowledge of the neural substrates of attention has come from neurophysiological investigations that initially focused on characterizing how sensory and motor system of the brain function. Studies of the neural bases of conditioning have provided a second important source of information. Only recently have direct neurophysiological investigations of attention been attempted, generally by extending findings obtained from sensory, motor, or conditioning paradigms. In this chapter, some experimental evidence regarding the neural basis of attention from three areas of neuroscientific research will be reviewed, including (1) sensory physiology and conditioning, (2) facilitatory and inhibitory control processes, and (3) specialized neural systems for attention.


Conditioned Stimulus Receptive Field Selective Attention Auditory Cortex Classical Conditioning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Spinelli, D. N., & Jensen, F. E. (1979). Plasticity: The mirror of experience. Science, 203(4375), 75–78.PubMedGoogle Scholar
  2. 2.
    Teyler, T. J., & Discenna, P. (1984). Long-term potentiation as a candidate mnemonic device. Brain Research, 319(1), 15–28.PubMedGoogle Scholar
  3. 3.
    Shepherd, G. M., Brayton, R. K., Miller, J. P., Segev, I., Rinzel, J., & Rall, W. (1985). Signal enhancement in distal cortical dendrites by means of interactions between active dendritic spines. Proceedings of the National Academy of Sciences of the United States of America, 82(7), 2192–2195.PubMedGoogle Scholar
  4. 4.
    Bakin, J. S., & Weinberger, N. M. (1990). Classical conditioning induces CS-specific receptive field plasticity in the auditory cortex of the guinea pig. Brain Research, 536(1–2), 271–286.PubMedGoogle Scholar
  5. 5.
    Jung, M. W., Larson, J., & Lynch, G. (1990). Long-term potentiation of monosynaptic EPSPs in rat piriform cortex in vitro. Synapse, 6(3), 279–283.PubMedGoogle Scholar
  6. 6.
    Geschwind, N. (1979). Specializations of the human brain. Scientific American, 241(3), 180–199.PubMedGoogle Scholar
  7. 7.
    Pribram, K., & Mishkin, M. (1955). Simultaneous and successive visual discrimination by monkeys with inferotemporal lesions. Journal of Comparative and Physiological Psychology, 48(3), 198–202.PubMedGoogle Scholar
  8. 8.
    Benton, A. L. (1973). Visuoconstructive disability in patients with cerebral disease: Its relationship to side of lesion and aphasic disorder. Documenta Ophthalmologica, 34(1), 67–76.PubMedGoogle Scholar
  9. 9.
    Teuber, H. L. (1974). Functional recovery after lesions of the nervous system. II. Recovery of function after lesions of the central nervous system: History and prospects. Neurosciences Research Program Bulletin, 12(2), 197–211.PubMedGoogle Scholar
  10. 10.
    Galambos, R., Sheatz, G., & Vernier, V. G. (1956). Electrophysiological correlates of a conditioned response in cats. Science, 123(3192), 376–377.PubMedGoogle Scholar
  11. 11.
    Thompson, R., Berger, T. W., Berry, S. D., Clark, G. A., Kettner, R. E., Lavond, D. G., et al. (1982). Neuronal substrates of learning and memory: Hippocampus and other structures. In C. D. Woody (Ed.), Conditioning: Representation of involved neural functions. New York: Plenum Press.Google Scholar
  12. 12.
    Thompson, R. F., & Shaw, J. A. (1965). Behavioral correlates of evoked activity recorded from association areas of the cerebral cortex. Journal of Comparative and Physiological Psychology, 60(3), 329–339.PubMedGoogle Scholar
  13. 13.
    Kamikawa, K., McIlwain, J. T., & Adey, W. R. (1964). Response pattern of thalamic neurons during classical conditioning. EEG & Clinical Neurophysiology, 17, 485–496.Google Scholar
  14. 14.
    Kotliar, B. I., & Eroshenko, T. M. (1969). Role of the proprioceptive impulses in the genesis of synchronized oscillations in the electroencephalogram of the rabbit. Nauchnye Doklady Vysshei Shkoly Biologicheskie Nauki.Google Scholar
  15. 15.
    Kotliar, B. I. (1969). Activity of the nervous cells at the time of the formation of a temporary connection. Nauchnye Doklady Vysshei Shkoly Biologicheskie Nauki, 12.Google Scholar
  16. 16.
    Kotliar, B. I., & Yeroshenko, T. (1971). Hypothalamic glucoreceptors: The phenomenon of plasticity. Physiology and Behavior, 7, 609–615.Google Scholar
  17. 17.
    Kotliar, B. I. (1971). Electrophysiological investigation of the formation of a temporary connection at the systemic and neuronal levels. Avtoref. dokt. diss. M. Google Scholar
  18. 18.
    Morrell, F. (1967). Electrical signs of sensory coding. New York: Rockefeller University Press.Google Scholar
  19. 19.
    Kotliar, B. E. (1983). Neural mechanism of conditioning. In N. M. Weinberger (Ed.). New York: Pergamon Press.Google Scholar
  20. 20.
    Sokolov, E. N. (1963). Perception and the conditioned reflex. Oxford: Pergamon Press.Google Scholar
  21. 21.
    Ramos, A., Schwartz, E. L., & John, E. R. (1976). Stable and plastic unit discharge patterns during behavioral generalization. Science, 192, 393–396.PubMedGoogle Scholar
  22. 22.
    Thompson, R. F., Patterson, M. M., & Teyler, T. J. (1972). The neurophysiology of learning. Annual Review of Psychology, 23, 73–104.PubMedGoogle Scholar
  23. 23.
    Woody, C. D. (1982). Conditioning: representation of involved neural functions. New York: Plenum Press.Google Scholar
  24. 24.
    Woody, C. D., Gruen, E., & Wang, X. F. (2003). Electrical properties affecting discharge of units of the mid and posterolateral thalamus of conscious cats. Neuroscience, 122(2), 531–539.PubMedGoogle Scholar
  25. 25.
    Woody, C. D., Zotova, E., & Gruen, E. (2000). Multiple representations of information in the primary auditory cortex of cats. I. Stability and change in slow components of unit activity after conditioning with a click conditioned stimulus. Brain Research, 868(1), 56–65.PubMedGoogle Scholar
  26. 26.
    Baranyi, A., Szente, M. B., & Woody, C. D. (1991). Properties of associative long-lasting potentiation induced by cellular conditioning in the motor cortex of conscious cats. Neuroscience, 42(2), 321–334.PubMedGoogle Scholar
  27. 27.
    Lynch, G., Shepherd, G. M., Black, I. B., & Killackey, H. P. (1986). Synapses, circuits, and the beginnings of memory. Cambridge, MA: MIT Press.Google Scholar
  28. 28.
    Lynch, G., & Baudry, M. (1984). The biochemistry of memory: A new and specific hypothesis. Science, 224, 1057–1063.PubMedGoogle Scholar
  29. 29.
    Jasper, H., Ricci, G., & Doane, B. (1962). Microelectrode analysis of discharges of cortical cells during the elaboration of conditioned defensive reflexes in monkeys. (Electroencephalographic investigation of higher nervous activity) M., Izd-vo AN SSSR.Google Scholar
  30. 30.
    Kimble, G. A., & Ost, P. (1961). A conditioned inhibitory process in eyelid conditioning. Journal of Experimental Psychology, 61, 150–156.PubMedGoogle Scholar
  31. 31.
    O’Brien, J., & Fox, S. S. (1969). Single-cell activity in cat motor cortex. II. Functional characteristic of the cell related to conditioning changes. Journal of Neurophysiology, 32(3), 285–296.PubMedGoogle Scholar
  32. 32.
    Grant, D., & Norris, E. B. (1947). Eyelid conditioning as influenced by the presence of sensitized beta-responses. Journal of Experimental Psychology, 37, 423–433.PubMedGoogle Scholar
  33. 33.
    Woody, C. D., Vassilevsky, N. N., & Engel, J., Jr. (1970). Conditioned eye blink: Unit activity at coronal-precruciate cortex of the cat. Journal of Neurophysiology, 33(6), 851–864.PubMedGoogle Scholar
  34. 34.
    Woody, C. D., & Brozek, G. (1969). Changes in evoked responses from facial nucleus of cat with conditioning and extinction of an eye blink. Journal of Neurophysiology, 32(5), 717–725.PubMedGoogle Scholar
  35. 35.
    Kandel, E., & Spencer, V. A. (1968). Cellular neurophysiological approaches in the study of learning. Physiological Review, 48, 65–134.Google Scholar
  36. 36.
    Spencer, W., Thompson, R. F., & Nielson, D. R. (1966). Decrement of ventral root electronus and intracellularly recorded PSPs produced by iterated cutaneous afferent volleys. Journal of Neurophysiology, 29, 253–273.PubMedGoogle Scholar
  37. 37.
    Castellucci, V., Pinsker, H., Kupfermann, I., & Kandel, E. R. (1970). Neuronal mechanisms of habituation and dishabituation of the gill-withdrawal reflex in Aplysia. Science, 167, 1745–1748.PubMedGoogle Scholar
  38. 38.
    Castellucci, V. F., Carew, T. J., & Kandel, E. R. (1978). Cellular analysis of long-term habituation of the gill-withdrawal reflex of Aplysia californica. Science, 202(4374), 1306–1308.PubMedGoogle Scholar
  39. 39.
    Hawkins, R. D., & Kandel, E. R. (1979). Is there a cell-biological alphabet for simple forms of learning? Psychological Review. Google Scholar
  40. 40.
    Hawkins, R. D., Abrams, T. W., Carew, T. J., & Kandel, E. R. (1983). A cellular mechanism of classical conditioning in Aplysia: Activity dependent amplification of presynaptic facilitation. Science, 219, 400–404.PubMedGoogle Scholar
  41. 41.
    Hawkins, R. D., & Kandel, E. R. (1984). Steps toward a cell-biological alphabet for elementary forms of learning. In G. Lynch, J. L. McGaugh, & N. M. Weinberger (Eds.), Neurobiology of learning and memory (pp. 385–404). New York: The Guilford Press.Google Scholar
  42. 42.
    Hawkins, R. D., & Kandel, E. R. (1984). Is there a cell-biological alphabet for simple forms of learning? Psychological Review, 91(3), 375–391.PubMedGoogle Scholar
  43. 43.
    Hawkins, R. D., Lalevic, N., Clark, G. A., & Kandel, E. R. (1989). Classical conditioning of the Aplysia siphon-withdrawal reflex exhibits response specificity. Proceedings of the National Academy of Sciences of the United States of America, 86(19), 7620–7624.PubMedGoogle Scholar
  44. 44.
    Kandel, E., & Schwartz, J. H. (1982). Molecular biology of memory: Modulation of transmitter release. Science, 218, 433–443.PubMedGoogle Scholar
  45. 45.
    Kandel, E. R., Abrams, T., Bernier, L., Carew, T. J., Hawkins, R. D., & Schwartz, J. H. (1983). Classical conditioning and sensitization share aspects of the same molecular cascade in Aplysia. Cold Spring Harbor Symposia on Quantitative Biology, 48(Pt 2), 821–830.PubMedGoogle Scholar
  46. 46.
    Crow, T. J., & Alkon, D. L. (1980). Associative behavioral modification in Hermissenda: Cellular correlates. Science, 209(4454), 412–414.PubMedGoogle Scholar
  47. 47.
    Libet, B. (1984). Heterosynaptic interaction at a sympathetic neuron as a model for induction and storage of a postsynaptic memory trace. In G. Lynch, J. L. McGaugh, & N. M. Weinberger (Eds.), Neurobiology of learning and memory. New York: Guilford Press.Google Scholar
  48. 48.
    Ashe, J. H., & Libet, B. (1981). Orthodromic production of non-cholinergic slow depolarizing response in the superior cervical ganglion of the rabbit. The Journal of Physiology, 320, 333–346.PubMedGoogle Scholar
  49. 49.
    Libet, B. (1970). Generation of slow inhibitory and excitatory postsynaptic potentials. Federation Proceedings, 29, 1945–1956.PubMedGoogle Scholar
  50. 50.
    Libet, B., & Owman, C. (1974). Concomitant changes in formaldehyde-induced fluorescence of dopamine interneurones and in slow inhibitory post-synaptic potentials of the rabbit superior cervical ganglion, induced by stimulation of the preganglionic nerve or by a muscarinic agent. The Journal of Physiology, 237(3), 635–662.PubMedGoogle Scholar
  51. 51.
    Baudry, M., & Lynch, G. (1979). Regulation of glutamate receptors by cations. Nature, 282, 748–750.PubMedGoogle Scholar
  52. 52.
    Baudry, M., & Lynch, G. (1984). Glutamate receptor regulation and the substrates of memory. In G. Lynch, J. L. McGaugh, & N. M. Weinberger (Eds.), Neurobiology of learning and memory (pp. 431–450). New York: Guilford Press.Google Scholar
  53. 53.
    Lynch, G. (1986). Synapses, circuits, and the beginnings of memory. Cambridge, MA: MIT Press.Google Scholar
  54. 54.
    Lynch, G., McGaugh, J. L., & Weinberger, N. M. (1984). Neurobiology of learning and memory. New York: Guilford Press.Google Scholar
  55. 55.
    Chen, W. R., Lee, S., Kato, K., Spencer, D. D., Shepherd, G. M., & Williamson, A. (1996). Long-term modifications of synaptic efficacy in the human inferior and middle temporal cortex. Proceedings of the National Academy of Sciences of the United States of America, 93(15), 8011–8015.PubMedGoogle Scholar
  56. 56.
    Stanton, P. K. (1996). LTD, LTP, and the sliding threshold for long-term synaptic plasticity. Hippocampus, 6(1), 35–42.PubMedGoogle Scholar
  57. 57.
    Wagner, J. J., & Alger, B. E. (1996). Homosynaptic LTD and depotentiation: Do they differ in name only? Hippocampus, 6(1), 24–29.PubMedGoogle Scholar
  58. 58.
    Rison, R. A., & Stanton, P. K. (1995). Long-term potentiation and N-methyl-D-aspartate receptors: Foundations of memory and neurologic disease? Neuroscience and Biobehavioral Reviews, 19(4), 533–552.PubMedGoogle Scholar
  59. 59.
    Shen, Y., Specht, S. M., De Saint Ghislain, I., & Li, R. (1994). The hippocampus: A biological model for studying learning and memory. Progress in Neurobiology, 44(5), 485–496.PubMedGoogle Scholar
  60. 60.
    Malenka, R. C. (1991). The role of postsynaptic calcium in the induction of long-term potentiation. Molecular Neurobiology, 5(2–4), 289–295.PubMedGoogle Scholar
  61. 61.
    Sahai, S. (1990). Glutamate in the mammalian CNS. European Archives of Psychiatry and Clinical Neuroscience, 240(2), 121–133.PubMedGoogle Scholar
  62. 62.
    Kennedy, M. B. (1989). Regulation of synaptic transmission in the central nervous system: Long-term potentiation. Cell, 59(5), 777–787.PubMedGoogle Scholar
  63. 63.
    Wang, H., Wang, X., & Scheich, H. (1996). LTD and LTP induced by transcranial magnetic stimulation in auditory cortex. Neuroreport, 7(2), 521–525.PubMedGoogle Scholar
  64. 64.
    Norman, R. J., Buchwald, J. S., & Villablanca, J. R. (1977). Classical conditioning with auditory discrimination of the eyeblink in decerebrate cats. Science, 196, 551–553.PubMedGoogle Scholar
  65. 65.
    Kim, J. J., & Thompson, R. F. (1997). Cerebellar circuits and synaptic mechanisms involved in classical eyeblink conditioning. Trends in Neurosciences, 20(4), 177–181.PubMedGoogle Scholar
  66. 66.
    Thompson, R. F. (1988). The neural basis of basic associative learning of discrete behavioral responses. Trends in Neurosciences, 11(4), 152–155.PubMedGoogle Scholar
  67. 67.
