Skip to main content

Cochlear Homeostasis and Homeostatic Disorders

  • Chapter
Auditory Trauma, Protection, and Repair

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 31))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adragna NC, Fulvio MD, Lauf PK (2004) Regulation of K-Cl cotransport: from function to genes. J Membr Biol 201:109–137.

    PubMed  CAS  Google Scholar 

  • Agrup C, Bagger-Sjoback D, Fryckstedt J (1999) Presence of plasma membrane-bound Ca2+-ATPase in the secretory epithelia of the inner ear. Acta Otolaryngol 119:437–445.

    PubMed  CAS  Google Scholar 

  • Ahmad S, Chen S, Sun J, Lin X (2003) Connexins 26 and 30 are co-assembled to form gap junctions in the cochlea of mice. Biochem Biophys Res Commun 307:362–368.

    PubMed  CAS  Google Scholar 

  • Ando M, Takeuchi S (2000) mRNA encoding ClC-K1, a kidney Cl-channel is expressed in marginal cells of the stria vascularis of rat cochlea: its possible contribution to Cl- currents. Neurosci Lett 284:171–174.

    PubMed  CAS  Google Scholar 

  • Apicella S, Chen S, Bing R, Penniston JT, Llinas R, Hillman DE (1997) Plasmalemmal ATPase calcium pump localizes to inner and outer hair bundles. Neuroscience 79:1145–1151.

    PubMed  CAS  Google Scholar 

  • Arweiler DJ, Jahnke K, Grosse-Wilde H (1995) [Meniere disease as an autosome dominant hereditary disease]. Laryngorhinootologie 74:512–515.

    PubMed  CAS  Google Scholar 

  • Banfi B, Malgrange B, Knisz J, Steger K, Dubois-Dauphin M, Krause KH (2004) NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem 279:46065–46072.

    PubMed  CAS  Google Scholar 

  • Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey G (1996) KVLQT1 and IsK (minK) proteins associate to form the IKs cardiac potassium current. Nature 384:78–80.

    PubMed  CAS  Google Scholar 

  • Bartter FC, Pronove P, Gill JR, Jr., MacCardle RC (1962) Hyperplasia of the juxtaglomerular complex with hyperaldosteronism and hypokalemic alkalosis. A new syndrome. Am J Med 33:811–828.

    PubMed  CAS  Google Scholar 

  • Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624.

    Google Scholar 

  • Bhattacharya SK, Rockwood EJ, Smith SD, Bonilha VL, Crabb JS, Kuchtey RW, Robertson NG, Peachey NS, Morton CC, Crabb JW (2005) Proteomics reveal Cochlin deposits associated with glaucomatous trabecular meshwork. J Biol Chem 280:6080–6084.

    PubMed  CAS  Google Scholar 

  • Bidart JM, Mian C, Lazar V, Russo D, Filetti S, Caillou B, Schlumberger M (2000) Expression of pendrin and the Pendred syndrome (PDS) gene in human thyroid tissues. J Clin Endocrinol Metab 85:2028–2033.

    PubMed  CAS  Google Scholar 

  • Birkenhager R, Otto E, Schurmann MJ, Vollmer M, Ruf EM, Maier-Lutz I, Beekmann F, Fekete A, Omran H, Feldmann D, Milford DV, Jeck N, Konrad M, Landau D, Knoers NV, Antignac C, Sudbrak R, Kispert A, Hildebrandt F (2001) Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nat Genet 29:310–314.

    PubMed  CAS  Google Scholar 

  • Bok D, Galbraith G, Lopez I, Woodruff M, Nusinowitz S, BeltrandelRio H, Huang W, Zhao S, Geske R, Montgomery C, Van S, I, Friddle C, Platt K, Sparks MJ, Pushkin A, Abuladze N, Ishiyama A, Dukkipati R, Liu W, Kurtz I (2003) Blindness and auditory impairment caused by loss of the sodium bicarbonate cotransporter NBC3. Nat Genet 34:313–319.

    PubMed  CAS  Google Scholar 

  • Bond BR, Ng LL, Schulte BA (1998) Identification of mRNA transcripts and immunohistochemical localization of Na/H exchanger isoforms in gerbil inner ear. Hear Res 123:1–9.

    PubMed  CAS  Google Scholar 

  • Bosher SK, Warren RL (1978) Very low calcium content of cochlear endolymph, an extracellular fluid. Nature 273:377–378.

    PubMed  CAS  Google Scholar 

  • Boulassel MR, Deggouj N, Tomasi JP, Gersdorff M (2001) Inner ear autoantibodies and their targets in patients with autoimmune inner ear diseases. Acta Otolaryngol 121:28–34.

    PubMed  CAS  Google Scholar 

  • Brookes GB, (1983) Vitamin D deficiency—-a new cause of cochlear deafness. J Laryngol Otol 97:405–420.

    PubMed  CAS  Google Scholar 

  • Brown JN, Nuttall AL (1994) Autoregulation of cochlear blood flow in guinea pigs. Am J Physiol 266:H458–H467.

    PubMed  CAS  Google Scholar 

  • Cannon W (1929) Organization for physiological homeostasis. Physiol Rev 9:399–431.

    Google Scholar 

  • Carlisle L, Aberdeen J, Forge A, Burnstock G (1990) Neural basis for regulation of cochlear blood flow: peptidergic and adrenergic innervation of the spiral modiolar artery of the guinea pig. Hear Res 43:107–113.

    PubMed  CAS  Google Scholar 

  • Casimiro MC, Knollmann BC, Ebert SN, Vary JC Jr, Greene AE, Franz MR, Grinberg A, Huang SP, Pfeifer K (2001) Targeted disruption of the Kcnq1 gene produces a mouse model of Jervell and Lange-Nielsen syndrome. Proc Natl Acad Sci USA 98:2526–2531.

    Google Scholar 

  • Cecola RP, Bobbin RP (1992) Lowering extracellular chloride concentration alters outer hair cell shape. Hear Res 61:65–72.

    PubMed  CAS  Google Scholar 

  • Cohen-Salmon M, Ott T, Michel V, Hardelin JP, Perfettini I, Eybalin M, Wu T, Marcus DC, Wangemann P, Willecke K, Petit C (2002) Targeted ablation of connexin26 in the inner ear epithelial gap junction network causes hearing impairment and cell death. Curr Biol 12:1106–1111.

    PubMed  CAS  Google Scholar 

  • Cohen-Salmon M, Maxeiner S, Kruger O, Theis M, Willecke K, Petit C (2004) Expression of the connexin43- and connexin45-encoding genes in the developing and mature mouse inner ear. Cell Tissue Res 316:15–22.

    PubMed  CAS  Google Scholar 

  • Cohen-Salmon M, Regnault B, Cayet N, Caille D, Demuth K, Hardelin JP, Janel N, Meda P, Petit C (2007) Connexin30 deficiency causes instrastrial fluid-blood barrier disruption within the cochlear stria vascularis. Proc Natl Acad Sci USA 104:6229–6234.

    Google Scholar 

  • Conlon BJ, Smith DW (1998) Supplemental iron exacerbates aminoglycoside ototoxicity in vivo. Hear Res 115:1–5.

    PubMed  CAS  Google Scholar 

  • Cremers CW, Admiraal RJ, Huygen PL, Bolder C, Everett LA, Joosten FB, Green ED, Van Camp G, Otten BJ (1998) Progressive hearing loss, hypoplasia of the cochlea and widened vestibular aqueducts are very common features in Pendred’s syndrome. Int J Pediatr Otorhinolaryngol 45:113–123.

    PubMed  CAS  Google Scholar 

  • D’Ambrosio R, Gordon DS, Winn HR (2002) Differential role of KIR channel and Na+/K+-pump in the regulation of extracellular K+ in rat hippocampus. J Neurophysiol 87:87–102.

    PubMed  CAS  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105.

    PubMed  CAS  Google Scholar 

  • Dechesne CJ, Winsky L, Kim HN, Goping G, Vu TD, Wenthold RJ, Jacobowitz DM (1991) Identification and ultrastructural localization of a calretinin-like calcium-binding protein (protein 10) in the guinea pig and rat inner ear. Brain Res 560:139–148.

    PubMed  CAS  Google Scholar 

  • De Kok YJ, Bom SJ, Brunt TM, Kemperman MH, van Beusekom E, van der Velde–Visser SD, Robertson NG, Morton CC, Huygen PL, Verhagen WI, Brunner HG, Cremers CW, Cremers FP (1999) A Pro51Ser mutation in the COCH gene is associated with late onset autosomal dominant progressive sensorineural hearing loss with vestibular defects. Hum Mol Genet 8:361–366.

    PubMed  Google Scholar 

  • Del Castillo I, Moreno–Pelayo MA, Del Castillo FJ, Brownstein Z, Marlin S, Adina Q, Cockburn DJ, Pandya A, Siemering KR, Chamberlin GP, Ballana E, Wuyts W, Maciel-Guerra AT, Alvarez A, Villamar M, Shohat M, Abeliovich D, Dahl HH, Estivill X, Gasparini P, Hutchin T, Nance WE, Sartorato EL, Smith RJ, Van Camp G, Avraham KB, Petit C, Moreno F (2003) Prevalence and evolutionary origins of the del (GJB6–D13S1830) mutation in the DFNB1 locus in hearing-impaired subjects: a multicenter study. Am J Hum Genet 73:1452–1458.

