Cochlear Homeostasis and Homeostatic Disorders

  • Philine Wangemann
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 31)


Hair Cell Outer Hair Cell Stria Vascularis Endocochlear Potential Spiral Ligament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adragna NC, Fulvio MD, Lauf PK (2004) Regulation of K-Cl cotransport: from function to genes. J Membr Biol 201:109–137.PubMedGoogle Scholar
  2. Agrup C, Bagger-Sjoback D, Fryckstedt J (1999) Presence of plasma membrane-bound Ca2+-ATPase in the secretory epithelia of the inner ear. Acta Otolaryngol 119:437–445.PubMedGoogle Scholar
  3. Ahmad S, Chen S, Sun J, Lin X (2003) Connexins 26 and 30 are co-assembled to form gap junctions in the cochlea of mice. Biochem Biophys Res Commun 307:362–368.PubMedGoogle Scholar
  4. Ando M, Takeuchi S (2000) mRNA encoding ClC-K1, a kidney Cl-channel is expressed in marginal cells of the stria vascularis of rat cochlea: its possible contribution to Cl- currents. Neurosci Lett 284:171–174.PubMedGoogle Scholar
  5. Apicella S, Chen S, Bing R, Penniston JT, Llinas R, Hillman DE (1997) Plasmalemmal ATPase calcium pump localizes to inner and outer hair bundles. Neuroscience 79:1145–1151.PubMedGoogle Scholar
  6. Arweiler DJ, Jahnke K, Grosse-Wilde H (1995) [Meniere disease as an autosome dominant hereditary disease]. Laryngorhinootologie 74:512–515.PubMedGoogle Scholar
  7. Banfi B, Malgrange B, Knisz J, Steger K, Dubois-Dauphin M, Krause KH (2004) NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem 279:46065–46072.PubMedGoogle Scholar
  8. Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey G (1996) KVLQT1 and IsK (minK) proteins associate to form the IKs cardiac potassium current. Nature 384:78–80.PubMedGoogle Scholar
  9. Bartter FC, Pronove P, Gill JR, Jr., MacCardle RC (1962) Hyperplasia of the juxtaglomerular complex with hyperaldosteronism and hypokalemic alkalosis. A new syndrome. Am J Med 33:811–828.PubMedGoogle Scholar
  10. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624.Google Scholar
  11. Bhattacharya SK, Rockwood EJ, Smith SD, Bonilha VL, Crabb JS, Kuchtey RW, Robertson NG, Peachey NS, Morton CC, Crabb JW (2005) Proteomics reveal Cochlin deposits associated with glaucomatous trabecular meshwork. J Biol Chem 280:6080–6084.PubMedGoogle Scholar
  12. Bidart JM, Mian C, Lazar V, Russo D, Filetti S, Caillou B, Schlumberger M (2000) Expression of pendrin and the Pendred syndrome (PDS) gene in human thyroid tissues. J Clin Endocrinol Metab 85:2028–2033.PubMedGoogle Scholar
  13. Birkenhager R, Otto E, Schurmann MJ, Vollmer M, Ruf EM, Maier-Lutz I, Beekmann F, Fekete A, Omran H, Feldmann D, Milford DV, Jeck N, Konrad M, Landau D, Knoers NV, Antignac C, Sudbrak R, Kispert A, Hildebrandt F (2001) Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nat Genet 29:310–314.PubMedGoogle Scholar
  14. Bok D, Galbraith G, Lopez I, Woodruff M, Nusinowitz S, BeltrandelRio H, Huang W, Zhao S, Geske R, Montgomery C, Van S, I, Friddle C, Platt K, Sparks MJ, Pushkin A, Abuladze N, Ishiyama A, Dukkipati R, Liu W, Kurtz I (2003) Blindness and auditory impairment caused by loss of the sodium bicarbonate cotransporter NBC3. Nat Genet 34:313–319.PubMedGoogle Scholar
  15. Bond BR, Ng LL, Schulte BA (1998) Identification of mRNA transcripts and immunohistochemical localization of Na/H exchanger isoforms in gerbil inner ear. Hear Res 123:1–9.PubMedGoogle Scholar
  16. Bosher SK, Warren RL (1978) Very low calcium content of cochlear endolymph, an extracellular fluid. Nature 273:377–378.PubMedGoogle Scholar
  17. Boulassel MR, Deggouj N, Tomasi JP, Gersdorff M (2001) Inner ear autoantibodies and their targets in patients with autoimmune inner ear diseases. Acta Otolaryngol 121:28–34.PubMedGoogle Scholar
  18. Brookes GB, (1983) Vitamin D deficiency—-a new cause of cochlear deafness. J Laryngol Otol 97:405–420.PubMedGoogle Scholar
  19. Brown JN, Nuttall AL (1994) Autoregulation of cochlear blood flow in guinea pigs. Am J Physiol 266:H458–H467.PubMedGoogle Scholar
  20. Cannon W (1929) Organization for physiological homeostasis. Physiol Rev 9:399–431.Google Scholar
  21. Carlisle L, Aberdeen J, Forge A, Burnstock G (1990) Neural basis for regulation of cochlear blood flow: peptidergic and adrenergic innervation of the spiral modiolar artery of the guinea pig. Hear Res 43:107–113.PubMedGoogle Scholar
  22. Casimiro MC, Knollmann BC, Ebert SN, Vary JC Jr, Greene AE, Franz MR, Grinberg A, Huang SP, Pfeifer K (2001) Targeted disruption of the Kcnq1 gene produces a mouse model of Jervell and Lange-Nielsen syndrome. Proc Natl Acad Sci USA 98:2526–2531.Google Scholar
  23. Cecola RP, Bobbin RP (1992) Lowering extracellular chloride concentration alters outer hair cell shape. Hear Res 61:65–72.PubMedGoogle Scholar
  24. Cohen-Salmon M, Ott T, Michel V, Hardelin JP, Perfettini I, Eybalin M, Wu T, Marcus DC, Wangemann P, Willecke K, Petit C (2002) Targeted ablation of connexin26 in the inner ear epithelial gap junction network causes hearing impairment and cell death. Curr Biol 12:1106–1111.PubMedGoogle Scholar
  25. Cohen-Salmon M, Maxeiner S, Kruger O, Theis M, Willecke K, Petit C (2004) Expression of the connexin43- and connexin45-encoding genes in the developing and mature mouse inner ear. Cell Tissue Res 316:15–22.PubMedGoogle Scholar
  26. Cohen-Salmon M, Regnault B, Cayet N, Caille D, Demuth K, Hardelin JP, Janel N, Meda P, Petit C (2007) Connexin30 deficiency causes instrastrial fluid-blood barrier disruption within the cochlear stria vascularis. Proc Natl Acad Sci USA 104:6229–6234.Google Scholar
  27. Conlon BJ, Smith DW (1998) Supplemental iron exacerbates aminoglycoside ototoxicity in vivo. Hear Res 115:1–5.PubMedGoogle Scholar
  28. Cremers CW, Admiraal RJ, Huygen PL, Bolder C, Everett LA, Joosten FB, Green ED, Van Camp G, Otten BJ (1998) Progressive hearing loss, hypoplasia of the cochlea and widened vestibular aqueducts are very common features in Pendred’s syndrome. Int J Pediatr Otorhinolaryngol 45:113–123.PubMedGoogle Scholar
  29. D’Ambrosio R, Gordon DS, Winn HR (2002) Differential role of KIR channel and Na+/K+-pump in the regulation of extracellular K+ in rat hippocampus. J Neurophysiol 87:87–102.PubMedGoogle Scholar
  30. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105.PubMedGoogle Scholar
  31. Dechesne CJ, Winsky L, Kim HN, Goping G, Vu TD, Wenthold RJ, Jacobowitz DM (1991) Identification and ultrastructural localization of a calretinin-like calcium-binding protein (protein 10) in the guinea pig and rat inner ear. Brain Res 560:139–148.PubMedGoogle Scholar
  32. De Kok YJ, Bom SJ, Brunt TM, Kemperman MH, van Beusekom E, van der Velde–Visser SD, Robertson NG, Morton CC, Huygen PL, Verhagen WI, Brunner HG, Cremers CW, Cremers FP (1999) A Pro51Ser mutation in the COCH gene is associated with late onset autosomal dominant progressive sensorineural hearing loss with vestibular defects. Hum Mol Genet 8:361–366.PubMedGoogle Scholar
  33. Del Castillo I, Moreno–Pelayo MA, Del Castillo FJ, Brownstein Z, Marlin S, Adina Q, Cockburn DJ, Pandya A, Siemering KR, Chamberlin GP, Ballana E, Wuyts W, Maciel-Guerra AT, Alvarez A, Villamar M, Shohat M, Abeliovich D, Dahl HH, Estivill X, Gasparini P, Hutchin T, Nance WE, Sartorato EL, Smith RJ, Van Camp G, Avraham KB, Petit C, Moreno F (2003) Prevalence and evolutionary origins of the del (GJB6–D13S1830) mutation in the DFNB1 locus in hearing-impaired subjects: a multicenter study. Am J Hum Genet 73:1452–1458.PubMedGoogle Scholar
