The generally accepted definition of mild traumatic brain injury (commonly known as concussion) is as follows: “… a complex pathophysiological process affecting the brain, induced by traumatic biomechanical forces (McCrory et al., 2005). There are several additional features that may help in the definition of concussion. Specifically, the severity and duration of symptoms may dissociate mild, moderate and severe forms of traumatic brain injuries (TBI). The severity of TBI is typically categorized during the acute stages of injury on the basis of the presence and duration of three post-injury signs: (1) loss of consciousness (LOC), (2) retrograde amnesia (i.e., lack of memory and forgetting information about events that occurred prior to injury) and anterograde amnesia (i.e., lack of memory and forgetting information about events that occurred after the injury), and (3) presence/absence of brain structural and functional alterations as a result of injury (i.e., brain lesion, abnormal EEG/MRI etc.). Overall, based on the presence and duration/severity of these aforementioned signs and symptoms, a TBI is classified as mild (concussion), moderate or severe. Moderate and severe TBI typically involve prolonged (e.g., several hours/days) LOC and amnesia and possibly varying sizes of brain structural abnormalities.


Traumatic Brain Injury Mild Traumatic Brain Injury Impact Syndrome National Football League Diffuse Axonal Injury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. McCrory, P., Johnston, K., Meeuwisse, W., Aubry, M., Cantu, R., Dvorak, J., Graf-Baumann, T., Kelly, J., Lovell, M., Schamasch, P. (2005. Summary and agreement on the 2nd International Conference on Concussion in Sport, Prague 2004. Clinical Journal of Sports Medicine, 15(2), 48-55.CrossRefGoogle Scholar
  2. Shaw, N. (2002). The neurophysiology of concussion. Progress in Neurobiology, 67, 281-344.CrossRefPubMedGoogle Scholar
  3. Walker, A. E. (1994). The physiological basis of concussion: 50 years later. Journal of Neurosurgery, 81, 493-494.CrossRefPubMedGoogle Scholar
  4. Cantu, R. (2003). Neurotrauma and sport medicine review, 3rd annual seminar, Orlando, Fl. National Institute of Health. NIH Consens Statement, v.16. Bethesda, MD: NIH, 1998.Google Scholar
  5. Guskiewicz, K.M., Ross, S.E., Marshall, S.W. (2001). Postural Stability and Neuropsychological Deficits After Concussion in Collegiate Athletes. Journal of Athletic Training, 36(3), 263-273.PubMedGoogle Scholar
  6. Guskiewicz, K.M. (2001). Postural Stability Assessment Following Concusion: One Piece of the Puzzle. Clinical Journal of Sport Medicine, 11, 82-189.CrossRefGoogle Scholar
  7. Christopher, M., & Amann, M. (2000). Office management of trauma. Clinic in Family Practice, 2(3), 24-33.Google Scholar
  8. Oliaro, S., Anderson, S., Hooker, D. (2001). Management of Cerebral Concussion in Sports: The Athletic Trainer’s Perspective. Journal of Athletic Training, 36(3):257-262.PubMedGoogle Scholar
  9. Maddocks, D., & Saling, M. (1966). Neuropsychological deficits following concussion. Brain Injury, 10, 99-103.CrossRefGoogle Scholar
  10. Wojtys, E., Hovda, D., Landry, G., Boland, A., Lovell, M., McCrea, M., Minkoff, J. (1999). Concussion in Sports. American Journal of Sports Medicine, 27(5), 676-687.PubMedGoogle Scholar
  11. Randolph, C. (2001). Implementation of neuropsychological testing models for the high school, collegiate and professional sport setting. Journal of Athletic Training, 36(3), 288-296.PubMedGoogle Scholar
