Skip to main content

Tinnitus: Theories Mechanisms and Treatments

  • Chapter
Auditory Trauma, Protection, and Repair

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 31))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abel MD, Levine RA (2004) Muscle contractions and auditory perception in tinnitus patients and nonclinical subjects. Cranio 22:181–191.

    PubMed  Google Scholar 

  • Allen PD, Virag TM, Ison JR (2002) Humans detect gaps in broadband noise according to effective gap duration without additional cues from abrupt envelope changes. J Acoust Soc Am 112:2967–2974.

    Article  PubMed  Google Scholar 

  • Axelsson A, Sandh A (1985) Tinnitus in noise-induced hearing loss. Br J Audiol 19:271–276.

    Article  PubMed  CAS  Google Scholar 

  • Barnea G, Attias J, Gold S, Shahar A (1990) Tinnitus with normal hearing sensitivity: extended high-frequency audiometry and auditory-nerve brain stem-evoked responses. Audiology 29:36–45.

    Article  PubMed  CAS  Google Scholar 

  • Bauer CA (2003). Animal models of tinnitus. In: Sismanis A (ed) Tinnitus: Advances in Evaluation and Management. Philadelphia: Elsevier, pp. 267–285

    Google Scholar 

  • Bauer CA, Brozoski TJ (2001) Assessing tinnitus and prospective tinnitus therapeutics using a psychophysical animal model. J Assoc Res Otolaryngol 2:54–64.

    PubMed  CAS  Google Scholar 

  • Bauer CA, Brozoski TJ (2006) Effect of gabapentin on the sensation and impact of tinnitus. Laryngoscope 116:675–681.

    Article  PubMed  CAS  Google Scholar 

  • Bauer CA, Brozoski TJ, Rojas R, Boley J, Wyder M (1999) Behavioral model of chronic tinnitus in rats. Otolaryngol Head Neck Surg 121:457–462.

    Article  PubMed  CAS  Google Scholar 

  • Bauer CA, Meyers K, Brozoski T (2007) Primary afferent dendrite degeneration as a cause of tinnitus. J Neurosci Res 85(7):1489–1498.

    Article  PubMed  CAS  Google Scholar 

  • Borchgrevink HM, Tambs K, Hoffman HJ (2001) The Nord-Trondelag Norway Audiometric Survey 1996–98: unscreened adult high-frequency thresholds, normative thresholds and noise-related socio-acusis. In: Henderson D, Prasher D, Kopke R (eds) Noise Induced Hearing Loss: Basic Mechanisms, Prevention and Control. London: Noise Research Network Publications, pp. 377–385.

    Google Scholar 

  • Brozoski TJ, Bauer CA (2005) The effect of dorsal cochlear nucleus ablation on tinnitus in rats. Hear Res 206:227–236.

    Article  PubMed  Google Scholar 

  • Brozoski TJ, Bauer CA, Caspary DM (2002) Elevated fusiform cell activity in the dorsal cochlear nucleus of chinchillas with psychophysical evidence of tinnitus. J Neurosci 22:2383–2390.

    PubMed  CAS  Google Scholar 

  • Cacace AT (2003) Expanding the biological basis of tinnitus: crossmodal origins and the role of neuroplasticity. Hear Res 175:112–132.

    Article  PubMed  Google Scholar 

  • Caspary DM, Pazara KE, Kossl M, Faingold CL (1987) Strychnine alters the fusiform cell output from the dorsal cochlear nucleus. Brain Res 417:273–282.

    Article  PubMed  CAS  Google Scholar 

  • Caspary DM, Backoff PM, Finlayson PG, Palombi PS (1994) Inhibitory inputs modulate discharge rate within frequency receptive fields of anteroventral cochlear nucleus. J Neurophysiol 72:2124–2133.

    PubMed  CAS  Google Scholar 

  • Caspary DM, Milbrandt JC, Helfert RH (1995) Central auditory aging: GABA changes in the inferior colliculus. Exp Gerontol 30:349–360.