  34. Denoyelle F, Lina-Granade G, Plauchu H, Bruzzone R, Chaib H, Levi-Acobas F, Weil D, Petit C (1998) Connexin 26 gene linked to a dominant deafness. Nature 393:319–320.PubMedGoogle Scholar
  35. Drici MD, Arrighi I, Chouabe C, Mann JR, Lazdunski M, Romey G, Barhanin J (1998) Involvement of IsK-associated K+ channel in heart rate control of repolarization in a murine engineered model of Jervell and Lange-Nielsen syndrome. Circ Res 83:95–102.PubMedGoogle Scholar
  36. Dunger DB, Brenton DP, Cain AR (1980) Renal tubular acidosis and nerve deafness. Arch Dis Child 55:221–225.PubMedGoogle Scholar
  37. Dunnebier EA, Segenhout JM, Wit HP, Albers FW (1997) Two-phase endolymphatic hydrops: a new dynamic guinea pig model. Acta Otolaryngol (Stockh) 117:13–19.Google Scholar
  38. Eisenstein RS (2000) Iron regulatory proteins and the molecular control of mammalian iron metabolism. Annu Rev Nutr 20:627–662.PubMedGoogle Scholar
  39. El Barbary A, Altschuler RA, Schacht J (1993) Glutathione S-transferases in the organ of Corti of the rat: enzymatic activity, subunit composition and immunohistochemical localization. Hear Res 71:80–90.PubMedGoogle Scholar
  40. Everett LA, Glaser B, Beck JC, Idol JR, Buchs A, Heyman M, Adawi F, Hazani E, Nassir E, Baxevanis AD, Sheffield VC, Green ED (1997) Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat Genet 17:411–422.PubMedGoogle Scholar
  41. Everett LA, Belyantseva IA, Noben-Trauth K, Cantos R, Chen A, Thakkar SI, Hoogstraten-Miller SL, Kachar B, Wu DK, Green ED (2001) Targeted disruption of mouse Pds provides insight about the inner-ear defects encountered in Pendred syndrome. Hum Mol Genet 10:153–161.PubMedGoogle Scholar
  42. Eybalin M, Norenberg MD, Renard N (1996) Glutamine synthetase and glutamate metabolism in the guinea pig cochlea. Hear Res 101:93–101.PubMedGoogle Scholar
  43. Fauser C, Schimanski S, Wangemann P (2004) Localization of beta1-adrenergic receptors in the cochlea and the vestibular labyrinth. J Membr Biol 201:25–32.PubMedGoogle Scholar
  44. Ferrary E, Sterkers O, Saumon G, Tran Ba Huy P, Amiel C (1987) Facilitated transfer of glucose from blood into perilymph in the rat cochlea. Am J Physiol 253:F59–F65.PubMedGoogle Scholar
  45. Finberg KE, Wagner CA, Bailey MA, Paunescu TG, Breton S, Brown D, Giebisch G, Geibel JP, Lifton RP (2005) The B1-subunit of the H+ ATPase is required for maximal urinary acidification. Proc Natl Acad Sci USA 102:13616–13621.Google Scholar
  46. Fransen E, Verstreken M, Verhagen WI, Wuyts FL, Huygen PL, D’Haese P, Robertson NG, Morton CC, McGuirt WT, Smith RJ, Declau F, Van de Heyning PH, Van Camp G (1999) High prevalence of symptoms of Meniere’s disease in three families with a mutation in the COCH gene. Hum Mol Genet 8:1425–1429.PubMedGoogle Scholar
  47. Friedmann I, Fraser GR, Froggatt P (1966) Pathology of the ear in the cardioauditory syndrome of Jervell and Lange-Nielsen (recessive deafness with electrocardiographic abnormalities). J Laryngol Otol 80:451–470.PubMedGoogle Scholar
  48. Furness DN, Lehre KP (1997) Immunocytochemical localization of a high-affinity glutamate-aspartate transporter, GLAST, in the rat and guinea–pig cochlea. Eur J Neurosci 9:1961–1969.PubMedGoogle Scholar
  49. Gamzatova Z, Villabona L, Dahlgren L, Dalianis T, Nillson B, Bergfeldt K, Masucci GV (2006) Human leucocyte antigen (HLA) A2 as a negative clinical prognostic factor in patients with advanced ovarian cancer. Gynecol Oncol 103:145–150.PubMedGoogle Scholar
  50. Garduno-Anaya MA, Couthino DT, Hinojosa-Gonzalez R, Pane-Pianese C, Rios-Castaneda LC (2005) Dexamethasone inner ear perfusion by intratympanic injection in unilateral Méniére’s disease: a two-year prospective, placebo-controlled, double-blind, randomized trial. Otolaryngol Head Neck Surg 133:285–294.PubMedGoogle Scholar
  51. Grant L, Slapnick S, Kennedy H, Hackney C (2006) Ryanodine receptor localisation in the mammalian cochlea: an ultrastructural study. Hear Res 219:101–109.PubMedGoogle Scholar
  52. Gruber DD, Dang H, Shimozono M, Scofield MA, Wangemann P (1998) Alpha1A adrenergic receptors mediate vasoconstriction of the isolated spiral modiolar artery in vitro. Hear Res 119:113–124.PubMedGoogle Scholar
  53. Guild SR (1927) The circulation of the endolymph. Am J Anat 39:57–81.Google Scholar
  54. Hackney CM, Mahendrasingam S, Penn A, Fettiplace R (2005) The concentrations of calcium buffering proteins in mammalian cochlear hair cells. J Neurosci 25:7867–7875.PubMedGoogle Scholar
  55. Herzog M, Scherer EQ, Albrecht B, Rorabaugh B, Scofield MA, Wangemann P (2002) CGRP receptors in the gerbil spiral modiolar artery mediate a sustained vasodilation via a transient cAMP-mediated Ca2+-decrease. J Membr Biol 189:225–236.PubMedGoogle Scholar
  56. Hillerdal M, Andersson SE (1991) The effects of calcitonin gene-related peptide (CGRP) on cochlear and mucosal blood flow in the albino rabbit. Hear Res 52:321–328.PubMedGoogle Scholar
  57. Holt JR, Corey DP (2000) Two mechanisms for transducer adaptation in vertebrate hair cells. Proc Natl Acad Sci USA 97:11730–11735.Google Scholar
  58. Horner KC, Cazals Y (1987) Glycerol-induced changes in the cochlear responses of the guinea pig hydropic ear. Arch Otorhinolaryngol 244:49–54.PubMedGoogle Scholar
  59. Horner KC, Cazals Y (2003) Stress in hearing and balance in Ménière’s disease. Noise Health 5:29–34.PubMedGoogle Scholar
  60. Housley GD, Kanjhan R, Raybould NP, Greenwood D, Salih SG, Jarlebark L, Burton LD, Setz VC, Cannell MB, Soeller C, Christie DL, Usami S, Matsubara A, Yoshie H, Ryan AF, Thorne PR (1999) Expression of the P2X(2) receptor subunit of the ATP-gated ion channel in the cochlea: implications for sound transduction and auditory neurotransmission. J Neurosci 19:8377–8388.PubMedGoogle Scholar
  61. Hulander M, Kiernan AE, Blomqvist SR, Carlsson P, Samuelsson EJ, Johansson BR, Steel KP, Enerback S (2003) Lack of pendrin expression leads to deafness and expansion of the endolymphatic compartment in inner ears of Foxi1 null mutant mice. Development 130:2013–2025.PubMedGoogle Scholar
  62. Ichimiya I, Adams JC, Kimura RS (1994) Immunolocalization of Na+, K+-ATPase, Ca++-ATPase, calcium-binding proteins, and carbonic anhydrase in the guinea pig inner ear. Acta Otolaryngol (Stockh ) 114:167–176.Google Scholar
  63. Ikeda K, Morizono T (1988) Calcium transport mechanism in the endolymph of the chinchilla. Hear Res 34:307–311.PubMedGoogle Scholar
  64. Ikeda K, Morizono T (1989a) Effects of carbon dioxide in the middle ear cavity upon the cochlear potentials and cochlear pH. Acta Otolaryngol (Stockh) 108:88–93.Google Scholar
  65. Ikeda K, Morizono T (1989b) The preparation of acetic acid for use in otic drops and its effect on endocochlear potential and pH in inner ear fluid. Am J Otolaryngol 10:382–385.Google Scholar
  66. Ikeda K, Kobayashi T, Kusakari J, Takasaka T, Yumita S, Furukawa Y (1987a) Sensorineural hearing loss associated with hypoparathyroidism. Laryngoscope 97:1075–1079.Google Scholar
  67. Ikeda K, Kusakari J, Kobayashi T, Saito Y (1987b) The effect of vitamin D deficiency on the cochlear potentials and the perilymphatic ionized calcium concentration of rats. Acta Otolaryngol Suppl Stockh 435:64–72.Google Scholar
  68. Ikeda K, Kusakari J, Takasaka T, Saito Y (1987c) Early effects of acetazolamide on anionic activities of the guinea pig endolymph: evidence for active function of carbonic anhydrase in the cochlea. Hear Res 31:211–216.Google Scholar