    Tsukahara, N. (1982). Brain plasticity: The themes and case studies of neuro-biophysics. Advances in Biophysics, 15, 131–172.PubMedGoogle Scholar
  68. 68.
    Tsukahara, N. (1984). Classical conditioning mediated by the red nucleus: An approach beginning at the cellular level. In G. Lynch, J. L. McGaugh, & N. M. Weinberger (Eds.), Handbook of learning and memory (pp. 165–180). New York: Guilford.Google Scholar
  69. 69.
    Tsukahara, N., Oda, Y., & Notsu, T. (1981). Classical conditioning mediated by the red nucleus in the cat. The Journal of Neuroscience, 1(1), 72–79.PubMedGoogle Scholar
  70. 70.
    Lnenicka, G. A., & Atwood, H. L. (1985). Long-term facilitation and long-term adaptation at synapses of a crayfish phasic motoneuron. Journal of Neurobiology, 16(2), 97–110.PubMedGoogle Scholar
  71. 71.
    Sil’kis, I. G., Rapoport, S., & Veber, N. V. (1995). Long-term posttetantic changes in the reaction of neighboring neurons in microsegments of the cat motor cortex. Neuroscience and Behavioral Physiology, 25(1), 15–24.PubMedGoogle Scholar
  72. 72.
    Hess, G., Aizenman, C. D., & Donoghue, J. P. (1996). Conditions for the induction of long-term potentiation in layer II/III horizontal connections of the rat motor cortex. Journal of Neurophysiology, 75(5), 1765–1778.PubMedGoogle Scholar
  73. 73.
    Sil’kis, I. G., Rapoport, S., Veber, N. V., & Gushchin, A. M. (1994). Neurobiology of the integrative activity of the brain: Some properties of long-term posttetanic heterosynaptic depression in the motor cortex of the cat. Neuroscience and Behavioral Physiology, 24(6), 500–506.PubMedGoogle Scholar
  74. 74.
    Charpier, S., Mahon, S., & Deniau, J. M. (1999). In vivo induction of striatal long-term potentiation by low-frequency stimulation of the cerebral cortex. Neuroscience, 91(4), 1209–1222.PubMedGoogle Scholar
  75. 75.
    Aumann, T. D., Redman, S. J., & Horne, M. K. (2000). Long-term potentiation across rat cerebello-thalamic synapses in vitro. Neuroscience Letters, 287(2), 151–155.PubMedGoogle Scholar
  76. 76.
    Herry, C., & Garcia, R. (2002). Prefrontal cortex long-term potentiation, but not long-term depression, is associated with the maintenance of extinction of learned fear in mice. The Journal of Neuroscience, 22(2), 577–583.PubMedGoogle Scholar
  77. 77.
    Sacchetti, B., Scelfo, B., Tempia, F., & Strata, P. (2004). Long-term synaptic changes induced in the cerebellar cortex by fear conditioning. Neuron, 42(6), 973–982.PubMedGoogle Scholar
  78. 78.
    Baumer, T., Bock, F., Koch, G., et al. (2006). Magnetic stimulation of human premotor or motor cortex produces interhemispheric facilitation through distinct pathways. The Journal of Physiology, 572(Pt 3), 857–868.PubMedGoogle Scholar
  79. 79.
    Sil’kis, I. G. (2006). A possible mechanism for the effect of modifiable lateral inhibition in the striatum on the selection of conditioned reflex motor responses. Neuroscience and Behavioral Physiology, 36(6), 631–643.PubMedGoogle Scholar
  80. 80.
    Barcal, J., Cendelin, J., & Vozeh, F. (2008). Hippocampal long-term potentiation in adult Lurcher mutant mice: Effect of embryonic cerebellar graft and motor training. Prague Medical Report, 109(1), 25–31.PubMedGoogle Scholar
  81. 81.
    Furubayashi, T., Terao, Y., Arai, N., et al. (2008). Short and long duration transcranial direct current stimulation (tDCS) over the human hand motor area. Experimental Brain Research, 185(2), 279–286.PubMedGoogle Scholar
  82. 82.
    Suppa, A., Bologna, M., Gilio, F., Lorenzano, C., Rothwell, J. C., & Berardelli, A. (2008). Preconditioning repetitive transcranial magnetic stimulation of premotor cortex can reduce but not enhance short-term facilitation of primary motor cortex. Journal of Neurophysiology, 99(2), 564–570.PubMedGoogle Scholar
  83. 83.
    He, Y., Liu, M. G., Gong, K. R., & Chen, J. (2009). Differential effects of long and short train theta burst stimulation on LTP induction in rat anterior cingulate cortex slices: Multi-electrode array recordings. Neuroscience Bulletin, 25(5), 309–318.PubMedGoogle Scholar
  84. 84.
    Wang, X., Chen, G., Gao, W., & Ebner, T. (2009). Long-term potentiation of the responses to parallel fiber stimulation in mouse cerebellar cortex in vivo. Neuroscience, 162(3), 713–722.PubMedGoogle Scholar
  85. 85.
    Kenyon, G. T. (1997). A model of long-term memory storage in the cerebellar cortex: A possible role for plasticity at parallel fiber synapses onto stellate/basket interneurons. Proceedings of the National Academy of Sciences of the United States of America, 94(25), 14200–14205.PubMedGoogle Scholar
  86. 86.
    Castro-Alamancos, M. A., Donoghue, J. P., & Connors, B. W. (1995). Different forms of synaptic plasticity in somatosensory and motor areas of the neocortex. The Journal of Neuroscience, 15(7 Pt 2), 5324–5333.PubMedGoogle Scholar
  87. 87.
    Alkon, D. L. (1982). A biophysical basis for molluscan associative learning. In C. D. Woody (Ed.), Conditioning: Representation of involved neural function. New York: Plenum Press.Google Scholar
  88. 88.
    Oleson, T., Ashe, J., & Weinberger, N. M. (1975). Modification of auditory and somatosensory activity during pupillary conditioning in the paralyzed cat. Journal of Neurophysiology, 38, 1114–1139.PubMedGoogle Scholar
  89. 89.
    Ryugo, D. K., & Weinberger, N. M. (1976). Corticofugal modulation of the medial geniculate body. Experimental Neurology, 51(2), 377–391.PubMedGoogle Scholar
  90. 90.
    Gabriel, M., Miller, J. D., & Saltwick, S. E. (1976). Multiple unit activity of the rabbit medial geniculate nucleus in conditioning, extinction and reversal. Physiological Psychology, 4, 124–134.Google Scholar
  91. 91.
    Diamond, D. M., & Weinberger, N. M. (1984). Physiological plasticity of single neurons in auditory cortex of the cat during acquisition of the pupillary conditioned response: II. Secondary field (AII). Behavioral Neuroscience, 98(2), 189–210.PubMedGoogle Scholar
  92. 92.
    Diamond, D. M., & Weinberger, N. M. (1986). Classical conditioning rapidly induces specific changes in frequency receptive fields of single neurons in secondary and ventral ectosylvian auditory cortical fields. Brain Research, 372(2), 357–360.PubMedGoogle Scholar
  93. 93.
    Diamond, D. M., & Weinberger, N. M. (1989). Role of context in the expression of learning-induced plasticity of single neurons in auditory cortex. Behavioral Neuroscience, 103(3), 471–494.PubMedGoogle Scholar
  94. 94.
    Benson, D. A., Hienz, R. D., & Goldstein, M. H., Jr. (1981). Single-unit activity in the auditory cortex of monkeys actively localizing sound sources: Spatial tuning and behavioral dependency. Brain Research, 219(2), 249–267.PubMedGoogle Scholar
  95. 95.
    Edeline, J. M., & Weinberger, N. M. (1993). Receptive field plasticity in the auditory cortex during frequency discrimination training: Selective retuning independent of task difficulty. Behavioral Neuroscience, 107(1), 82–103.PubMedGoogle Scholar
  96. 96.
    Hui, G. K., Wong, K. L., Chavez, C. M., Leon, M. I., Robin, K. M., & Weinberger, N. M. (2009). Conditioned tone control of brain reward behavior produces highly specific representational gain in the primary auditory cortex. Neurobiology of Learning and Memory, 92(1), 27–34.PubMedGoogle Scholar
  97. 97.
    Ji, W., & Suga, N. (2008). Tone-specific and nonspecific plasticity of the auditory cortex elicited by pseudoconditioning: Role of acetylcholine receptors and the somatosensory cortex. Journal of Neurophysiology, 100(3), 1384–1396.PubMedGoogle Scholar
  98. 98.
    Ji, W., & Suga, N. (2009). Tone-specific and nonspecific plasticity of inferior colliculus elicited by pseudo-conditioning: Role of acetylcholine and auditory and somatosensory cortices. Journal of Neurophysiology, 102(2), 941–952.PubMedGoogle Scholar
  99. 99.
    Weinberger, N. M., & Bakin, J. S. (1998). Learning-induced physiological memory in adult primary auditory cortex: Receptive fields plasticity, model, and mechanisms. Audiology & Neuro-Otology, 3(2–3), 145–167.Google Scholar
  100. 100.
    Birt, D., & Olds, M. (1981). Associative response changes in lateral midbrain tegmentum and medial geniculate during differential appetitive conditioning. Journal of Neurophysiology, 46, 1039–1055.PubMedGoogle Scholar
  101. 101.
    Weinberger, N. M., Hopkins, W., & Diamond, D. M. (1984). Physiological plasticity of single neurons in auditory cortex of the cat during acquisition of the pupillary conditioned response: I. Primary field (AI). Behavioral Neuroscience, 98(2), 171–188.PubMedGoogle Scholar
  102. 102.
    Weinberger, N. M., McGaugh, J. L., & Lynch, G. (1985). Memory systems of the brain: Animal and human cognitive processes. New York: Guilford Press.Google Scholar
  103. 103.
    Fregnac, Y., & Shulz, D. E. (1999). Activity-dependent regulation of receptive field properties of cat area 17 by supervised Hebbian learning. Journal of Neurobiology, 41(1), 69–82.PubMedGoogle Scholar
  104. 104.
    Chelazzi, L., Duncan, J., Miller, E. K., & Desimone, R. (1998). Responses of neurons in inferior temporal cortex during memory-guided visual search. Journal of Neurophysiology, 80(6), 2918–2940.PubMedGoogle Scholar
  105. 105.
    Heinze, H. J., Hinrichs, H., Scholz, M., Burchert, W., & Mangun, G. R. (1998). Neural mechanisms of global and local processing. A combined PET and ERP study. Journal of Cognitive Neuroscience, 10(4), 485–498.PubMedGoogle Scholar
  106. 106.
    Schmajuk, N. A., & Buhusi, C. V. (1997). Stimulus configuration, occasion setting, and the hippocampus. Behavioural Neuroscience, 111(2), 235–257; appendix 258.Google Scholar
  107. 107.
    Motter, B. C. (1994). Neural correlates of feature selective memory and pop-out in extrastriate area V4. The Journal of Neuroscience, 14(4), 2190–2199.PubMedGoogle Scholar
  108. 108.
    Motter, B. C. (1994). Neural correlates of attentive selection for color or luminance in extrastriate area V4. The Journal of Neuroscience, 14(4), 2178–2189.PubMedGoogle Scholar
  109. 109.
    Artim, J., & Bridgeman, B. (1989). The physiology of attention: Participation of cat striate cortex in behavioral choice. Psychological Research, 50(4), 223–228.PubMedGoogle Scholar
  110. 110.
    Keil, A., Stolarova, M., Moratti, S., & Ray, W. J. (2007). Adaptation in human visual cortex as a mechanism for rapid discrimination of aversive stimuli. NeuroImage, 36(2), 472–479.PubMedGoogle Scholar
  111. 111.
    Fritz, J. B., Elhilali, M., David, S. V., & Shamma, S. A. (2007). Does attention play a role in dynamic receptive field adaptation to changing acoustic salience in A1? Hearing Research, 229(1–2), 186–203.PubMedGoogle Scholar
  112. 112.
    Lakatos, P., Szilagyi, N., Pincze, Z., Rajkai, C., Ulbert, I., & Karmos, G. (2004). Attention and arousal related modulation of spontaneous gamma-activity in the auditory cortex of the cat. Brain Research. Cognitive Brain Research, 19(1), 1–9.PubMedGoogle Scholar
  113. 113.
    Armony, J. L., & Dolan, R. J. (2001). Modulation of auditory neural responses by a visual context in human fear conditioning. Neuroreport, 12(15), 3407–3411.PubMedGoogle Scholar
  114. 114.
    Kandel, E. R. (1978). A cell-biological approach to learning. Bethesda, MD: Society for Neuroscience.Google Scholar
  115. 115.
    Wagner, A. R. (1979). Habituation and memory. Hillsdale, NJ: Erlbaum.Google Scholar
  116. 116.
    Penfield, W. (1958). The excitable cortex in conscious man. Liverpool: Liverpool University Press.Google Scholar
  117. 117.
    Penfield, W., & Rasmussen, T. (1950). The cerebral cortex of man: A clinical study of localization of function. New York: Macmillan.Google Scholar
  118. 118.
    Penfield, W., & Roberts, L. (1959). Speech and brain-mechanisms. Princeton, NJ: Princeton University Press.Google Scholar
  119. 119.
    Penfield, W., & Milner, B. (1958). Memory deficit produced by bilateral lesions in the hippocampal zone. Archives of Neurology and Psychiatry, 79, 475–497.PubMedGoogle Scholar
  120. 120.
    Penfield, W. R., & Rasmussen, T. (1950). The cerebral cortex of man. New York: Macmillan.Google Scholar
  121. 121.
    Wilson, C. L., Babb, T. L., Halgren, E., Wang, M. L., & Crandall, P. H. (1984). Habituation of human limbic neuronal response to sensory stimulation. Experimental Neurology, 84(1), 74–97.PubMedGoogle Scholar
  122. 122.
    Babb, T. L., Halgren, E., Wilson, C., Engel, J., & Crandall, P. (1981). Neuronal firing patterns during the spread of an occipital lobe seizure to the temporal lobes in man. Electroencephalography and Clinical Neurophysiology, 51(1), 104–107.PubMedGoogle Scholar
  123. 123.
    Halgren, E., Squires, N. K., Wilson, C. L., Rohrbaugh, J. W., Babb, T. L., & Crandall, P. H. (1980). Endogenous potentials generated in the human hippocampal formation and amygdala by infrequent events. Science, 210(4471), 803–805.PubMedGoogle Scholar
  124. 124.
    Halgren, E., Babb, T. L., & Crandall, P. H. (1978). Activity of human hippocampal formation and amygdala neurons during memory testing. Electroencephalography and Clinical Neurophysiology, 45(5), 585–601.PubMedGoogle Scholar
  125. 125.
    Halgren, E., Babb, T. L., & Crandall, P. H. (1978). Human hippocampal formation EEG desynchronizes during attentiveness and movement. Electroencephalography and Clinical Neurophysiology, 44(6), 778–781.PubMedGoogle Scholar
  126. 126.
    Halgren, E., Babb, T. L., & Crandall, P. H. (1977). Responses of human limbic neurons to induced changes in blood gases. Brain Research, 132(1), 43–63.PubMedGoogle Scholar
  127. 127.
    Lashley, K. S. (1963). Brain mechanisms and intelligence: A quantitative study of injuries to the brain. New York: Dover Publications.Google Scholar
  128. 128.
    Jacobsen, C. F. (1936). Studies of cerebral functions in primates: 1. The functions of the frontal association areas in monkeys. Comparative Psychology, 13, 3–60.Google Scholar
  129. 129.
    Jacobsen, C. F., & Nissen, H. W. (1937). Studies of cerebral function in primates: IV. The effects of frontal lobe lesions on the delayed alternation habit in monkeys. Journal of Comparative and Physiological Psychology, 23, 101–112.Google Scholar
  130. 130.
    Butters, N., & Pandya, D. (1969). Retention of delayed-alternation: Effect of selective lesions of sulcus principalis. Science, 165, l27l–l273l.Google Scholar
  131. 131.
    Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery & Psychiatry, 20, 11–21.Google Scholar
  132. 132.
