Advertisement

Semisolid Processing—Origin of Magnesium Molding

  • Frank Czerwinski

The majority of techniques applicable for manufacturing net shape components from metals and their alloys, in principle, could be classified into two conventional routes restricted to either the solid or liquid state. The liquid state methods involve casting with a variety of modifications: gravity, high-pressure die casting, squeeze casting, etc. In contrast, the solid-state techniques require generally multi step operations following casting, such as homogenization of chemistry, hot working, cold working, forming, machining and eventually heat treatment. As a result, the properties of wrought components are predominantly superior to castings. The number of manufacturing steps and their complexity, however, contributes to a significantly higher cost of the final product. The economy factor represents the downside of many non-conventional manufacturing techniques, e.g., powder metallurgy. Thus, there is a continuous quest for a technology that would allow reducing cost and at the same time improving the properties.

Keywords

Shear Rate Magnesium Alloy Injection Molding Solid Fraction Constant Shear Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schalek E, Szegvari A (1923) Kolloid Z 32:318CrossRefGoogle Scholar
  2. 2.
    Peterfi T (1927) Arch. Entwicklungmech. Organ. 112:680Google Scholar
  3. 3.
    Barnes H (1997) Thixotropy—a review. Journal of Non-Newtonian Fluid Mechanics 70:1–33CrossRefGoogle Scholar
  4. 4.
    Spencer DB, Mehrabian R, Flemings MC (1972) Rheological behavior of Sn-15%Pb in the crystallization range. Metallurgical Transactions A 3:1925–1932CrossRefGoogle Scholar
  5. 5.
    Mehrabian R, Flemings MC Metal composition and methods for preparing liquid-solid alloy metal compositions and for testing the metal compositions. US Patent 3,951,651Google Scholar
  6. 6.
    Pryce-Jones J (1934) JOCCA 17:305Google Scholar
  7. 7.
    Joly P, Mehrabian R (1976) The rheology of partially solid alloy. Journal of Materials Science 11:1393–1418CrossRefGoogle Scholar
  8. 8.
    Quaak CJ (1996) Rheology of partially solidified aluminium alloys and composites. Technische Univ., Delft, The NetherlandsGoogle Scholar
  9. 9.
    Llorens J, Rude E, Mans C (1996) Structural models to describe thixotropic behaviour. Progress in Colloid Polymer Science 100:252–258CrossRefGoogle Scholar
  10. 10.
    Denny DA, Brodkey RS (1962) Journal of Applied Physics 33:2269CrossRefGoogle Scholar
  11. 11.
    Cross MM (1965) J. Colloidal Science 20:417CrossRefGoogle Scholar
  12. 12.
    Mewis J, Schryvers J (1996) International Fine Particle Research Institute Report, Unpublished, 1996Google Scholar
  13. 13.
    Kristensen PG, Jensen CTB, Nguyen QD (1996) In A Ait-Kadi (ed) Proceedings of XIIth Congress on Rheology, Laval University, Quebec City, 1996, p 471Google Scholar
  14. 14.
    Alexandrou A, Duc E, Entov VJ (2001) Non-Newtonian Fluid Mechanics 96:383–403CrossRefGoogle Scholar
  15. 15.
    Alexandrou A (2001) Rheology and numerical simulations of flow of semisolid suspensions. In AM De Figueredo (ed) Science and technology of semi-solid metal processing, Worcester Polytechnic Institute, Worcester, MA, pp 5.1–5.28Google Scholar
  16. 16.
    Lohmuller A et al (2003) Injection molding of magnesium alloys. In KU Kainer (ed) Proc. of the 6th international conference on magnesium alloys and their applications, Wolfsburg, Germany, Wiley-VCH, pp 738–743Google Scholar
  17. 17.
    Modigell M, Koke J (1999) Time dependent rheological properties of semisolid metal alloys. Mechanics of Time-Dependent Materials 3:15–30CrossRefGoogle Scholar
  18. 18.
    Mao WM et al (2004) Thixotropic behaviour of semisolid AZ91D magnesium alloy. Transactions Nonferrous Met. Society, China 14(2):297–301Google Scholar
  19. 19.