    Article  PubMed  CAS  Google Scholar 

  • Cazals Y, Horner KC, Huang ZW (1998) Alterations in average spectrum of cochleoneural activity by long-term salicylate treatment in the guinea pig: a plausible index of tinnitus. J Neurophysiol 80:2113–2120.

    PubMed  CAS  Google Scholar 

  • Chen GD, Jastreboff PJ (1995) Salicylate-induced abnormal activity in the inferior colliculus of rats. Hear Res 82:158–178.

    Article  PubMed  CAS  Google Scholar 

  • De Ridder D, De Mulder G, Verstraeten E, Van der Kelen K, Sunaert S, Smits M, Kovacs S, Verlooy J, Van de Heyning P, Moller AR (2006) Primary and secondary auditory cortex stimulation for intractable tinnitus. ORL J Otorhinolaryngol Relat Spec 68:48–54.

    PubMed  Google Scholar 

  • Dobie RA (1999) A review of randomized clinical trials in tinnitus. Laryngoscope 109:1202–1211.

    Article  PubMed  CAS  Google Scholar 

  • Eggermont JJ (1990) On the pathophysiology of tinnitus; a review and a peripheral model. Hear Res 48:111–123.

    Article  PubMed  CAS  Google Scholar 

  • Eggermont JJ (2005) Tinnitus: neurobiological substrates. Drug Discov Today 10:1283–1290.

    Article  PubMed  Google Scholar 

  • Evans EF, Borerwe TA (1982) Ototoxic effects of salicylates on the responses of single cochlear nerve fibres and on cochlear potentials. Br J Audiol 16:101–108.

    Article  PubMed  CAS  Google Scholar 

  • Evered D, Lawrenson G (1981) Tinnitus. Summit, NJ: Ciba Pharmaceutical Co. Medical Education Administration.

    Google Scholar 

  • Eybalin M (1993) Neurotransmitters and neuromodulators of the mammalian cochlea. Physiol Rev 73:309–373.

    PubMed  CAS  Google Scholar 

  • Feldmeier I, Lenarz T (1996) An electrophysiologic approach to the localization of tinnitus generators. (Abstract). Association for Research in Otolaryngology Midwinter Research Meeting, St. Petersburg Beach, FL.

    Google Scholar 

  • Flor H, Hoffmann D, Struve M, Diesch E (2004) Auditory discrimination training for the treatment of tinnitus. Appl Psychophysiol Biofeedback 29:113–120.

    Article  PubMed  Google Scholar 

  • Forrest TG, Green DM (1987) Detection of partially filled gaps in noise and the temporal modulation transfer function. J Acoust Soc Am 82:1933–1943.

    Article  PubMed  CAS  Google Scholar 

  • Girardi E (1965) The Complete Works of Michelangelo. New York: Reynal.

    Google Scholar 

  • Green DM, Forrest TG (1989) Temporal gaps in noise and sinusoids. J Acoust Soc Am 86:961–970.

    Article  PubMed  CAS  Google Scholar 

  • Guitton MJ, Caston J, Ruel J, Johnson RM, Pujol R, Puel JL (2003) Salicylate induces tinnitus through activation of cochlear NMDA receptors. J Neurosci 23:3944–3952.

    PubMed  CAS  Google Scholar 

  • Guitton MJ, Pujol R, Puel JL (2005) m-Chlorophenylpiperazine exacerbates perception of salicylate-induced tinnitus in rats. Eur J Neurosci 22:2675–2678.

    Article  PubMed  Google Scholar 

  • Heffner HE, Harrington IA (2002) Tinnitus in hamsters following exposure to intense sound. Hear Res 170:83–95.

    Article  PubMed  Google Scholar 

  • Heffner HE, Koay G (2005) Tinnitus and hearing loss in hamsters (Mesocricetus auratus) exposed to loud sound. Behav Neurosci 119:734–742.

    Article  PubMed  Google Scholar 

  • Hiller W, Haerkotter C (2005) Does sound stimulation have additive effects on cognitive-behavioral treatment of chronic tinnitus? Behav Res Ther 43:595–612.