    PubMed  CAS  Google Scholar 

  • Denoyelle F, Lina-Granade G, Plauchu H, Bruzzone R, Chaib H, Levi-Acobas F, Weil D, Petit C (1998) Connexin 26 gene linked to a dominant deafness. Nature 393:319–320.

    PubMed  CAS  Google Scholar 

  • Drici MD, Arrighi I, Chouabe C, Mann JR, Lazdunski M, Romey G, Barhanin J (1998) Involvement of IsK-associated K+ channel in heart rate control of repolarization in a murine engineered model of Jervell and Lange-Nielsen syndrome. Circ Res 83:95–102.

    PubMed  CAS  Google Scholar 

  • Dunger DB, Brenton DP, Cain AR (1980) Renal tubular acidosis and nerve deafness. Arch Dis Child 55:221–225.

    PubMed  CAS  Google Scholar 

  • Dunnebier EA, Segenhout JM, Wit HP, Albers FW (1997) Two-phase endolymphatic hydrops: a new dynamic guinea pig model. Acta Otolaryngol (Stockh) 117:13–19.

    CAS  Google Scholar 

  • Eisenstein RS (2000) Iron regulatory proteins and the molecular control of mammalian iron metabolism. Annu Rev Nutr 20:627–662.

    PubMed  CAS  Google Scholar 

  • El Barbary A, Altschuler RA, Schacht J (1993) Glutathione S-transferases in the organ of Corti of the rat: enzymatic activity, subunit composition and immunohistochemical localization. Hear Res 71:80–90.

    PubMed  CAS  Google Scholar 

  • Everett LA, Glaser B, Beck JC, Idol JR, Buchs A, Heyman M, Adawi F, Hazani E, Nassir E, Baxevanis AD, Sheffield VC, Green ED (1997) Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat Genet 17:411–422.

    PubMed  CAS  Google Scholar 

  • Everett LA, Belyantseva IA, Noben-Trauth K, Cantos R, Chen A, Thakkar SI, Hoogstraten-Miller SL, Kachar B, Wu DK, Green ED (2001) Targeted disruption of mouse Pds provides insight about the inner-ear defects encountered in Pendred syndrome. Hum Mol Genet 10:153–161.

    PubMed  CAS  Google Scholar 

  • Eybalin M, Norenberg MD, Renard N (1996) Glutamine synthetase and glutamate metabolism in the guinea pig cochlea. Hear Res 101:93–101.

    PubMed  CAS  Google Scholar 

  • Fauser C, Schimanski S, Wangemann P (2004) Localization of beta1-adrenergic receptors in the cochlea and the vestibular labyrinth. J Membr Biol 201:25–32.

    PubMed  CAS  Google Scholar 

  • Ferrary E, Sterkers O, Saumon G, Tran Ba Huy P, Amiel C (1987) Facilitated transfer of glucose from blood into perilymph in the rat cochlea. Am J Physiol 253:F59–F65.

    PubMed  CAS  Google Scholar 

  • Finberg KE, Wagner CA, Bailey MA, Paunescu TG, Breton S, Brown D, Giebisch G, Geibel JP, Lifton RP (2005) The B1-subunit of the H+ ATPase is required for maximal urinary acidification. Proc Natl Acad Sci USA 102:13616–13621.

    Google Scholar 

  • Fransen E, Verstreken M, Verhagen WI, Wuyts FL, Huygen PL, D’Haese P, Robertson NG, Morton CC, McGuirt WT, Smith RJ, Declau F, Van de Heyning PH, Van Camp G (1999) High prevalence of symptoms of Meniere’s disease in three families with a mutation in the COCH gene. Hum Mol Genet 8:1425–1429.

    PubMed  CAS  Google Scholar 

  • Friedmann I, Fraser GR, Froggatt P (1966) Pathology of the ear in the cardioauditory syndrome of Jervell and Lange-Nielsen (recessive deafness with electrocardiographic abnormalities). J Laryngol Otol 80:451–470.

    PubMed  CAS  Google Scholar 

  • Furness DN, Lehre KP (1997) Immunocytochemical localization of a high-affinity glutamate-aspartate transporter, GLAST, in the rat and guinea–pig cochlea. Eur J Neurosci 9:1961–1969.

    PubMed  CAS  Google Scholar 

  • Gamzatova Z, Villabona L, Dahlgren L, Dalianis T, Nillson B, Bergfeldt K, Masucci GV (2006) Human leucocyte antigen (HLA) A2 as a negative clinical prognostic factor in patients with advanced ovarian cancer. Gynecol Oncol 103:145–150.

    PubMed  CAS  Google Scholar 

  • Garduno-Anaya MA, Couthino DT, Hinojosa-Gonzalez R, Pane-Pianese C, Rios-Castaneda LC (2005) Dexamethasone inner ear perfusion by intratympanic injection in unilateral Méniére’s disease: a two-year prospective, placebo-controlled, double-blind, randomized trial. Otolaryngol Head Neck Surg 133:285–294.

    PubMed  Google Scholar 

  • Grant L, Slapnick S, Kennedy H, Hackney C (2006) Ryanodine receptor localisation in the mammalian cochlea: an ultrastructural study. Hear Res 219:101–109.

    PubMed  CAS  Google Scholar 

  • Gruber DD, Dang H, Shimozono M, Scofield MA, Wangemann P (1998) Alpha1A adrenergic receptors mediate vasoconstriction of the isolated spiral modiolar artery in vitro. Hear Res 119:113–124.

    PubMed  CAS  Google Scholar 

  • Guild SR (1927) The circulation of the endolymph. Am J Anat 39:57–81.

    Google Scholar 

  • Hackney CM, Mahendrasingam S, Penn A, Fettiplace R (2005) The concentrations of calcium buffering proteins in mammalian cochlear hair cells. J Neurosci 25:7867–7875.

    PubMed  CAS  Google Scholar 

  • Herzog M, Scherer EQ, Albrecht B, Rorabaugh B, Scofield MA, Wangemann P (2002) CGRP receptors in the gerbil spiral modiolar artery mediate a sustained vasodilation via a transient cAMP-mediated Ca2+-decrease. J Membr Biol 189:225–236.

    PubMed  CAS  Google Scholar 

  • Hillerdal M, Andersson SE (1991) The effects of calcitonin gene-related peptide (CGRP) on cochlear and mucosal blood flow in the albino rabbit. Hear Res 52:321–328.

    PubMed  CAS  Google Scholar 

  • Holt JR, Corey DP (2000) Two mechanisms for transducer adaptation in vertebrate hair cells. Proc Natl Acad Sci USA 97:11730–11735.

    Google Scholar 

  • Horner KC, Cazals Y (1987) Glycerol-induced changes in the cochlear responses of the guinea pig hydropic ear. Arch Otorhinolaryngol 244:49–54.

    PubMed  CAS  Google Scholar 

  • Horner KC, Cazals Y (2003) Stress in hearing and balance in Ménière’s disease. Noise Health 5:29–34.

    PubMed  CAS  Google Scholar 

  • Housley GD, Kanjhan R, Raybould NP, Greenwood D, Salih SG, Jarlebark L, Burton LD, Setz VC, Cannell MB, Soeller C, Christie DL, Usami S, Matsubara A, Yoshie H, Ryan AF, Thorne PR (1999) Expression of the P2X(2) receptor subunit of the ATP-gated ion channel in the cochlea: implications for sound transduction and auditory neurotransmission. J Neurosci 19:8377–8388.

    PubMed  CAS  Google Scholar 

  • Hulander M, Kiernan AE, Blomqvist SR, Carlsson P, Samuelsson EJ, Johansson BR, Steel KP, Enerback S (2003) Lack of pendrin expression leads to deafness and expansion of the endolymphatic compartment in inner ears of Foxi1 null mutant mice. Development 130:2013–2025.

    PubMed  CAS  Google Scholar 

  • Ichimiya I, Adams JC, Kimura RS (1994) Immunolocalization of Na+, K+-ATPase, Ca++-ATPase, calcium-binding proteins, and carbonic anhydrase in the guinea pig inner ear. Acta Otolaryngol (Stockh ) 114:167–176.

    CAS  Google Scholar 

  • Ikeda K, Morizono T (1988) Calcium transport mechanism in the endolymph of the chinchilla. Hear Res 34:307–311.

    PubMed  CAS  Google Scholar 

  • Ikeda K, Morizono T (1989a) Effects of carbon dioxide in the middle ear cavity upon the cochlear potentials and cochlear pH. Acta Otolaryngol (Stockh) 108:88–93.

    CAS  Google Scholar 

  • Ikeda K, Morizono T (1989b) The preparation of acetic acid for use in otic drops and its effect on endocochlear potential and pH in inner ear fluid. Am J Otolaryngol 10:382–385.

    CAS  Google Scholar 

  • Ikeda K, Kobayashi T, Kusakari J, Takasaka T, Yumita S, Furukawa Y (1987a) Sensorineural hearing loss associated with hypoparathyroidism. Laryngoscope 97:1075–1079.

    CAS  Google Scholar 

  • Ikeda K, Kusakari J, Kobayashi T, Saito Y (1987b) The effect of vitamin D deficiency on the cochlear potentials and the perilymphatic ionized calcium concentration of rats. Acta Otolaryngol Suppl Stockh 435:64–72.

    CAS  Google Scholar 

  • Ikeda K, Kusakari J, Takasaka T, Saito Y (1987c) Early effects of acetazolamide on anionic activities of the guinea pig endolymph: evidence for active function of carbonic anhydrase in the cochlea. Hear Res 31:211–216.