    Gebelin JC, Suery M, Favier D (1999) Characterization of the rheological behaviour in the semisolid state of grain refined AZ91 magnesium alloy. Materials Science and Engineering A 272:134–144CrossRefGoogle Scholar
  20. 20.
    Yurko JA, Flemings MC (2002) Rheology and microstructure of semisolid aluminum alloys compressed in the drop-forge viscometer. Metallurgical and Materials Transactions A 33:2737–2746CrossRefGoogle Scholar
  21. 21.
    Loue WR, Suery M, Qyerbes JL (1992) In SD Brown, MC Flemings (ed) Proc. 2nd international conference on semisolid processing of alloys and composites, TMS, Warrendale, PA, pp 266–275Google Scholar
  22. 22.
    Basner T, Pehlke R, Sachdev A (2000) Thin-wall back extrusion of partially remelted semisolid slurry. Metallurgical and Materials Transactions A, 31:57–62CrossRefGoogle Scholar
  23. 23.
    Ghosh D, Fan R, VanSchilt C (1994) Thixotropic properties of semisolid magnesium alloys AZ91 and AM50. In Proc. of the 3rd international conference of semisolid processing of alloys and composites, Tokyo, 1994, pp 85–94Google Scholar
  24. 24.
    Li DN et al (2002) Study on the semisolid rheocasting of magnesium alloy by mechanical stirring. Journal of Materials Processing Technology 129:431–434CrossRefGoogle Scholar
  25. 25.
    Ichikawa K, Katoh M (1999) Method of manufacturing metallic materials with extremely fine crystal grains. US Patent 5,901,778, 11 May 1999Google Scholar
  26. 26.
    Ji S, Fan Z, Bevis MJ (2001) Semisolid processing of engineering alloys by a twin-screw rheomoulding process. Materials Science and Engineering A 299:210–217CrossRefGoogle Scholar
  27. 27.
    Winter J, Tyler DE, Pryor MJ (1980) Method for the preparation of thixotropic slurries. US Patent 4,229,210, 21 Oct 1980Google Scholar
  28. 28.
    Abramov VO et al (1997) Hypereutectic Al-Si based alloys with the thixotropic microstructure produced by ultrasonic treatment. Materials and Design 18(4–6):323–326CrossRefGoogle Scholar
  29. 29.
    Kapustina OA (1970) The physical principles of ultrasonic manufacturing. Nauka, MoscowGoogle Scholar
  30. 30.
    Gjestland H, Westengen H (1996) Procedure for the production of thixotropic magnesium alloys. US Patent 5,501,748, 26 Mar 1996Google Scholar
  31. 31.
    Qian M (2006) Creation of semisolid slurries containing fine and spherical particles by grain refinement based on the Mullins–Sekerka stability criterion. Acta Materialia 54:2241–2252CrossRefGoogle Scholar
  32. 32.
    Doutre D, Hay G, Wales P (2002) Semi-solid concentration processing of metallic alloys. US Patent 6,428,636 B2, 6 Aug 2002Google Scholar
  33. 33.
    Apelian D, Pan, QY, Findon M (2004) Low cost and energy efficient methods for the manufacture of semisolid feedstock. Die Casting Engineer 48:22–28Google Scholar
  34. 34.
    Tausing G, Xia K (2001) Semisolid metal processing. US Patent 6,311,759 B1, 6 Nov 2001Google Scholar
  35. 35.
    Fehlbier M, Aguilar J, Sahm PR (2001) Rapid slug cooling technology (RSCT): A new approach for the production of thixocasting prematerial billets. International Journal of Cast Metals Research 14:71–78Google Scholar
  36. 36.
    Aguilar J (2005) Verarbeitung von Magnesium Legirungen im teilflussigen Zustand und deren Eigenschaften. Shaker Verlag, AachenGoogle Scholar
  37. 37.
    Winterbottom WL et al (2004) Apparatus for and method of producing slurry material without stirring for application in semisolid forming. US Patent 6,742,567 B2, 1 June 2004Google Scholar
  38. 38.
    Mingard KP et al (1998) Acta Materialia 37:429Google Scholar
  39. 39.
    Annavarapu S, Doherty D (1992) Inter. Journal of Powder Metallurgy 29:331Google Scholar
  40. 40.
    Fuxiao Y et al (2001) Fundamental differences between spray forming and other semisolid processes. Materials Science and Engineering A 304–306:621–626CrossRefGoogle Scholar