    Article  PubMed  Google Scholar 

  • Ison JR, Allen PD, Rivoli PJ, Moore JT (2005) The behavioral response of mice to gaps in noise depends on its spectral components and its bandwidth. J Acoust Soc Am 117:3944–3951.

    Article  PubMed  Google Scholar 

  • Itoh K, Kamiya H, Mitani A, Yasui Y, Takada M, Mizuno N (1987) Direct projections from the dorsal column nuclei and the spinal trigeminal nuclei to the cochlear nuclei in the cat. Brain Res 400:145–150.

    Article  PubMed  CAS  Google Scholar 

  • Jastreboff PJ, Brennan JF (1994) Evaluating the loudness of phantom auditory perception (tinnitus) in rats. Audiology 33:202–217.

    Article  PubMed  CAS  Google Scholar 

  • Jastreboff PJ, Sasaki CT (1986) Salicylate-induced changes in spontaneous activity of single units in the inferior colliculus of the guinea pig. J Acoust Soc Am 80:1384–1391.

    Article  PubMed  CAS  Google Scholar 

  • Jastreboff PJ, Brennan JF, Coleman JK, Sasaki CT (1988a) Phantom auditory sensation in rats: an animal model for tinnitus. Behav Neurosci 102:811–822.

    Article  CAS  Google Scholar 

  • Jastreboff PJ, Brennan JF, Sasaki CT (1988b) An animal model for tinnitus. Laryngoscope 98:280–286.

    Article  CAS  Google Scholar 

  • Johnson RM, Brummett R, Schleuning A (1993) Use of alprazolam for relief of tinnitus. A double-blind study. Arch Otolaryngol Head Neck Surg 119:842–845.

    PubMed  CAS  Google Scholar 

  • Kaltenbach JA (2006) The dorsal cochlear nucleus as a participant in the auditory, attentional and emotional components of tinnitus. Hear Res 216:224–234.

    Article  PubMed  Google Scholar 

  • Kaltenbach JA, Afman CE (2000) Hyperactivity in the dorsal cochlear nucleus after intense sound exposure and its resemblance to tone-evoked activity: a physiological model for tinnitus. Hear Res 140:165–172.

    Article  PubMed  CAS  Google Scholar 

  • Kaltenbach JA, Heffner HE (1999) Spontaneous activity in the dorsal cochlear nucleus of hamsters tested behaviorally for tinnitus. (Abstract). Association for Research in Otolaryngology Midwinter Research Meeting, St. Petersburg Beach, FL.

    Google Scholar 

  • Kaltenbach JA, Czaja JM, Kaplan CR (1992) Changes in the tonotopic map of the dorsal cochlear nucleus following induction of cochlear lesions by exposure to intense sound. Hear Res 59:213–223.

    Article  PubMed  CAS  Google Scholar 

  • Kaltenbach JA, Zhang J, Afman CE (2000) Plasticity of spontaneous neural activity in the dorsal cochlear nucleus after intense sound exposure. Hear Res 147:282–292.

    Article  PubMed  CAS  Google Scholar 

  • Kaltenbach JA, Rachel JD, Mathog TA, Zhang J, Falzarano PR, Lewandowski M (2002) Cisplatin-induced hyperactivity in the dorsal cochlear nucleus and its relation to outer hair cell loss: relevance to tinnitus. J Neurophysiol 88:699–714.

    PubMed  CAS  Google Scholar 

  • Kaltenbach JA, Zhang J, Finlayson P (2005) Tinnitus as a plastic phenomenon and its possible neural underpinnings in the dorsal cochlear nucleus. Hear Res 206:200–226.

    Article  PubMed  Google Scholar 

  • Kiang NY, Liberman MC, Levine RA (1976) Auditory-nerve activity in cats exposed to ototoxic drugs and high-intensity sounds. Ann Otol Rhinol Laryngol 85:752–768.

    PubMed  CAS  Google Scholar 

  • Kleinjung T, Eichhammer P, Langguth B, Jacob P, Marienhagen J, Hajak G, Wolf SR, Strutz J (2005a) Long-term effects of repetitive transcranial magnetic stimulation (rTMS) in patients with chronic tinnitus. Otolaryngol Head Neck Surg 132:566–569.