    Squire, L. (1987). Memory and brain. New York: Oxford University Press.Google Scholar
  133. 133.
    Squire, L. R. (2004). Memory systems of the brain: A brief history and current perspective. Neurobiology of Learning and Memory, 82(3), 171–177.PubMedGoogle Scholar
  134. 134.
    O’Donnell, B. F., Cohen, R. A., Hokama, H., et al. (1993). Electrical source analysis of auditory ERPs in medial temporal lobe amnestic syndrome. Electroencephalography and Clinical Neurophysiology, 87(6), 394–402.PubMedGoogle Scholar
  135. 135.
    Butters, N., Lewis, R., Cermak, L. S., & Goodglass, H. (1973). Material-specific memory deficits in alcoholic Korsakoff patients. Neuropsychologia, 11(3), 291–299.PubMedGoogle Scholar
  136. 136.
    Cermak, L. S., Butters, N., & Goodglass, H. (1971). The extent of memory loss in Korsakoff patients. Neuropsychologia, 9(3), 307–315.PubMedGoogle Scholar
  137. 137.
    Squire, L. R. (1977). ECT and memory loss. The American Journal of Psychiatry, 134(9), 997–1001.PubMedGoogle Scholar
  138. 138.
    Squire, L. R., Slater, P. C., & Miller, P. L. (1981). Retrograde amnesia and bilateral electroconvulsive therapy. Long-term follow-up. Archives of General Psychiatry, 38(1), 89–95.PubMedGoogle Scholar
  139. 139.
    Taylor, J. R., Tompkins, R., Demers, R., & Anderson, D. (1982). Electroconvulsive therapy and memory dysfunction: Is there evidence for prolonged defects? Biological Psychiatry, 17(10), 1169–1193.PubMedGoogle Scholar
  140. 140.
    Isseroff, A., Rosvold, H. E., Galkin, T. W., & Goldman-Rakic, P. S. (1982). Spatial memory impairment following damage to the mediodorsal nucleus in the thalamus of rhesus monkeys. Brain Research, 232, 97–113.PubMedGoogle Scholar
  141. 141.
    Zola-Morgan, S., & Squire, L. R. (1985). Amnesia in monkeys following lesions of the mediodorsal nucleus of the thalamus. Annals of Neurology, 17, 558–564.PubMedGoogle Scholar
  142. 142.
    Zola-Morgan, S., Squire, L. R., & Mishkin, M. (1982). The neuroanatomy of amnesia: Amygdala-hippocampus versus temporal stem. Science, 218(4579), 1337–1339.PubMedGoogle Scholar
  143. 143.
    Zola-Morgan, S., & Squire, L. R. (1986). Memory impairment in monkeys following lesions of the hippocampus. Behavioral Neuroscience, 100, 155–160.PubMedGoogle Scholar
  144. 144.
    Zola-Morgan, S., & Squire, L. R. (1984). Preserved learning in monkeys with medial temporal lesions: Sparing of motor and cognitive skills. Journal of Neuroscience, 4, 1072–1085.PubMedGoogle Scholar
  145. 145.
    Uhlhaas, P. J., & Singer, W. (2006). Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology. Neuron, 52(1), 155–168.PubMedGoogle Scholar
  146. 146.
    Watts, A. G., Khan, A. M., Sanchez-Watts, G., Salter, D., & Neuner, C. M. (2006). Activation in neural networks controlling ingestive behaviors: What does it mean, and how do we map and measure it? Physiology and Behavior, 89(4), 501–510.PubMedGoogle Scholar
  147. 147.
    He, B. J., Snyder, A. Z., Vincent, J. L., Epstein, A., Shulman, G. L., & Corbetta, M. (2007). Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron, 53(6), 905–918.PubMedGoogle Scholar
  148. 148.
    Knight, R. T. (2007). Neuroscience. Neural networks debunk phrenology. Science, 316(5831), 1578–1579.PubMedGoogle Scholar
  149. 149.
    Mesulam, M. (2009). Defining neurocognitive networks in the BOLD new world of computed connectivity. Neuron, 62(1), 1–3.PubMedGoogle Scholar
  150. 150.
    Rumelhart, D., & McClelland, J. L. (1986). Parallel distributed processing: Explorations in the microstructure of cognition (Vols. 1 & 2). Cambridge, MA: MIT Press.Google Scholar
  151. 151.
    Mishkin, M., Ungerleiter, L. G., & Macko, K. A. (1983). Object vision and spatial vision: Two cortical pathways. Trends in Neurosciences, 6, 414–417.Google Scholar
  152. 152.
    Mishkin, M., & Bachevalier, J. (1983). Object recognition impaired by ventromedial but not dorsolateral prefrontal cortical lesions in monkeys. Society for Neuroscience Abstract, 9, 29.Google Scholar
  153. 153.
    Mishkin, M., Lewis, M. E., & Ungerleider, L. G. (1982). Equivalence of parieto-preoccipital subareas for visuospatial ability in monkeys. Behavioural Brain Research, 6(1), 41–55.PubMedGoogle Scholar
  154. 154.
    Ungerleider, L., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behaviour (pp. 549–586). Cambridge, MA: MIT Press.Google Scholar
  155. 155.
    Bellebaum, C., & Daum, I. (2007). Cerebellar involvement in executive control. Cerebellum, 6(3), 184–192.PubMedGoogle Scholar
  156. 156.
    Ben-Yehudah, G., Guediche, S., & Fiez, J. A. (2007). Cerebellar contributions to verbal working memory: Beyond cognitive theory. Cerebellum, 6(3), 193–201.PubMedGoogle Scholar
  157. 157.
    De Bartolo, P., Mandolesi, L., Federico, F., et al. (2009). Cerebellar involvement in cognitive flexibility. Neurobiology of Learning and Memory, 92(3), 310–317.PubMedGoogle Scholar
  158. 158.
    Fujiwara, A., Kakizawa, S., & Iino, M. (2007). Induction of cerebellar long-term depression requires activation of calcineurin in Purkinje cells. Neuropharmacology, 52(8), 1663–1670.PubMedGoogle Scholar
  159. 159.
    Glickstein, M., & Doron, K. (2008). Cerebellum: Connections and functions. Cerebellum, 7(4), 589–594.PubMedGoogle Scholar
  160. 160.
    Halverson, H. E., Lee, I., & Freeman, J. H. (2010). Associative plasticity in the medial auditory thalamus and cerebellar interpositus nucleus during eyeblink conditioning. The Journal of Neuroscience, 30(26), 8787–8796.PubMedGoogle Scholar
  161. 161.
    Hayter, A. L., Langdon, D. W., & Ramnani, N. (2007). Cerebellar contributions to working memory. NeuroImage, 36(3), 943–954.PubMedGoogle Scholar
  162. 162.
    Hirano, T. (2006). Motor control mechanism by the cerebellum. Cerebellum, 5(4), 296–300.PubMedGoogle Scholar
  163. 163.
    Hubert, V., Beaunieux, H., Chetelat, G., et al. (2007). The dynamic network subserving the three phases of cognitive procedural learning. Human Brain Mapping, 28(12), 1415–1429.PubMedGoogle Scholar
  164. 164.
    Ioffe, M. E., Chernikova, L. A., & Ustinova, K. I. (2007). Role of cerebellum in learning postural tasks. Cerebellum, 6(1), 87–94.PubMedGoogle Scholar
  165. 165.
    Jorntell, H., & Hansel, C. (2006). Synaptic memories upside down: Bidirectional plasticity at cerebellar parallel fiber-Purkinje cell synapses. Neuron, 52(2), 227–238.PubMedGoogle Scholar
  166. 166.
    Mostofsky, S. H., Powell, S. K., Simmonds, D. J., Goldberg, M. C., Caffo, B., & Pekar, J. J. (2009). Decreased connectivity and cerebellar activity in autism during motor task performance. Brain, 132(Pt 9), 2413–2425.PubMedGoogle Scholar
  167. 167.
    Porrill, J., & Dean, P. (2007). Cerebellar motor learning: When is cortical plasticity not enough? PLoS Computational Biology, 3(10), 1935–1950.PubMedGoogle Scholar
  168. 168.
    Porrill, J., & Dean, P. (2007). Recurrent cerebellar loops simplify adaptive control of redundant and nonlinear motor systems. Neural Computation, 19(1), 170–193.PubMedGoogle Scholar
  169. 169.
    Strata, P. (2009). David Marr’s theory of cerebellar learning: 40 years later. The Journal of Physiology, 587(Pt 23), 5519–5520.PubMedGoogle Scholar
  170. 170.
    Thompson, R. F., & Steinmetz, J. E. (2009). The role of the cerebellum in classical conditioning of discrete behavioral responses. Neuroscience, 162(3), 732–755.PubMedGoogle Scholar
  171. 171.
    Timmann, D., & Daum, I. (2007). Cerebellar contributions to cognitive functions: A progress report after two decades of research. Cerebellum, 6(3), 159–162.PubMedGoogle Scholar
  172. 172.
    Torriero, S., Oliveri, M., Koch, G., et al. (2007). Cortical networks of procedural learning: Evidence from cerebellar damage. Neuropsychologia, 45(6), 1208–1214.PubMedGoogle Scholar
  173. 173.
    Dunnett, S. B., Fuller, A., Rosser, A. E., & Brooks, S. P. (2012). A novel extended sequence learning task (ESLeT) for rodents: Validation and the effects of amphetamine, scopolamine and striatal lesions. Brain Research Bulletin, 88(2–3), 237–250.PubMedGoogle Scholar
  174. 174.
    Hershey, T., Campbell, M. C., Videen, T. O., et al. (2010). Mapping Go-No-Go performance within the subthalamic nucleus region. Brain, 133(Pt 12), 3625–3634.PubMedGoogle Scholar
  175. 175.
    Desmurget, M., & Turner, R. S. (2010). Motor sequences and the basal ganglia: Kinematics, not habits. The Journal of Neuroscience, 30(22), 7685–7690.PubMedGoogle Scholar
  176. 176.
    Flores, L. C., & Disterhoft, J. F. (2009). Caudate nucleus is critically involved in trace eyeblink conditioning. The Journal of Neuroscience, 29(46), 14511–14520.PubMedGoogle Scholar
  177. 177.
    Wachter, T., Rohrich, S., Frank, A., et al. (2010). Motor skill learning depends on protein synthesis in the dorsal striatum after training. Experimental Brain Research, 200(3–4), 319–323.Google Scholar
  178. 178.
    McCormick, D. A., Lavond, D. G., & Thompson, R. F. (1983). Neuronal responses of the rabbit brainstem during performance of the classically conditioned nictitating membrane (NM)/eyelid response. Brain Research, 271(1), 73–88.PubMedGoogle Scholar
  179. 179.
    Oakley, D. A., & Russell, I. S. (1972). Neocortical lesions and Pavlovian conditioning. Physiology and Behavior, 8(5), 915–926.PubMedGoogle Scholar
  180. 180.
    Oakley, D. A., & Russell, I. S. (1975). Role of cortex in Pavlovian discrimination learning. Physiology and Behavior, 15(3), 315–321.PubMedGoogle Scholar
  181. 181.
    Oakley, D. A., & Russell, I. S. (1976). Subcortical nature of Pavlovian differentiation in the rabbit. Physiology and Behavior, 17(6), 947–954.PubMedGoogle Scholar
  182. 182.
    Oakley, D. A., & Russell, I. S. (1977). Subcortical storage of Pavlovian conditioning in the rabbit. Physiology and Behavior, 18(5), 931–937.PubMedGoogle Scholar
  183. 183.
    Oakley, D. A., & Russell, I. S. (1978). Performance of neodecorticated rabbits in a free-operant situation. Physiology and Behavior, 20(2), 157–170.PubMedGoogle Scholar
  184. 184.
    Frings, M., Gaertner, K., Buderath, P., et al. (2010). Timing of conditioned eyeblink responses is impaired in children with attention-deficit/hyperactivity disorder. Experimental Brain Research, 201(2), 167–176.PubMedGoogle Scholar
  185. 185.
    Safo, P., & Regehr, W. G. (2008). Timing dependence of the induction of cerebellar LTD. Neuropharmacology, 54(1), 213–218.PubMedGoogle Scholar
  186. 186.
    Fino, E., & Venance, L. (2011). Spike-timing dependent plasticity in striatal interneurons. Neuropharmacology, 60(5), 780–788.PubMedGoogle Scholar
  187. 187.
    Jones, C. R., Malone, T. J., Dirnberger, G., Edwards, M., & Jahanshahi, M. (2008). Basal ganglia, dopamine and temporal processing: Performance on three timing tasks on and off medication in Parkinson’s disease. Brain and Cognition, 68(1), 30–41.PubMedGoogle Scholar
  188. 188.
    Bottjer, S. W. (2005). Timing and prediction the code from basal ganglia to thalamus. Neuron, 46(1), 4–7.PubMedGoogle Scholar
  189. 189.
    Olds, J., Mink, W. D., & Best, P. J. (1969). Single unit patterns during anticipatory behavior. EEG & Clinical Neurophysiology, 26(2), 144–158.Google Scholar
  190. 190.
    Olds, J., & Milner, P. (1954). Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. Journal of Comparative and Physiological Psychology, 47, 419–427.PubMedGoogle Scholar
  191. 191.
    Olds, M. E. (1973). Short-term changes in the firing pattern of hypothalamic neurons during Pavlovian conditioning. Brain Research, 58(1), 95–116.PubMedGoogle Scholar
  192. 192.
    Phillips, M. I., & Olds, J. (1969). Unit activity: Motivation-dependent response from midbrain neurons. Science, 165, 1269–1271.PubMedGoogle Scholar
  193. 193.
    Buchanan, S. L. (1994). Mediodorsal thalamic lesions impair acquisition of an eyeblink avoidance response in rabbits. Behavioural Brain Research, 65(2), 173–179.PubMedGoogle Scholar
  194. 194.
    Buchanan, S. L., & Thompson, R. H. (1990). Mediodorsal thalamic lesions and Pavlovian conditioning of heart rate and eyeblink responses in the rabbit. Behavioral Neuroscience, 104(6), 912–918.PubMedGoogle Scholar
  195. 195.
    Lelord, G., & Maho, C. (1969). [Changes in cortical and thalamic evoked activity during sensory conditioning. I. Localization of the responses and variation with vigilance]. Electroencephalography and Clinical Neurophysiology, 27(3), 258–269.PubMedGoogle Scholar
  196. 196.
    McAlonan, K., Brown, V. J., & Bowman, E. M. (2000). Thalamic reticular nucleus activation reflects attentional gating during classical conditioning. The Journal of Neuroscience, 20(23), 8897–8901.PubMedGoogle Scholar
  197. 197.
    Nicholson, D. A., & Freeman, J. H., Jr. (2002). Medial dorsal thalamic lesions impair blocking and latent inhibition of the conditioned eyeblink response in rats. Behavioral Neuroscience, 116(2), 276–285.PubMedGoogle Scholar
  198. 198.
    Sparenborg, S., & Gabriel, M. (1990). Neuronal encoding of conditional stimulus duration in the cingulate cortex and the limbic thalamus of rabbits. Behavioral Neuroscience, 104(6), 919–933.PubMedGoogle Scholar
  199. 199.
    Stolar, N., Sparenborg, S., Donchin, E., & Gabriel, M. (1989). Conditional stimulus probability and activity of hippocampal, cingulate cortical, and limbic thalamic neurons during avoidance conditioning in rabbits. Behavioral Neuroscience, 103(5), 919–934.PubMedGoogle Scholar
  200. 200.
    Mayer, A. R., Hanlon, F. M., Franco, A. R., et al. (2009). The neural networks underlying auditory sensory gating. NeuroImage, 44(1), 182–189.PubMedGoogle Scholar
  201. 201.
    Yang, S., & Cox, C. L. (2008). Excitatory and anti-oscillatory actions of nitric oxide in thalamus. The Journal of Physiology, 586(Pt 15), 3617–3628.PubMedGoogle Scholar
  202. 202.