    CAS  Google Scholar 

  • Ikeda K, Kusakari J, Takasaka T, Saito Y (1987d) The Ca2+ activity of cochlear endolymph of the guinea pig and the effect of inhibitors. Hear Res 26:117–125.

    CAS  Google Scholar 

  • Ikeda K, Kusakari J, Takasaka T (1988) Ionic changes in cochlear endolymph of the guinea pig induced by acoustic injury. Hear Res 32:103–110.

    PubMed  CAS  Google Scholar 

  • Ikeda K, Kobayashi T, Itoh Z, Kusakari J, Takasaka T (1989) Evaluation of vitamin D metabolism in patients with bilateral sensorineural hearing loss. Am J Otol 10:11–13.

    PubMed  CAS  Google Scholar 

  • Ikeda K, Saito Y, Nishiyama A, Takasaka T (1992a) Intracellular pH regulation in isolated cochlear outer hair cells of the guinea-pig. J Physiol Lond 447:627–648.

    CAS  Google Scholar 

  • Ikeda K, Saito Y, Nishiyama A, Takasaka T (1992b) Na+-Ca2+ exchange in the isolated cochlear outer hair cells of the guinea-pig studied by fluorescence image microscopy. Pflügers Arch 420:493–499.

    CAS  Google Scholar 

  • Imamura S, Adams JC (1996) Immunolocalization of peptide 19 and other calcium–binding proteins in the guinea pig cochlea. Anat Embryol (Berl) 194:407–418.

    CAS  Google Scholar 

  • Ito M, Spicer SS, Schulte BA (1993) Immunohistochemical localization of brain type glucose transporter in mammalian inner ears: comparisons of developmental and adult stages. Hear Res 71:230–238.

    PubMed  CAS  Google Scholar 

  • Jabba SV, Oelke A, Singh R, Maganti RJ, Feming S, Wall SM, Everett LA, Green ED, Wangemann P (2006) Macrophage invasion contributes to degeneration of stria vascularis in Pendred syndrome mouse model. BMC Med 4:37–ff.

    PubMed  Google Scholar 

  • Jacono AA, Hu B, Kopke RD, Henderson D, Van De Water TR, Steinman HM (1998) Changes in cochlear antioxidant enzyme activity after sound conditioning and noise exposure in the chinchilla. Hear Res 117:31–38.

    PubMed  CAS  Google Scholar 

  • Jervell A, Lange-Nielsen F (1957) Congenital deaf–mutism, functional heart disease with prolongation of the Q–T interval and sudden death. Am Heart J 54:59–68.

    PubMed  CAS  Google Scholar 

  • Kambayashi J, Kobayashi T, Marcus NY, Demott JE, Thalmann I, Thalmann R (1982) Minimal concentrations of metabolic substrates capable of supporting cochlear potentials. Hear Res 7:105–114.

    PubMed  CAS  Google Scholar 

  • Karet FE, Finberg KE, Nayir A, Bakkaloglu A, Ozen S, Hulton SA, Sanjad SA, Al Sabban EA, Medina JF, Lifton RP (1999a) Localization of a gene for autosomal recessive distal renal tubular acidosis with normal hearing (rdRTA2) to 7q33–34. Am J Hum Genet 65:1656–1665.

    CAS  Google Scholar 

  • Karet FE, Finberg KE, Nelson RD, Nayir A, Mocan H, Sanjad SA, Rodriguez-Soriano J, Santos F, Cremers CW, Di Pietro A, Hoffbrand BI, Winiarski J, Bakkaloglu A, Ozen S, Dusunsel R, Goodyer P, Hulton SA, Wu DK, Skvorak AB, Morton CC, Cunningham MJ, Jha V, Lifton RP (1999b) Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness. Nat Genet 21:84–90.

    CAS  Google Scholar 

  • Kawasaki E, Hattori N, Miyamoto E, Yamashita T, Inagaki C (2000) mRNA expression of kidney-specific ClC-K1 chloride channel in single-cell reverse transcription-polymerase chain reaction analysis of outer hair cells of rat cochlea. Neurosci Lett 290:76–78.

    PubMed  CAS  Google Scholar 

  • Kelsell DP, Dunlop J, Stevens HP, Lench NJ, Liang JN, Parry G, Mueller RF, Leigh IM (1997) Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature 387:80–83.

    PubMed  CAS  Google Scholar 

  • Kiang NY (1989) An auditory physiologist’s view of Ménière’s syndrome. In: Nadol JB, Jr. (ed) Second International Symposium on Ménière’s Disease. Amsterdam: Kugler and Ghedini, pp. 13–24.

    Google Scholar 

  • Kikuchi T, Kimura RS, Paul DL, Adams JC (1995) Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis. Anat Embryol (Berl) 191:101–118.

    CAS  Google Scholar 

  • Kikuchi T, Kimura RS, Paul DL, Takasaka T, Adams JC (2000) Gap junction systems in the mammalian cochlea. Brain Res Brain Res Rev 32:163–166.

    PubMed  CAS  Google Scholar 

  • Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K (1996) Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273:245–248.

    PubMed  CAS  Google Scholar 

  • Kimura RS (1967) Experimental blockage of the endolymphatic duct and sac and its effect on the inner ear of the guinea pig. A study on endolymphatic hydrops. Ann Otol Rhinol Laryngol 76:664–687.

    PubMed  CAS  Google Scholar 

  • King M, Housley GD, Raybould NP, Greenwood D, Salih SG (1998) Expression of ATP-gated ion channels by Reissner’s membrane epithelial cells. NeuroReport 9:2467–2474.

    PubMed  CAS  Google Scholar 

  • Konishi K, Yamane H, Iguchi H, Takayama M, Nakagawa T, Sunami K, Nakai Y (1998) Local substances regulating cochlear blood flow. Acta Otolaryngol Suppl (Stockh) 538:40–46.

    CAS  Google Scholar 

  • Konishi T, Butler RA, Fernández C (1961) Effect of anoxia on cochlear potentials. J Acoust Soc Am 33:349–356.

    Google Scholar 

  • Konishi T, Hamrick PE, Walsh PJ (1978) Ion transport in guinea pig cochlea. I. Potassium and sodium transport. Acta Otolaryngol (Stockh) 86:22–34.

    CAS  Google Scholar 

  • Konrad-Martin D, Norton SJ, Mascher KE, Tempel BL (2001) Effects of PMCA2 mutation on DPOAE amplitudes and latencies in deafwaddler mice. Hear Res 151:205–220.

    PubMed  CAS  Google Scholar 

  • Kros CJ (1996) Physiology of mammalian hair cells. In: Dallos P, Popper AN, Fay R (eds)The Cochlea. New York: Springer, pp. 319–385.

    Google Scholar 

  • Kuffler SW, Nicholls JG, Orkand RK (1966) Physiological properties of glial cells in the central nervous system of amphibia. J Neurophysiol 29:768–787.

    PubMed  CAS  Google Scholar 

  • Kuijpers W, Bonting SL (1969) Studies on (Na+-K+)-activated ATPase. XXIV. Localization and properties of ATPase in the inner ear of the guinea pig. Biochim Biophys Acta 173:477–485.

    PubMed  CAS  Google Scholar 

  • Labbe D, Teranishi MA, Hess A, Bloch W, Michel O (2005) Activation of caspase-3 is associated with oxidative stress in the hydropic guinea pig cochlea. Hear Res 202:21–27.

    PubMed  CAS  Google Scholar 

  • Lang F, Busch GL, Ritter M, Volkl H, Waldegger S, Gulbins E, Haussinger D (1998) Functional significance of cell volume regulatory mechanisms. Physiol Rev 78:247–306.

    PubMed  CAS  Google Scholar 

  • Lautermann J, ten Cate WJ, Altenhoff P, Grummer R, Traub O, Frank H, Jahnke K, Winterhager E (1998) Expression of the gap-junction connexins 26 and 30 in the rat cochlea. Cell Tissue Res 294:415–420.

    PubMed  CAS  Google Scholar 

  • Lee JH, Marcus DC (2003) Endolymphatic sodium homeostasis by Reissner’s membrane. Neuroscience 119:3–8.

    PubMed  CAS  Google Scholar 

  • Lee MP, Ravenel JD, Hu RJ, Lustig LR, Tomaselli G, Berger RD, Brandenburg SA, Litzi TJ, Bunton TE, Limb C, Francis H, Gorelikow M, Gu H, Washington K, Argani P, Goldenring JR, Coffey RJ, Feinberg AP (2000) Targeted disruption of the Kvlqt1 gene causes deafness and gastric hyperplasia in mice. J Clin Invest 106:1447–1455.

    PubMed  CAS  Google Scholar 

  • Letts VA, Valenzuela A, Dunbar C, Zheng QY, Johnson KR, Frankel WN (2000) A new spontaneous mouse mutation in the Kcne1 gene. Mamm Genome 11:831–835.

    PubMed  CAS  Google Scholar 

  • Li HS, Niedzielski AS, Beisel KW, Hiel H, Wenthold RJ, Morley BJ (1994) Identification of a glutamate/aspartate transporter in the rat cochlea. Hear Res 78:235–242.

    PubMed  CAS  Google Scholar 

  • Listi F, Candore G, Balistreri CR, Grimaldi MP, Orlando V, Vasto S, Colonna-Romano G, Lio D, Licastro F, Franceschi C, Caruso C (2006) Association between the HLA-A2 allele and Alzheimer disease. Rejuvenation Res 9:99–101.

