Advertisement

Patterns and Mechanisms of Noise-Induced Cochlear Pathology

  • Donald Henderson
  • Bohua Hu
  • Eric Bielefeld
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 31)

Keywords

Hearing Loss Hair Cell Noise Exposure Outer Hair Cell Basilar Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beauchamp C, Fridovich I (1970) A mechanism for the production of ethylene from methional. The generation of the hydroxyl radical by xanthine oxidase. J Biol Chem 245:4641–4646.PubMedGoogle Scholar
  2. Bielefeld EC, Hu BH, Harris KC, Henderson D (2005) Damage and threshold shift resulting from cochlear exposure to Paraquat-generated superoxide. Hear Res 207:35–42.PubMedCrossRefGoogle Scholar
  3. Bohne BA (1976) Mechanisms of noise damage in the inner ear. In: Henderson D, Hamernik RP, Dosanjh D, Mills, J (eds) Effects of Noise on Hearing. New York: Raven Press, pp. 41–68.Google Scholar
  4. Bohne BA, Clark WW (1982) Growth of hearing loss and cochlear lesion with increasing duration of noise exposure. In: Hamernik RP, Henderson D, Salvi RJ (eds) New Perspectives on Noise-Induced Hearing Loss. New York: Raven Press, pp. 283–302.Google Scholar
  5. Borg E (1982) Protective value of sympathectomy of the ear in noise. Acta Physiol Scand 115:281–282.PubMedCrossRefGoogle Scholar
  6. Brownell WE (1984) Microscopic observation of cochlear hair cell motility. Scan Electron Microsc(Pt 3):1401–1406.Google Scholar
  7. Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605.PubMedGoogle Scholar
  8. Chen GD, Fechter LD (1999) Potentiation of octave-band noise induced auditory impairment by carbon monoxide. Hear Res 132:149–159.PubMedCrossRefGoogle Scholar
  9. Cody AR, Russell IJ (1985) Outer hair cells in the mammalian cochlea and noise-induced hearing loss. Nature 315:662–665.PubMedCrossRefGoogle Scholar
  10. Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326 (Pt 1):1–16.PubMedGoogle Scholar
  11. Davis H (1952) Neuroanatomy and neurophysiology in the cochlea. Trans Am Acad Ophthalmol Otolaryngol 56:630–634.PubMedGoogle Scholar
  12. Davis H, Morgan CT, Hawkins JE Jr, Galambos R, Smith FW (1950) Temporary deafness following exposure to loud tones and noise. Acta Otolaryngol Suppl 88:1–56.PubMedGoogle Scholar
  13. Fessenden JD, Schacht J (1998) The nitric oxide/cyclic GMP pathway: a potential major regulator of cochlear physiology. Hear Res 118:168–176.PubMedCrossRefGoogle Scholar
  14. Finkel T, Holbrook, NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247.PubMedCrossRefGoogle Scholar
  15. Halliwell, B, Gutteridge J (1999) Free Radicals in Biology and Disease. Oxford: Oxford University Press.Google Scholar
  16. Hamernik RP, Turrentine G, Roberto M, Salvi R, Henderson D (1984) Anatomical correlates of impulse noise-induced mechanical damage in the cochlea. Hear Res 13:229–247.PubMedCrossRefGoogle Scholar
  17. Hamernik RP, Turrentine G, Roberto M (1985) Mechanically induced morphological changes in organ of Corti. In Salvi RJ, Henderson D, Hamernik RP, Colletti, V (eds) Basic and Applied Aspects of Noise Induced Hearing Loss. New York: Plenum Press, pp. 69–84.Google Scholar
  18. Henderson D, Hamernik RP (1986) Impulse noise: critical review. J Acoust Soc Am 80:569–584.PubMedCrossRefGoogle Scholar
  19. Henderson D, Subramaniam M, Gratton MA, Saunders SS (1991) Impact noise: the importance of level, duration, and repetition rate. J Acoust Soc Am 89:1350–1357.PubMedCrossRefGoogle Scholar
  20. Henderson D, Subramaniam M, Boettcher FA (1993) Individual susceptibility to noise-induced hearing loss: an old topic revisited. Ear Hear 14:152–168.PubMedCrossRefGoogle Scholar