  69. Ikeda K, Kusakari J, Takasaka T, Saito Y (1987d) The Ca2+ activity of cochlear endolymph of the guinea pig and the effect of inhibitors. Hear Res 26:117–125.Google Scholar
  70. Ikeda K, Kusakari J, Takasaka T (1988) Ionic changes in cochlear endolymph of the guinea pig induced by acoustic injury. Hear Res 32:103–110.PubMedGoogle Scholar
  71. Ikeda K, Kobayashi T, Itoh Z, Kusakari J, Takasaka T (1989) Evaluation of vitamin D metabolism in patients with bilateral sensorineural hearing loss. Am J Otol 10:11–13.PubMedGoogle Scholar
  72. Ikeda K, Saito Y, Nishiyama A, Takasaka T (1992a) Intracellular pH regulation in isolated cochlear outer hair cells of the guinea-pig. J Physiol Lond 447:627–648.Google Scholar
  73. Ikeda K, Saito Y, Nishiyama A, Takasaka T (1992b) Na+-Ca2+ exchange in the isolated cochlear outer hair cells of the guinea-pig studied by fluorescence image microscopy. Pflügers Arch 420:493–499.Google Scholar
  74. Imamura S, Adams JC (1996) Immunolocalization of peptide 19 and other calcium–binding proteins in the guinea pig cochlea. Anat Embryol (Berl) 194:407–418.Google Scholar
  75. Ito M, Spicer SS, Schulte BA (1993) Immunohistochemical localization of brain type glucose transporter in mammalian inner ears: comparisons of developmental and adult stages. Hear Res 71:230–238.PubMedGoogle Scholar
  76. Jabba SV, Oelke A, Singh R, Maganti RJ, Feming S, Wall SM, Everett LA, Green ED, Wangemann P (2006) Macrophage invasion contributes to degeneration of stria vascularis in Pendred syndrome mouse model. BMC Med 4:37–ff.PubMedGoogle Scholar
  77. Jacono AA, Hu B, Kopke RD, Henderson D, Van De Water TR, Steinman HM (1998) Changes in cochlear antioxidant enzyme activity after sound conditioning and noise exposure in the chinchilla. Hear Res 117:31–38.PubMedGoogle Scholar
  78. Jervell A, Lange-Nielsen F (1957) Congenital deaf–mutism, functional heart disease with prolongation of the Q–T interval and sudden death. Am Heart J 54:59–68.PubMedGoogle Scholar
  79. Kambayashi J, Kobayashi T, Marcus NY, Demott JE, Thalmann I, Thalmann R (1982) Minimal concentrations of metabolic substrates capable of supporting cochlear potentials. Hear Res 7:105–114.PubMedGoogle Scholar
  80. Karet FE, Finberg KE, Nayir A, Bakkaloglu A, Ozen S, Hulton SA, Sanjad SA, Al Sabban EA, Medina JF, Lifton RP (1999a) Localization of a gene for autosomal recessive distal renal tubular acidosis with normal hearing (rdRTA2) to 7q33–34. Am J Hum Genet 65:1656–1665.Google Scholar
  81. Karet FE, Finberg KE, Nelson RD, Nayir A, Mocan H, Sanjad SA, Rodriguez-Soriano J, Santos F, Cremers CW, Di Pietro A, Hoffbrand BI, Winiarski J, Bakkaloglu A, Ozen S, Dusunsel R, Goodyer P, Hulton SA, Wu DK, Skvorak AB, Morton CC, Cunningham MJ, Jha V, Lifton RP (1999b) Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness. Nat Genet 21:84–90.Google Scholar
  82. Kawasaki E, Hattori N, Miyamoto E, Yamashita T, Inagaki C (2000) mRNA expression of kidney-specific ClC-K1 chloride channel in single-cell reverse transcription-polymerase chain reaction analysis of outer hair cells of rat cochlea. Neurosci Lett 290:76–78.PubMedGoogle Scholar
  83. Kelsell DP, Dunlop J, Stevens HP, Lench NJ, Liang JN, Parry G, Mueller RF, Leigh IM (1997) Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature 387:80–83.PubMedGoogle Scholar
  84. Kiang NY (1989) An auditory physiologist’s view of Ménière’s syndrome. In: Nadol JB, Jr. (ed) Second International Symposium on Ménière’s Disease. Amsterdam: Kugler and Ghedini, pp. 13–24.Google Scholar
  85. Kikuchi T, Kimura RS, Paul DL, Adams JC (1995) Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis. Anat Embryol (Berl) 191:101–118.Google Scholar
  86. Kikuchi T, Kimura RS, Paul DL, Takasaka T, Adams JC (2000) Gap junction systems in the mammalian cochlea. Brain Res Brain Res Rev 32:163–166.PubMedGoogle Scholar
  87. Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K (1996) Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273:245–248.PubMedGoogle Scholar
  88. Kimura RS (1967) Experimental blockage of the endolymphatic duct and sac and its effect on the inner ear of the guinea pig. A study on endolymphatic hydrops. Ann Otol Rhinol Laryngol 76:664–687.PubMedGoogle Scholar
  89. King M, Housley GD, Raybould NP, Greenwood D, Salih SG (1998) Expression of ATP-gated ion channels by Reissner’s membrane epithelial cells. NeuroReport 9:2467–2474.PubMedGoogle Scholar
  90. Konishi K, Yamane H, Iguchi H, Takayama M, Nakagawa T, Sunami K, Nakai Y (1998) Local substances regulating cochlear blood flow. Acta Otolaryngol Suppl (Stockh) 538:40–46.Google Scholar
  91. Konishi T, Butler RA, Fernández C (1961) Effect of anoxia on cochlear potentials. J Acoust Soc Am 33:349–356.Google Scholar
  92. Konishi T, Hamrick PE, Walsh PJ (1978) Ion transport in guinea pig cochlea. I. Potassium and sodium transport. Acta Otolaryngol (Stockh) 86:22–34.Google Scholar
  93. Konrad-Martin D, Norton SJ, Mascher KE, Tempel BL (2001) Effects of PMCA2 mutation on DPOAE amplitudes and latencies in deafwaddler mice. Hear Res 151:205–220.PubMedGoogle Scholar
  94. Kros CJ (1996) Physiology of mammalian hair cells. In: Dallos P, Popper AN, Fay R (eds)The Cochlea. New York: Springer, pp. 319–385.Google Scholar
  95. Kuffler SW, Nicholls JG, Orkand RK (1966) Physiological properties of glial cells in the central nervous system of amphibia. J Neurophysiol 29:768–787.PubMedGoogle Scholar
  96. Kuijpers W, Bonting SL (1969) Studies on (Na+-K+)-activated ATPase. XXIV. Localization and properties of ATPase in the inner ear of the guinea pig. Biochim Biophys Acta 173:477–485.PubMedGoogle Scholar
  97. Labbe D, Teranishi MA, Hess A, Bloch W, Michel O (2005) Activation of caspase-3 is associated with oxidative stress in the hydropic guinea pig cochlea. Hear Res 202:21–27.PubMedGoogle Scholar
  98. Lang F, Busch GL, Ritter M, Volkl H, Waldegger S, Gulbins E, Haussinger D (1998) Functional significance of cell volume regulatory mechanisms. Physiol Rev 78:247–306.PubMedGoogle Scholar
  99. Lautermann J, ten Cate WJ, Altenhoff P, Grummer R, Traub O, Frank H, Jahnke K, Winterhager E (1998) Expression of the gap-junction connexins 26 and 30 in the rat cochlea. Cell Tissue Res 294:415–420.PubMedGoogle Scholar
  100. Lee JH, Marcus DC (2003) Endolymphatic sodium homeostasis by Reissner’s membrane. Neuroscience 119:3–8.PubMedGoogle Scholar
  101. Lee MP, Ravenel JD, Hu RJ, Lustig LR, Tomaselli G, Berger RD, Brandenburg SA, Litzi TJ, Bunton TE, Limb C, Francis H, Gorelikow M, Gu H, Washington K, Argani P, Goldenring JR, Coffey RJ, Feinberg AP (2000) Targeted disruption of the Kvlqt1 gene causes deafness and gastric hyperplasia in mice. J Clin Invest 106:1447–1455.PubMedGoogle Scholar
  102. Letts VA, Valenzuela A, Dunbar C, Zheng QY, Johnson KR, Frankel WN (2000) A new spontaneous mouse mutation in the Kcne1 gene. Mamm Genome 11:831–835.PubMedGoogle Scholar
  103. Li HS, Niedzielski AS, Beisel KW, Hiel H, Wenthold RJ, Morley BJ (1994) Identification of a glutamate/aspartate transporter in the rat cochlea. Hear Res 78:235–242.PubMedGoogle Scholar
  104. Listi F, Candore G, Balistreri CR, Grimaldi MP, Orlando V, Vasto S, Colonna-Romano G, Lio D, Licastro F, Franceschi C, Caruso C (2006) Association between the HLA-A2 allele and Alzheimer disease. Rejuvenation Res 9:99–101.PubMedGoogle Scholar