    PubMed  CAS  Google Scholar 

  • Liu XZ, Xia XJ, Adams J, Chen ZY, Welch KO, Tekin M, Ouyang XM, Kristiansen A, Pandya A, Balkany T, Arnos KS, Nance WE (2001) Mutations in GJA1 (connexin 43) are associated with non-syndromic autosomal recessive deafness. Hum Mol Genet 10:2945–2951.

    PubMed  CAS  Google Scholar 

  • Lohuis PJ, Klis SF, Klop WM, van Emst MG, Smoorenburg GF (1999) Signs of endolymphatic hydrops after perilymphatic perfusion of the guinea pig cochlea with cholera toxin; a pharmacological model of acute endolymphatic hydrops. Hear Res 137:103–113.

    PubMed  CAS  Google Scholar 

  • Lumpkin EA, Marquis RE, Hudspeth AJ (1997) The selectivity of the hair cell’s mechanoelectrical-transduction channel promotes Ca2+ flux at low Ca2+ concentrations. Proc Natl Acad Sci USA 94:10997–11002.

    Google Scholar 

  • Luxon LM, Cohen M, Coffey RA, Phelps PD, Britton KE, Jan H, Trembath RC, Reardon W (2003) Neuro-otological findings in Pendred syndrome. Int J Audiol 42:82–88.

    PubMed  CAS  Google Scholar 

  • Lymar SV, Jiang Q, Hurst JK (1996) Mechanism of carbon dioxide-catalyzed oxidation of tyrosine by peroxynitrite. Biochemistry 35:7855–7861.

    PubMed  CAS  Google Scholar 

  • Makishima T, Rodriguez CI, Robertson NG, Morton CC, Stewart CL, Griffith AJ (2005) Targeted disruption of mouse Coch provides functional evidence that DFNA9 hearing loss is not a COCH haploinsufficiency disorder. Hum Genet 118:29–34.

    PubMed  CAS  Google Scholar 

  • Mammano F, Frolenkov GI, Lagostena L, Belyantseva IA, Kurc M, Dodane V, Colavita A, Kachar B (1999) ATP–Induced Ca(2+) release in cochlear outer hair cells: localization of an inositol triphosphate-gated Ca(2+) store to the base of the sensory hair bundle. J Neurosci 19:6918–6929.

    PubMed  CAS  Google Scholar 

  • Manolis EN, Yandavi N, Nadol JB, Jr., Eavey RD, McKenna M, Rosenbaum S, Khetarpal U, Halpin C, Merchant SN, Duyk GM, MacRae C, Seidman CE, Seidman JG (1996) A gene for non-syndromic autosomal dominant progressive postlingual sensorineural hearing loss maps to chromosome 14q12–13. Hum Mol Genet 5:1047–1050.

    PubMed  CAS  Google Scholar 

  • Marcaggi P, Coles JA (2001) Ammonium in nervous tissue: transport across cell membranes, fluxes from neurons to glial cells, and role in signalling. Prog Neurobiol 64:157–183.

    PubMed  CAS  Google Scholar 

  • Marcus DC, Chiba T (1999) K+ and Na+ absorption by outer sulcus epithelial cells. Hear Res 134:48–56.

    PubMed  CAS  Google Scholar 

  • Marcus DC, Shen Z (1994) Slowly activating, voltage-dependent K+ conductance is apical pathway for K+ secretion in vestibular dark cells. Am J Physiol 267:C857–C864.

    PubMed  CAS  Google Scholar 

  • Marcus DC, Thalmann R, Marcus NY (1978a) Respiratory quotient of stria vascularis of guinea pig in vitro. Arch Otorhinolaryngol 221:97–103.

    CAS  Google Scholar 

  • Marcus DC, Thalmann R, Marcus NY (1978b) Respiratory rate and ATP content of stria vascularis of guinea pig in vitro. Laryngoscope 88:1825–1835.

    CAS  Google Scholar 

  • Marcus DC, Ge XX, Thalmann R (1982) Comparison of the non-adrenergic action of phentolamine with that of vanadate on cochlear function. Hear Res 7:233–246.

    PubMed  CAS  Google Scholar 

  • Marcus DC, Marcus NY, Greger R (1987) Sidedness of action of loop diuretics and ouabain on nonsensory cells of utricle: a micro-Ussing chamber for inner ear tissues. Hear Res 30:55–64.

    PubMed  CAS  Google Scholar 

  • Marcus DC, Takeuchi S, Wangemann P (1993) Two types of chloride channel in the basolateral membrane of vestibular dark cell epithelium. Hear Res 69:124–132.

    PubMed  CAS  Google Scholar 

  • Marcus DC, Sunose H, Liu J, Shen Z, Scofield MA (1997) P2U purinergic receptor inhibits apical IsK/KvLQT1 channel via protein kinase C in vestibular dark cells. Am J Physiol 273:C2022–C2029.

    PubMed  CAS  Google Scholar 

  • Marcus DC, Wu T, Wangemann P, Kofuji P (2002) KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential. Am J Physiol Cell Physiol 282:C403–C407.

    PubMed  CAS  Google Scholar 

  • Marcus DC, Liu J, Lee JH, Scherer EQ, Scofield MA, Wangemann P (2005) Apical membrane P2Y4 purinergic receptor controls K+ secretion by strial marginal cell epithelium. Cell Commun Signal 3(13):1–8.

    Google Scholar 

  • Matsunami T, Suzuki T, Hisa Y, Takata K, Takamatsu T, Oyamada M (2006) Gap junctions mediate glucose transport between GLUT1-positive and –negative cells in the spiral limbus of the rat cochlea. Cell Commun Adhes 13:93–102.

    PubMed  CAS  Google Scholar 

  • McLaren GM, Quirk WS, Laurikainen E, Coleman JK, Seidman MD, Dengerink HA, Nuttall AL, Miller JM, Wright JW (1993) Substance P increases cochlear blood flow without changing cochlear electrophysiology in rats. Hear Res 71:183–189.

    PubMed  CAS  Google Scholar 

  • Ménière P (1861) Mémoire sur des lésions de l’orielle interne donnant lieu à des symptômes de cogestion cérébrale apoplectiforme. Gaz Med Paris 16:597–601.

    Google Scholar 

  • Merchant SN, Adams JC, Nadol JB Jr (2005) Pathophysiology of Ménière’s syndrome: are symptoms caused by endolymphatic hydrops? Otol Neurotol 26:74–81.

    Google Scholar 

  • Mhatre AN, Jero J, Chiappini I, Bolasco G, Barbara M, Lalwani AK (2002) Aquaporin-2 expression in the mammalian cochlea and investigation of its role in Ménière’s disease. Hear Res 170:59–69.

    PubMed  CAS  Google Scholar 

  • Milhaud PG, Pondugula SR, Lee JH, Herzog M, Lehouelleur J, Wangemann P, Sans A, Marcus DC (2002) Chloride secretion by semicircular canal duct epithelium is stimulated via beta 2-adrenergic receptors. Am J Physiol Cell Physiol 283:C1752–C1760.

    Google Scholar 

  • Moriyama Y, Maeda M, Futai M (1992) The role of V-ATPase in neuronal and endocrine systems. J Exp Biol 172:171–178.

    PubMed  CAS  Google Scholar 

  • Mouadeb DA, Ruckenstein MJ (2005) Antiphospholipid inner ear syndrome. Laryngoscope 115:879–883.

    PubMed  Google Scholar 

  • Mount DB, Romero MF (2004) The SLC26 gene family of multifunctional anion exchangers. Pflugers Arch 447:710–721.

    PubMed  CAS  Google Scholar 

  • Nakaya K, Harbidge DG, Wangemann P, Schultz BD, Green E, Wall SM, Marcus DC (2007) Lack of pendrin HCO3- transport elevates vestibular endolymphatic [Ca2+] by inhibition of acid-sensitive TRPV5 and TRPV6. Am J Physiol Renal Physiol 292:F1314–F1321.

    PubMed  CAS  Google Scholar 

  • Nakazawa K (2001) Ultrastructural localization of calmodulin in gerbil cochlea by immunogold electron microscopy. Hear Res 151:133–140.

    PubMed  CAS  Google Scholar 

  • Nakazawa K, Spicer SS, Schulte BA (1995) Postnatal expression of the facilitated glucose transporter, GLUT 5, in gerbil outer hair cells. Hear Res 82:93–99.

    PubMed  CAS  Google Scholar 

  • Neyroud N, Tesson F, Denjoy I, Leibovici M, Donger C, Barhanin J, Faure S, Gary F, Coumel P, Petit C, Schwartz K, Guicheney P (1997) A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Nat Genet 15:186–189.

    PubMed  CAS  Google Scholar 

  • Nicolas M, Dememes D, Martin A, Kupershmidt S, Barhanin J (2001) KCNQ1/KCNE1 potassium channels in mammalian vestibular dark cells. Hear Res 153:132–145.

    PubMed  CAS  Google Scholar 

  • Nie L, Gratton MA, Mu KJ, Dinglasan JN, Feng W, Yamoah EN (2005) Expression and functional phenotype of mouse ERG K+ channels in the inner ear: potential role in K+regulation in the inner ear. J Neurosci 25:8671–8679.

    PubMed  CAS  Google Scholar 

  • Ninoyu O, Meyer zum Gottesberge AM (1986a) Ca++activity in the endolymphatic space. Arch Otorhinolaryngol 243:141–142.

    CAS  Google Scholar 

  • Ninoyu O, Meyer zum Gottesberge AM (1986b) Changes in Ca++ activity and DC potential in experimentally induced endolymphatic hydrops. Arch Otorhinolaryngol 243:106–107.