  21. Henderson D, Bielefeld EC, Harris KC, Hu BH (2006) The role of oxidative stress in noise-induced hearing loss. Ear Hear 27:1–19.PubMedCrossRefGoogle Scholar
  22. Hildesheimer M, Sharon R, Muchnik C, Sahartov E, Rubinstein M (1991) The effect of bilateral sympathectomy on noise induced temporary threshold shift. Hear Res 51:49–53.PubMedCrossRefGoogle Scholar
  23. Hildesheimer M, Henkin Y, Pye A, Heled S, Sahartov E, Shabtai EL, Muchnik C (2002) Bilateral superior cervical sympathectomy and noise-induced, permanent threshold shift in guinea pigs. Hear Res 163:46–52.PubMedCrossRefGoogle Scholar
  24. Hu BH, Henderson D, Nicotera TM (2002) Involvement of apoptosis in progression of cochlear lesion following exposure to intense noise. Hear Res 166:62–71.PubMedCrossRefGoogle Scholar
  25. Hudspeth AJ, Jacobs R (1979) Stereocilia mediate transduction in vertebrate hair cells (auditory system/cilium/vestibular system). Proc Natl Acad Sci USA 76:1506–1509.PubMedCrossRefGoogle Scholar
  26. Jacono AA, Hu B, Kopke RD, Henderson D, Van De Water TR, Steinman HM (1998) Changes in cochlear antioxidant enzyme activity after sound conditioning and noise exposure in the chinchilla. Hear Res 117:31–38.PubMedCrossRefGoogle Scholar
  27. Kallinen J, Didier A, Miller JM, Nuttall A, Grenman R (1991) The effect of CO2- and O2-gas mixtures on laser Doppler measured cochlear and skin blood flow in guinea pigs. Hear Res 55:255–262.PubMedCrossRefGoogle Scholar
  28. Kandel ER, Schwartz JH, Jessell TM (2000) Principles of Neural Science, 4th ed. New York: McGraw-Hill Health Professions Division.Google Scholar
  29. Ko LJ, Prives C (1996) p53: puzzle and paradigm. Genes Dev 10:1054–1072.PubMedCrossRefGoogle Scholar
  30. Konishi K, Yamane H, Iguchi H, Takayama M, Nakagawa T, Sunami K , Nakai Y (1998) Local substances regulating cochlear blood flow. Acta Otolaryngol Suppl 538:40–46.PubMedCrossRefGoogle Scholar
  31. Lamm K, Arnold W (2000) The effect of blood flow promoting drugs on cochlear blood flow, perilymphatic pO(2) and auditory function in the normal and noise-damaged hypoxic and ischemic guinea pig inner ear. Hear Res 141:199–219.PubMedCrossRefGoogle Scholar
  32. Laurikainen EA, Kim D, Didier A, Ren T, Miller JM, Quirk WS, Nuttall, AL (1993) Stellate ganglion drives sympathetic regulation of cochlear blood flow. Hear Res 64:199–204.PubMedCrossRefGoogle Scholar
  33. Laurikainen EA, Costa O, Miller JM, Nuttall AL, Ren TY, Masta R, Quirk WS, Robinson PJ (1994) Neuronal regulation of cochlear blood flow in the guinea-pig. J Physiol 480:563–573.PubMedGoogle Scholar
  34. Laurikainen EA, Ren T, Miller JM, Nuttall AL, Quirk WS (1997) The tonic sympathetic input to the cochlear vasculature in guinea pig. Hear Res 105:141–145.PubMedCrossRefGoogle Scholar
  35. Liberman MC, Dodds LW, Learson DA (1985) Structure–function correlation in noise-damaged ears. In: Salvi RJ, Henderson D, Hamernik RP, Colletti, V (eds) Basic and Applied Aspects of Noise Induced Hearing Loss. New York: Plenum Press,pp. 163–178.Google Scholar
  36. Miller JM, Dengerink H (1988) Control of inner ear blood flow. Am J Otolaryngol 9:302–316.PubMedCrossRefGoogle Scholar
  37. Miller JM, Ren TY, Nuttall AL (1995) Studies of inner ear blood flow in animals and human beings. Otolaryngol Head Neck Surg 112:101–113.PubMedCrossRefGoogle Scholar
  38. Miller JM, Brown JN, Schacht J (2003) 8-iso-prostaglandin F(2alpha), a product of noise exposure, reduces inner ear blood flow. Audiol Neurootol 8:207–221.PubMedCrossRefGoogle Scholar
  39. Mills JH, Adkins WY, Gilbert RM (1981) Temporary threshold shifts produced by wideband noise. J Acoust Soc Am 70:390–396.PubMedCrossRefGoogle Scholar