  12. Warden, D.L., Bleiberg, J., Cameron, K.L., Ecklund, J., Walter, J., Sparling, M.B., Reeves, D., Reynolds, K.Y., Arciero, R. (2001). Persistent Prolongation of Simple Reaction Time in Sports Concussion. Neurology, 57(3), 22-39.Google Scholar
  13. Thatcher, R.W., Walker, R. A., Gerson, I., & Geisler, F. H. (1989). EEG discriminant analyses of mild head injury. EEG and Clinical Neurophysiology, 73, 94-106.CrossRefGoogle Scholar
  14. Thatcher, R.W., Biver, C., McAlister, R., Camacho, M., Salazar, A. (1998). Biophysical linkage between MRI and EEG amplitude in closed head injury. Neuroimage, 7, 352-367.CrossRefPubMedGoogle Scholar
  15. Thatcher, R.W., Biver, C., Gomez, J., North, D., Curtin, R., Walker, R., Salazar, A. (2001). Estimation of the EEG power spectrum using MTI T2 relaxation time in traumatic brain injury. Clinical Neurophysiology, 112, 1729-1745.CrossRefPubMedGoogle Scholar
  16. Barth, J.T., Freeman, J.R., Boshek, D.K., Varney, R.N. (2001). Acceleration-Deceleration Sport-Related Concussion: The Gravity of It All. Journal of Athletic Training, 36(3), 253-256.PubMedGoogle Scholar
  17. Kushner, D. (1998). Mild traumatic brain injury: Toward understanding manifestations and treatment. Archive of Internal Medicine, 158, 10-24.CrossRefGoogle Scholar
  18. Mueller, F.O., & Cantu, R. C. (1990). Catastrophic injuries and fatalities in high school and college sport. Fall 1982 - spring 1988. Medicine and Science in Sport and Exercise, 22, 737-741.Google Scholar
  19. LeBlanc, K. E. (1994). Concussion in sport: guidelines for return to competition. American Family Physician, 50, 801-808.PubMedGoogle Scholar
  20. LeBlanc, K.E. (1999). Concussion in sport: Diagnosis, management, return to competition. Comprehensive Therapy, 25, 39-44.CrossRefPubMedGoogle Scholar
  21. Echemendia, R.J., Putukien, M., Mackin, R.S., Julian, L., Shoss, N. (2001). Neuropsychological Test Performance Prior To and Following Sports-Related Mild Traumatic Brain Injury. Clinical Journal of Sports Medicine, 11, 23-31.CrossRefGoogle Scholar
  22. Lowell, M., Collins, M., Iverson, G., Field, M., Maroon, J., Cantu, R., Rodell, K., & Powell, J., & Fu, F. (2003). Recovery from concussion in high school athletes. Journal of Neurosurgery, 98, 296-301.CrossRefGoogle Scholar
  23. Lowell, M. (2003). Ancillary test for concussion. Neurotrauma and sport medicine review. 3rd annual seminar, Orlando,Fl.Google Scholar
  24. Macciocchi, S.T., Barth, J.T., Alves, W., Rimel, R.W., & Jane, J. (1966). Neuropsychological functioning and recovery after mind head injury in collegiate athletes. Neurosurgery, 3, 510-513.Google Scholar
  25. Garnett, M., Blamir, A., Rajagopalan, B., Styles, P., Cadoux_Hudson, T. (2000). Evidence of cellular damage in normal-appearing white matter correlates with injury severity in patients following traumatic brain injury: A magnetic resonance spectroscopy study. Brain, 123(7), 1403-1409.CrossRefPubMedGoogle Scholar
  26. Cantu, R.C., & Roy, R. (1995). Second impact syndrome: a risk in any sport. Physical Sport Medicine, 23, 27-36.Google Scholar
  27. Hugenholtz, H., Stuss, D. T., Stethen, L. L, & Richards, M. T. (1988). How long does it take to recover from a mild concussion? Neurosurgery, 22(5), 853-857.CrossRefPubMedGoogle Scholar
  28. Powell, J. (2001). Cerebral Concussion. Causes, Effects, and Risks in Sports. Journal of Athletic Training, 36(3), 307-311.PubMedGoogle Scholar
  29. Wright, S.C. (1998). Case report: postconcussion syndrome after minor head injury. Aviation, Space Environmental Medicine, 69(10), 999-1000.Google Scholar