    CAS  Google Scholar 

  • Ohmori H (1985) Mechano-electrical transduction currents in isolated vestibular hair cells of the chick. J Physiol (Lond) 359:189–217.

    CAS  Google Scholar 

  • Ohmori T, Yatomi Y, Osada M, Ozaki Y (2004) Platelet-derived sphingosine 1-phosphate induces contraction of coronary artery smooth muscle cells via S1P2. J Thromb Haemost 2:203–205.

    PubMed  CAS  Google Scholar 

  • Ohyama K, Salt AN, Thalmann R (1988) Volume flow rate of perilymph in the guinea-pig cochlea. Hear Res 35:119–129.

    PubMed  CAS  Google Scholar 

  • Okamura HO, Sugai N, Suzuki K, Ohtani I (1996) Enzyme-histochemical localization of carbonic anhydrase in the inner ear of the guinea pig and several improvements of the technique. Histochem Cell Biol 106:425–430.

    PubMed  CAS  Google Scholar 

  • Okamura H, Spicer SS, Schulte BA (2001) Developmental expression of monocarboxylate transporter in the gerbil inner ear. Neuroscience 107:499–505.

    PubMed  CAS  Google Scholar 

  • Oliveira JA, Canedo DM, Rossato M, Andrade MH (2004) Self-protection against aminoglycoside ototoxicity in guinea pigs. Otolaryngol Head Neck Surg 131:271–279.

    PubMed  Google Scholar 

  • Orkand RK, Nicholls JG, Kuffler SW (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol 29:788–806.

    PubMed  CAS  Google Scholar 

  • Oshima T, Ikeda K, Furukawa M, Takasaka T (1997) Alternatively spliced isoforms of the Na+/Ca2+ exchanger in the guinea pig cochlea. Biochem Biophys Res Commun 233:737–741.

    PubMed  CAS  Google Scholar 

  • Ottersen OP, Takumi Y, Matsubara A, Landsend AS, Laake JH, Usami S (1998) Molecular organization of a type of peripheral glutamate synapse: the afferent synapses of hair cells in the inner ear. Prog Neurobiol 54:127–148.

    PubMed  CAS  Google Scholar 

  • Pack AK, Slepecky NB (1995) Cytoskeletal and calcium-binding proteins in the mammalian organ of Corti: cell type-specific proteins displaying longitudinal and radial gradients. Hear Res 91:119–135.

    PubMed  CAS  Google Scholar 

  • Passali D, Damiani V, Mora R, Passali FM, Passali GC, Bellussi L (2004) P0 antigen detection in sudden hearing loss and Ménière’s disease: a new diagnostic marker? Acta Otolaryngol 124:1145–1148.

    PubMed  Google Scholar 

  • Payne JA (1997) Functional characterization of the neuronal-specific K-Cl cotransporter: implications for [K+]o regulation. Am J Physiol 273:C1516–C1525.

    PubMed  CAS  Google Scholar 

  • Payne JA, Xu JC, Haas M, Lytle CY, Ward D, Forbush B, III (1995) Primary structure, functional expression, and chromosomal localization of the bumetanide-sensitive Na-K-Cl cotransporter in human colon. J Biol Chem 270:17977–17985.

    PubMed  CAS  Google Scholar 

  • Pendred V (1896) Deaf-mutism and goitre. Lancet 11:532.

    Google Scholar 

  • Pondugula SR, Raveendran NN, Ergonul Z, Deng Y, Chen J, Sanneman JD, Palmer LG, Marcus DC (2006) Glucocorticoid regulation of genes in the amiloride-sensitive sodium transport pathway by semicircular canal duct epithelium of neonatal rat. Physiol Genomics 24:114–123.

    PubMed  CAS  Google Scholar 

  • Qiu J, Steyger PS, Trune DR, Nuttall AL (2001) Co-existence of tyrosine hydroxylase and calcitonin gene-related peptide in cochlear spiral modiolar artery of guinea pigs. Hear Res 155:152–160.

    PubMed  CAS  Google Scholar 

  • Qu C, Liang F, Hu W, Shen Z, Spicer SS, Schulte BA (2006) Expression of CLC-K chloride channels in the rat cochlea. Hear Res 213:79–87.

    PubMed  CAS  Google Scholar 

  • Quirk WS, Dengerink HA, Coleman JK, Wright JW (1989) Cochlear blood flow autoregulation in Wistar-Kyoto rats. Hear Res 41:53–60.

    PubMed  CAS  Google Scholar 

  • Quirk WS, Avinash G, Nuttall AL, Miller JM (1992) The influence of loud sound on red blood cell velocity and blood vessel diameter in the cochlea. Hear Res 63:102–107.

    PubMed  CAS  Google Scholar 

  • Quirk WS, Seidman MD, Laurikainen EA, Nuttall AL, Miller JM (1994) Influence of calcitonin-gene related peptide on cochlear blood flow and electrophysiology. Am J Otol 15:56–60.

    PubMed  CAS  Google Scholar 

  • Rakugi H, Tabuchi Y, Nakamaru M, Nagano M, Higashimori K, Mikami H, Ogihara T, Suzuki N (1990) Evidence for endothelin-1 release from resistance vessels of rats in response to hypoxia. Biochem Biophys Res Commun 169:973–977.

    PubMed  CAS  Google Scholar 

  • Rauch SD, Merchant SN, Thedinger BA (1989) Ménière’s syndrome and endolymphatic hydrops. Double-blind temporal bone study. Ann Otol Rhinol Laryngol 98:873–883.

    PubMed  CAS  Google Scholar 

  • Reardon W, OMahoney CF, Trembath R, Jan H, Phelps PD (2000) Enlarged vestibular aqueduct: a radiological marker of pendred syndrome, and mutation of the PDS gene. QJM 93:99–104.

    PubMed  CAS  Google Scholar 

  • Ricci AJ, Fettiplace R (1998) Calcium permeation of the turtle hair cell mechanotransducer channel and its relation to the composition of endolymph. J Physiol 506 (Pt 1):159–173.

    PubMed  CAS  Google Scholar 

  • Rimaniol AC, Mialocq P, Clayette P, Dormont D, Gras G (2001) Role of glutamate transporters in the regulation of glutathione levels in human macrophages. Am J Physiol Cell Physiol 281:C1964–C1970.

    PubMed  CAS  Google Scholar 

  • Robertson NG, Resendes BL, Lin JS, Lee C, Aster JC, Adams JC, Morton CC (2001) Inner ear localization of mRNA and protein products of COCH, mutated in the sensorineural deafness and vestibular disorder, DFNA9. Hum Mol Genet 10:2493–2500.

    PubMed  CAS  Google Scholar 

  • Romero MF, Fulton CM, Boron WF (2004) The SLC4 family of HCO3-- transporters. Pflugers Arch 447:495–509.

    PubMed  CAS  Google Scholar 

  • Royaux IE, Suzuki K, Mori A, Katoh R, Everett LA, Kohn LD, Green ED (2000) Pendrin, the protein encoded by the Pendred syndrome gene (PDS), is an apical porter of iodide in the thyroid and is regulated by thyroglobulin in FRTL-5 cells. Endocrinology 141:839–845.

    PubMed  CAS  Google Scholar 

  • Rubanyi GM, Polokoff MA (1994) Endothelins: molecular biology, biochemistry, pharmacology, physiology, and pathophysiology. Pharmacol Rev 46:325–415.

    PubMed  CAS  Google Scholar 

  • Ryan AF, Goodwin P, Woolf NK, Sharp F (1982) Auditory stimulation alters the pattern of 2-deoxyglucose uptake in the inner ear. Brain Res 234:213–225.

    PubMed  CAS  Google Scholar 

  • Rybak LP, Husain K, Evenson L, Morris C, Whitworth C, Somani SM (1997) Protection by 4-methylthiobenzoic acid against cisplatin-induced ototoxicity: antioxidant system. Pharmacol Toxicol 81:173–179.

    PubMed  CAS  Google Scholar 

  • Sadanaga M, Liu J, Wangemann P (1997) Endothelin-A receptors mediate endothelin-induced vasoconstriction in the spiral ligament of the inner ear. Hear Res 112:106–114.

    PubMed  CAS  Google Scholar 

  • Sage CL, Marcus DC (2001) Immunolocalization of ClC-K chloride channel in strial marginal cells and vestibular dark cells. Hear Res 160:1–9.

    PubMed  CAS  Google Scholar 

  • Sakagami M, Fukazawa K, Matsunaga T, Fujita H, Mori N, Takumi T, Ohkubo H, Nakanishi S (1991) Cellular localization of rat Isk protein in the stria vascularis by immunohistochemical observation. Hear Res 56:168–172.

    PubMed  CAS  Google Scholar 

  • Sakaguchi N, Henzl MT, Thalmann I, Thalmann R, Schulte BA (1998) Oncomodulin is expressed exclusively by outer hair cells in the organ of Corti. J Histochem Cytochem 46:29–40.

    PubMed  CAS  Google Scholar 

  • Salt AN (2004) Acute endolymphatic hydrops generated by exposure of the ear to nontraumatic low-frequency tones. JARO 5:203–214.

    PubMed  Google Scholar 

  • Salt AN, Demott JE (2000) Ionic and potential changes of the endolymphatic sac induced by endolymph volume changes. Hear Res 149:46–54.

    PubMed  CAS  Google Scholar 

  • Salt AN, Konishi T (1979) Effects of noise on cochlear potentials and endolymph potassium concentration recorded with potassium-selective electrodes. Hear Res 1:343–363.