    Murakami, M., Kashiwadani, H., Kirino, Y., & Mori, K. (2005). State-dependent sensory gating in olfactory cortex. Neuron, 46(2), 285–296.PubMedGoogle Scholar
  203. 203.
    Steriade, M. (2004). Local gating of information processing through the thalamus. Neuron, 41(4), 493–494.PubMedGoogle Scholar
  204. 204.
    Rauch, S. L., Whalen, P. J., Curran, T., et al. (2001). Probing striato-thalamic function in obsessive-compulsive disorder and Tourette syndrome using neuroimaging methods. Advances in Neurology, 85, 207–224.PubMedGoogle Scholar
  205. 205.
    Ahissar, E., Sosnik, R., & Haidarliu, S. (2000). Transformation from temporal to rate coding in a somatosensory thalamocortical pathway. Nature, 406(6793), 302–306.PubMedGoogle Scholar
  206. 206.
    Morrow, T. J., & Casey, K. L. (2000). Attention-related, cross-modality modulation of somatosensory neurons in primate ventrobasal (VB) thalamus. Somatosensory and Motor Research, 17(2), 133–144.PubMedGoogle Scholar
  207. 207.
    Crick, F. (1984). Function of the thalamic reticular complex: The searchlight hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 81(14), 4586–4590.PubMedGoogle Scholar
  208. 208.
    Kornblith, C., & Olds, J. (1973). Unit activity in brain stem reticular formation of the rat during learning. Journal of Neurophysiology, 36(3), 489–501.PubMedGoogle Scholar
  209. 209.
    Puryear, C. B., & Mizumori, S. J. (2008). Reward prediction error signals by reticular formation neurons. Learning and Memory, 15(12), 895–898.PubMedGoogle Scholar
  210. 210.
    Schepens, B., Stapley, P., & Drew, T. (2008). Neurons in the pontomedullary reticular formation signal posture and movement both as an integrated behavior and independently. Journal of Neurophysiology, 100(4), 2235–2253.PubMedGoogle Scholar
  211. 211.
    Moxon, K. A., Gerhardt, G. A., Bickford, P. C., et al. (1999). Multiple single units and population responses during inhibitory gating of hippocampal auditory response in freely-moving rats. Brain Research, 825(1–2), 75–85.PubMedGoogle Scholar
  212. 212.
    Gabriel, M., Gregg, B., Clancy, A., Kittrell, M., & Dailey, W. (1986). Brain stem reticular formation neuronal correlates of stimulus significance and behavior during discriminative avoidance conditioning in rabbits. Behavioral Neuroscience, 100(2), 171–184.PubMedGoogle Scholar
  213. 213.
    Gonzalez-Lima, F., & Scheich, H. (1986). Classical conditioning of tone-signaled bradycardia modifies 2-deoxyglucose uptake patterns in cortex, thalamus, habenula, caudate-putamen and hippocampal formation. Brain Research, 363(2), 239–256.PubMedGoogle Scholar
  214. 214.
    Muller, K., & Klingberg, F. (1986). Lesions in the mesencephalic part of pedunculopontine nuclei modify goal-directed behaviour. Biomedica Biochimica Acta, 45(9), 1159–1165.PubMedGoogle Scholar
  215. 215.
    Gonzalez-Lima, F., & Scheich, H. (1984). Neural substrates for tone-conditioned bradycardia demonstrated with 2-deoxyglucose. I. Activation of auditory nuclei. Behavioural Brain Research, 14(3), 213–233.PubMedGoogle Scholar
  216. 216.
    McKenzie, J. S., & Rogers, D. K. (1981). Unit responses of intralaminar thalamus to midbrain and medullary stimulation and effects of conditioning caudate and hippocampal stimuli. Brain Research Bulletin, 7(4), 345–352.PubMedGoogle Scholar
  217. 217.
    Lecas, J. C., & Maho, C. (1981). Reticular multiple-unit activity and motor changes during DRL learning in cats. Physiology and Behavior, 26(3), 451–459.PubMedGoogle Scholar
  218. 218.
    Kim, J. H., & Richardson, R. (2010). New findings on extinction of conditioned fear early in development: Theoretical and clinical implications. Biological Psychiatry, 67(4), 297–303.PubMedGoogle Scholar
  219. 219.
    Milad, M. R., Pitman, R. K., Ellis, C. B., et al. (2009). Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biological Psychiatry, 66(12), 1075–1082.PubMedGoogle Scholar
  220. 220.
    Kim, J. H., Hamlin, A. S., & Richardson, R. (2009). Fear extinction across development: The involvement of the medial prefrontal cortex as assessed by temporary inactivation and immunohistochemistry. The Journal of Neuroscience, 29(35), 10802–10808.PubMedGoogle Scholar
  221. 221.
    Bernal, S., Miner, P., Abayev, Y., et al. (2009). Role of amygdala dopamine D1 and D2 receptors in the acquisition and expression of fructose-conditioned flavor preferences in rats. Behavioural Brain Research, 205(1), 183–190.PubMedGoogle Scholar
  222. 222.
    Burgos-Robles, A., Vidal-Gonzalez, I., & Quirk, G. J. (2009). Sustained conditioned responses in prelimbic prefrontal neurons are correlated with fear expression and extinction failure. The Journal of Neuroscience, 29(26), 8474–8482.PubMedGoogle Scholar
  223. 223.
    Langton, J. M., & Richardson, R. (2009). The role of context in the re-extinction of learned fear. Neurobiology of Learning and Memory, 92(4), 496–503.PubMedGoogle Scholar
  224. 224.
    Olds, J., & Hirano, T. (1969). Conditioned responses of hippocampal and other neurons. EEG & Clinical Neurophysiology, 26, 159–166.Google Scholar
  225. 225.
    Segal, M. (1973). Flow of conditioned responses in limbic telencephalic system of the rat. Journal of Neurophysiology, 36, 840–854.PubMedGoogle Scholar
  226. 226.
    Segal, M. (1973). Dissecting a short-term memory circuit in the rat brain. I. Changes in entorhinal unit activity and responsiveness of the hippocampal units in the process of classical conditioning. Brain Research, 64, 281–292.PubMedGoogle Scholar
  227. 227.
    Berger, T. W., Rinaldi, P. C., Weisz, D. J., & Thompson, R. F. (1983). Single-unit analysis of different hippocampal cell types during classical conditioning of rabbit nictitating membrane response. Journal of Neurophysiology, 50(5), 1197–1219.PubMedGoogle Scholar
  228. 228.
    Bloch, V., & Laroche, S. (1981). Conditioning of hippocampal cells: Its acceleration and long-term facilitation by post-trial reticular stimulation. Behavioural Brain Research, 3(1), 23–42.PubMedGoogle Scholar
  229. 229.
    Brace, H. M., Jefferys, J. G., & Mellanby, J. (1985). Long-term changes in hippocampal physiology and learning ability of rats after intrahippocampal tetanus toxin. The Journal of Physiology, 368, 343–357.PubMedGoogle Scholar
  230. 230.
    Cammarota, M., Bernabeu, R., Izquierdo, I., & Medina, J. H. (1996). Reversible changes in hippocampal 3H-AMPA binding following inhibitory avoidance training in the rat. Neurobiology of Learning and Memory, 66(1), 85–88.PubMedGoogle Scholar
  231. 231.
    Edeline, J. M., Dutrieux, G., & Neuenschwander-el Massioui, N. (1988). Multiunit changes in hippocampus and medial geniculate body in free-behaving rats during acquisition and retention of a conditioned response to a tone. Behavioral and Neural Biology, 50(1), 61–79.PubMedGoogle Scholar
  232. 232.
    Sakurai, Y. (1996). Hippocampal and neocortical cell assemblies encode memory processes for different types of stimuli in the rat. The Journal of Neuroscience, 16(8), 2809–2819.PubMedGoogle Scholar
  233. 233.
    Thompson, L. T., Moyer, J. R., Jr., & Disterhoft, J. F. (1996). Transient changes in excitability of rabbit CA3 neurons with a time course appropriate to support memory consolidation. Journal of Neurophysiology, 76(3), 1836–1849.PubMedGoogle Scholar
  234. 234.
    Wu, Z., Desmond, N. L., & Levy, W. B. (1998). Homosynaptic long-term depression of CA3-CA3 synapses in the in vivo hippocampus. Brain Research, 789(2), 335–338.PubMedGoogle Scholar
  235. 235.
    Ruusuvirta, T., Korhonen, T., Penttonen, M., Arikoski, J., & Kivirikko, K. (1995). Behavioral and hippocampal evoked responses in an auditory oddball situation when an unconditioned stimulus is paired with deviant tones in the cat: Experiment II. International Journal of Psychophysiology, 20(1), 41–47.PubMedGoogle Scholar
  236. 236.
    Woodworth, R. S. (1973). Dynamic psychology. New York: Arno Press.Google Scholar
  237. 237.
    Cermak, L. S. (1984). The episodic-semantic distinction in amnesia. New York: Guilford Press.Google Scholar
  238. 238.
    Moscovitch, M. (1982). Multiple dissociations of function in amnesia. In L. Cermak (Ed.), Human memory and amnesia (pp. 337–370). Hillsdale, NJ: Erlbaum.Google Scholar
  239. 239.
    Schacter, D. L. (1985). Multiple forms of memory in humans and animals. In N. M. Weinberger, J. L. McGaugh, & G. Lynch (Eds.), Memory systems of the brain: Animal and human cognitive processes (pp. 351–379). New York: Guilford Press.Google Scholar
  240. 240.
    Squire, L. R., & Butters, N. (1984). Neuropsychology of memory. New York: Guilford Press.Google Scholar
  241. 241.
    Hull, C. L. (1970). Mathematico deductive theory of rote learning: A study in scientific methodology. Westport, CT: Greenwood Press.Google Scholar
  242. 242.
    Brunton, T. L. (1883). On the nature of inhibition, and the action of drugs upon it. Nature, 27, 419–422.Google Scholar
  243. 243.
    Sherrington, C. S. (1947). The integrative action of the nervous system (7th ed.). London: Cambridge University Press.Google Scholar
  244. 244.
    Eccles, J. C. (1964). The physiology of the synapses. Berlin: Springer.Google Scholar
  245. 245.
    Shepherd, G. M. (2004). The synaptic organization of the brain (5th ed.). Oxford: Oxford University Press.Google Scholar
  246. 246.
    Konorski, J. (1967). Integrative activity of the brain (second printing ed.). Chicago: The University of Chicago Press.Google Scholar
  247. 247.
    Konorski, J. (1968). Conditioned reflexes and neuron organization. Fascism reprint of the 1948 ed. New York: Hafner Publishing.Google Scholar
  248. 248.
    Konorski, J. (1972). Physiological mechanisms of internal inhibition. In R. A. Boakes & M. S. Halliday (Eds.), Inhibition and learning. London: Academic.Google Scholar
  249. 249.
    Konorski, J., Dickinson, A., & Boakes, R. A. (1979). Mechanisms of learning and motivation: A memorial volume to Jerzy Konorski. Hillsdale, NJ: Lawrence Erlbaum; distributed by Halsted Press Division of Wiley.Google Scholar
  250. 250.
    Hubel, D., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. The Journal of Physiology, 195, 215–243.PubMedGoogle Scholar
  251. 251.
    Hubel, D. H., & Wiesel, T. N. (1977). Functional architecture of macaque monkey visual cortex. Proceedings of the Royal Society of London, 198, 1–59.PubMedGoogle Scholar
  252. 252.
    Pollen, D., & Ronner, S. F. (1975). Periodic excitability changes across the receptive fields of complex cells in the striate and parastriate cortex of the cat. The Journal of Physiology, 245, 667–697.PubMedGoogle Scholar
  253. 253.
    Lloyd, D. P. C. (1941). A direct central inhibitory action of dromically conducted impulses. Journal of Neurophysiology, 4, 184–190.Google Scholar
  254. 254.
    Lloyd, D. P. C. (1946). Facilitation and inhibition of spinal motoneurons. Journal of Neurophysiology, 9, 421–438.PubMedGoogle Scholar
  255. 255.
    Nakamura, Y., Goldberg, L. J., & Clemente, C. D. (1967). Nature of suppression of the masseteric monosynaptic reflex induced by stimulation of the orbital gyrus of the cat. Brain Research, 6, 184–198.PubMedGoogle Scholar
  256. 256.
    Sechenov, L. M. (1956). Selected physiological and psychological works. Moscow: Foreign Languages Publishing House.Google Scholar
  257. 257.
    Jackson, J. H. (1958). Selected writings. New York: Basic Books.Google Scholar
  258. 258.
    Ferris, C. F., Singer, E. A., Meenan, D. M. J., & Albers, H. E. (1988). Inhibition of vasopressin-stimulated flank marking behavior by V2-receptor antagonists. European Journal of Pharmacology, 154, 153–159.PubMedGoogle Scholar
  259. 259.
    Ferris, C. F., & Albers, H. E. (1984). Effect of peptides on flank gland grooming following microinjection into the medial preoptic area of golden hamsters. Neurosciences Abstracts, 10, 170.Google Scholar
  260. 260.
    Ferris, C. F., Axelson, J. F., Shinto, L. H., & Albers, H. E. (1987). Scent marking and the maintenance of dominant/subordinate status in male golden hamsters. Physiology and Behavior, 40(5), 661–664.PubMedGoogle Scholar
  261. 261.
    Ferris, C. F., Meenan, D. M., Axelson, J. F., & Albers, H. E. (1986). A vasopressin antagonist can reverse dominant/subordinate behavior in hamsters. Physiology and Behavior, 38(1), 135–138.PubMedGoogle Scholar
  262. 262.
    Ferris, C. F., Pollock, J., Albers, H. E., & Leeman, S. E. (1985). Inhibition of flank-marking behavior in golden hamsters by microinjection of a vasopressin antagonist into the hypothalamus. Neuroscience Letters, 55(2), 239–243.PubMedGoogle Scholar
  263. 263.
    Hess, W. R. (1957). The functional organization of the diencephalon. New York: Grune and Stratton.Google Scholar
  264. 264.
    Hess, W. R. (1969). Hypothalamus and thalamus: Experimental documentation. Stuttgart: Georg Thieme Verlag.Google Scholar
  265. 265.
    Thomas, E. (1972). Excitatory and inhibitory processes. In R. A. Boakes & M. S. Halliday (Eds.), Inhibition and learning. London: Academic.Google Scholar
  266. 266.
    Bradford, H. F., Bennett, G. W., & Thomas, A. J. (1973). Depolarizing stimuli and the release of physiologically active amino acids from suspensions of mammalian synaptosomes. Journal of Neurochemistry, 21(3), 495–505.PubMedGoogle Scholar
  267. 267.
    Thomas, E., & Evans, G. J. (1983). Septal inhibition of aversive emotional states. Physiology and Behavior, 31(5), 673–678.PubMedGoogle Scholar
  268. 268.
    Thomas, J. B., & Thomas, K. A. (1972). Running-wheel avoidance behavior following septal area lesions in rats. Journal of Comparative and Physiological Psychology, 81(1), 143–148.PubMedGoogle Scholar
  269. 269.
    Thomas, M. R., & Calaresu, F. R. (1972). Responses of single units in the medial hypothalamus to electrical stimulation of the carotid sinus nerve in the cat. Brain Research, 44(1), 49–62.PubMedGoogle Scholar
  270. 270.
    Thomas, S., & Anand, B. K. (1970). Effect of electrical stimulation of the hypothalamus on thyroid secretion in monkeys. Journal of Neuro-Visceral Relations, 31(4), 399–408.PubMedGoogle Scholar
  271. 271.
    Thomas, E., & Basbaum, C. (1972). Excitatory and inhibitory processes in hypothalamic conditioning in cats: Role of the history of the negative stimulus. Journal of Comparative and Physiological Psychology, 79(3), 419–424.PubMedGoogle Scholar
  272. 272.
    Adamec, R. E. (1993). Partial limbic kindling—Brain, behavior, and the benzodiazepine receptor. Physiology and Behavior, 54(3), 531–545.PubMedGoogle Scholar
  273. 273.