  30. Slobounov, S., Sebastianelli, W., Simon, R. (2002). Neurophysiological and behavioral Concomitants of Mild Brain Injury in College Athletes. Clinical Neurophysiology, 113, 185-193.CrossRefPubMedGoogle Scholar
  31. Goldberg, G. (1988). What happens after brain injury? You may be surprised at how rehabilitation can help your patients. Brain injury, 104(2), 91-105.Google Scholar
  32. Hallett, M. (2001). Plasticity of the human motor cortex and recovery from stroke. Brain Research Review, 36, 169-174.CrossRefGoogle Scholar
  33. Buckley, W.E. (1988). Concussions in College Football: A Multivariate Analysis. American Journal of Sports Medicine,16, 51-56.CrossRefPubMedGoogle Scholar
  34. Gelberich, S.G., Priest, J.D., Boen, J.R., Straub, C.P., & Maxwell, R.E. (1983). Concussion incidences and severity in secondary school varsity football players. American Journal of Public Health, 73(2), 1370-1375.CrossRefGoogle Scholar
  35. Macciochi, S.N., Barth, J.T., Alves, W., et al. (1996). Neuropsychological Recovery and Functioning after Mild Head Injury in Collegiate Athletes. Neurosurgery, 39, 510-514.CrossRefGoogle Scholar
  36. Langburt, W., Cohen, A., Arhthar, N., O’Neill, K., & Lee, J.C. (2001). Incidence of concussion in high school football players of Ohio and Pennsylvania. Journal of Child Neurology, 16(2), 83-85.PubMedGoogle Scholar
  37. Guskiewicz, K., Weaver, N., Padua, D., Garrett, W. (2000). Epidemiology of Concussion in Collegiate and High School Football Players. American Journal of Sports Medicine, 28, 643-650.PubMedGoogle Scholar
  38. Powell, J, Barber-Foss, K. Traumatic Brain Injury in High School Athletes. JAMA 282:958-963, 1999.CrossRefPubMedGoogle Scholar
  39. Pellman, E.J., Viano, D.C., Casson, I.R., Affken, D., & Powell, J. (2004). Concussion in professional football: Injuries involving 7 or more days out - part 5. Neurosurgery, 55 (5), 1100-1119.CrossRefPubMedGoogle Scholar
  40. Viano, D.C, Casson, I.R., Pellman, E.J.. (2005). Concussion in Professional Football: Brain Responses by Finite Element Analysis- Part 9. Neurosurgery, 57,891-916.CrossRefPubMedGoogle Scholar
  41. Hovda, D.A. (1995). Metabolic dysfunction. In: Narayan R.K., Wilberger, J.E., Povlishock J.T.(Eds). Neurotrauma. pp.1459-1478. McGraw Hill, NY.Google Scholar
  42. Doberstein, C., Velarde, F., Babie, H., Vovda, D.A. (1992). Changes in local cerebral blood flow following concussive brain injury. Society for Neuroscience, Abstract 18, 175. Anaheim, CA.Google Scholar
  43. Giza, C., & Hovda, D. (2001). The neurometabolic cascade of concussion. Journal of Athletic Training, 36(3), 228-235.PubMedGoogle Scholar
  44. Pfenninger, E.G., Reith, A., Breitig, D., et al. (1989). Early changes of intracranial pressure, perfusion pressure, and blood flow after acute head injury. Par 1. Journal of Neurosurgery, 70, 774-779.CrossRefPubMedGoogle Scholar
  45. Yamakashi, I., & McIntosh, T.K. (1989). Effects of traumatic brain injury on regional cerebral blood flow in rats as measured with radiolabeled microspheres. Journal of Cerebral Blood Flow Metabolism, 9, 117-124.Google Scholar
  46. Bergsneider, M., Hovda, D.A., Shalman, E., et al., (1997). Cerebral hyperglucolysis following severe traumatic brain injury in humans: A positron emission tomography study. Journal of Neurosurgery, 86, 241-251.CrossRefPubMedGoogle Scholar
  47. Ballanyi, K., Grafe, R., ten Bruggencate, G. (1987). Ion activities and potassium uptake mechanisms of glial cells in guinea-pig olfactory cortex slices. Journal of Physiology, 382, 159-174.PubMedGoogle Scholar