  105. Liu XZ, Xia XJ, Adams J, Chen ZY, Welch KO, Tekin M, Ouyang XM, Kristiansen A, Pandya A, Balkany T, Arnos KS, Nance WE (2001) Mutations in GJA1 (connexin 43) are associated with non-syndromic autosomal recessive deafness. Hum Mol Genet 10:2945–2951.PubMedGoogle Scholar
  106. Lohuis PJ, Klis SF, Klop WM, van Emst MG, Smoorenburg GF (1999) Signs of endolymphatic hydrops after perilymphatic perfusion of the guinea pig cochlea with cholera toxin; a pharmacological model of acute endolymphatic hydrops. Hear Res 137:103–113.PubMedGoogle Scholar
  107. Lumpkin EA, Marquis RE, Hudspeth AJ (1997) The selectivity of the hair cell’s mechanoelectrical-transduction channel promotes Ca2+ flux at low Ca2+ concentrations. Proc Natl Acad Sci USA 94:10997–11002.Google Scholar
  108. Luxon LM, Cohen M, Coffey RA, Phelps PD, Britton KE, Jan H, Trembath RC, Reardon W (2003) Neuro-otological findings in Pendred syndrome. Int J Audiol 42:82–88.PubMedGoogle Scholar
  109. Lymar SV, Jiang Q, Hurst JK (1996) Mechanism of carbon dioxide-catalyzed oxidation of tyrosine by peroxynitrite. Biochemistry 35:7855–7861.PubMedGoogle Scholar
  110. Makishima T, Rodriguez CI, Robertson NG, Morton CC, Stewart CL, Griffith AJ (2005) Targeted disruption of mouse Coch provides functional evidence that DFNA9 hearing loss is not a COCH haploinsufficiency disorder. Hum Genet 118:29–34.PubMedGoogle Scholar
  111. Mammano F, Frolenkov GI, Lagostena L, Belyantseva IA, Kurc M, Dodane V, Colavita A, Kachar B (1999) ATP–Induced Ca(2+) release in cochlear outer hair cells: localization of an inositol triphosphate-gated Ca(2+) store to the base of the sensory hair bundle. J Neurosci 19:6918–6929.PubMedGoogle Scholar
  112. Manolis EN, Yandavi N, Nadol JB, Jr., Eavey RD, McKenna M, Rosenbaum S, Khetarpal U, Halpin C, Merchant SN, Duyk GM, MacRae C, Seidman CE, Seidman JG (1996) A gene for non-syndromic autosomal dominant progressive postlingual sensorineural hearing loss maps to chromosome 14q12–13. Hum Mol Genet 5:1047–1050.PubMedGoogle Scholar
  113. Marcaggi P, Coles JA (2001) Ammonium in nervous tissue: transport across cell membranes, fluxes from neurons to glial cells, and role in signalling. Prog Neurobiol 64:157–183.PubMedGoogle Scholar
  114. Marcus DC, Chiba T (1999) K+ and Na+ absorption by outer sulcus epithelial cells. Hear Res 134:48–56.PubMedGoogle Scholar
  115. Marcus DC, Shen Z (1994) Slowly activating, voltage-dependent K+ conductance is apical pathway for K+ secretion in vestibular dark cells. Am J Physiol 267:C857–C864.PubMedGoogle Scholar
  116. Marcus DC, Thalmann R, Marcus NY (1978a) Respiratory quotient of stria vascularis of guinea pig in vitro. Arch Otorhinolaryngol 221:97–103.Google Scholar
  117. Marcus DC, Thalmann R, Marcus NY (1978b) Respiratory rate and ATP content of stria vascularis of guinea pig in vitro. Laryngoscope 88:1825–1835.Google Scholar
  118. Marcus DC, Ge XX, Thalmann R (1982) Comparison of the non-adrenergic action of phentolamine with that of vanadate on cochlear function. Hear Res 7:233–246.PubMedGoogle Scholar
  119. Marcus DC, Marcus NY, Greger R (1987) Sidedness of action of loop diuretics and ouabain on nonsensory cells of utricle: a micro-Ussing chamber for inner ear tissues. Hear Res 30:55–64.PubMedGoogle Scholar
  120. Marcus DC, Takeuchi S, Wangemann P (1993) Two types of chloride channel in the basolateral membrane of vestibular dark cell epithelium. Hear Res 69:124–132.PubMedGoogle Scholar
  121. Marcus DC, Sunose H, Liu J, Shen Z, Scofield MA (1997) P2U purinergic receptor inhibits apical IsK/KvLQT1 channel via protein kinase C in vestibular dark cells. Am J Physiol 273:C2022–C2029.PubMedGoogle Scholar
  122. Marcus DC, Wu T, Wangemann P, Kofuji P (2002) KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential. Am J Physiol Cell Physiol 282:C403–C407.PubMedGoogle Scholar
  123. Marcus DC, Liu J, Lee JH, Scherer EQ, Scofield MA, Wangemann P (2005) Apical membrane P2Y4 purinergic receptor controls K+ secretion by strial marginal cell epithelium. Cell Commun Signal 3(13):1–8.Google Scholar
  124. Matsunami T, Suzuki T, Hisa Y, Takata K, Takamatsu T, Oyamada M (2006) Gap junctions mediate glucose transport between GLUT1-positive and –negative cells in the spiral limbus of the rat cochlea. Cell Commun Adhes 13:93–102.PubMedGoogle Scholar
  125. McLaren GM, Quirk WS, Laurikainen E, Coleman JK, Seidman MD, Dengerink HA, Nuttall AL, Miller JM, Wright JW (1993) Substance P increases cochlear blood flow without changing cochlear electrophysiology in rats. Hear Res 71:183–189.PubMedGoogle Scholar
  126. Ménière P (1861) Mémoire sur des lésions de l’orielle interne donnant lieu à des symptômes de cogestion cérébrale apoplectiforme. Gaz Med Paris 16:597–601.Google Scholar
  127. Merchant SN, Adams JC, Nadol JB Jr (2005) Pathophysiology of Ménière’s syndrome: are symptoms caused by endolymphatic hydrops? Otol Neurotol 26:74–81.Google Scholar
  128. Mhatre AN, Jero J, Chiappini I, Bolasco G, Barbara M, Lalwani AK (2002) Aquaporin-2 expression in the mammalian cochlea and investigation of its role in Ménière’s disease. Hear Res 170:59–69.PubMedGoogle Scholar
  129. Milhaud PG, Pondugula SR, Lee JH, Herzog M, Lehouelleur J, Wangemann P, Sans A, Marcus DC (2002) Chloride secretion by semicircular canal duct epithelium is stimulated via beta 2-adrenergic receptors. Am J Physiol Cell Physiol 283:C1752–C1760.Google Scholar
  130. Moriyama Y, Maeda M, Futai M (1992) The role of V-ATPase in neuronal and endocrine systems. J Exp Biol 172:171–178.PubMedGoogle Scholar
  131. Mouadeb DA, Ruckenstein MJ (2005) Antiphospholipid inner ear syndrome. Laryngoscope 115:879–883.PubMedGoogle Scholar
  132. Mount DB, Romero MF (2004) The SLC26 gene family of multifunctional anion exchangers. Pflugers Arch 447:710–721.PubMedGoogle Scholar
  133. Nakaya K, Harbidge DG, Wangemann P, Schultz BD, Green E, Wall SM, Marcus DC (2007) Lack of pendrin HCO3- transport elevates vestibular endolymphatic [Ca2+] by inhibition of acid-sensitive TRPV5 and TRPV6. Am J Physiol Renal Physiol 292:F1314–F1321.PubMedGoogle Scholar
  134. Nakazawa K (2001) Ultrastructural localization of calmodulin in gerbil cochlea by immunogold electron microscopy. Hear Res 151:133–140.PubMedGoogle Scholar
  135. Nakazawa K, Spicer SS, Schulte BA (1995) Postnatal expression of the facilitated glucose transporter, GLUT 5, in gerbil outer hair cells. Hear Res 82:93–99.PubMedGoogle Scholar
  136. Neyroud N, Tesson F, Denjoy I, Leibovici M, Donger C, Barhanin J, Faure S, Gary F, Coumel P, Petit C, Schwartz K, Guicheney P (1997) A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Nat Genet 15:186–189.PubMedGoogle Scholar
  137. Nicolas M, Dememes D, Martin A, Kupershmidt S, Barhanin J (2001) KCNQ1/KCNE1 potassium channels in mammalian vestibular dark cells. Hear Res 153:132–145.PubMedGoogle Scholar
  138. Nie L, Gratton MA, Mu KJ, Dinglasan JN, Feng W, Yamoah EN (2005) Expression and functional phenotype of mouse ERG K+ channels in the inner ear: potential role in K+regulation in the inner ear. J Neurosci 25:8671–8679.PubMedGoogle Scholar
  139. Ninoyu O, Meyer zum Gottesberge AM (1986a) Ca++activity in the endolymphatic space. Arch Otorhinolaryngol 243:141–142.Google Scholar
  140. Ninoyu O, Meyer zum Gottesberge AM (1986b) Changes in Ca++ activity and DC potential in experimentally induced endolymphatic hydrops. Arch Otorhinolaryngol 243:106–107.Google Scholar