  40. Minami SB, Yamashita D, Schacht J, Miller JM (2004) Calcineurin activation contributes to noise-induced hearing loss. J Neurosci Res 78:383–392.PubMedCrossRefGoogle Scholar
  41. Nagahara K, Aoyama T, Fukuse S, Noi O (1988) Effects of prostaglandins on perilymphatic oxygenation. Enhancement of cochlear autoregulation by prostacyclin. Acta Otolaryngol Suppl 456:143–150.PubMedCrossRefGoogle Scholar
  42. Nicotera T, Henderson D, Zheng XY, Ding DL, McFadden SL (1999) Reactive oxygen species, apoptosis and necrosis in noise-exposed cochleas of chinchillas. Paper presented at the 22nd Annual Midwinter Meeting of the Association for Research in Otolaryngology, St. Petersburg, FL.Google Scholar
  43. Nicotera TM, Hu BH, Henderson D (2003) The caspase pathway in noise-induced apoptosis of the chinchilla cochlea. J Assoc Res Otolaryngol 4:466–477.PubMedCrossRefGoogle Scholar
  44. Nicotera TM, Ding D, McFadden SL, Salvemini D, Salvi R (2004) Paraquat-induced hair cell damage and protection with the superoxide dismutase mimetic m40403. Audiol Neurootol 9:353–362.PubMedCrossRefGoogle Scholar
  45. Nordmann AS, Bohne BA, Harding GW (2000) Histopathological differences between temporary and permanent threshold shift. Hear Res 139:13–30.PubMedCrossRefGoogle Scholar
  46. Ohlemiller KK, Wright JS, Dugan LL (1999) Early elevation of cochlear reactive oxygen species following noise exposure. Audiol Neurootol 4:229–236.PubMedCrossRefGoogle Scholar
  47. Perlman H, Kimura R (1962) Cochlear blood flow in acoustic trauma. Acta Otolaryngolica 54:99–110.CrossRefGoogle Scholar
  48. Pickles JO, Comis SD, Osborne MP (1985) The morphology of stereocilia and their cross-links in relation to noise damage in the guinea pig. In: Salvi RJ, Henderson D, Hamernik RP, Colletti, V (eds) Basic and Applied Aspects of Noise Induced Hearing Loss. New York: Plenum Press, pp. 31–42.Google Scholar
  49. Puel JL, d’Aldin CG, Saffiende S, Eybalin M, Pujol R (1996) Excitotoxicity and plasticity of IHC-auditory nerve contributes to both temporary and permanent threshold shift. In: Axelsson A, Borchgrevink HM, Hamernik RP, Hellström PA, Henderson D, Salvi RJ (eds) Scientific Basis of Noise-induced Hearing Loss. New York: Thieme, pp. 36–42.Google Scholar
  50. Puel JL, Ruel J, Gervais d’Aldin C, Pujol R (1998) Excitotoxicity and repair of cochlear synapses after noise-trauma induced hearing loss. NeuroReport 9:2109–2114.PubMedCrossRefGoogle Scholar
  51. Pujol R, Puel JL, d’Aldin CG, Eybalin M (1990) Physiopathology of the glutaminergic synapses in the cochlea. Acta Otolaryngol Suppl 476:32–36.PubMedGoogle Scholar
  52. Pujol R, Puel JL, Gervais d’Aldin C, Eybalin M (1993) Pathophysiology of the glutamatergic synapses in the cochlea. Acta Otolaryngol 113:330–334.PubMedCrossRefGoogle Scholar
  53. Quaranta A, Portalatini P, Henderson D (1998) Temporary and permanent threshold shift: an overview. Scand Audiol Suppl 48:75–86.PubMedGoogle Scholar
  54. Rajan R (1996) Involvement of cochlear efferent pathways in protective effects elicited with binaural loud sound exposure in cats. J Neurophysiol 74:582–597.Google Scholar
  55. Rajan R, Johnstone BM (1983) Crossed cochlear influences on monaural temporary threshold shifts. Hear Res 9:279–294.PubMedCrossRefGoogle Scholar
  56. Reiter ER, Liberman MC (1995) Efferent-mediated protection from acoustic overexposure: relation to slow effects of olivocochlear stimulation. J Neurophysiol 73:506–514.PubMedGoogle Scholar
  57. Ren TY, Laurikainen E, Quirk WS, Miller JM, Nuttall AL (1993) Effects of electrical stimulation of the superior cervical ganglion on cochlear blood flow in guinea pig. Acta Otolaryngol 113:146–151.PubMedCrossRefGoogle Scholar