  41. 41.
    Tsao YA, Chiang CH (2005) Si coarsening of spray-formed high loading hypereutectic Al-Si alloys in the semisolid state. Materials Science and Engineering A 396(1–2):263–270Google Scholar
  42. 42.
    German RM (1985) Liquid Phase Sintering, Plenum Press, New YorkCrossRefGoogle Scholar
  43. 43.
    Kirkwood DH (1994) Semisolid metal processing. International Materials Reviews 39(5):173–189CrossRefGoogle Scholar
  44. 44.
    Young KP, Kyonka CP, Courtois JA (1983) Fine grained metal composition, US Patent 4,415,374, 15 Nov 1983Google Scholar
  45. 45.
    Kazakov AA (2000) Alloy compositions for semisolid forming. Advanced Materials and Processes (3):31–34Google Scholar
  46. 46.
    Fan Z (2002) Semisolid metal processing. International Materials Reviews 47(2):49–85CrossRefGoogle Scholar
  47. 47.
    Liu YQ, Das A, Fan Z (2004) Thermodynamic predictions of Mg-Al-M (M=Zn, Mn, Si) alloy compositions ammenable to semisolid metal processing. Materials Science and Technology 20:35–41CrossRefGoogle Scholar
  48. 48.
    Yurko JA et al (2004) Process and apparatus for preparing a metal alloy. US Patent Application 2004/0173337 A1Google Scholar
  49. 49.
    Yurko, JA, Flemings MC, Martinez RA (2004) Semisolid rheocasting (SSR)—increasing the capabilities of die casting. Die Casting Engineer 48(1):50–52Google Scholar
  50. 50.
    Kamm JR, Jorstad JL (2004) Semisolid molding method—2. US Patent 6,808,004 B2, 26 Oct 2004Google Scholar
  51. 51.
    Kamm JR, Jorstad JL (2003) Semi-solid molding method. US Patent Application 2003/0141033 A1, 31 July 2003Google Scholar
  52. 52.
    Jorstad JL (2004) Semisolid metal processing; the high integrity die casting process. Die Casting Engineer 48(1):42–48Google Scholar
  53. 53.
    O’Donnel R (2005) Advanced thixotropic metallurgy, revolution in casting technology. Die Casting Engineer 49(1):43–47Google Scholar
  54. 54.
    Rice CS, Mendez PF (2001) Slurry-based semisolid die casting. Advanced Materials and Processes (10):49–52Google Scholar
  55. 55.
    Brown SB et al (1999) Apparatus and method for semisolid material production. US Patent 5,887,640, 30 Mar 1999Google Scholar
  56. 56.
    Chiarmetta G (2000) Why thixo? In 6th international conference semisolid processing of alloys and composites, Turin, Italy, 2000Google Scholar
  57. 57.
    Nakatsugawa I, Tsukeda T, Kitamura K (2002) Latest developments in magnesium use for thixomolding in Asia. In 59th annual world magnesium conference, Montreal, International Magnesium Association, 2002, pp 11–14Google Scholar
  58. 58.
    Magnesium Casting Industry Technology Roadmap (2005) American Foundary SocietyGoogle Scholar
  59. 59.
    Liu TY et al (2003) Rapid compression of aluminum alloys and its relationship to thixoformability. Metallurgical and Materials Transactions A 34:1545–1554CrossRefGoogle Scholar
  60. 60.
    Czerwinski F (2006) The basics of modern semisolid metal processing. Journal of Metals 57(6):17–20Google Scholar
  61. 61.
    Kazakov AA (2007) St. Petersburg State Technical University, private communication, 2007Google Scholar
  62. 62.
    Flemings M.C, Behaviour of metal alloys in the semisolid state, Metallurgical Transactions A, 1991, 22, 957–981Google Scholar
  63. 63.
    Busk R. Method for making thixotropic materials-1, US Patent 4,694,882, September 22, 1987Google Scholar
  64. 64.
    Busk R. Method for making thixotropic materials-2, US Patent 4,694,881, September 22, 1987Google Scholar
  65. 65.
    Bradley NL, Wieland RD, Schafer WJ, and Niemi AN Method and apparatus for the injection molding of metal alloys, US Patent 5,040,589, August 20, 1991Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Frank Czerwinski
    • 1
  1. 1.Development EngineeringHusky Injection Molding Systems Ltd.Bolton, OntarioCanada

Personalised recommendations