  141. Ohmori H (1985) Mechano-electrical transduction currents in isolated vestibular hair cells of the chick. J Physiol (Lond) 359:189–217.Google Scholar
  142. Ohmori T, Yatomi Y, Osada M, Ozaki Y (2004) Platelet-derived sphingosine 1-phosphate induces contraction of coronary artery smooth muscle cells via S1P2. J Thromb Haemost 2:203–205.PubMedGoogle Scholar
  143. Ohyama K, Salt AN, Thalmann R (1988) Volume flow rate of perilymph in the guinea-pig cochlea. Hear Res 35:119–129.PubMedGoogle Scholar
  144. Okamura HO, Sugai N, Suzuki K, Ohtani I (1996) Enzyme-histochemical localization of carbonic anhydrase in the inner ear of the guinea pig and several improvements of the technique. Histochem Cell Biol 106:425–430.PubMedGoogle Scholar
  145. Okamura H, Spicer SS, Schulte BA (2001) Developmental expression of monocarboxylate transporter in the gerbil inner ear. Neuroscience 107:499–505.PubMedGoogle Scholar
  146. Oliveira JA, Canedo DM, Rossato M, Andrade MH (2004) Self-protection against aminoglycoside ototoxicity in guinea pigs. Otolaryngol Head Neck Surg 131:271–279.PubMedGoogle Scholar
  147. Orkand RK, Nicholls JG, Kuffler SW (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol 29:788–806.PubMedGoogle Scholar
  148. Oshima T, Ikeda K, Furukawa M, Takasaka T (1997) Alternatively spliced isoforms of the Na+/Ca2+ exchanger in the guinea pig cochlea. Biochem Biophys Res Commun 233:737–741.PubMedGoogle Scholar
  149. Ottersen OP, Takumi Y, Matsubara A, Landsend AS, Laake JH, Usami S (1998) Molecular organization of a type of peripheral glutamate synapse: the afferent synapses of hair cells in the inner ear. Prog Neurobiol 54:127–148.PubMedGoogle Scholar
  150. Pack AK, Slepecky NB (1995) Cytoskeletal and calcium-binding proteins in the mammalian organ of Corti: cell type-specific proteins displaying longitudinal and radial gradients. Hear Res 91:119–135.PubMedGoogle Scholar
  151. Passali D, Damiani V, Mora R, Passali FM, Passali GC, Bellussi L (2004) P0 antigen detection in sudden hearing loss and Ménière’s disease: a new diagnostic marker? Acta Otolaryngol 124:1145–1148.PubMedGoogle Scholar
  152. Payne JA (1997) Functional characterization of the neuronal-specific K-Cl cotransporter: implications for [K+]o regulation. Am J Physiol 273:C1516–C1525.PubMedGoogle Scholar
  153. Payne JA, Xu JC, Haas M, Lytle CY, Ward D, Forbush B, III (1995) Primary structure, functional expression, and chromosomal localization of the bumetanide-sensitive Na-K-Cl cotransporter in human colon. J Biol Chem 270:17977–17985.PubMedGoogle Scholar
  154. Pendred V (1896) Deaf-mutism and goitre. Lancet 11:532.Google Scholar
  155. Pondugula SR, Raveendran NN, Ergonul Z, Deng Y, Chen J, Sanneman JD, Palmer LG, Marcus DC (2006) Glucocorticoid regulation of genes in the amiloride-sensitive sodium transport pathway by semicircular canal duct epithelium of neonatal rat. Physiol Genomics 24:114–123.PubMedGoogle Scholar
  156. Qiu J, Steyger PS, Trune DR, Nuttall AL (2001) Co-existence of tyrosine hydroxylase and calcitonin gene-related peptide in cochlear spiral modiolar artery of guinea pigs. Hear Res 155:152–160.PubMedGoogle Scholar
  157. Qu C, Liang F, Hu W, Shen Z, Spicer SS, Schulte BA (2006) Expression of CLC-K chloride channels in the rat cochlea. Hear Res 213:79–87.PubMedGoogle Scholar
  158. Quirk WS, Dengerink HA, Coleman JK, Wright JW (1989) Cochlear blood flow autoregulation in Wistar-Kyoto rats. Hear Res 41:53–60.PubMedGoogle Scholar
  159. Quirk WS, Avinash G, Nuttall AL, Miller JM (1992) The influence of loud sound on red blood cell velocity and blood vessel diameter in the cochlea. Hear Res 63:102–107.PubMedGoogle Scholar
  160. Quirk WS, Seidman MD, Laurikainen EA, Nuttall AL, Miller JM (1994) Influence of calcitonin-gene related peptide on cochlear blood flow and electrophysiology. Am J Otol 15:56–60.PubMedGoogle Scholar
  161. Rakugi H, Tabuchi Y, Nakamaru M, Nagano M, Higashimori K, Mikami H, Ogihara T, Suzuki N (1990) Evidence for endothelin-1 release from resistance vessels of rats in response to hypoxia. Biochem Biophys Res Commun 169:973–977.PubMedGoogle Scholar
  162. Rauch SD, Merchant SN, Thedinger BA (1989) Ménière’s syndrome and endolymphatic hydrops. Double-blind temporal bone study. Ann Otol Rhinol Laryngol 98:873–883.PubMedGoogle Scholar
  163. Reardon W, OMahoney CF, Trembath R, Jan H, Phelps PD (2000) Enlarged vestibular aqueduct: a radiological marker of pendred syndrome, and mutation of the PDS gene. QJM 93:99–104.PubMedGoogle Scholar
  164. Ricci AJ, Fettiplace R (1998) Calcium permeation of the turtle hair cell mechanotransducer channel and its relation to the composition of endolymph. J Physiol 506 (Pt 1):159–173.PubMedGoogle Scholar
  165. Rimaniol AC, Mialocq P, Clayette P, Dormont D, Gras G (2001) Role of glutamate transporters in the regulation of glutathione levels in human macrophages. Am J Physiol Cell Physiol 281:C1964–C1970.PubMedGoogle Scholar
  166. Robertson NG, Resendes BL, Lin JS, Lee C, Aster JC, Adams JC, Morton CC (2001) Inner ear localization of mRNA and protein products of COCH, mutated in the sensorineural deafness and vestibular disorder, DFNA9. Hum Mol Genet 10:2493–2500.PubMedGoogle Scholar
  167. Romero MF, Fulton CM, Boron WF (2004) The SLC4 family of HCO3-- transporters. Pflugers Arch 447:495–509.PubMedGoogle Scholar
  168. Royaux IE, Suzuki K, Mori A, Katoh R, Everett LA, Kohn LD, Green ED (2000) Pendrin, the protein encoded by the Pendred syndrome gene (PDS), is an apical porter of iodide in the thyroid and is regulated by thyroglobulin in FRTL-5 cells. Endocrinology 141:839–845.PubMedGoogle Scholar
  169. Rubanyi GM, Polokoff MA (1994) Endothelins: molecular biology, biochemistry, pharmacology, physiology, and pathophysiology. Pharmacol Rev 46:325–415.PubMedGoogle Scholar
  170. Ryan AF, Goodwin P, Woolf NK, Sharp F (1982) Auditory stimulation alters the pattern of 2-deoxyglucose uptake in the inner ear. Brain Res 234:213–225.PubMedGoogle Scholar
  171. Rybak LP, Husain K, Evenson L, Morris C, Whitworth C, Somani SM (1997) Protection by 4-methylthiobenzoic acid against cisplatin-induced ototoxicity: antioxidant system. Pharmacol Toxicol 81:173–179.PubMedGoogle Scholar
  172. Sadanaga M, Liu J, Wangemann P (1997) Endothelin-A receptors mediate endothelin-induced vasoconstriction in the spiral ligament of the inner ear. Hear Res 112:106–114.PubMedGoogle Scholar
  173. Sage CL, Marcus DC (2001) Immunolocalization of ClC-K chloride channel in strial marginal cells and vestibular dark cells. Hear Res 160:1–9.PubMedGoogle Scholar
  174. Sakagami M, Fukazawa K, Matsunaga T, Fujita H, Mori N, Takumi T, Ohkubo H, Nakanishi S (1991) Cellular localization of rat Isk protein in the stria vascularis by immunohistochemical observation. Hear Res 56:168–172.PubMedGoogle Scholar
  175. Sakaguchi N, Henzl MT, Thalmann I, Thalmann R, Schulte BA (1998) Oncomodulin is expressed exclusively by outer hair cells in the organ of Corti. J Histochem Cytochem 46:29–40.PubMedGoogle Scholar
  176. Salt AN (2004) Acute endolymphatic hydrops generated by exposure of the ear to nontraumatic low-frequency tones. JARO 5:203–214.PubMedGoogle Scholar
  177. Salt AN, Demott JE (2000) Ionic and potential changes of the endolymphatic sac induced by endolymph volume changes. Hear Res 149:46–54.PubMedGoogle Scholar
  178. Salt AN, Konishi T (1979) Effects of noise on cochlear potentials and endolymph potassium concentration recorded with potassium-selective electrodes. Hear Res 1:343–363.PubMedGoogle Scholar