    Gautier, J. F., Chen, K., Salbe, A. D., et al. (2000). Differential brain responses to satiation in obese and lean men. Diabetes, 49(5), 838–846.PubMedGoogle Scholar
  274. 274.
    Ghashghaei, H. T., & Barbas, H. (2002). Pathways for emotion: Interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience, 115(4), 1261–1279.PubMedGoogle Scholar
  275. 275.
    Goldin, P. R., McRae, K., Ramel, W., & Gross, J. J. (2008). The neural bases of emotion regulation: Reappraisal and suppression of negative emotion. Biological Psychiatry, 63(6), 577–586.PubMedGoogle Scholar
  276. 276.
    Gray, J. A. (1972). The structure of the emotions and the limbic system. Ciba Foundation Symposium, 8, 87–120.PubMedGoogle Scholar
  277. 277.
    McNaughton, N., & Corr, P. J. (2004). A two-dimensional neuropsychology of defense: Fear/anxiety and defensive distance. Neuroscience and Biobehavioral Reviews, 28(3), 285–305.PubMedGoogle Scholar
  278. 278.
    Timms, R. J. (1977). Cortical inhibition and facilitation of the defence reaction [proceedings]. The Journal of Physiology, 266(1), 98P–99P.PubMedGoogle Scholar
  279. 279.
    Zbrozyna, A. W., & Westwood, D. M. (1991). Stimulation in prefrontal cortex inhibits conditioned increase in blood pressure and avoidance bar pressing in rats. Physiology and Behavior, 49(4), 705–708.PubMedGoogle Scholar
  280. 280.
    Grastyan, E., Szabo, I., Molnar, P., & Kolta, P. (1968). Rebound, reinforcement and self-stimulation. Communications in Behavioral Biology, 2, 235–266.Google Scholar
  281. 281.
    Young, C. K., Koke, S. J., Kiss, Z. H., & Bland, B. H. (2009). Deep brain stimulation of the posterior hypothalamic nucleus reverses akinesia in bilaterally 6-hydroxydopamine-lesioned rats. Neuroscience, 162(1), 1–4.PubMedGoogle Scholar
  282. 282.
    Welkenhuysen, M., Van Kuyck, K., Das, J., Sciot, R., & Nuttin, B. (2008). Electrical stimulation in the lateral hypothalamus in rats in the activity-based anorexia model. Neurosurgical Focus, 25(1), E7.PubMedGoogle Scholar
  283. 283.
    Pichon, S., de Gelder, B., & Grezes, J. (2008). Emotional modulation of visual and motor areas by dynamic body expressions of anger. Social Neuroscience, 3(3–4), 199–212.PubMedGoogle Scholar
  284. 284.
    Neal, J. K., & Wade, J. (2007). Courtship and copulation in the adult male green anole: Effects of season, hormone and female contact on reproductive behavior and morphology. Behavioural Brain Research, 177(2), 177–185.PubMedGoogle Scholar
  285. 285.
    Bland, B. H., Bird, J., Jackson, J., & Natsume, K. (2006). Medial septal modulation of the ascending brainstem hippocampal synchronizing pathways in the freely moving rat. Hippocampus, 16(1), 11–19.PubMedGoogle Scholar
  286. 286.
    Portillo, W., Basanez, E., & Paredes, R. G. (2003). Permanent changes in sexual behavior induced by medial preoptic area kindling-like stimulation. Brain Research, 961(1), 10–14.PubMedGoogle Scholar
  287. 287.
    Ikemoto, S., Witkin, B. M., & Morales, M. (2003). Rewarding injections of the cholinergic agonist carbachol into the ventral tegmental area induce locomotion and c-Fos expression in the retrosplenial area and supramammillary nucleus. Brain Research, 969(1–2), 78–87.PubMedGoogle Scholar
  288. 288.
    Wayner, M. J. (2002). Craving for alcohol in the rat: Adjunctive behavior and the lateral hypothalamus. Pharmacology Biochemistry and Behavior, 73(1), 27–43.Google Scholar
  289. 289.
    Bussey, T. J., Wise, S. P., & Murray, E. A. (2001). The role of ventral and orbital prefrontal cortex in conditional visuomotor learning and strategy use in rhesus monkeys (Macaca mulatta). Behavioral Neuroscience, 115(5), 971–982.PubMedGoogle Scholar
  290. 290.
    Morgan, H. D., Watchus, J. A., Milgram, N. W., & Fleming, A. S. (1999). The long lasting effects of electrical simulation of the medial preoptic area and medial amygdala on maternal behavior in female rats. Behavioural Brain Research, 99(1), 61–73.PubMedGoogle Scholar
  291. 291.
    Shankaranarayana Rao, B. S., Raju, T. R., & Meti, B. L. (1998). Self-stimulation of lateral hypothalamus and ventral tegmentum increases the levels of noradrenaline, dopamine, glutamate, and AChE activity, but not 5-hydroxytryptamine and GABA levels in hippocampus and motor cortex. Neurochemical Research, 23(8), 1053–1059.PubMedGoogle Scholar
  292. 292.
    Nolan, P. C., & Waldrop, T. G. (1997). Integrative role of medullary neurons of the cat during exercise. Experimental Physiology, 82(3), 547–558.PubMedGoogle Scholar
  293. 293.
    Pavlova, I. V., Volkov, I. V., & Mats, V. N. (1996). Influence of stimulation of the medial hypothalamus on the interaction of neurons of the rabbit neocortex. Neuroscience and Behavioral Physiology, 26(4), 313–320.PubMedGoogle Scholar
  294. 294.
    Kravtsov, A. N., & Sudakov, S. K. (1996). Reaction of sensorimotor cortex neurons to stimulation of the lateral hypothalamus in conditions of microiontophoretic application of tetragastrin and bradykinin: The role of food reinforcement. Neuroscience and Behavioral Physiology, 26(6), 493–499.PubMedGoogle Scholar
  295. 295.
    Duan, Y. F., Winters, R., McCabe, P. M., Green, E. J., Huang, Y., & Schneiderman, N. (1996). Behavioral characteristics of defense and vigilance reactions elicited by electrical stimulation of the hypothalamus in rabbits. Behavioural Brain Research, 81(1–2), 33–41.PubMedGoogle Scholar
  296. 296.
    Arita, H., Kita, I., & Sakamoto, M. (1995). Two distinct descending inputs to the cricothyroid motoneuron in the medulla originating from the amygdala and the lateral hypothalamic area. Advances in Experimental Medicine and Biology, 393, 53–58.PubMedGoogle Scholar
  297. 297.
    Rao, B. S., Desiraju, T., Meti, B. L., & Raju, T. R. (1994). Plasticity of hippocampal and motor cortical pyramidal neurons induced by self-stimulation experience. Indian Journal of Physiology and Pharmacology, 38(1), 23–28.PubMedGoogle Scholar
  298. 298.
    Takigawa, M., Ueyama, K., Fukuzako, H., Maeda, H., & Matsumoto, K. (1993). Intracranial self-stimulation and locomotor traces as indicators for evaluating the homopantothenic acid. The Japanese Journal of Psychiatry and Neurology, 47(4), 915–920.PubMedGoogle Scholar
  299. 299.
    Osborne, P. G., Mataga, N., Onoe, H., & Watanabe, Y. (1993). Behavioral activation by stimulation of a GABAergic mechanism in the preoptic area of rat. Neuroscience Letters, 158(2), 201–204.PubMedGoogle Scholar
  300. 300.
    Bauco, P., Wang, Y., & Wise, R. A. (1993). Lack of sensitization or tolerance to the facilitating effect of ventral tegmental area morphine on lateral hypothalamic brain stimulation reward. Brain Research, 617(2), 303–308.PubMedGoogle Scholar
  301. 301.
    Adams, D. B., Boudreau, W., Cowan, C. W., Kokonowski, C., Oberteuffer, K., & Yohay, K. (1993). Offense produced by chemical stimulation of the anterior hypothalamus of the rat. Physiology and Behavior, 53(6), 1127–1132.PubMedGoogle Scholar
  302. 302.
    Sinnamon, H. M. (1992). Microstimulation mapping of the basal forebrain in the anesthetized rat: The “preoptic locomotor region”. Neuroscience, 50(1), 197–207.PubMedGoogle Scholar
  303. 303.
    Leyton, M., & Stewart, J. (1992). The stimulation of central kappa opioid receptors decreases male sexual behavior and locomotor activity. Brain Research, 594(1), 56–74.PubMedGoogle Scholar
  304. 304.
    Davydova, E. K., & Grigor’yan, G. A. (1992). Role of the lateral and medial hypothalamus in the reproduction of the motoric reaction which is a signal during the development of classical conditioned reflexes. Neuroscience and Behavioral Physiology, 22(1), 17–25.PubMedGoogle Scholar
  305. 305.
    Davydova, E. K., & Grigor’yan, G. A. (1992). Role of the lateral and medial hypothalamus in the reproduction of alimentary and defensive instrumental reactions. Neuroscience and Behavioral Physiology, 22(2), 104–112.PubMedGoogle Scholar
  306. 306.
    Brandao, M. L., Rees, H., Witt, S., & Roberts, M. H. (1991). Central antiaversive and antinociceptive effects of anterior pretectal nucleus stimulation: Attenuation of autonomic and aversive effects of medial hypothalamic stimulation. Brain Research, 542(2), 266–272.PubMedGoogle Scholar
  307. 307.
    Sklow, B., & Sinnamon, H. M. (1990). Initiation and execution of locomotion elicited by diencephalic stimulation: Regional differences in response to nembutal. Pharmacology Biochemistry and Behavior, 36(4), 719–724.Google Scholar
  308. 308.
    Sinnamon, H. M., & Sklow, B. (1990). Latency to initiate locomotion elicited by stimulation of the diencephalon positively correlates in awake and anesthetized rats. Pharmacology Biochemistry and Behavior, 36(4), 725–728.Google Scholar
  309. 309.
    Yamamoto, T., Matsuo, R., Kiyomitsu, Y., & Kitamura, R. (1989). Response properties of lateral hypothalamic neurons during ingestive behavior with special reference to licking of various taste solutions. Brain Research, 481(2), 286–297.PubMedGoogle Scholar
  310. 310.
    Isaacson, R. L., & Pribram, K. H. (1975). The hippocampus. New York: Plenum Press.Google Scholar
  311. 311.
    Lissak, K., Grastyan, E., Molnar, L., Kekesi, F., Szabo, J., & Vereby, G. (1957). [Significance of the hypothalamus and hippocampus in the higher nervous activity]. Ceskoslovenská Fysiologie, 6(4), 461–466.PubMedGoogle Scholar
  312. 312.
    Parent, M. A., Wang, L., Su, J., Netoff, T., & Yuan, L. L. (2009). Identification of the hippocampal input to medial prefrontal cortex in vitro. Cerebral Cortex, 20(2), 393–403.PubMedGoogle Scholar
  313. 313.
    Roberts, A. C., Tomic, D. L., Parkinson, C. H., et al. (2007). Forebrain connectivity of the prefrontal cortex in the marmoset monkey (Callithrix jacchus): An anterograde and retrograde tract-tracing study. The Journal of Comparative Neurology, 502(1), 86–112.PubMedGoogle Scholar
  314. 314.
    McIntosh, A. R., & Gonzalez-Lima, F. (1998). Large-scale functional connectivity in associative learning: Interrelations of the rat auditory, visual, and limbic systems. Journal of Neurophysiology, 80(6), 3148–3162.PubMedGoogle Scholar
  315. 315.
    Bouille, C., Layton, B., & Renaud, L. P. (1981). Influence of dorsal hippocampus stimulation on the excitability of medial hypothalamic neurons in the rat. Neuroendocrinology, 33(6), 321–327.PubMedGoogle Scholar
  316. 316.
    Clark, C. V., & Isaacson, R. L. (1965). Effect of bilateral hippocampal ablation on DRL performance. Journal of Comparative and Physiological Psychology, 59, 137–140.PubMedGoogle Scholar
  317. 317.
    Schmalz, L., & IIsaacson, R. L. (1966). The effects of preliminary training conditions upon DRL 20 performance in the hippocampectomized rat. Physiology and Behavior, 1, 175–182.Google Scholar
  318. 318.
    Isaacson, R. L. (1972). Neural systems of the limbic brain and behavioral inhibition. In R. A. Boakes & M. S. Halliday (Eds.), Inhibition and learning. New York: Academic.Google Scholar
  319. 319.
    Isaacson, R. L. (1982). The hippocampal formation and its regulation of attention and behavior. In E. Grastyan & P. Molnar (Eds.), Sensory functions: Advances in physiological sciences (Vol. 16). New York: Pergamon Press.Google Scholar
  320. 320.
    Gray, J. A. (1970). Sodium amobarbital, the hippocampal theta rhythm, and the partial reinforcement extinction effect. Psychological Review, 77, 465–480.PubMedGoogle Scholar
  321. 321.
    Molnar, P., & Grastyan, E. (1972). Inhibition in motivation and reinforcement. In R. A. Boakes & M. S. Halliday (Eds.), Inhibition and learning. London: Academic.Google Scholar
  322. 322.
    Vinogradova, O. S., & Strafekhina, V. S. (1974). [Dynamic characteristics of neuronal reactions in the limbic cortex of the rabbit]. Zhurnal Vyssheĭ Nervnoĭ Deiatelnosti Imeni I P Pavlova, 24(2), 337–346.PubMedGoogle Scholar
  323. 323.
    Vinogradova, O. S., & Zolotukhina, L. I. (1972). [Sensory characteristics of the neurons of the medial and lateral septal nuclei]. Zhurnal Vyssheĭ Nervnoĭ Deiatelnosti Imeni I P Pavlova, 22(6), 1260–1269.PubMedGoogle Scholar
  324. 324.
    Sokolov, E. N. (2002). The orienting response in information processing. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  325. 325.
    Groves, P. M., De Marco, R., & Thompson, R. F. (1969). Habituation and sensitization of spinal interneuron activity in acute spinal cat. Brain Research, 14(2), 521–525.PubMedGoogle Scholar
  326. 326.
    Hendrickson, C. W., Kimble, R. J., & Kimble, D. P. (1969). Hippocampal lesions and the orienting response. Journal of Comparative and Physiological Psychology, 67(2), 220–227.PubMedGoogle Scholar
  327. 327.
    Oswald, C. J., Yee, B. K., Rawlins, J. N., Bannerman, D. B., Good, M., & Honey, R. C. (2002). The influence of selective lesions to components of the hippocampal system on the orienting [correction of orientating] response, habituation and latent inhibition. European Journal of Neuroscience, 15(12), 1983–1990.PubMedGoogle Scholar
  328. 328.
    Polyanskii, V. B., Evtikhin, D. V., & Sokolov, E. N. (2004). Reflection of an orienting reflex in the phases of evoked potentials in the rabbit visual cortex and hippocampus during substitution of stimulus intensity. Neuroscience and Behavioral Physiology, 34(1), 19–28.PubMedGoogle Scholar
  329. 329.
    Cohen, R., Kaplan, R. F., Meadows, M. E., & Kwan, E. (1996). Comparison of the orienting response during the intracarotid and posterior cerebral artery amobarbital tests: A case study. Neurocase, 2, 93–98.Google Scholar
  330. 330.
    Williams, L. M., Brammer, M. J., Skerrett, D., et al. (2000). The neural correlates of orienting: An integration of fMRI and skin conductance orienting. Neuroreport, 11(13), 3011–3015.PubMedGoogle Scholar
  331. 331.
    Yamaguchi, S., Hale, L. A., D’Esposito, M., & Knight, R. T. (2004). Rapid prefrontal-hippocampal habituation to novel events. The Journal of Neuroscience, 24(23), 5356–5363.PubMedGoogle Scholar
  332. 332.
    Williams, L. M., Felmingham, K., Kemp, A. H., et al. (2007). Mapping frontal-limbic correlates of orienting to change detection. Neuroreport, 18(3), 197–202.PubMedGoogle Scholar
  333. 333.