  58. Saunders JC, Canlon B, Flock A (1985) Mechanical changes in stereocilia following overstimulation. In: Salvi RJ, Henderson D, Hamernik RP, Colletti, V (eds) Basic and Applied Aspects of Noise Induced Hearing Loss. New York: Plenum Press, pp. 11–30.Google Scholar
  59. Sellick PM, Patuzzi R, Johnstone BM (1982) Measurement of basilar membrane motion in the guinea pig using the Mossbauer technique. J Acoust Soc Am 72:131–141.PubMedCrossRefGoogle Scholar
  60. Spicer SS, Schulte BA (1996) The fine structure of spiral ligament cells relates to ion return to the stria and varies with place-frequency. Hear Res 100:80–100.PubMedCrossRefGoogle Scholar
  61. Spoendlin H (1985) Histopathology of noise deafness. J Otolaryngol 14:282–286.PubMedGoogle Scholar
  62. Sweeney MH, Fosbroke D, Goldenhar LM, Jackson LL, Lushniak BD, Merry L, Schneider, S, Stephenson, M (2005) Health consequences working in construction. In: Coble R, Hinze J, Haupt T (eds) Construction Safety and Health Management. Columbus, OH: Prentice-Hall, pp: 178–196.Google Scholar
  63. Thalmann R, Miyoshi T, Kusakari J, Ise I (1975) Normal and abnormal energy metabolism of the inner ear. Otolaryngol Clin North Am 8:313–333.PubMedGoogle Scholar
  64. Thorne PR, Nuttall AL (1987) Laser Doppler measurements of cochlear blood flow during loud sound exposure in the guinea pig. Hear Res 27:1–10.PubMedCrossRefGoogle Scholar
  65. Turrens JF, Freeman BA, Levitt JG, Crapo JD (1982) The effect of hyperoxia on superoxide production by lung submitochondrial particles. Arch Biochem Biophys 217:401–410.PubMedCrossRefGoogle Scholar
  66. Ugnell AO, Hasegawa M, Lundquist PG, Andersson R (2000) Effect of carbon dioxide on cochlear blood flow in guinea pigs. Acta Otolaryngol 120:11–18.PubMedCrossRefGoogle Scholar
  67. Vicente-Torres MA, Schacht J (2006) A BAD link to mitochondrial cell death in the cochlea of mice with noise-induced hearing loss. J Neurosci Res 83:1564–1572.PubMedCrossRefGoogle Scholar
  68. von Békésy G (1952) Direct observation of the vibrations of the cochlear partition under a microscope. Acta Otolaryngol 42:197–201.PubMedCrossRefGoogle Scholar
  69. Wang Y, Hirose K, Liberman MC (2002) Dynamics of noise-induced cellular injury and repair in the mouse cochlea. J Assoc Res Otolaryngol 3:248–268.PubMedCrossRefGoogle Scholar
  70. Wangemann P (2002) K+ cycling and the endocochlear potential. Hear Res 165:1–9.PubMedCrossRefGoogle Scholar
  71. Ward WD (1966) The use of TTS in derivation of damage risk criteria for noise exposure. Intern Aud 5:309–313.CrossRefGoogle Scholar
  72. Yamane H, Nakai Y, Takayama M, Konishi K, Iguchi H, Nakagawa T, Shibata S, Kato A, Sunami K, Kawakatsu C (1995) The emergence of free radicals after acoustic trauma and strial blood flow. Acta Otolaryngol Suppl 519:87–92.PubMedCrossRefGoogle Scholar
  73. Yamashita D, Jiang HY, Schacht J, Miller JM (2004) Delayed production of free radicals following noise exposure. Brain Res 1019:201–209.PubMedCrossRefGoogle Scholar
  74. Yang WP, Henderson D, Hu BH, Nicotera TM (2004) Quantitative analysis of apoptotic and necrotic outer hair cells after exposure to different levels of continuous noise. Hear Res 196:69–76.PubMedCrossRefGoogle Scholar
  75. Zheng XY, Henderson D, Hu BH, Ding DL, McFadden SL (1997a) The influence of the cochlear efferent system on chronic acoustic trauma. Hear Res 107:147–159.CrossRefGoogle Scholar
  76. Zheng XY, Henderson D, Hu BH, McFadden SL (1997b) Recovery of structure and function of inner ear afferent synapses following kainic acid excitotoxicity. Hear Res 105:65–76.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Donald Henderson
  • Bohua Hu
  • Eric Bielefeld

There are no affiliations available

Personalised recommendations