  48. Ip, E.Y., Zanier, E.R., Moore, A.H., Lee, S.M., Hovda, D.A. (2003). Metabolic, neurochemical, and histologic responses to vibrissa motor cortex stimulation after traumatic brain injury. Journal of Cerebral Blood Flow Metabolism, 23(8), 900-910.CrossRefPubMedGoogle Scholar
  49. Bergsneider, M., Hovda, D.A., Lee, S.M., et al., (2000). Dissociation of cerebral glucose metabolism and level of consciousness during the period of metabolic depression following human traumatic brain injury. Journal of Neurotrauma, 17, 389-401.CrossRefPubMedGoogle Scholar
  50. Vespa, P., Bergsneider, M., Hattori, N., Wu, H.M., Huang, S.C., Martin, N.A., Glenn, T.C., McArthur, D.L., Hovda, D.A. (2005). Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. Journal of Cerebral Blood Flow Metabolism, 25(6), 663-774.CrossRefGoogle Scholar
  51. Soustiel, J.F., Glenn, T.C., Shik, V., Bascardin, J., Mahamid, E., Zaaroor, M. (2005). Monitoring of cerebral blood flow and metabolism in traumatic brain injury. Neurotrauma, 22(9), 955-965.CrossRefGoogle Scholar
  52. Viant, M.R., Lyeth, B.C., Miller, M.G., Berman, R.F. (2005). An NMR metabolomic investigation of early metabolic disturbances following traumatic brain injury in a mammalian model. NMR Biomedicine, 18(8), 507-571.CrossRefGoogle Scholar
  53. Parkin M, Hopwood S, Jones DA, Hashemi P, Landolt H, Fabricius M, Lauritzen M, Boutelle MG, Strong AJ. (2005). Dynamic changes in brain glucose and lactate in pericontusional areas of the human cerebral cortex, monitored with rapid sampling online microdialysis: relationship with depolarisation-like events. Journal of Cerebral Blood Flow Metabolism, 25(3), 402-413.CrossRefPubMedGoogle Scholar
  54. Wu, H.M., Huang, S.C., Hattori, N., Glenn, T.C., Vespa, P.M., Hovda, D.A., Bergsneider, M. (2004a). Subcortical white matter metabolic changes remote from focal hemorrhagic lesions suggest diffuse injury after human traumatic brain injury. Neurosurgery, 55(6), 1306-1315.CrossRefPubMedGoogle Scholar
  55. Wu, H.M., Huang, S.C., Hattori, N., Glenn, T.C., Vespa, P.M., Yu, C.L., Hovda, D.A., Phelps, M.E., Bergsneider, M. (2004b). Selective metabolic reduction in gray matter acutely following human traumatic brain injury. Journal of Neurotrauma, 21(2), 149-61.CrossRefPubMedGoogle Scholar
  56. Hattori, N., Huang, S.C., Wu, H.M., Yeh, E., Glenn, T.C., Vespa, P.M., McArthur, D., Phelps, M.E., Hovda, D.A., Bergsneider, M. (2003). Alteration of glucose utilization correlates with glasgow coma scale after traumatic brain injury. Journal of Nuclear Medicine, 44(11), 1709-1716.PubMedGoogle Scholar
  57. Takahashi, et al. 1981. H. Takahashi, H., S. Manaka, S., & S. Keiji, S. (1981). Changes in extracellular potassium concentration in cortex and brainstem during the acute phase of experimental closed head injury. Journal of Neurosurgery, 55, 708-717.Google Scholar
  58. Katayama, Y., Becker, D., Tamura, T., Hovda, D. (1990). Massive Increases in Extracellular Potassium and the Indiscriminate Release of Glutamate Following Concussive Brain Injury. Journal of Neurosurgery, 73, 889-900.CrossRefPubMedGoogle Scholar
  59. Nilsson, P., Nilsson, P. L., Hillered, L. Y., Olsson, Y. M., Sheardown, M., Hansen, A.J. (1993). Regional changes of interstitial K+ and Ca2+ levels following cortical compression contusion trauma in rats. Journal of Cerebral Blood Flow Metabolism, 13, 183-192.PubMedGoogle Scholar