  179. Salt AN, Ohyama K (1993) Accumulation of potassium in scala vestibuli perilymph of the mammalian cochlea. Ann Otol Rhinol Laryngol 102:64–70.PubMedGoogle Scholar
  180. Salt AN, Rask-Andersen H (2004) Responses of the endolymphatic sac to perilymphatic injections and withdrawals: evidence for the presence of a one-way valve. Hear Res 191:90–100.PubMedGoogle Scholar
  181. Salt AN, Thalmann R (1988) Rate of longitudinal flow of cochlear endolymph. In: Nadol Jr JB (ed) Second International Symposium on Ménière’s Disease. Amsterdam: Kugler and Ghedini, pp. 69–73.Google Scholar
  182. Salt AN, Thalmann R, Marcus DC, Bohne BA (1986) Direct measurement of longitudinal endolymph flow rate in the guinea pig cochlea. Hear Res 23:141–151.PubMedGoogle Scholar
  183. Salt AN, Melichar I, Thalmann R (1987) Mechanisms of endocochlear potential generation by stria vascularis. Laryngoscope 97:984–991.PubMedGoogle Scholar
  184. Salt AN, Inamura N, Thalmann R, Vora A (1989) Calcium gradients in inner ear endolymph. Am J Otolaryngol 10:371–375.PubMedGoogle Scholar
  185. Sanguinetti MC, Curran ME, Zou A, Shen J, Spector PS, Atkinson DL, Keating MT (1996) Coassembly of KVLQT1 and minK (IsK) proteins to form cardiac IKs potassium channel. Nature 384:80–83.PubMedGoogle Scholar
  186. Sato M, Tani E, Fujikawa H, Kaibuchi K (2000) Involvement of Rho-kinase-mediated phosphorylation of myosin light chain in enhancement of cerebral vasospasm. Circ Res 87:195–200.PubMedGoogle Scholar
  187. Sawada S, Takeda T, Kitano H, Takeuchi S, Kakigi A, Azuma H (2002) Aquaporin-2 regulation by vasopressin in the rat inner ear. NeuroReport 13:1127–1129.PubMedGoogle Scholar
  188. Scheibe F, Haupt H, Ludwig C (1992) Intensity-dependent changes in oxygenation of cochlear perilymph during acoustic exposure. Hear Res 63:19–25.PubMedGoogle Scholar
  189. Scherer EQ, Wonneberger K, Wangemann P (2001) Differential desensitization of Ca2+ mobilization and vasoconstriction by ETA receptors in the gerbil spiral modiolar artery. J Membr Biol 182:183–191.PubMedGoogle Scholar
  190. Scherer EQ, Herzog M, Wangemann P (2002) Endothelin-1-induced vasospasms of spiral modiolar artery are mediated by rho-kinase-induced Ca2+ sensitization of contractile apparatus and reversed by calcitonin gene-related peptide. Stroke 33:2965–2971.PubMedGoogle Scholar
  191. Scherer EQ, Arnold W, Wangemann P (2005) Pharmacological reversal of endothelin-1 mediated constriction of the spiral modiolar artery: a potential new treatment for sudden sensorineural hearing loss. BMC Ear Nose Throat Disord 5:10.PubMedGoogle Scholar
  192. Scherer EQ, Lidington D, Oestreicher E, Arnold W, Pohl U, Bolz SS (2006) Sphingosine-1-phosphate modulates spiral modiolar artery tone: a potential role in vascular-based inner ear pathologies? Cardiovasc ResGoogle Scholar
  193. Schimanski S, Scofield MA, Wangemann P (2001) Functional b2-adrenergic receptors are present in non-strial tissues of the lateral wall in the gerbil cochlea. Audiol Neurootol 6:124–136.PubMedGoogle Scholar
  194. Schlingmann KP, Konrad M, Jeck N, Waldegger P, Reinalter SC, Holder M, Seyberth HW, Waldegger S (2004) Salt wasting and deafness resulting from mutations in two chloride channels. N Engl J Med 350:1314–1319.PubMedGoogle Scholar
  195. Schulze-Bahr E, Wang Q, Wedekind H, Haverkamp W, Chen Q, Sun Y, Rubie C, Hordt M, Towbin JA, Borggrefe M, Assmann G, Qu X, Somberg JC, Breithardt G, Oberti C, Funke H (1997) KCNE1 mutations cause jervell and Lange-Nielsen syndrome. Nat Genet 17:267–268.PubMedGoogle Scholar
  196. Scott DA, Karniski LP (2000) Human pendrin expressed in Xenopus laevis oocytes mediates chloride/formate exchange. Am J Physiol Cell Physiol 278:C207–C211.PubMedGoogle Scholar
  197. Scott DA, Wang R, Kreman TM, Sheffield VC, Karniski LP (1999) The Pendred syndrome gene encodes a chloride-iodide transport protein. Nat Genet 21:440–443.PubMedGoogle Scholar
  198. Selivanova OA, Gouveris H, Victor A, Amedee RG, Mann W (2005) Intratympanic dexamethasone and hyaluronic acid in patients with low-frequency and Ménière’s-associated sudden sensorineural hearing loss. Otol Neurotol 26:890–895.PubMedGoogle Scholar
  199. Shen Z, Marcus DC, Sunose H, Chiba T, Wangemann P (1997) IsK channel in strial marginal cell: voltage-dependence, ion selectivity, inhibition by 293B and sensitivity to clofilium. Audit Neurosci 3:215–230.Google Scholar
  200. Shibata T, Hibino H, Doi K, Suzuki T, Hisa Y, Kurachi Y (2006) Gastric type H+,K+-ATPase in the cochlear lateral wall is critically involved in formation of the endocochlear potential. Am J Physiol Cell Physiol 291:C1038–C1048.PubMedGoogle Scholar
  201. Shimokawa H, Takeshita A (2005) Rho-kinase is an important therapeutic target in cardiovascular medicine. Arterioscler Thromb Vasc Biol 25:1767–1775.PubMedGoogle Scholar
  202. Shimozono M, Scofield MA, Wangemann P (1997) Functional evidence for a monocarboxylate transporter (MCT) in strial marginal cells and molecular evidence for MCT1 and MCT2 in stria vascularis. Hear Res 114:213–222.PubMedGoogle Scholar
  203. Singh, R, Wangemann, P (2008, 2007 epub) Free radical stress mediated loss of Kcnj10 protein expression in stria vascularis contributes to deafness in Pendred syndrome mouse model. Am J Physiol Renal Physiol 294:F139–F148.Google Scholar
  204. Smith CA, Lowry OH, Wu ML (1954) The electrolytes of the labyrinthine fluids. Laryngoscope 64:141–153.PubMedGoogle Scholar
  205. Soliman AM (1989) Experimental autoimmune inner ear disease. Laryngoscope 99:188–193.PubMedGoogle Scholar
  206. Somlyo AP, Somlyo AV (2003) Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 83:1325–1358.PubMedGoogle Scholar
  207. Song BB, Sha SH, Schacht J (1998) Iron chelators protect from aminoglycoside-induced cochleo- and vestibulo-toxicity. Free Radic Biol Med 25:189–195.PubMedGoogle Scholar
  208. Spector GJ, Carr C (1979) The ultrastructural cytochemistry of peroxisomes in the guinea pig cochlea: a metabolic hypothesis for the stria vascularis. Laryngoscope 89:1–38.PubMedGoogle Scholar
  209. Spicer SS, Schulte BA (1991) Differentiation of inner ear fibrocytes according to their ion transport related activity. Hear Res 56:53–64.PubMedGoogle Scholar
  210. Spicer SS, Schulte BA (1996) The fine structure of spiral ligament cells relates to ion return to the stria and varies with place-frequency. Hear Res 100:80–100.PubMedGoogle Scholar
  211. Splawski I, Shen J, Timothy KW, Lehmann MH, Priori S, Robinson JL, Moss AJ, Schwartz PJ, Towbin JA, Vincent GM, Keating MT (2000) Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation 102:1178–1185.PubMedGoogle Scholar
  212. Stankovic KM, Brown D, Alper SL, Adams JC (1997) Localization of pH regulating proteins H+ ATPase and Cl-/HCO3- exchanger in the guinea pig inner ear. Hear Res 114:21–34.PubMedGoogle Scholar
  213. Sterkers O, Saumon G, Tran Ba Huy P, Ferrary E, Amiel C (1984) Electrochemical heterogeneity of the cochlear endolymph: effect of acetazolamide. Am J Physiol 246:F47–F53.PubMedGoogle Scholar
  214. Stover EH, Borthwick KJ, Bavalia C, Eady N, Fritz DM, Rungroj N, Giersch AB, Morton CC, Axon PR, Akil I, Al Sabban EA, Baguley DM, Bianca S, Bakkaloglu A, Bircan Z, Chauveau D, Clermont MJ, Guala A, Hulton SA, Kroes H, Li VG, Mir S, Mocan H, Nayir A, Ozen S, Rodriguez SJ, Sanjad SA, Tasic V, Taylor CM, Topaloglu R, Smith AN, Karet FE (2002) Novel ATP6V1B1 and ATP6V0A4 mutations in autosomal recessive distal renal tubular acidosis with new evidence for hearing loss. J Med Genet 39:796–803.PubMedGoogle Scholar