    PubMed  CAS  Google Scholar 

  • Salt AN, Ohyama K (1993) Accumulation of potassium in scala vestibuli perilymph of the mammalian cochlea. Ann Otol Rhinol Laryngol 102:64–70.

    PubMed  CAS  Google Scholar 

  • Salt AN, Rask-Andersen H (2004) Responses of the endolymphatic sac to perilymphatic injections and withdrawals: evidence for the presence of a one-way valve. Hear Res 191:90–100.

    PubMed  Google Scholar 

  • Salt AN, Thalmann R (1988) Rate of longitudinal flow of cochlear endolymph. In: Nadol Jr JB (ed) Second International Symposium on Ménière’s Disease. Amsterdam: Kugler and Ghedini, pp. 69–73.

    Google Scholar 

  • Salt AN, Thalmann R, Marcus DC, Bohne BA (1986) Direct measurement of longitudinal endolymph flow rate in the guinea pig cochlea. Hear Res 23:141–151.

    PubMed  CAS  Google Scholar 

  • Salt AN, Melichar I, Thalmann R (1987) Mechanisms of endocochlear potential generation by stria vascularis. Laryngoscope 97:984–991.

    PubMed  CAS  Google Scholar 

  • Salt AN, Inamura N, Thalmann R, Vora A (1989) Calcium gradients in inner ear endolymph. Am J Otolaryngol 10:371–375.

    PubMed  CAS  Google Scholar 

  • Sanguinetti MC, Curran ME, Zou A, Shen J, Spector PS, Atkinson DL, Keating MT (1996) Coassembly of KVLQT1 and minK (IsK) proteins to form cardiac IKs potassium channel. Nature 384:80–83.

    PubMed  CAS  Google Scholar 

  • Sato M, Tani E, Fujikawa H, Kaibuchi K (2000) Involvement of Rho-kinase-mediated phosphorylation of myosin light chain in enhancement of cerebral vasospasm. Circ Res 87:195–200.

    PubMed  CAS  Google Scholar 

  • Sawada S, Takeda T, Kitano H, Takeuchi S, Kakigi A, Azuma H (2002) Aquaporin-2 regulation by vasopressin in the rat inner ear. NeuroReport 13:1127–1129.

    PubMed  CAS  Google Scholar 

  • Scheibe F, Haupt H, Ludwig C (1992) Intensity-dependent changes in oxygenation of cochlear perilymph during acoustic exposure. Hear Res 63:19–25.

    PubMed  CAS  Google Scholar 

  • Scherer EQ, Wonneberger K, Wangemann P (2001) Differential desensitization of Ca2+ mobilization and vasoconstriction by ETA receptors in the gerbil spiral modiolar artery. J Membr Biol 182:183–191.

    PubMed  CAS  Google Scholar 

  • Scherer EQ, Herzog M, Wangemann P (2002) Endothelin-1-induced vasospasms of spiral modiolar artery are mediated by rho-kinase-induced Ca2+ sensitization of contractile apparatus and reversed by calcitonin gene-related peptide. Stroke 33:2965–2971.

    PubMed  CAS  Google Scholar 

  • Scherer EQ, Arnold W, Wangemann P (2005) Pharmacological reversal of endothelin-1 mediated constriction of the spiral modiolar artery: a potential new treatment for sudden sensorineural hearing loss. BMC Ear Nose Throat Disord 5:10.

    PubMed  Google Scholar 

  • Scherer EQ, Lidington D, Oestreicher E, Arnold W, Pohl U, Bolz SS (2006) Sphingosine-1-phosphate modulates spiral modiolar artery tone: a potential role in vascular-based inner ear pathologies? Cardiovasc Res

    Google Scholar 

  • Schimanski S, Scofield MA, Wangemann P (2001) Functional b2-adrenergic receptors are present in non-strial tissues of the lateral wall in the gerbil cochlea. Audiol Neurootol 6:124–136.

    PubMed  CAS  Google Scholar 

  • Schlingmann KP, Konrad M, Jeck N, Waldegger P, Reinalter SC, Holder M, Seyberth HW, Waldegger S (2004) Salt wasting and deafness resulting from mutations in two chloride channels. N Engl J Med 350:1314–1319.

    PubMed  CAS  Google Scholar 

  • Schulze-Bahr E, Wang Q, Wedekind H, Haverkamp W, Chen Q, Sun Y, Rubie C, Hordt M, Towbin JA, Borggrefe M, Assmann G, Qu X, Somberg JC, Breithardt G, Oberti C, Funke H (1997) KCNE1 mutations cause jervell and Lange-Nielsen syndrome. Nat Genet 17:267–268.

    PubMed  CAS  Google Scholar 

  • Scott DA, Karniski LP (2000) Human pendrin expressed in Xenopus laevis oocytes mediates chloride/formate exchange. Am J Physiol Cell Physiol 278:C207–C211.

    PubMed  CAS  Google Scholar 

  • Scott DA, Wang R, Kreman TM, Sheffield VC, Karniski LP (1999) The Pendred syndrome gene encodes a chloride-iodide transport protein. Nat Genet 21:440–443.

    PubMed  CAS  Google Scholar 

  • Selivanova OA, Gouveris H, Victor A, Amedee RG, Mann W (2005) Intratympanic dexamethasone and hyaluronic acid in patients with low-frequency and Ménière’s-associated sudden sensorineural hearing loss. Otol Neurotol 26:890–895.

    PubMed  Google Scholar 

  • Shen Z, Marcus DC, Sunose H, Chiba T, Wangemann P (1997) IsK channel in strial marginal cell: voltage-dependence, ion selectivity, inhibition by 293B and sensitivity to clofilium. Audit Neurosci 3:215–230.

    CAS  Google Scholar 

  • Shibata T, Hibino H, Doi K, Suzuki T, Hisa Y, Kurachi Y (2006) Gastric type H+,K+-ATPase in the cochlear lateral wall is critically involved in formation of the endocochlear potential. Am J Physiol Cell Physiol 291:C1038–C1048.

    PubMed  CAS  Google Scholar 

  • Shimokawa H, Takeshita A (2005) Rho-kinase is an important therapeutic target in cardiovascular medicine. Arterioscler Thromb Vasc Biol 25:1767–1775.

    PubMed  CAS  Google Scholar 

  • Shimozono M, Scofield MA, Wangemann P (1997) Functional evidence for a monocarboxylate transporter (MCT) in strial marginal cells and molecular evidence for MCT1 and MCT2 in stria vascularis. Hear Res 114:213–222.

    PubMed  CAS  Google Scholar 

  • Singh, R, Wangemann, P (2008, 2007 epub) Free radical stress mediated loss of Kcnj10 protein expression in stria vascularis contributes to deafness in Pendred syndrome mouse model. Am J Physiol Renal Physiol 294:F139–F148.

    Google Scholar 

  • Smith CA, Lowry OH, Wu ML (1954) The electrolytes of the labyrinthine fluids. Laryngoscope 64:141–153.

    PubMed  CAS  Google Scholar 

  • Soliman AM (1989) Experimental autoimmune inner ear disease. Laryngoscope 99:188–193.

    PubMed  CAS  Google Scholar 

  • Somlyo AP, Somlyo AV (2003) Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 83:1325–1358.

    PubMed  CAS  Google Scholar 

  • Song BB, Sha SH, Schacht J (1998) Iron chelators protect from aminoglycoside-induced cochleo- and vestibulo-toxicity. Free Radic Biol Med 25:189–195.

    PubMed  CAS  Google Scholar 

  • Spector GJ, Carr C (1979) The ultrastructural cytochemistry of peroxisomes in the guinea pig cochlea: a metabolic hypothesis for the stria vascularis. Laryngoscope 89:1–38.

    PubMed  CAS  Google Scholar 

  • Spicer SS, Schulte BA (1991) Differentiation of inner ear fibrocytes according to their ion transport related activity. Hear Res 56:53–64.

    PubMed  CAS  Google Scholar 

  • Spicer SS, Schulte BA (1996) The fine structure of spiral ligament cells relates to ion return to the stria and varies with place-frequency. Hear Res 100:80–100.

    PubMed  CAS  Google Scholar 

  • Splawski I, Shen J, Timothy KW, Lehmann MH, Priori S, Robinson JL, Moss AJ, Schwartz PJ, Towbin JA, Vincent GM, Keating MT (2000) Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation 102:1178–1185.

    PubMed  CAS  Google Scholar 

  • Stankovic KM, Brown D, Alper SL, Adams JC (1997) Localization of pH regulating proteins H+ ATPase and Cl-/HCO3- exchanger in the guinea pig inner ear. Hear Res 114:21–34.

    PubMed  CAS  Google Scholar 

  • Sterkers O, Saumon G, Tran Ba Huy P, Ferrary E, Amiel C (1984) Electrochemical heterogeneity of the cochlear endolymph: effect of acetazolamide. Am J Physiol 246:F47–F53.

    PubMed  CAS  Google Scholar 

  • Stover EH, Borthwick KJ, Bavalia C, Eady N, Fritz DM, Rungroj N, Giersch AB, Morton CC, Axon PR, Akil I, Al Sabban EA, Baguley DM, Bianca S, Bakkaloglu A, Bircan Z, Chauveau D, Clermont MJ, Guala A, Hulton SA, Kroes H, Li VG, Mir S, Mocan H, Nayir A, Ozen S, Rodriguez SJ, Sanjad SA, Tasic V, Taylor CM, Topaloglu R, Smith AN, Karet FE (2002) Novel ATP6V1B1 and ATP6V0A4 mutations in autosomal recessive distal renal tubular acidosis with new evidence for hearing loss. J Med Genet 39:796–803.