    Article  Google Scholar 

  • Kleinjung T, Steffens T, Langguth B, Eichhammer P, Marienhagen J, Hajak G, Strutz J (2005b) Treatment of chronic tinnitus with neuronavigated repetitive transcranial magnetic stimulation (rTMS). HNO 54:439–444.

    Article  Google Scholar 

  • Levine RA (1999) Somatic (craniocervical) tinnitus and the dorsal cochlear nucleus hypothesis. Am J Otolaryngol 20:351–362.

    Article  PubMed  CAS  Google Scholar 

  • Levine RA, Abel M, Cheng H (2003) CNS somatosensory-auditory interactions elicit or modulate tinnitus. Exp Brain Res 153:643–648.

    Article  PubMed  CAS  Google Scholar 

  • Lobarinas E, Sun W, Cushing R, Salvi R (2004) A novel behavioral paradigm for assessing tinnitus using schedule-induced polydipsia avoidance conditioning (SIP-AC). Hear Res 190:109–114.

    Article  PubMed  Google Scholar 

  • Man A, Naggan L (1981) Characteristics of tinnitus in acoustic trauma. Audiology 20:72–78.

    Article  PubMed  CAS  Google Scholar 

  • Martin WH, Schwegler JW, Scheibelhoffer J, Ronis ML (1993) Salicylate-induced changes in cat auditory nerve activity. Laryngoscope 103:600–604.

    Article  PubMed  CAS  Google Scholar 

  • Milbrandt JC, Holder TM, Wilson MC, Salvi RJ, Caspary DM (2000) GAD levels and muscimol binding in rat inferior colliculus following acoustic trauma. Hear Res 147:251–260.

    Article  PubMed  CAS  Google Scholar 

  • Moller AR (1997) Similarities between chronic pain and tinnitus. Am J Otol 18:577–585.

    PubMed  CAS  Google Scholar 

  • Morgenstern L (2005) The bells are ringing: tinnitus in their own words. Perspect Biol Med 48:396–407.

    Article  PubMed  Google Scholar 

  • Nondahl DM, Cruickshanks KJ, Wiley TL, Klein R, Klein BE, Tweed TS (2002) Prevalence and 5-year incidence of tinnitus among older adults: the epidemiology of hearing loss study. J Am Acad Audiol 13:323–331.

    PubMed  Google Scholar 

  • Norena AJ, Eggermont JJ (2003) Changes in spontaneous neural activity immediately after an acoustic trauma: implications for neural correlates of tinnitus. Hear Res 183:137–153.

    Article  PubMed  CAS  Google Scholar 

  • Ochi K, Eggermont JJ (1996) Effects of salicylate on neural activity in cat primary auditory cortex. Hear Res 95:63–76.

    Article  PubMed  CAS  Google Scholar 

  • Oestreicher E, Arnold W, Ehrenberger K, Felix D (1998) Memantine suppresses the glutamatergic neurotransmission of mammalian inner hair cells. ORL J Otorhinolaryngol Relat Spec 60:18–21.

    PubMed  CAS  Google Scholar 

  • Penner MJ (1990) An estimate of the prevalence of tinnitus caused by spontaneous otoacoustic emissions. Arch Otolaryngol Head Neck Surg 116:418–423.

    PubMed  CAS  Google Scholar 

  • Plewnia C, Bartels M, Gerloff C (2003) Transient suppression of tinnitus by transcranial magnetic stimulation. Ann Neurol 53:263–266.

    Article  PubMed  Google Scholar 

  • Rosenhall U, Karlsson AK (1991) Tinnitus in old age. Scand Audiol 20:165–171.

    PubMed  CAS  Google Scholar 

  • Ryugo DK, Haenggeli CA, Doucet JR (2003) Multimodal inputs to the granule cell domain of the cochlear nucleus. Exp Brain Res 153:477–485.

    Article  PubMed  Google Scholar 

  • Salvi RJ, Hamernik RP, Henderson D (1978) Discharge patterns in the cochlear nucleus of the chinchilla following noise induced asymptotic threshold shift. Exp Brain Res 32:301–320.