  215. Street VA, McKee-Johnson JW, Fonseca RC, Tempel BL, Noben-Trauth K (1998) Mutations in a plasma membrane Ca2+-ATPase gene cause deafness in deafwaddler mice. Nat Genet 19:390–394.PubMedGoogle Scholar
  216. Sun J, Ahmad S, Chen S, Tang W, Zhang Y, Chen P, Lin X (2005) Cochlear gap junctions coassembled from Cx26 and 30 show faster intercellular Ca2+ signaling than homomeric counterparts. Am J Physiol Cell Physiol 288:C613–C623.PubMedGoogle Scholar
  217. Sweadner KJ (1985) Enzymatic properties of separated isozymes of the Na,K-ATPase. Substrate affinities, kinetic cooperativity, and ion transport stoichiometry. J Biol Chem 260:11508–11513.PubMedGoogle Scholar
  218. Tabuchi K, Tsuji S, Asaka Y, Hara A, Kusakari J (2001) Ischemia-reperfusion injury of the cochlea: effects of an iron chelator and nitric oxide synthase inhibitors. Hear Res 160:31–36.PubMedGoogle Scholar
  219. Takeda T, Sawada S, Takeda S, Kitano H, Suzuki M, Kakigi A, Takeuchi S (2003) The effects of V2 antagonist (OPC–31260) on endolymphatic hydrops. Hear Res 182:9–18.PubMedGoogle Scholar
  220. Takeuchi S, Ando M (1997) Marginal cells of the stria vascularis of gerbils take up glucose via the facilitated transporter GLUT: application of autofluorescence. Hear Res 114:69–74.PubMedGoogle Scholar
  221. Takeuchi S, Irimajiri A (1994) Cl- and nonselective cation channels in the basolateral membrane of strial marginal cells. Proc Sendai Symp 4:35–37.Google Scholar
  222. Takeuchi S, Irimajiri A (1996) Maxi–K+ channel in plasma membrane of basal cells dissociated from the stria vascularis of gerbils. Hear Res 95:18–25.PubMedGoogle Scholar
  223. Takeuchi S, Ando M, Kozakura K, Saito H, Irimajiri A (1995) Ion channels in basolateral membrane of marginal cells dissociated from gerbil stria vascularis. Hear Res 83:89–100.PubMedGoogle Scholar
  224. Takeuchi S, Ando M, Kakigi A (2000) Mechanism generating endocochlear potential: role played by intermediate cells in stria vascularis. Biophys J 79:2572–2582.PubMedGoogle Scholar
  225. Takumi Y, Matsubara A, Danbolt NC, Laake JH, Storm-Mathisen J, Usami S, Shinkawa H, Ottersen OP (1997) Discrete cellular and subcellular localization of glutamine synthetase and the glutamate transporter GLAST in the rat vestibular end organ. Neuroscience 79:1137–1144.PubMedGoogle Scholar
  226. Takumi Y, Matsubara A, Laake JH, Ramirez-Leon V, Roberg B, Torgner I, Kvamme E, Usami S, Ottersen OP (1999) Phosphate activated glutaminase is concentrated in mitochondria of sensory hair cells in rat inner ear: a high resolution immunogold study. J Neurocytol 28:223–237.PubMedGoogle Scholar
  227. Takumi Y, Matsubara A, Tsuchida S, Ottersen OP, Shinkawa H, Usami S (2001) Various glutathione S-transferase isoforms in the rat cochlea. NeuroReport 12:1513–1516.PubMedGoogle Scholar
  228. Tanaka Y, Asanuma A, Yanagisawa K (1980) Potentials of outer hair cells and their membrane properties in cationic environments. Hear Res 2:431–438.PubMedGoogle Scholar
  229. Tang W, Zhang Y, Chang Q, Ahmad S, Dahlke I, Yi H, Chen P, Paul DL, Lin X (2006) Connexin29 is highly expressed in cochlear Schwann cells, and it is required for the normal development and function of the auditory nerve of mice. J Neurosci 26:1991–1999.PubMedGoogle Scholar
  230. Teubner B, Michel V, Pesch J, Lautermann J, Cohen-Salmon M, Sohl G, Jahnke K, Winterhager E, Herberhold C, Hardelin JP, Petit C, Willecke K (2003) Connexin30 (Gjb6)–deficiency causes severe hearing impairment and lack of endocochlear potential. Hum Mol Genet 12:13–21.PubMedGoogle Scholar
  231. Thalmann I, Matschinsky FM, Thalmann R (1970) Quantitative study of selected enzymes involved in energy metabolism of the cochlear duct. Ann Otol Rhinol Laryngol 79:12–29.PubMedGoogle Scholar
  232. Thalmann R, Miyoshi T, Thalmann I (1972) The influence of ischemia upon the energy reserves of inner ear tissues. Laryngoscope 82:2249–2272.PubMedGoogle Scholar
  233. Tyson J, Tranebjaerg L, McEntagart M, Larsen LA, Christiansen M, Whiteford ML, Bathen J, Aslaksen B, Sorland SJ, Lund O, Pembrey ME, Malcolm S, Bitner-Glindzicz M (2000) Mutational spectrum in the cardioauditory syndrome of Jervell and Lange-Nielsen. Hum Genet 107:499–503.PubMedGoogle Scholar
  234. Unoki H, Fan J, Watanabe T (1999) Low-density lipoproteins modulate endothelial cells to secrete endothelin-1 in a polarized pattern: a study using a culture model system simulating arterial intima. Cell Tissue Res 295:89–99.PubMedGoogle Scholar
  235. Usami S, Hjelle OP, Ottersen OP (1996) Differential cellular distribution of glutathione—an endogenous antioxidant—-in the guinea pig inner ear. Brain Res 743:337–340.PubMedGoogle Scholar
  236. Usami S, Takahashi K, Yuge I, Ohtsuka A, Namba A, Abe S, Fransen E, Patthy L, Otting G, Van Camp G (2003) Mutations in the COCH gene are a frequent cause of autosomal dominant progressive cochleo-vestibular dysfunction, but not of Ménière’s disease. Eur J Hum Genet 11:744–748.PubMedGoogle Scholar
  237. Valli P, Zucca G, Botta L (1990) Perilymphatic potassium changes and potassium homeostasis in isolated semicircular canals of the frog. J Physiol (Lond) 430:585–594.Google Scholar
  238. Vanhoutte PM (1978) Heterogeneity in vascular smooth muscle. In: Kaley G, Altura BM (eds) Microcirculation, Vol. II. Baltimore: University Park Press, pp. 181–309.Google Scholar
  239. Vargas-Poussou R, Houillier P, Le Pottier N, Strompf L, Loirat C, Baudouin V, Macher MA, Dechau M, Ulinski T, Nobili F, Eckart P, Novo R, Cailliez M, Salomon R, Nivet H, Cochat P, Tack I, Fargeot A, Bouissou F, Kesler GR, Lorotte S, Godefroid N, Layet V, Morin G, Jeunemaitre X, Blanchard A (2006) Genetic investigation of autosomal recessive distal renal tubular acidosis: evidence for early sensorineural hearing loss associated with mutations in the ATP6V0A4 gene. J Am Soc Nephrol 17:1437–1443.PubMedGoogle Scholar
  240. Varnum MD, Busch AE, Bond CT, Maylie J, Adelman JP (1993) The min K channel underlies the cardiac potassium current IKs and mediates species-specific responses to protein kinase. Proc Natl Acad Sci USA 90:11528–11532.Google Scholar
  241. Vetter DE, Mann JR, Wangemann P, Liu Z, McLaughlin KJ, Lesage F, Marcus DC, Lazdunski M, Heinemann SF, Barhanin J (1996) Inner ear defects induced by null mutation of isk gene. Neuron 17:1251–1264.PubMedGoogle Scholar
  242. Vince JW, Reithmeier RA (1998) Carbonic anhydrase II binds to the carboxyl terminus of human band 3, the erythrocyte Cl-/HCO3-- exchanger. J Biol Chem 273:28430–28437.PubMedGoogle Scholar
  243. von Békésy G (1950) DC potentials and energy balance of the cochlear partition. J Acoust Soc Am 22:576–582.Google Scholar
  244. Waldegger S, Jeck N, Barth P, Peters M, Vitzthum H, Wolf K, Kurtz A, Konrad M, Seyberth HW (2002) Barttin increases surface expression and changes current properties of ClC-K channels. Pflugers Arch 444:411–418.PubMedGoogle Scholar
  245. Wang Z, Li H, Moss AJ, Robinson J, Zareba W, Knilans T, Bowles NE, Towbin JA (2002) Compound heterozygous mutations in KvLQT1 cause Jervell and Lange-Nielsen syndrome. Mol Genet Metab 75:308–316.PubMedGoogle Scholar
  246. Wangemann P (1995) Comparison of ion transport mechanisms between vestibular dark cells and strial marginal cells. Hear Res 90:149–157.PubMedGoogle Scholar