    PubMed  CAS  Google Scholar 

  • Street VA, McKee-Johnson JW, Fonseca RC, Tempel BL, Noben-Trauth K (1998) Mutations in a plasma membrane Ca2+-ATPase gene cause deafness in deafwaddler mice. Nat Genet 19:390–394.

    PubMed  CAS  Google Scholar 

  • Sun J, Ahmad S, Chen S, Tang W, Zhang Y, Chen P, Lin X (2005) Cochlear gap junctions coassembled from Cx26 and 30 show faster intercellular Ca2+ signaling than homomeric counterparts. Am J Physiol Cell Physiol 288:C613–C623.

    PubMed  CAS  Google Scholar 

  • Sweadner KJ (1985) Enzymatic properties of separated isozymes of the Na,K-ATPase. Substrate affinities, kinetic cooperativity, and ion transport stoichiometry. J Biol Chem 260:11508–11513.

    PubMed  CAS  Google Scholar 

  • Tabuchi K, Tsuji S, Asaka Y, Hara A, Kusakari J (2001) Ischemia-reperfusion injury of the cochlea: effects of an iron chelator and nitric oxide synthase inhibitors. Hear Res 160:31–36.

    PubMed  CAS  Google Scholar 

  • Takeda T, Sawada S, Takeda S, Kitano H, Suzuki M, Kakigi A, Takeuchi S (2003) The effects of V2 antagonist (OPC–31260) on endolymphatic hydrops. Hear Res 182:9–18.

    PubMed  CAS  Google Scholar 

  • Takeuchi S, Ando M (1997) Marginal cells of the stria vascularis of gerbils take up glucose via the facilitated transporter GLUT: application of autofluorescence. Hear Res 114:69–74.

    PubMed  CAS  Google Scholar 

  • Takeuchi S, Irimajiri A (1994) Cl- and nonselective cation channels in the basolateral membrane of strial marginal cells. Proc Sendai Symp 4:35–37.

    Google Scholar 

  • Takeuchi S, Irimajiri A (1996) Maxi–K+ channel in plasma membrane of basal cells dissociated from the stria vascularis of gerbils. Hear Res 95:18–25.

    PubMed  CAS  Google Scholar 

  • Takeuchi S, Ando M, Kozakura K, Saito H, Irimajiri A (1995) Ion channels in basolateral membrane of marginal cells dissociated from gerbil stria vascularis. Hear Res 83:89–100.

    PubMed  CAS  Google Scholar 

  • Takeuchi S, Ando M, Kakigi A (2000) Mechanism generating endocochlear potential: role played by intermediate cells in stria vascularis. Biophys J 79:2572–2582.

    PubMed  CAS  Google Scholar 

  • Takumi Y, Matsubara A, Danbolt NC, Laake JH, Storm-Mathisen J, Usami S, Shinkawa H, Ottersen OP (1997) Discrete cellular and subcellular localization of glutamine synthetase and the glutamate transporter GLAST in the rat vestibular end organ. Neuroscience 79:1137–1144.

    PubMed  CAS  Google Scholar 

  • Takumi Y, Matsubara A, Laake JH, Ramirez-Leon V, Roberg B, Torgner I, Kvamme E, Usami S, Ottersen OP (1999) Phosphate activated glutaminase is concentrated in mitochondria of sensory hair cells in rat inner ear: a high resolution immunogold study. J Neurocytol 28:223–237.

    PubMed  CAS  Google Scholar 

  • Takumi Y, Matsubara A, Tsuchida S, Ottersen OP, Shinkawa H, Usami S (2001) Various glutathione S-transferase isoforms in the rat cochlea. NeuroReport 12:1513–1516.

    PubMed  CAS  Google Scholar 

  • Tanaka Y, Asanuma A, Yanagisawa K (1980) Potentials of outer hair cells and their membrane properties in cationic environments. Hear Res 2:431–438.

    PubMed  CAS  Google Scholar 

  • Tang W, Zhang Y, Chang Q, Ahmad S, Dahlke I, Yi H, Chen P, Paul DL, Lin X (2006) Connexin29 is highly expressed in cochlear Schwann cells, and it is required for the normal development and function of the auditory nerve of mice. J Neurosci 26:1991–1999.

    PubMed  CAS  Google Scholar 

  • Teubner B, Michel V, Pesch J, Lautermann J, Cohen-Salmon M, Sohl G, Jahnke K, Winterhager E, Herberhold C, Hardelin JP, Petit C, Willecke K (2003) Connexin30 (Gjb6)–deficiency causes severe hearing impairment and lack of endocochlear potential. Hum Mol Genet 12:13–21.

    PubMed  CAS  Google Scholar 

  • Thalmann I, Matschinsky FM, Thalmann R (1970) Quantitative study of selected enzymes involved in energy metabolism of the cochlear duct. Ann Otol Rhinol Laryngol 79:12–29.

    PubMed  CAS  Google Scholar 

  • Thalmann R, Miyoshi T, Thalmann I (1972) The influence of ischemia upon the energy reserves of inner ear tissues. Laryngoscope 82:2249–2272.

    PubMed  CAS  Google Scholar 

  • Tyson J, Tranebjaerg L, McEntagart M, Larsen LA, Christiansen M, Whiteford ML, Bathen J, Aslaksen B, Sorland SJ, Lund O, Pembrey ME, Malcolm S, Bitner-Glindzicz M (2000) Mutational spectrum in the cardioauditory syndrome of Jervell and Lange-Nielsen. Hum Genet 107:499–503.

    PubMed  CAS  Google Scholar 

  • Unoki H, Fan J, Watanabe T (1999) Low-density lipoproteins modulate endothelial cells to secrete endothelin-1 in a polarized pattern: a study using a culture model system simulating arterial intima. Cell Tissue Res 295:89–99.

    PubMed  CAS  Google Scholar 

  • Usami S, Hjelle OP, Ottersen OP (1996) Differential cellular distribution of glutathione—an endogenous antioxidant—-in the guinea pig inner ear. Brain Res 743:337–340.

    PubMed  CAS  Google Scholar 

  • Usami S, Takahashi K, Yuge I, Ohtsuka A, Namba A, Abe S, Fransen E, Patthy L, Otting G, Van Camp G (2003) Mutations in the COCH gene are a frequent cause of autosomal dominant progressive cochleo-vestibular dysfunction, but not of Ménière’s disease. Eur J Hum Genet 11:744–748.

    PubMed  CAS  Google Scholar 

  • Valli P, Zucca G, Botta L (1990) Perilymphatic potassium changes and potassium homeostasis in isolated semicircular canals of the frog. J Physiol (Lond) 430:585–594.

    CAS  Google Scholar 

  • Vanhoutte PM (1978) Heterogeneity in vascular smooth muscle. In: Kaley G, Altura BM (eds) Microcirculation, Vol. II. Baltimore: University Park Press, pp. 181–309.

    Google Scholar 

  • Vargas-Poussou R, Houillier P, Le Pottier N, Strompf L, Loirat C, Baudouin V, Macher MA, Dechau M, Ulinski T, Nobili F, Eckart P, Novo R, Cailliez M, Salomon R, Nivet H, Cochat P, Tack I, Fargeot A, Bouissou F, Kesler GR, Lorotte S, Godefroid N, Layet V, Morin G, Jeunemaitre X, Blanchard A (2006) Genetic investigation of autosomal recessive distal renal tubular acidosis: evidence for early sensorineural hearing loss associated with mutations in the ATP6V0A4 gene. J Am Soc Nephrol 17:1437–1443.

    PubMed  CAS  Google Scholar 

  • Varnum MD, Busch AE, Bond CT, Maylie J, Adelman JP (1993) The min K channel underlies the cardiac potassium current IKs and mediates species-specific responses to protein kinase. Proc Natl Acad Sci USA 90:11528–11532.

    Google Scholar 

  • Vetter DE, Mann JR, Wangemann P, Liu Z, McLaughlin KJ, Lesage F, Marcus DC, Lazdunski M, Heinemann SF, Barhanin J (1996) Inner ear defects induced by null mutation of isk gene. Neuron 17:1251–1264.

    PubMed  CAS  Google Scholar 

  • Vince JW, Reithmeier RA (1998) Carbonic anhydrase II binds to the carboxyl terminus of human band 3, the erythrocyte Cl-/HCO3-- exchanger. J Biol Chem 273:28430–28437.

    PubMed  CAS  Google Scholar 

  • von Békésy G (1950) DC potentials and energy balance of the cochlear partition. J Acoust Soc Am 22:576–582.

    Google Scholar 

  • Waldegger S, Jeck N, Barth P, Peters M, Vitzthum H, Wolf K, Kurtz A, Konrad M, Seyberth HW (2002) Barttin increases surface expression and changes current properties of ClC-K channels. Pflugers Arch 444:411–418.

    PubMed  CAS  Google Scholar 

  • Wang Z, Li H, Moss AJ, Robinson J, Zareba W, Knilans T, Bowles NE, Towbin JA (2002) Compound heterozygous mutations in KvLQT1 cause Jervell and Lange-Nielsen syndrome. Mol Genet Metab 75:308–316.

    PubMed  CAS  Google Scholar 

  • Wangemann P (1995) Comparison of ion transport mechanisms between vestibular dark cells and strial marginal cells. Hear Res 90:149–157.