    Article  PubMed  CAS  Google Scholar 

  • Salvi RJ, Saunders SS, Gratton MA, Arehole S, Powers N (1990) Enhanced evoked response amplitudes in the inferior colliculus of the chinchilla following acoustic trauma. Hear Res 50:245–257.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez TG, Guerra GC, Lorenzi MC, Brandao AL, Bento RF (2002) The influence of voluntary muscle contractions upon the onset and modulation of tinnitus. Audiol Neurootol 7:370–375.

    Article  PubMed  Google Scholar 

  • Shore SE (2005) Multisensory integration in the dorsal cochlear nucleus: unit responses to acoustic and trigeminal ganglion stimulation. Eur J Neurosci 21:3334–3348.

    Article  PubMed  CAS  Google Scholar 

  • Shore SE, Zhou J (2006) Somatosensory influence on the cochlear nucleus and beyond. Hear Res 216:90–99.

    Article  PubMed  Google Scholar 

  • Shore SE, El Kashlan H, Lu J (2003) Effects of trigeminal ganglion stimulation on unit activity of ventral cochlear nucleus neurons. Neuroscience 119:1085–1101.

    Article  PubMed  CAS  Google Scholar 

  • Sindhusake D, Golding M, Newall P, Rubin G, Jakobsen K, Mitchell P (2003) Risk factors for tinnitus in a population of older adults: the blue mountains hearing study. Ear Hear 24:501–507.

    Article  PubMed  Google Scholar 

  • Smith J (1970) Conditioned suppression as an animal psychophysical technique. In: Stebbins WC (ed) Animal Psychophysics. New York: Appleton-Century-Crofts, pp. 125–159.

    Google Scholar 

  • Tonndorf J (1981) Tinnitus and physiological correlates of the cochleo-vestibular system: peripheral; central. J Laryngol Otol Suppl 4:18–20.

    PubMed  Google Scholar 

  • Tonndorf J (1987) The analogy between tinnitus and pain: a suggestion for a physiological basis of chronic tinnitus. Hear Res 28:271–275.

    Article  PubMed  CAS  Google Scholar 

  • Turner JG, Brozoski TJ, Bauer CA, Parrish JL, Myers K, Hughes LF, Caspary DM (2006) Gap detection deficits in rats with tinnitus: a potential novel screening tool. Behav Neurosci 120:188–195.

    Article  PubMed  Google Scholar 

  • Wang J, Salvi RJ, Powers N (1996) Plasticity of response properties of inferior colliculus neurons following acute cochlear damage. J Neurophysiol 75:171–183.

    PubMed  CAS  Google Scholar 

  • Wang J, Ding D, Salvi RJ (2002) Functional reorganization in chinchilla inferior colliculus associated with chronic and acute cochlear damage. Hear Res 168:238–249.

    Article  PubMed  Google Scholar 

  • Willott JF, Lu S-M (1981) Noise-induced hearing loss can alter neural coding and increase excitability in the central nervous system. Science 216:1331–1332.

    Article  Google Scholar 

  • Wu JL, Chiu TW, Poon PW (2003) Differential changes in Fos-immunoreactivity at the auditory brainstem after chronic injections of salicylate in rats. Hear Res 176:80–93.

    Article  PubMed  CAS  Google Scholar 

  • Young ED, Voigt HF(1982) Response properties of type II and type III units in dorsal cochlear nucleus. Hear Res 6:153–169.

    Google Scholar 

  • Zhang JS, Kaltenbach JA (1998) Increases in spontaneous activity in the dorsal cochlear nucleus of the rat following exposure to high-intensity sound [published erratum appears in Neurosci Lett 1998 Aug 14;252(2):668]. Neurosci Lett 250:197–200.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bauer, C.A., Brozoski, T.J. (2008). Tinnitus: Theories Mechanisms and Treatments. In: Schacht, J., Popper, A.N., Fay, R.R. (eds) Auditory Trauma, Protection, and Repair. Springer Handbook of Auditory Research, vol 31. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-72561-1_4

Download citation

Publish with us

Policies and ethics