  247. Wangemann P (2002) K+ cycling and the endocochlear potential. Hear Res 165:1–9.PubMedGoogle Scholar
  248. Wangemann P, Gruber DD (1998) The isolated in-vitro perfused spiral modiolar artery: pressure dependence of vasoconstriction. Hear Res 115:113–118.PubMedGoogle Scholar
  249. Wangemann P, Marcus DC (1992) The membrane potential of vestibular dark cells is controlled by a large Cl--conductance. Hear Res 62:149–156.PubMedGoogle Scholar
  250. Wangemann P, Schacht J (1996) Homeostasic mechanisms in the cochlea. In: Dallos P, Popper AN, Fay R (eds) The Cochlea. New York: Springer, pp. 130–185.Google Scholar
  251. Wangemann P, Shiga N (1994) Cell volume control in vestibular dark cells during and after a hyposmotic challenge. Am J Physiol Cell Physiol 266:C1046–C1060.Google Scholar
  252. Wangemann P, Wonneberger K (2005) Neurogenic regulation of cochlear blood flow occurs along the basilar artery, the anterior inferior cerebellar artery and at branch points of the spiral modiolar artery. Hear Res 209:91–96.PubMedGoogle Scholar
  253. Wangemann P, Liu J, Marcus DC (1995a) Ion transport mechanisms responsible for K+ secretion and the transepithelial voltage across marginal cells of stria vascularis in vitro. Hear Res 84:19–29.Google Scholar
  254. Wangemann P, Liu J, Shen Z, Shipley A, Marcus DC (1995b) Hypo-osmotic challenge stimulates transepithelial K+ secretion and activates apical IsK channel in vestibular dark cells. J Membr Biol 147:263–273.Google Scholar
  255. Wangemann P, Liu J, Shiga N (1996a) Vestibular dark cells contain the Na+/H+ exchanger NHE-1 in the basolateral membrane. Hear Res 94:94–108.Google Scholar
  256. Wangemann P, Shen Z, Liu J (1996b) K+-induced stimulation of K+ secretion involves activation of the IsK channel in vestibular dark cells. Hear Res 100:201–210.Google Scholar
  257. Wangemann P, Cohn ES, Gruber DD, Gratton MA (1998) Ca2+-dependence and nifedipine-sensitivity of vascular tone and contractility in the isolated superfused spiral modiolar artery in vitro. Hear Res 118:90–100.PubMedGoogle Scholar
  258. Wangemann P, Liu J, Shimozono M, Scofield MA (1999) b1-adrenergic receptors but not b2-adrenergic or vasopressin receptors regulate K+ secretion in vestibular dark cells of the inner ear. J Membr Biol 170:67–77.PubMedGoogle Scholar
  259. Wangemann P, Itza EM, Albrecht B, Wu T, Jabba SV, Maganti RJLJH, Everett LA, Wall SM, Royaux IE, Green ED, Marcus DC (2004) Loss of KCNJ10 protein expression abolishes endocochlear potential and causes deafness in Pendred syndrome mouse model. BMC Medicine 2:30.PubMedGoogle Scholar
  260. Wangemann P, Nakaya K, Wu T, Maganti R, Itza EM, Sanneman J, Harbidge D, Billings S, Marcus DC (2007) Loss of cochlear HCO3- secretion causes deafness via endolymphatic acidification and inhibition of Ca2+ reabsorption in a Pendred syndrome mouse model. Am J Physiol Renal Physiol 292:F1345–1353.PubMedGoogle Scholar
  261. Warnock DG, Eveloff J (1989) K-Cl cotransport systems. Kidney Int 36:412–417.PubMedGoogle Scholar
  262. Wood JD, Muchinsky SJ, Filoteo AG, Penniston JT, Tempel BL (2004a) Low endolymph calcium concentrations in deafwaddler2J mice suggest that PMCA2 contributes to endolymph calcium maintenance. J Assoc Res Otolaryngol 5:99–110.Google Scholar
  263. Wood JD, Muchinsky SJ, Filoteo AG, Penniston JT, Tempel BL (2004b) Low endolymph calcium concentrations in deafwaddler2J mice suggest that PMCA2 contributes to endolymph calcium maintenance. J Assoc Res Otolaryngol 5:99–110.Google Scholar
  264. Xia A, Katori Y, Oshima T, Watanabe K, Kikuchi T, Ikeda K (2001) Expression of connexin 30 in the developing mouse cochlea. Brain Res 898:364–367.PubMedGoogle Scholar
  265. Xia A, Kikuchi T, Hozawa K, Katori Y, Takasaka T (1999) Expression of connexin 26 and Na,K-ATPase in the developing mouse cochlear lateral wall: functional implications. Brain Res 846:106–111.PubMedGoogle Scholar
  266. Xia AP, Ikeda K, Katori Y, Oshima T, Kikuchi T, Takasaka T (2000) Expression of connexin 31 in the developing mouse cochlea. NeuroReport 11:2449–2453.PubMedGoogle Scholar
  267. Xia AP, Kikuchi T, Minowa O, Katori Y, Oshima T, Noda T, Ikeda K (2002) Late–onset hearing loss in a mouse model of DFN3 non-syndromic deafness: morphologic and immunohistochemical analyses. Hear Res 166:150–158.PubMedGoogle Scholar
  268. Xie H, Bevan JA (1999) Oxidized low-density lipoprotein enhances myogenic tone in the rabbit posterior cerebral artery through the release of endothelin-1. Stroke 30:2423–2429.PubMedGoogle Scholar
  269. Yada T, Shimokawa H, Kajiya F (2006) Cardioprotective effect of hydroxyfasudil as a specific Rho-kinase inhibitor, on ischemia-reperfusion injury in canine coronary microvessels in vivo. Clin Hemorheol Microcirc 34:177–183.PubMedGoogle Scholar
  270. Yamakawa K (1938) Über pathologische Verönderungen bei einem Menière-Kranken. J Otolaryngol Soc Jpn 44:181–182.Google Scholar
  271. Yamauchi D, Raveendran NN, Pondugula SR, Kampalli SB, Sanneman JD, Harbidge DG, Marcus DC (2005) Vitamin D upregulates expression of ECaC1 mRNA in semicircular canal. Biochem Biophys Res Commun 331:1353–1357.PubMedGoogle Scholar
  272. Yamoah EN, Lumpkin EA, Dumont RA, Smith PJ, Hudspeth AJ, Gillespie PG (1998) Plasma membrane Ca2+–ATPase extrudes Ca2+ from hair cell stereocilia. J Neurosci 18:610–624.PubMedGoogle Scholar
  273. Yatomi Y (2006) Sphingosine 1–phosphate in vascular biology: possible therapeutic strategies to control vascular diseases. Curr Pharm Des 12:575–587.PubMedGoogle Scholar
  274. Yoo TJ, Tomoda K, Hernandez AD (1984) Type II collagen-induced autoimmune inner ear lesions in guinea pigs. Ann Otol Rhinol Laryngol Suppl 113:3–5.PubMedGoogle Scholar
  275. Zelante L, Gasparini P, Estivill X, Melchionda S, D’Agruma L, Govea N, Mila M, Monica MD, Lutfi J, Shohat M, Mansfield E, Delgrosso K, Rappaport E, Surrey S, Fortina P (1997) Connexin26 mutations associated with the most common form of non-syndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans. Hum Mol Genet 6:1605–1609.PubMedGoogle Scholar
  276. Zhang Y, Tang W, Ahmad S, Sipp JA, Chen P, Lin X (2005) Gap junction-mediated intercellular biochemical coupling in cochlear supporting cells is required for normal cochlear functions. Proc Natl Acad Sci USA 102:15201–15206.Google Scholar
  277. Zhao HB (2005) Connexin26 is responsible for anionic molecule permeability in the cochlea for intercellular signalling and metabolic communications. Eur J Neurosci 21:1859–1868.PubMedGoogle Scholar
  278. Zhao HB, Yu N, Fleming CR (2005) Gap junctional hemichannel-mediated ATP release and hearing controls in the inner ear. Proc Natl Acad Sci USA 102:18724–18729.Google Scholar
  279. Zidanic M, Brownell WE (1990) Fine structure of the intracochlear potential field. I. The silent current. Biophys J 57:1253–1268.PubMedGoogle Scholar
  280. Ziegler EA, Brieger J, Heinrich UR, Mann WJ (2004) Immunohistochemical localization of cyclooxygenase isoforms in the organ of Corti and the spiral ganglion cells of guinea pig cochlea. ORL J Otorhinolaryngol Relat Spec 66:297–301.PubMedGoogle Scholar
  281. Zimmermann U, Kopschall I, Rohbock K, Bosman GJ, Zenner HP, Knipper M (2000) Molecular characterization of anion exchangers in the cochlea. Mol Cell Biochem 205:25–37.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Philine Wangemann

There are no affiliations available

Personalised recommendations