    Dowman, R., Darcey, T., Barkan, H., Thadani, V., & Roberts, D. (2007). Human intracranially-recorded cortical responses evoked by painful electrical stimulation of the sural nerve. NeuroImage, 34(2), 743–763.PubMedGoogle Scholar
  334. 334.
    Valenstein, E. S., & Valenstein, T. (1964). Interaction of positive and negative reinforcing neural systems. Science, 145, 1456–1458.PubMedGoogle Scholar
  335. 335.
    Kemble, E. D., & Beckman, G. J. (1970). Vicarious trial and error following amygdaloid lesions in rats. Neuropsychologia, 8, 161–169.PubMedGoogle Scholar
  336. 336.
    Pribram, K. H. (1969). The neurobehavioral analysis of limbic forebrain mechanisms: Revision and progress report. In D. S. Lehrman, R. A. Hinde, & E. Shaw (Eds.), Advances in the study of behavior (Vol. 2). New York: Academic.Google Scholar
  337. 337.
    Bagshaw, M. H., Kimble, D. P., & Pribram, K. H. (1965). The GSR of monkeys during orienting and habituation and after ablation of the amygdala, hippocampus and inferotemporal cortex. Neuropsychologia, 3, 111–119.Google Scholar
  338. 338.
    Bagshaw, M. H., & Pribram, J. D. (1968). Effect of amygdalectomy on stimulus threshold of the monkey. Experimental Neurology, 20, 197–202.PubMedGoogle Scholar
  339. 339.
    Bagshaw, M. H., Mackworth, N. H., & Pribram, K. H. (1972). The effect of resections of the inferotemporal cortex or the amygdala on visual orienting and habituation. Neuropsychologia, 10, 153–162.PubMedGoogle Scholar
  340. 340.
    Bagshaw, M. H., & Pribram, K. H. (1965). Effect of amygdalectomy on transfer of training in monkeys. Journal of Comparative and Physiological Psychology, 59, 118–121.PubMedGoogle Scholar
  341. 341.
    Mishkin, M. (1978). Memory in monkeys severely impaired by combined but not by separate removal of amygdala and hippocampus. Nature, 273, 297–298.PubMedGoogle Scholar
  342. 342.
    Mishkin, M., Malamut, B., & Bachevalier, J. (1984). Memories and habits: Two neural systems. In G. Lynch, J. L. McGaugh, & N. M. Weinberger (Eds.), Neurobiology of learning and memory (pp. 65–77). New York: Guilford Press.Google Scholar
  343. 343.
    Murray, E. A., & Mishkin, M. (1984). Severe tactual as well as visual memory deficits following combined removal of the amygdala and hippocampus in monkeys. Journal of Neuroscience, 4, 2565–2580.PubMedGoogle Scholar
  344. 344.
    Murray, E. A., & Mishkin, M. (1985). Amygdalectomy impairs crossmodel association in monkeys. Science, 228, 601–605.Google Scholar
  345. 345.
    Murray, E. A., & Mishkin, M. (1983). A further examination of the medial temporal lobe structures involved in recognition memory in the monkey. Society for Neuroscience Abstract, 9, 27.Google Scholar
  346. 346.
    Murray, E. A., & Mishkin, M. (1986). Visual recognition in monkeys following rhinal cortical ablations combined with either amygdalectomy or hippocampectomy. Journal of Neuroscience, 6, 1991–2003.PubMedGoogle Scholar
  347. 347.
    Spiegler, B. J., & Mishkin, M. (1981). Evidence for the sequential participation of inferior temporal cortex and amygdala in the acquisition of stimulus-reward associations. Behavioural Brain Research, 3(3), 303–317.PubMedGoogle Scholar
  348. 348.
    Breiter, H. C., Etcoff, N. L., Whalen, P. J., et al. (1996). Response and habituation of the human amygdala during visual processing of facial expression. Neuron, 17(5), 875–887.PubMedGoogle Scholar
  349. 349.
    Morris, J. S., Frith, C. D., Perrett, D. I., et al. (1996). A differential neural response in the human amygdala to fearful and happy facial expressions. Nature, 383(6603), 812–815.PubMedGoogle Scholar
  350. 350.
    Adolphs, R., Tranel, D., Damasio, H., & Damasio, A. R. (1995). Fear and the human amygdala. The Journal of Neuroscience, 15(9), 5879–5891.PubMedGoogle Scholar
  351. 351.
    LeDoux, J. E. (1993). Emotional memory systems in the brain. Behavioural Brain Research, 58(1–2), 69–79.PubMedGoogle Scholar
  352. 352.
    Grossberg, S., & Merrill, J. W. (1992). A neural network model of adaptively timed reinforcement learning and hippocampal dynamics. Brain Research. Cognitive Brain Research, 1(1), 3–38.PubMedGoogle Scholar
  353. 353.
    Ono, T., Tamura, R., Nishijo, H., Nakamura, K., & Tabuchi, E. (1989). Contribution of amygdalar and lateral hypothalamic neurons to visual information processing of food and nonfood in monkey. Physiology and Behavior, 45(2), 411–421.PubMedGoogle Scholar
  354. 354.
    Milner, P. M. (1991). Brain-stimulation reward: A review. Canadian Journal of Psychology, 45(1), 1–36.PubMedGoogle Scholar
  355. 355.
    Dickinson, A. (1972). Septal damage and response output. In R. A. Boakes & M. S. Halliday (Eds.), Inhibition and learning. London: Academic.Google Scholar
  356. 356.
    Raphaelson, A. C., Isaacson, R. L., & Douglas, R. J. (1966). The effect of limbic damage on the retention and performance of a runway response. Neuropsychologia, 4, 253–264.Google Scholar
  357. 357.
    Schwartzbaum, J. S., Kellicut, M. H., Spieth, T. M., & Thompson, J. B. (1964). Effects of septal lesions in rats on response inhibition associated with food reinforced behavior. Journal of Comparative and Physiological Psychology, 58, 217–224.PubMedGoogle Scholar
  358. 358.
    Dickinson, A. (1972). Disruption of free-operant successive discriminations by septal damage in rats. Quarterly Journal of Experimental Psychology, 24(4), 524–535.PubMedGoogle Scholar
  359. 359.
    Carlson, N. R., & Cole, J. R. (1970). Enhanced alternation performance following septal lesions in mice. Journal of Comparative and Physiological Psychology, 73, 157–161.Google Scholar
  360. 360.
    Carlson, N. R., & Norman, R. J. (1971). Enhanced go, no-go single-lever alternation of mice with septal lesions. Journal of Comparative and Physiological Psychology, 75(3), 508–512.PubMedGoogle Scholar
  361. 361.
    Carlson, N. R., & Vallante, M. A. (1974). Enhanced cue function of olfactory stimulation in mice with septal lesions. Journal of Comparative and Physiological Psychology, 87(2), 237–248.PubMedGoogle Scholar
  362. 362.
    Grossman, S. P. (1976). Behavioral functions of the septum: A re-analysis. In J. F. DeFrance (Ed.), The septal nuclei. New York: Plenum Press.Google Scholar
  363. 363.
    Macdougall, J. M., Van Hoesen, G. W., & Mitchell, J. C. (1969). Anatomical organization of septal projections in maintenance of DRL behavior in rats. Journal of Comparative and Physiological Psychology, 68(4), 568–575.PubMedGoogle Scholar
  364. 364.
    Van Hoesen, G. W., MacDougall, J. M., & Mitchell, J. C. (1969). Anatomical specificity of septal projections in active and passive avoidance behavior in rats. Journal of Comparative and Physiological Psychology, 68(1), 80–89.PubMedGoogle Scholar
  365. 365.
    Dickinson, A. (1975). Suppressive and enhancing effects of footshock on food-reinforced operant responding following septal lesions in rats. Journal of Comparative and Physiological Psychology, 88(2), 851–861.PubMedGoogle Scholar
  366. 366.
    Fuxjager, M. J., Forbes-Lorman, R. M., Coss, D. J., Auger, C. J., Auger, A. P., & Marler, C. A. (2010). Winning territorial disputes selectively enhances androgen sensitivity in neural pathways related to motivation and social aggression. Proceedings of the National Academy of Sciences of the United States of America, 107(27), 12393–12398.PubMedGoogle Scholar
  367. 367.
    Jalabert, M., Aston-Jones, G., Herzog, E., Manzoni, O., & Georges, F. (2009). Role of the bed nucleus of the stria terminalis in the control of ventral tegmental area dopamine neurons. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 33(8), 1336–1346.Google Scholar
  368. 368.
    McElligott, Z. A., & Winder, D. G. (2009). Modulation of glutamatergic synaptic transmission in the bed nucleus of the stria terminalis. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 33(8), 1329–1335.Google Scholar
  369. 369.
    Shearman, E., Fallon, S., Sershen, H., & Lajtha, A. (2008). Nicotine-induced monoamine neurotransmitter changes in the brain of young rats. Brain Research Bulletin, 76(6), 626–639.PubMedGoogle Scholar
  370. 370.
    Grueter, B. A., Gosnell, H. B., Olsen, C. M., et al. (2006). Extracellular-signal regulated kinase 1-dependent metabotropic glutamate receptor 5-induced long-term depression in the bed nucleus of the stria terminalis is disrupted by cocaine administration. The Journal of Neuroscience, 26(12), 3210–3219.PubMedGoogle Scholar
  371. 371.
    Dumont, E. C., Mark, G. P., Mader, S., & Williams, J. T. (2005). Self-administration enhances excitatory synaptic transmission in the bed nucleus of the stria terminalis. Nature Neuroscience, 8(4), 413–414.PubMedGoogle Scholar
  372. 372.
    Dong, H. W., & Swanson, L. W. (2003). Projections from the rhomboid nucleus of the bed nuclei of the stria terminalis: Implications for cerebral hemisphere regulation of ingestive behaviors. The Journal of Comparative Neurology, 463(4), 434–472.PubMedGoogle Scholar
  373. 373.
    Eiler, W. J., II, Seyoum, R., Foster, K. L., Mailey, C., & June, H. L. (2003). D1 dopamine receptor regulates alcohol-motivated behaviors in the bed nucleus of the stria terminalis in alcohol-preferring (P) rats. Synapse, 48(1), 45–56.PubMedGoogle Scholar
  374. 374.
    Gong, W., Neill, D. B., & Justice, J. B., Jr. (1995). Increased sensitivity to cocaine place-preference conditioning by septal lesions in rats. Brain Research, 683(2), 221–227.PubMedGoogle Scholar
  375. 375.
    Igelstrom, K. M., Herbison, A. E., & Hyland, B. I. (2010). Enhanced c-Fos expression in superior colliculus, paraventricular thalamus and septum during learning of cue-reward association. Neuroscience, 168(3), 706–714.PubMedGoogle Scholar
  376. 376.
    Zhao, Y., Dayas, C. V., Aujla, H., Baptista, M. A., Martin-Fardon, R., & Weiss, F. (2006). Activation of group II metabotropic glutamate receptors attenuates both stress and cue-induced ethanol-seeking and modulates c-fos expression in the hippocampus and amygdala. The Journal of Neuroscience, 26(39), 9967–9974.PubMedGoogle Scholar
  377. 377.
    Balboa, R. M., & Grzywacz, N. M. (2000). The role of early retinal lateral inhibition: More than maximizing luminance information. Visual Neuroscience, 17(1), 77–89.PubMedGoogle Scholar
  378. 378.
    Kim, J., & Wilson, H. R. (1997). Motion integration over space: Interaction of the center and surround motion. Vision Research, 37(8), 991–1005.PubMedGoogle Scholar
  379. 379.
    Kurtenbach, W., & Magnussen, S. (1981). Inhibition, disinhibition, and summation among orientation detectors in human vision. Experimental Brain Research, 43(2), 193–198.PubMedGoogle Scholar
  380. 380.
    Rizzolatti, G., & Camarda, R. (1975). Inhibition of visual responses of single units in the cat visual area of the lateral suprasylvian gyrus (Clare-Bishop area) by the introduction of a second visual stimulus. Brain Research, 88(2), 357–361.PubMedGoogle Scholar
  381. 381.
    von Bekesy, G. (1967). Mach band type lateral inhibition in different sense organs. Journal of General Physiology, 50(3), 519–532.Google Scholar
  382. 382.
    Kuffler, S. W. (1952). Neurons in the retina: Organization, inhibition and excitation problems. Cold Spring Harbor Symposia on Quantitative Biology, 17, 281–292.PubMedGoogle Scholar
  383. 383.
    Kuffler, S. W. (1953). Discharge patterns and functional organization of mammalian retina. Journal of Neurophysiology, 16(1), 37–68.PubMedGoogle Scholar
  384. 384.
    Barinaga, M. (1997). Visual system provides clues to how the brain perceives. Science, 275(5306), 1583–1585.PubMedGoogle Scholar
  385. 385.
    Fujita, I., Tanaka, K., Ito, M., & Cheng, K. (1992). Columns for visual features of objects in monkey inferotemporal cortex. Nature, 360(6402), 343–346.PubMedGoogle Scholar
  386. 386.
    Grosof, D. H., Shapley, R. M., & Hawken, M. J. (1993). Macaque V1 neurons can signal ‘illusory’ contours. Nature, 365(6446), 550–552.PubMedGoogle Scholar
  387. 387.
    Jennings, C. (1995). Visual neuroscience. Reflections on transparent motion. Nature, 373(6515), 563.PubMedGoogle Scholar
  388. 388.
    Logothetis, N. K., & Schall, J. D. (1989). Neuronal correlates of subjective visual perception. Science, 245(4919), 761–763.PubMedGoogle Scholar
  389. 389.
    Pack, C. C., Berezovskii, V. K., & Born, R. T. (2001). Dynamic properties of neurons in cortical area MT in alert and anaesthetized macaque monkeys. Nature, 414(6866), 905–908.PubMedGoogle Scholar
  390. 390.
    Salzman, C. D., & Newsome, W. T. (1994). Neural mechanisms for forming a perceptual decision. Science, 264(5156), 231–237.PubMedGoogle Scholar
  391. 391.
    Mesulam, M.-M. (Ed.). (2000). Principles of behavioral neurology (2nd ed.). New York, NY: Oxford University Press.Google Scholar
  392. 392.
    Mesulam, M. M., & Geula, C. (1994). Chemoarchitectonics of axonal and perikaryal acetylcholinesterase along information processing systems of the human cerebral cortex. Brain Research Bulletin, 33(2), 137–153.PubMedGoogle Scholar
  393. 393.
    Zeki, S., & Shipp, S. (1988). The functional logic of cortical connections. Nature, 335, 311–317.PubMedGoogle Scholar
  394. 394.
    Khayat, P. S., Spekreijse, H., & Roelfsema, P. R. (2006). Attention lights up new object representations before the old ones fade away. The Journal of Neuroscience, 26(1), 138–142.PubMedGoogle Scholar
  395. 395.
    McAdams, C. J., & Reid, R. C. (2005). Attention modulates the responses of simple cells in monkey primary visual cortex. The Journal of Neuroscience, 25(47), 11023–11033.PubMedGoogle Scholar
  396. 396.
    Thiele, A. (2004). Perceptual learning: Is V1 up to the task? Current Biology, 14(16), R671–R673.PubMedGoogle Scholar
  397. 397.
    Series, P., Georges, S., Lorenceau, J., & Fregnac, Y. (2002). Orientation dependent modulation of apparent speed: A model based on the dynamics of feed-forward and horizontal connectivity in V1 cortex. Vision Research, 42(25), 2781–2797.PubMedGoogle Scholar
  398. 398.
    Lee, T. S., Yang, C. F., Romero, R. D., & Mumford, D. (2002). Neural activity in early visual cortex reflects behavioral experience and higher-order perceptual saliency. Nature Neuroscience, 5(6), 589–597.PubMedGoogle Scholar
  399. 399.