  60. Samii, A., Badie, H., Fu, K., Lusher, R.R., Hovda, D.A. (1999). Effect of an N-type calcium channel antagonist (SNX 111l Ziconotide) on calcium-45 accumulation following fluid perfusion injury. Journal of Neurotrauma, 16, 879-892.CrossRefPubMedGoogle Scholar
  61. Maxwell, W.L, McCreath, B.J., Graham, D.I., Gennarelli, T.A., (1995). Cytochemical evidence for redistribution of membrane pump calcium-ATPase and ecto-Ca-ATPase activity, and calcium influx in myelinated nerve fibres of theoptic nerve after stretch injury. Journal of Neurocytology, 24, 925-942.CrossRefPubMedGoogle Scholar
  62. Levin, N.S., Mattis, S., Raff, R.M., Eisenberg, H.M., Marshall, L.F., & Tabaddor, K. (1987). Neurobehavioral outcome following minor head injury: a three center study. Journal of Neurosurgery, 66, 234-243.CrossRefPubMedGoogle Scholar
  63. Johnston, K, Ptito, A., Chsnkowsky, J., Chen, J. (2001). New frontiers in diagnostic imaging in concussive head injury. Clinical Journal of Sport Medicine, 11(3), 166-175.CrossRefPubMedGoogle Scholar
  64. Lishman, W.A. (1988). Physiogenesis and psychogenesis in the post-concussional syndrome. Biological Journal of Psychiatry, 153, 460-469.CrossRefGoogle Scholar
  65. McClelland, R.J., Fenton, G.W. , Rutherford, W. (1994). The postconcussional syndrome revisited. Journal of the Royal Society of Medicine, 87, 508-510.PubMedGoogle Scholar
  66. Bryant R., & Harvey, A. (1999). Postconcussive symptoms and posttraumatic stress disorder after mind traumatic brain injury. Journal of Nervous Mental Disease, 187, 302-305.CrossRefGoogle Scholar
  67. Buchel, C. & Friston, K. (2001). Extracting brain connectivity. In Function MRI: an introduction to methods. Jezzard, P. Matthews, P.M., & Smith, S.M. (Eds). pp.295-308. Oxford University Press: N.Y.Google Scholar
  68. Cabeza, R., Dolcos, F., Prince S.E., Rice, H.J., Weissman, D.H., Nyberg, L. (2003). Neuropsychologia, 41(3), 390-399.CrossRefPubMedGoogle Scholar
  69. Friston, K.J., Holmes, A., Poline, J.B., Price, C.J., & Frith, C.D. (1996). Detecting activations in PET and fMRI: Levels of inference and power. Neuroimage 40, 223-235.CrossRefGoogle Scholar
  70. Friston, K.J., Holmes, A.P., & Worsley K.J. (1999). How many subjects constitute a study? NeuroImage, 10, 1-5.CrossRefPubMedGoogle Scholar
  71. Rees, G. & Lavie, N. (2001). What can functional imaging reveal about the role of attention in visual awareness? Neuropsyschologia, 39(12), 1343-1353.CrossRefGoogle Scholar
  72. Stuss, D., & Knight, R. (2002). Principles of frontal lobe function. Oxford, University PressCrossRefGoogle Scholar
  73. Levin, B., Katz, D., Dade, L., Black, S. (2002). Novel approach to the assessment of frontal damage and executive deficits in traumatic brain injury. In: Principles of frontal lobe function Stuss & Knight (Eds.) pp. 448-465.Google Scholar
  74. Gentry, L., Godersky, J., Thompson, B., Dunn, V. (1988). Prospective comparative study of intermediate-field MR and CT in the evaluation of closed head trauma. American Journal of Radiology, 150, 673-682.Google Scholar
  75. Liu, A., Maldjian, J., Bagley, L., (1999). Traumatic brain injury: diffusion-weighted MR imaging findings. AJNR, 20, 1636-1641PubMedGoogle Scholar
  76. Hofman, P.,Verhey, F., Wilmink, J., Rozendaal, N., & Jolles, J. (2002). Brain lesions in patients visiting a memory clinic with postconcussional sequelae after mild to moderate brain injury. Journal of Neuropsychiatry and Clinical Neuroscience, 14(2), 176-184.Google Scholar
  77. Umile, E., Sandel, M., Alavi, A., Terry, C., Plotkin, R. Dynamic imaging in mild traumatic brain injury: support for the theory of medial temporal vulnerability. Archive of Physical Medical Rehabilitation, 83(11), 1506-1513.Google Scholar