    PubMed  CAS  Google Scholar 

  • Wangemann P (2002) K+ cycling and the endocochlear potential. Hear Res 165:1–9.

    PubMed  CAS  Google Scholar 

  • Wangemann P, Gruber DD (1998) The isolated in-vitro perfused spiral modiolar artery: pressure dependence of vasoconstriction. Hear Res 115:113–118.

    PubMed  CAS  Google Scholar 

  • Wangemann P, Marcus DC (1992) The membrane potential of vestibular dark cells is controlled by a large Cl--conductance. Hear Res 62:149–156.

    PubMed  CAS  Google Scholar 

  • Wangemann P, Schacht J (1996) Homeostasic mechanisms in the cochlea. In: Dallos P, Popper AN, Fay R (eds) The Cochlea. New York: Springer, pp. 130–185.

    Google Scholar 

  • Wangemann P, Shiga N (1994) Cell volume control in vestibular dark cells during and after a hyposmotic challenge. Am J Physiol Cell Physiol 266:C1046–C1060.

    CAS  Google Scholar 

  • Wangemann P, Wonneberger K (2005) Neurogenic regulation of cochlear blood flow occurs along the basilar artery, the anterior inferior cerebellar artery and at branch points of the spiral modiolar artery. Hear Res 209:91–96.

    PubMed  CAS  Google Scholar 

  • Wangemann P, Liu J, Marcus DC (1995a) Ion transport mechanisms responsible for K+ secretion and the transepithelial voltage across marginal cells of stria vascularis in vitro. Hear Res 84:19–29.

    CAS  Google Scholar 

  • Wangemann P, Liu J, Shen Z, Shipley A, Marcus DC (1995b) Hypo-osmotic challenge stimulates transepithelial K+ secretion and activates apical IsK channel in vestibular dark cells. J Membr Biol 147:263–273.

    CAS  Google Scholar 

  • Wangemann P, Liu J, Shiga N (1996a) Vestibular dark cells contain the Na+/H+ exchanger NHE-1 in the basolateral membrane. Hear Res 94:94–108.

    CAS  Google Scholar 

  • Wangemann P, Shen Z, Liu J (1996b) K+-induced stimulation of K+ secretion involves activation of the IsK channel in vestibular dark cells. Hear Res 100:201–210.

    CAS  Google Scholar 

  • Wangemann P, Cohn ES, Gruber DD, Gratton MA (1998) Ca2+-dependence and nifedipine-sensitivity of vascular tone and contractility in the isolated superfused spiral modiolar artery in vitro. Hear Res 118:90–100.

    PubMed  CAS  Google Scholar 

  • Wangemann P, Liu J, Shimozono M, Scofield MA (1999) b1-adrenergic receptors but not b2-adrenergic or vasopressin receptors regulate K+ secretion in vestibular dark cells of the inner ear. J Membr Biol 170:67–77.

    PubMed  CAS  Google Scholar 

  • Wangemann P, Itza EM, Albrecht B, Wu T, Jabba SV, Maganti RJLJH, Everett LA, Wall SM, Royaux IE, Green ED, Marcus DC (2004) Loss of KCNJ10 protein expression abolishes endocochlear potential and causes deafness in Pendred syndrome mouse model. BMC Medicine 2:30.

    PubMed  Google Scholar 

  • Wangemann P, Nakaya K, Wu T, Maganti R, Itza EM, Sanneman J, Harbidge D, Billings S, Marcus DC (2007) Loss of cochlear HCO3- secretion causes deafness via endolymphatic acidification and inhibition of Ca2+ reabsorption in a Pendred syndrome mouse model. Am J Physiol Renal Physiol 292:F1345–1353.

    PubMed  CAS  Google Scholar 

  • Warnock DG, Eveloff J (1989) K-Cl cotransport systems. Kidney Int 36:412–417.

    PubMed  CAS  Google Scholar 

  • Wood JD, Muchinsky SJ, Filoteo AG, Penniston JT, Tempel BL (2004a) Low endolymph calcium concentrations in deafwaddler2J mice suggest that PMCA2 contributes to endolymph calcium maintenance. J Assoc Res Otolaryngol 5:99–110.

    Google Scholar 

  • Wood JD, Muchinsky SJ, Filoteo AG, Penniston JT, Tempel BL (2004b) Low endolymph calcium concentrations in deafwaddler2J mice suggest that PMCA2 contributes to endolymph calcium maintenance. J Assoc Res Otolaryngol 5:99–110.

    Google Scholar 

  • Xia A, Katori Y, Oshima T, Watanabe K, Kikuchi T, Ikeda K (2001) Expression of connexin 30 in the developing mouse cochlea. Brain Res 898:364–367.

    PubMed  CAS  Google Scholar 

  • Xia A, Kikuchi T, Hozawa K, Katori Y, Takasaka T (1999) Expression of connexin 26 and Na,K-ATPase in the developing mouse cochlear lateral wall: functional implications. Brain Res 846:106–111.

    PubMed  CAS  Google Scholar 

  • Xia AP, Ikeda K, Katori Y, Oshima T, Kikuchi T, Takasaka T (2000) Expression of connexin 31 in the developing mouse cochlea. NeuroReport 11:2449–2453.

    PubMed  CAS  Google Scholar 

  • Xia AP, Kikuchi T, Minowa O, Katori Y, Oshima T, Noda T, Ikeda K (2002) Late–onset hearing loss in a mouse model of DFN3 non-syndromic deafness: morphologic and immunohistochemical analyses. Hear Res 166:150–158.

    PubMed  Google Scholar 

  • Xie H, Bevan JA (1999) Oxidized low-density lipoprotein enhances myogenic tone in the rabbit posterior cerebral artery through the release of endothelin-1. Stroke 30:2423–2429.

    PubMed  CAS  Google Scholar 

  • Yada T, Shimokawa H, Kajiya F (2006) Cardioprotective effect of hydroxyfasudil as a specific Rho-kinase inhibitor, on ischemia-reperfusion injury in canine coronary microvessels in vivo. Clin Hemorheol Microcirc 34:177–183.

    PubMed  CAS  Google Scholar 

  • Yamakawa K (1938) Ãœber pathologische Verönderungen bei einem Menière-Kranken. J Otolaryngol Soc Jpn 44:181–182.

    Google Scholar 

  • Yamauchi D, Raveendran NN, Pondugula SR, Kampalli SB, Sanneman JD, Harbidge DG, Marcus DC (2005) Vitamin D upregulates expression of ECaC1 mRNA in semicircular canal. Biochem Biophys Res Commun 331:1353–1357.

    PubMed  CAS  Google Scholar 

  • Yamoah EN, Lumpkin EA, Dumont RA, Smith PJ, Hudspeth AJ, Gillespie PG (1998) Plasma membrane Ca2+–ATPase extrudes Ca2+ from hair cell stereocilia. J Neurosci 18:610–624.

    PubMed  CAS  Google Scholar 

  • Yatomi Y (2006) Sphingosine 1–phosphate in vascular biology: possible therapeutic strategies to control vascular diseases. Curr Pharm Des 12:575–587.

    PubMed  CAS  Google Scholar 

  • Yoo TJ, Tomoda K, Hernandez AD (1984) Type II collagen-induced autoimmune inner ear lesions in guinea pigs. Ann Otol Rhinol Laryngol Suppl 113:3–5.

    PubMed  CAS  Google Scholar 

  • Zelante L, Gasparini P, Estivill X, Melchionda S, D’Agruma L, Govea N, Mila M, Monica MD, Lutfi J, Shohat M, Mansfield E, Delgrosso K, Rappaport E, Surrey S, Fortina P (1997) Connexin26 mutations associated with the most common form of non-syndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans. Hum Mol Genet 6:1605–1609.

    PubMed  CAS  Google Scholar 

  • Zhang Y, Tang W, Ahmad S, Sipp JA, Chen P, Lin X (2005) Gap junction-mediated intercellular biochemical coupling in cochlear supporting cells is required for normal cochlear functions. Proc Natl Acad Sci USA 102:15201–15206.

    Google Scholar 

  • Zhao HB (2005) Connexin26 is responsible for anionic molecule permeability in the cochlea for intercellular signalling and metabolic communications. Eur J Neurosci 21:1859–1868.

    PubMed  Google Scholar 

  • Zhao HB, Yu N, Fleming CR (2005) Gap junctional hemichannel-mediated ATP release and hearing controls in the inner ear. Proc Natl Acad Sci USA 102:18724–18729.

    Google Scholar 

  • Zidanic M, Brownell WE (1990) Fine structure of the intracochlear potential field. I. The silent current. Biophys J 57:1253–1268.

    PubMed  CAS  Google Scholar 

  • Ziegler EA, Brieger J, Heinrich UR, Mann WJ (2004) Immunohistochemical localization of cyclooxygenase isoforms in the organ of Corti and the spiral ganglion cells of guinea pig cochlea. ORL J Otorhinolaryngol Relat Spec 66:297–301.

    PubMed  CAS  Google Scholar 

  • Zimmermann U, Kopschall I, Rohbock K, Bosman GJ, Zenner HP, Knipper M (2000) Molecular characterization of anion exchangers in the cochlea. Mol Cell Biochem 205:25–37.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wangemann, P. (2008). Cochlear Homeostasis and Homeostatic Disorders. In: Schacht, J., Popper, A.N., Fay, R.R. (eds) Auditory Trauma, Protection, and Repair. Springer Handbook of Auditory Research, vol 31. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-72561-1_3

Download citation

Publish with us

Policies and ethics