    Fallah, M., & Reynolds, J. H. (2001). Attention! V1 neurons lining up for inspection. Neuron, 31(5), 674–675.PubMedGoogle Scholar
  400. 400.
    Kastner, S., De Weerd, P., Pinsk, M. A., Elizondo, M. I., Desimone, R., & Ungerleider, L. G. (2001). Modulation of sensory suppression: Implications for receptive field sizes in the human visual cortex. Journal of Neurophysiology, 86(3), 1398–1411.PubMedGoogle Scholar
  401. 401.
    Gilbert, C., Ito, M., Kapadia, M., & Westheimer, G. (2000). Interactions between attention, context and learning in primary visual cortex. Vision Research, 40(10–12), 1217–1226.PubMedGoogle Scholar
  402. 402.
    Lamme, V. A., & Spekreijse, H. (2000). Modulations of primary visual cortex activity representing attentive and conscious scene perception. Frontiers in Bioscience, 5, D232–D243.PubMedGoogle Scholar
  403. 403.
    Ito, M., & Gilbert, C. D. (1999). Attention modulates contextual influences in the primary visual cortex of alert monkeys. Neuron, 22(3), 593–604.PubMedGoogle Scholar
  404. 404.
    McAdams, C. J., & Maunsell, J. H. (1999). Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. The Journal of Neuroscience, 19(1), 431–441.PubMedGoogle Scholar
  405. 405.
    Gallant, J. L., Connor, C. E., & Van Essen, D. C. (1998). Neural activity in areas V1, V2 and V4 during free viewing of natural scenes compared to controlled viewing. Neuroreport, 9(9), 2153–2158.PubMedGoogle Scholar
  406. 406.
    Vidyasagar, T. R. (1998). Gating of neuronal responses in macaque primary visual cortex by an attentional spotlight. Neuroreport, 9(9), 1947–1952.PubMedGoogle Scholar
  407. 407.
    Gallant, J. L., Connor, C. E., & Van Essen, D. C. (1998). Neural activity in areas V1, V2 and V4 during free viewing of natural scenes compared to controlled viewing. Neuroreport, 9(7), 1673–1678.PubMedGoogle Scholar
  408. 408.
    Luck, S. J., Chelazzi, L., Hillyard, S. A., & Desimone, R. (1997). Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. Journal of Neurophysiology, 77(1), 24–42.PubMedGoogle Scholar
  409. 409.
    Vogels, R., & Orban, G. A. (1994). Activity of inferior temporal neurons during orientation discrimination with successively presented gratings. Journal of Neurophysiology, 71(4), 1428–1451.PubMedGoogle Scholar
  410. 410.
    Chalk, M., Herrero, J. L., Gieselmann, M. A., Delicato, L. S., Gotthardt, S., & Thiele, A. (2010). Attention reduces stimulus-driven gamma frequency oscillations and spike field coherence in V1. Neuron, 66(1), 114–125.PubMedGoogle Scholar
  411. 411.
    Lima, B., Singer, W., Chen, N. H., & Neuenschwander, S. (2010). Synchronization dynamics in response to plaid stimuli in monkey V1. Cerebral Cortex, 20(7), 1556–1573.PubMedGoogle Scholar
  412. 412.
    Roberts, M., Delicato, L. S., Herrero, J., Gieselmann, M. A., & Thiele, A. (2007). Attention alters spatial integration in macaque V1 in an eccentricity-dependent manner. Nature Neuroscience, 10(11), 1483–1491.PubMedGoogle Scholar
  413. 413.
    Munneke, J., Heslenfeld, D. J., & Theeuwes, J. (2008). Directing attention to a location in space results in retinotopic activation in primary visual cortex. Brain Research, 1222, 184–191.PubMedGoogle Scholar
  414. 414.
    Bartels, A. (2009). Visual perception: Converging mechanisms of attention, binding, and segmentation? Current Biology, 19(7), R300–R302.PubMedGoogle Scholar
  415. 415.
    Wagatsuma, N., Shimizu, R., & Sakai, K. (2008). Spatial attention in early vision for the perception of border ownership. Journal of Vision, 8(7), 22.1–22.19.Google Scholar
  416. 416.
    Chen, Y., Martinez-Conde, S., Macknik, S. L., Bereshpolova, Y., Swadlow, H. A., & Alonso, J. M. (2008). Task difficulty modulates the activity of specific neuronal populations in primary visual cortex. Nature Neuroscience, 11(8), 974–982.PubMedGoogle Scholar
  417. 417.
    Poort, J., & Roelfsema, P. R. (2009). Noise correlations have little influence on the coding of selective attention in area V1. Cerebral Cortex, 19(3), 543–553.PubMedGoogle Scholar
  418. 418.
    Fischer, J., & Whitney, D. (2009). Attention narrows position tuning of population responses in V1. Current Biology, 19(16), 1356–1361.PubMedGoogle Scholar
  419. 419.
    Murray, S. O. (2008). The effects of spatial attention in early human visual cortex are stimulus independent. Journal of Vision, 8(10), 2.1–2.11.Google Scholar
  420. 420.
    Serences, J. T., & Saproo, S. (2010). Population response profiles in early visual cortex are biased in favor of more valuable stimuli. Journal of Neurophysiology, 104(1), 76–87.PubMedGoogle Scholar
  421. 421.
    Yoshor, D., Ghose, G. M., Bosking, W. H., Sun, P., & Maunsell, J. H. (2007). Spatial attention does not strongly modulate neuronal responses in early human visual cortex. The Journal of Neuroscience, 27(48), 13205–13209.PubMedGoogle Scholar
  422. 422.
    Moro, S. I., Tolboom, M., Khayat, P. S., & Roelfsema, P. R. (2010). Neuronal activity in the visual cortex reveals the temporal order of cognitive operations. The Journal of Neuroscience, 30(48), 16293–16303.PubMedGoogle Scholar
  423. 423.
    Buffalo, E. A., Fries, P., Landman, R., Liang, H., & Desimone, R. (2010). A backward progression of attentional effects in the ventral stream. Proceedings of the National Academy of Sciences of the United States of America, 107(1), 361–365.PubMedGoogle Scholar
  424. 424.
    Wurtz, R. H., Goldberg, M. E., & Robinson, D. L. (1982). Brain mechanisms of visual attention. Scientific American, 246(6), 124–135.PubMedGoogle Scholar
  425. 425.
    Bushnell, M. C., Goldberg, M. E., & Robinson, D. L. (1981). Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention. Journal of Neurophysiology, 46(4), 755–772.PubMedGoogle Scholar
  426. 426.
    Goldberg, M. E., & Bruce, C. J. (1985). Cerebral cortical activity associated with the orientation of visual attention in the rhesus monkey. Vision Research, 25(3), 471–481.PubMedGoogle Scholar
  427. 427.
    Goldberg, M. E., & Segraves, M. A. (1987). Visuospatial and motor attention in the monkey. Neuropsychologia, 25(1A), 107–118.PubMedGoogle Scholar
  428. 428.
    Posner, M. I., Cohen, Y., & Rafal, R. D. (1982). Neural systems control of spatial orienting. Philosophical Transactions of the Royal Society of London, B298, 187–198.Google Scholar
  429. 429.
    Robinson, D., & Petersen, S. E. (1986). The neurobiology of attention. In W. Hirst & J. Ledoux (Eds.), Mind and brain: Dialogues in cognitive neuroscience (pp. 142–171). New York: Cambridge University Press.Google Scholar
  430. 430.
    Robinson, D. L., Bowman, E. M., & Kertzman, C. (1995). Covert orienting of attention in macaques. II. Contributions of parietal cortex. Journal of Neurophysiology, 74(2), 698–712.PubMedGoogle Scholar
  431. 431.
    Mountcastle, V. (1978). Brain mechanisms for directed attention. Journal of the Royal Society of Medicine, 71, 14–27.PubMedGoogle Scholar
  432. 432.
    Mountcastle, V. B., Motter, B. C., Steinmetz, M. A., & Duffy, C. J. (1984). Dynamic aspects of neocortical functions. In G. M. Edelman, W. E. Gall, & W. M. Cowan (Eds.) (pp. 159–193). New York: Wiley.Google Scholar
  433. 433.
    Mountcastle, V. B., Anderson, R. A., & Motter, B. C. (1981). The influence of attentive fixation upon the excitability of the light sensitive neurons of the posterior parietal cortex. Journal of Neuroscience, 1, 1218–1235.PubMedGoogle Scholar
  434. 434.
    Soga, M., & Kashimori, Y. (2009). Functional connections between visual areas in extracting object features critical for a visual categorization task. Vision Research, 49(3), 337–347.PubMedGoogle Scholar
  435. 435.
    Spitzer, H., Desimone, R., & Moran, J. (1988). Increased attention enhances both behavioral and neuronal performance. Science, 240(4850), 338–340.PubMedGoogle Scholar
  436. 436.
    Reynolds, J. H., Chelazzi, L., & Desimone, R. (1999). Competitive mechanisms subserve attention in macaque areas V2 and V4. The Journal of Neuroscience, 19(5), 1736–1753.PubMedGoogle Scholar
  437. 437.
    Desimone, R. (1998). Visual attention mediated by biased competition in extrastriate visual cortex. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 353(1373), 1245–1255.PubMedGoogle Scholar
  438. 438.
    Desimone, R. (1996). Neural mechanisms for visual memory and their role in attention. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 13494–13499.PubMedGoogle Scholar
  439. 439.
    Posner, M. I. (1980). Orienting of attention: The VIIth Sir Frederic Bartlett Lecture. Quarterly Journal of Experimental Psychology, 32, 3–25.PubMedGoogle Scholar
  440. 440.
    Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology. General, 109, 160–174.Google Scholar
  441. 441.
    Posner, M. I., & Cohen, Y. (1984). Facilitation and inhibition in shifts of visual attention. In H. Bowhuis & H. Bourna (Eds.), Attention and performance (Vol. X). Hillsdale, NJ: Erlbaum.Google Scholar
  442. 442.
    Posner, M. I., Walker, J. A., Friedrich, F. J., & Rafal, R. D. (1984). Effects of parietal lobe injury on covert orienting of visual attention. Journal of Neuroscience, 4(7), 1863–1874.PubMedGoogle Scholar
  443. 443.
    Posner, M. I., Walker, J. A., Friedrich, F. A., & Rafal, R. D. (1987). How do the parietal lobes direct covert attention. Neuropsychologia, 25(1A), 135–145.PubMedGoogle Scholar
  444. 444.
    Posner, M. I., Petersen, S. E., Fox, P. T., & Raichle, M. E. (1988). Localization of cognitive operations in the human brain. Science, 240, 1627–1631.PubMedGoogle Scholar
  445. 445.
    Kelley, T. A., Serences, J. T., Giesbrecht, B., & Yantis, S. (2008). Cortical mechanisms for shifting and holding visuospatial attention. Cerebral Cortex, 18(1), 114–125.PubMedGoogle Scholar
  446. 446.
    Quraishi, S., Heider, B., & Siegel, R. M. (2007). Attentional modulation of receptive field structure in area 7a of the behaving monkey. Cerebral Cortex, 17(8), 1841–1857.PubMedGoogle Scholar
  447. 447.
    Pourtois, G., Schwartz, S., Seghier, M. L., Lazeyras, F., & Vuilleumier, P. (2006). Neural systems for orienting attention to the location of threat signals: An event-related fMRI study. NeuroImage, 31(2), 920–933.PubMedGoogle Scholar
  448. 448.
    Ling, S., & Carrasco, M. (2006). Sustained and transient covert attention enhance the signal via different contrast response functions. Vision Research, 46(8–9), 1210–1220.PubMedGoogle Scholar
  449. 449.
    Eimer, M., Forster, B., & Van Velzen, J. (2003). Anterior and posterior attentional control systems use different spatial reference frames: ERP evidence from covert tactile-spatial orienting. Psychophysiology, 40(6), 924–933.PubMedGoogle Scholar
  450. 450.
    Wascher, E., & Wolber, M. (2004). Attentional and intentional cueing in a Simon task: An EEG-based approach. Psychological Research, 68(1), 18–30.PubMedGoogle Scholar
  451. 451.
    Yamaguchi, S., Tsuchiya, H., & Kobayashi, S. (1998). Visuospatial attention shift and motor responses in cerebellar disorders. Journal of Cognitive Neuroscience, 10(1), 95–107.PubMedGoogle Scholar
  452. 452.
    Bowman, E. M., Brown, V. J., Kertzman, C., Schwarz, U., & Robinson, D. L. (1993). Covert orienting of attention in macaques. I. Effects of behavioral context. Journal of Neurophysiology, 70(1), 431–443.PubMedGoogle Scholar
  453. 453.
    Steinmetz, M. A., Connor, C. E., Constantinidis, C., & McLaughlin, J. R. (1994). Covert attention suppresses neuronal responses in area 7a of the posterior parietal cortex. Journal of Neurophysiology, 72(2), 1020–1023.PubMedGoogle Scholar
  454. 454.
    Cutrell, E. B., & Marrocco, R. T. (2002). Electrical microstimulation of primate posterior parietal cortex initiates orienting and alerting components of covert attention. Experimental Brain Research, 144(1), 103–113.PubMedGoogle Scholar
  455. 455.
    Goldberg, M. E., & Bushnell, M. D. (1981). Behavioral enhancement of visual response in monkey cerebral cortex. II. Modulation in frontal eye fields specifically related to saccades. Journal of Neurophysiology, 46, 773–787.PubMedGoogle Scholar
  456. 456.
    Goldberg, M. E., & Bruce, C. J. (1986). The role of the arcuate frontal eye fields in the generation of saccadic eye movements. Progress in Brain Research, 64, 143–154.PubMedGoogle Scholar
  457. 457.
    Goldberg, M. E., Bisley, J. W., Powell, K. D., & Gottlieb, J. (2006). Saccades, salience and attention: The role of the lateral intraparietal area in visual behavior. Progress in Brain Research, 155, 157–175.PubMedGoogle Scholar
  458. 458.
    Goldberg, M. E., & Bruce, C. J. (1990). Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal. Journal of Neurophysiology, 64(2), 489–508.PubMedGoogle Scholar
  459. 459.
    Goldberg, M. E., Bushnell, M. C., & Bruce, C. J. (1986). The effect of attentive fixation on eye movements evoked by electrical stimulation of the frontal eye fields. Experimental Brain Research, 61(3), 579–584.PubMedGoogle Scholar
  460. 460.
    Graziano, M. S., & Gross, C. G. (1998). Visual responses with and without fixation: Neurons in premotor cortex encode spatial locations independently of eye position. Experimental Brain Research, 118(3), 373–380.Google Scholar
  461. 461.
    Kodaka, Y., Mikami, A., & Kubota, K. (1997). Neuronal activity in the frontal eye field of the monkey is modulated while attention is focused on to a stimulus in the peripheral visual field, irrespective of eye movement. Neurosciences Research, 28(4), 291–298.Google Scholar
  462. 462.
    Olson, C. R., Gettner, S. N., Ventura, V., Carta, R., & Kass, R. E. (2000). Neuronal activity in macaque supplementary eye field during planning of saccades in response to pattern and spatial cues. Journal of Neurophysiology, 84(3), 1369–1384.PubMedGoogle Scholar
  463. 463.
    Sato, T. R., & Schall, J. D. (2003). Effects of stimulus-response compatibility on neural selection in frontal eye field. Neuron, 38(4), 637–648.PubMedGoogle Scholar
  464. 464.
    Sommer, M. A., & Wurtz, R. H. (2001). Frontal eye field sends delay activity related to movement, memory, and vision to the superior colliculus. Journal of Neurophysiology, 85(4), 1673–1685.PubMedGoogle Scholar
  465. 465.
    Lynch, J. C., Mountcastle, V. B., Talbot, W. H., & Yin, T. C. (1977). Parietal lobe mechanisms for directed visual attention. Journal of Neurophysiology, 40(2), 362–389.PubMedGoogle Scholar
  466. 466.
    Atkin, A. (1969). Shifting fixation to another pursuit target: Selective and anticipatory control of ocular pursuit initiation. Experimental Neurology, 23(2), 157–173.PubMedGoogle Scholar
  467. 467.