  78. Mittl, R., Grossman, R., Hiehle, J., Hurst, R., Kauder, D., Gennarelli, T., Alburger, G. (1994). Prevalence of MR evidence of diffuse axonal injury in patients with mild head injury and normal head CT findings. American Journal of Neuroradiology, 15(8), 1583-1589.PubMedGoogle Scholar
  79. Ross, B., Bluml, S. (2001). Magnetic Resonance spectroscopy of the human brain. The American Records (New Anat), 265, 54-84.CrossRefGoogle Scholar
  80. Schubert, T., Szameitat, A. (2003). Functional neuroanatomy of interference in overlapping dual tasks: fMRI study. Cognitive Brain Research, 23, 334-348.Google Scholar
  81. Chen, J-K., Johnston Frey, S., Petrides, K., Worsley, K., Ptito, A. (2003). Functional abnormalities in symptomatic concussed athletes: an fMRI study. Neuroimage, 22, 68-82.CrossRefGoogle Scholar
  82. Saunders, R.L., Harbaugh, R.E. (1984). The second impact in catastrophic contact sports head trauma. JAMA: 252, 538-539.CrossRefPubMedGoogle Scholar
  83. Cantu, R.C. (1992). Second Impact Syndrome: Immediate Management. Physician and Sports Medicine, 20, 55-66.Google Scholar
  84. Cantu, R.C., & Voy, R. (1995). Second Impact Syndrome: A Risk in any Sport. Physician and Sports Medicine 23(6), 91-96.Google Scholar
  85. Junger, E.C., Newell, D.W., Grant, G.A., et al. (1997). Cerebral Autoregulation Following Minor Head Injury. Journal of Neurosurgery, 86, 425-432.CrossRefPubMedGoogle Scholar
  86. Martland, H.S. (1928). Punch Drunk. JAMA 91, 1103-1107.Google Scholar
  87. Casson, I.R., Siegel, O., Sharm, R., et al. (1984). Brain Damage in Modern Boxers. JAMA 251, 2663-2667.CrossRefPubMedGoogle Scholar
  88. Casson, I.R., Sharon, R., Campbell, E.A., et al. (1982). Neurological and CT Evaluation of Knocked-Out Boxers. Journal of Neurology, Neurosurgery, 45, 170-174.CrossRefGoogle Scholar
  89. Corsellis, J.A.N., Bruton, C.J., Freeman-Brown, D. (1973). The Aftermath of Boxing. Psychological Medicine, 3, 270-273.CrossRefPubMedGoogle Scholar
  90. Jordan, B.D., Relkin, N.R., Ravdin, L.D., et al. (1997). Apolipoprotein E e4 Associated with Chronic Traumatic Brain Injury in Boxing. JAMA 278, 136-140.CrossRefPubMedGoogle Scholar
  91. Matser, J.T., Kessels, A.G., Jordan, B.D., et al. (1998). Chronic Traumatic Brain Injury in Professional Soccer Players. Neurology, 51, 791-796.PubMedGoogle Scholar
  92. Sortland, O., Tysvaer, A.T. (1989. Brain Damage in Former Association Soccer Players. An Evaluation by Cerebral Computed Tomography. Neuroradiology, 31, 44-48.PubMedGoogle Scholar
  93. Tysvaer, A.T., Lochen, E.A. (1991). Soccer Injuries to the Brain: A neuropsychological study of Former Soccer Players. American Journal of Sports Medicine, 19, 56-60.CrossRefPubMedGoogle Scholar
  94. Guskiewicz, K.M., McCrea, M., Marshall, S.W., et al. (2003). Cumulative Effects Associated with Recurrent Concussion in Collegiate Football Players: The NCAA Concussion Study. JAMA 19, 2604-2605.Google Scholar
  95. Iverson, G.L., Gaetz, M., Lovell, M.R, Collins, M.W. (2004). Cumulative Effects of Concussion in Amateur Athletes. Brain Injury, 18, 433-443.CrossRefPubMedGoogle Scholar
  96. Wilberger, J.E., Maroon, J.C. (1989). Head Injury in Athletes. Clinical Sports Medicine, 8, 1-9.CrossRefGoogle Scholar
  97. Bailes, J., & Hudson, V. (2001). Classification of sport-related head trauma: a spectrum of mild to severe injury. Journal of Athletic Training, 36(3), 236-243.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Personalised recommendations