    Kawano, K., Shidara, M., Watanabe, Y., & Yamane, S. (1994). Neural activity in cortical area MST of alert monkey during ocular following responses. Journal of Neurophysiology, 71(6), 2305–2324.PubMedGoogle Scholar
  468. 468.
    Ilg, U. J., & Schumann, S. (2007). Primate area MST-l is involved in the generation of goal-directed eye and hand movements. Journal of Neurophysiology, 97(1), 761–771.PubMedGoogle Scholar
  469. 469.
    Inaba, N., Shinomoto, S., Yamane, S., Takemura, A., & Kawano, K. (2007). MST neurons code for visual motion in space independent of pursuit eye movements. Journal of Neurophysiology, 97(5), 3473–3483.PubMedGoogle Scholar
  470. 470.
    Galletti, C., & Fattori, P. (2003). Neuronal mechanisms for detection of motion in the field of view. Neuropsychologia, 41(13), 1717–1727.PubMedGoogle Scholar
  471. 471.
    Valenstein, E., Watson, R. T., Van den Abell, T., Carter, R., & Heilman, K. M. (1987). Response time in monkeys with unilateral neglect. Archives of Neurology, 44(5), 517–520.PubMedGoogle Scholar
  472. 472.
    Valenstein, E., Heilman, K. M., Watson, R. T., & Van Den Abell, T. (1982). Nonsensory neglect from parietotemporal lesions in monkeys. Neurology, 32(10), 1198–1201.PubMedGoogle Scholar
  473. 473.
    Watson, R. T., Miller, B. D., & Heilman, K. M. (1978). Nonsensory neglect. Annals of Neurology, 3(6), 505–508.PubMedGoogle Scholar
  474. 474.
    Bien, N., Roebroeck, A., Goebel, R., & Sack, A. T. (2009). The brain’s intention to imitate: The neurobiology of intentional versus automatic imitation. Cerebral Cortex, 19(10), 2338–2351.PubMedGoogle Scholar
  475. 475.
    Day, B. L., Rothwell, J. C., Thompson, P. D., et al. (1989). Delay in the execution of voluntary movement by electrical or magnetic brain stimulation in intact man. Evidence for the storage of motor programs in the brain. Brain, 112(Pt 3), 649–663.PubMedGoogle Scholar
  476. 476.
    Hommel, B. (2009). Action control according to TEC (theory of event coding). Psychological Research, 73(4), 512–526.PubMedGoogle Scholar
  477. 477.
    Isomura, Y., Ito, Y., Akazawa, T., Nambu, A., & Takada, M. (2003). Neural coding of “attention for action” and “response selection” in primate anterior cingulate cortex. The Journal of Neuroscience, 23(22), 8002–8012.PubMedGoogle Scholar
  478. 478.
    Merchant, H., Zainos, A., Hernandez, A., Salinas, E., & Romo, R. (1997). Functional properties of primate putamen neurons during the categorization of tactile stimuli. Journal of Neurophysiology, 77(3), 1132–1154.PubMedGoogle Scholar
  479. 479.
    Olson, C. R., & Gettner, S. N. (2002). Neuronal activity related to rule and conflict in macaque supplementary eye field. Physiology and Behavior, 77(4–5), 663–670.PubMedGoogle Scholar
  480. 480.
    Snyder, L. H., Batista, A. P., & Andersen, R. A. (1998). Change in motor plan, without a change in the spatial locus of attention, modulates activity in posterior parietal cortex. Journal of Neurophysiology, 79(5), 2814–2819.PubMedGoogle Scholar
  481. 481.
    Spengler, S., Brass, M., Kuhn, S., & Schutz-Bosbach, S. (2010). Minimizing motor mimicry by myself: Self-focus enhances online action-control mechanisms during motor contagion. Consciousness and Cognition, 19(1), 98–106.PubMedGoogle Scholar
  482. 482.
    Wise, S. P., Weinrich, M., & Mauritz, K. H. (1983). Motor aspects of cue-related neuronal activity in premotor cortex of the rhesus monkey. Brain Research, 260(2), 301–305.PubMedGoogle Scholar
  483. 483.
    Yamada, M., Pita, M. C., Iijima, T., & Tsutsui, K. (2010). Rule-dependent anticipatory activity in prefrontal neurons. Neurosciences Research, 67(2), 162–171.Google Scholar
  484. 484.
    Young, L., Bechara, A., Tranel, D., Damasio, H., Hauser, M., & Damasio, A. (2010). Damage to ventromedial prefrontal cortex impairs judgment of harmful intent. Neuron, 65(6), 845–851.PubMedGoogle Scholar
  485. 485.
    Wurtz, R., Richmond, B. J., & Newsome, W. T. (1984). Modulation of cortical visual processing by attention, perception, and movement. In G. Edelman, W. M. Cowan, & W. E. Gall (Eds.), Dynamic aspects of neocortical function. New York, NY: Wiley.Google Scholar
  486. 486.
    Fabre, M., Rolls, E. T., Ashton, J. P., & Williams, G. (1983). Activity of neurons in the ventral tegmental region of the behaving monkey. Behavioural Brain Research, 9(2), 213–235.PubMedGoogle Scholar
  487. 487.
    Mesulam, M. M., Van Hoesen, G. W., Pandya, D. N., & Geschwind, N. (1977). Limbic and sensory connections of the inferior parietal lobule (area PG) in the rhesus monkey: A study with a new method for horseradish peroxidase histochemistry. Brain Research, 136(3), 393–414.PubMedGoogle Scholar
  488. 488.
    Raybourn, M. S., & Keller, E. L. (1977). Colliculoreticular organization in primate oculomotor system. Journal of Neurophysiology, 40(4), 861–878.PubMedGoogle Scholar
  489. 489.
    Clark, C. R., Geffen, G. M., & Geffen, L. B. (1987). Catecholamines and attention. I: Animal and clinical studies. Neuroscience & Biobehavioral Reviews, 11(4), 341–352.Google Scholar
  490. 490.
    Pragay, E. B., Mirsky, A. F., & Nakamura, R. K. (1987). Attention-related unit activity in the frontal association cortex during a go/no-go visual discrimination task. Experimental Neurology, 96(3), 481–500.PubMedGoogle Scholar
  491. 491.
    Heilman, K. M., & Valenstein, E. (1979). Mechanisms underlying hemispatial neglect. Annals of Neurology, 5(2), 166–170.PubMedGoogle Scholar
  492. 492.
    Watson, R. T., Heilman, K. M., Miller, B. D., & King, F. A. (1974). Neglect after mesencephalic reticular formation lesions. Neurology, 24(3), 294–298.PubMedGoogle Scholar
  493. 493.
    Watson, R. T., Valenstein, E., & Heilman, K. M. (1981). Thalamic neglect. Possible role of the medial thalamus and nucleus reticularis in behavior. Archives of Neurology, 38(8), 501–506.PubMedGoogle Scholar
  494. 494.
    McAlonan, K., Cavanaugh, J., & Wurtz, R. H. (2008). Guarding the gateway to cortex with attention in visual thalamus. Nature, 456(7220), 391–394.PubMedGoogle Scholar
  495. 495.
    McAlonan, K., Cavanaugh, J., & Wurtz, R. H. (2006). Attentional modulation of thalamic reticular neurons. The Journal of Neuroscience, 26(16), 4444–4450.PubMedGoogle Scholar
  496. 496.
    Guillery, R. W., Feig, S. L., & Lozsadi, D. A. (1998). Paying attention to the thalamic reticular nucleus. Trends in Neurosciences, 21(1), 28–32.PubMedGoogle Scholar
  497. 497.
    Torterolo, P., & Vanini, G. (2010). [New concepts in relation to generating and maintaining arousal]. Revista de Neurologia, 50(12), 747–758.PubMedGoogle Scholar
  498. 498.
    Treisman, A. M. (1964). Selective attention in man. British Medical Bulletin, 20, 12–16.PubMedGoogle Scholar
  499. 499.
    Treisman, A. M. (1969). Strategies and models of selective attention. Psychological Review, 76(3), 282–299.PubMedGoogle Scholar
  500. 500.
    Heilman, K. M., Pandya, D. N., Karol, E. A., & Geschwind, N. (1971). Auditory inattention. Archives of Neurology, 24(4), 323–325.PubMedGoogle Scholar
  501. 501.
    Heilman, K. M., & Valenstein, E. (1972). Auditory neglect in man. Archives of Neurology, 26(1), 32–35.PubMedGoogle Scholar
  502. 502.
    Bellmann, A., Meuli, R., & Clarke, S. (2001). Two types of auditory neglect. Brain, 124(Pt 4), 676–687.PubMedGoogle Scholar
  503. 503.
    Clarke, S., & Thiran, A. B. (2004). Auditory neglect: What and where in auditory space. Cortex, 40(2), 291–300.PubMedGoogle Scholar
  504. 504.
    Puel, J. L., Bonfils, P., & Pujol, R. (1988). Selective attention modifies the active micromechanical properties of the cochlea. Brain Research, 447(2), 380–383.PubMedGoogle Scholar
  505. 505.
    Pollack, G. S. (1988). Selective attention in an insect auditory neuron. The Journal of Neuroscience, 8(7), 2635–2639.PubMedGoogle Scholar
  506. 506.
    Li, L., & Kelly, J. B. (1992). Inhibitory influence of the dorsal nucleus of the lateral lemniscus on binaural responses in the rat’s inferior colliculus. The Journal of Neuroscience, 12(11), 4530–4539.PubMedGoogle Scholar
  507. 507.
    Vaadia, E. (1989). Single-unit activity related to active localization of acoustic and visual stimuli in the frontal cortex of the rhesus monkey. Brain, Behavior and Evolution, 33(2–3), 127–131.PubMedGoogle Scholar
  508. 508.
    Mirenowicz, J., & Schultz, W. (1994). Importance of unpredictability for reward responses in primate dopamine neurons. Journal of Neurophysiology, 72(2), 1024–1027.PubMedGoogle Scholar
  509. 509.
    Grant, S. J., Aston-Jones, G., & Redmond, D. E., Jr. (1988). Responses of primate locus coeruleus neurons to simple and complex sensory stimuli. Brain Research Bulletin, 21(3), 401–410.PubMedGoogle Scholar
  510. 510.
    Rauschecker, J. P. (1998). Cortical processing of complex sounds. Current Opinion in Neurobiology, 8(4), 516–521.PubMedGoogle Scholar
  511. 511.
    Cohen, Y. E., Russ, B. E., & Gifford, G. W., III. (2005). Auditory processing in the posterior parietal cortex. Behavioral and Cognitive Neuroscience Reviews, 4(3), 218–231.PubMedGoogle Scholar
  512. 512.
    Mecklinger, A., Opitz, B., & Friederici, A. D. (1997). Semantic aspects of novelty detection in humans. Neuroscience Letters, 235(1–2), 65–68.PubMedGoogle Scholar
  513. 513.
    Benowitz, L. I., Bear, D. M., Rosenthal, R., Mesulam, M. M., Zaidel, E., & Sperry, R. W. (1983). Hemispheric specialization in nonverbal communication. Cortex, 19(1), 5–11.PubMedGoogle Scholar
  514. 514.
    Brosch, T., Grandjean, D., Sander, D., & Scherer, K. R. (2008). Behold the voice of wrath: Cross-modal modulation of visual attention by anger prosody. Cognition, 106(3), 1497–1503.PubMedGoogle Scholar
  515. 515.
    Gandour, J., Tong, Y., Wong, D., et al. (2004). Hemispheric roles in the perception of speech prosody. NeuroImage, 23(1), 344–357.PubMedGoogle Scholar
  516. 516.
    Grandjean, D., Sander, D., Lucas, N., Scherer, K. R., & Vuilleumier, P. (2008). Effects of emotional prosody on auditory extinction for voices in patients with spatial neglect. Neuropsychologia, 46(2), 487–496.PubMedGoogle Scholar
  517. 517.
    Mitchell, R. L., & Ross, E. D. (2008). fMRI evidence for the effect of verbal complexity on lateralisation of the neural response associated with decoding prosodic emotion. Neuropsychologia, 46(12), 2880–2887.PubMedGoogle Scholar
  518. 518.
    Sander, D., Grandjean, D., Pourtois, G., et al. (2005). Emotion and attention interactions in social cognition: Brain regions involved in processing anger prosody. NeuroImage, 28(4), 848–858.PubMedGoogle Scholar
  519. 519.
    Strelnikov, K. N., Vorobyev, V. A., Chernigovskaya, T. V., & Medvedev, S. V. (2006). Prosodic clues to syntactic processing—A PET and ERP study. NeuroImage, 29(4), 1127–1134.PubMedGoogle Scholar
  520. 520.
    Tremblay, N., Bushnell, M. C., & Duncan, G. H. (1993). Thalamic VPM nucleus in the behaving monkey. II. Response to air-puff stimulation during discrimination and attention tasks. Journal of Neurophysiology, 69(3), 753–763.PubMedGoogle Scholar
  521. 521.
    Burton, H., Sinclair, R. J., Hong, S. Y., Pruett, J. R., Jr., & Whang, K. C. (1997). Tactile-spatial and cross-modal attention effects in the second somatosensory and 7b cortical areas of rhesus monkeys. Somatosensory and Motor Research, 14(4), 237–267.PubMedGoogle Scholar
  522. 522.
    Steinmetz, P. N., Roy, A., Fitzgerald, P. J., Hsiao, S. S., Johnson, K. O., & Niebur, E. (2000). Attention modulates synchronized neuronal firing in primate somatosensory cortex. Nature, 404(6774), 187–190.PubMedGoogle Scholar
  523. 523.
    Sripati, A. P., & Johnson, K. O. (2006). Dynamic gain changes during attentional modulation. Neural Computation, 18(8), 1847–1867.PubMedGoogle Scholar
  524. 524.
    Burton, H., & Sinclair, R. J. (2000). Attending to and remembering tactile stimuli: A review of brain imaging data and single-neuron responses. Journal of Clinical Neurophysiology, 17(6), 575–591.PubMedGoogle Scholar
  525. 525.
    Jones, S. R., Kerr, C. E., Wan, Q., Pritchett, D. L., Hamalainen, M., & Moore, C. I. (2010). Cued spatial attention drives functionally relevant modulation of the mu rhythm in primary somatosensory cortex. The Journal of Neuroscience, 30(41), 13760–13765.PubMedGoogle Scholar
  526. 526.
    Chapman, C. E., & el Meftah, M. (2005). Independent controls of attentional influences in primary and secondary somatosensory cortex. Journal of Neurophysiology, 94(6), 4094–4107.PubMedGoogle Scholar
  527. 527.
    Spence, C., Kettenmann, B., Kobal, G., & McGlone, F. P. (2000). Selective attention to the chemosensory modality. Perception & Psychophysics, 62(6), 1265–1271.Google Scholar
  528. 528.
    Ashkenazi, A., & Marks, L. E. (2004). Effect of endogenous attention on detection of weak gustatory and olfactory flavors. Perception & Psychophysics, 66(4), 596–608.Google Scholar
  529. 529.
    Williams, G. V., Rolls, E. T., Leonard, C. M., & Stern, C. (1993). Neuronal responses in the ventral striatum of the behaving macaque. Behavioural Brain Research, 55(2), 243–252.PubMedGoogle Scholar
  530. 530.
    Lundstrom, J. N., Olsson, M. J., Schaal, B., & Hummel, T. (2006). A putative social chemosignal elicits faster cortical responses than perceptually similar odorants. NeuroImage, 30(4), 1340–1346.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ronald A. Cohen
    • 1
    • 2
    • 3
  1. 1.Departments of Neurology, Psychiatry and AgingGainesvilleUSA
  2. 2.Center for Cognitive Aging and MemoryUniversity of Florida College of MedicineGainesvilleUSA
  3. 3.Department of Psychiatry and Human Behavior Warren Alpert School of MedicineBrown UniversityProvidenceUSA

Personalised recommendations