Molding Creep-Resistant Alloys

  • Frank Czerwinski

Creep resistance is a major requirement for consideration of magnesium in hightemperature applications. It is believed that the most significant area of future growth for magnesium is in automotive engines and power-train components, but progress is still limited by the substantial weakness of magnesium alloys expressed by their behavior at elevated temperatures. While Mg—Al and Mg—Al—Zn combinations exhibit moderate tensile strength at ambient temperatures, they are all prone to excessive creep when exposed to even low-level loads above approximately 120 °C.


Magnesium Alloy Creep Rate Injection Molding Creep Resistance Diffusional Creep 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Czerwinski F (2003) Assessing capabilities of thixomolding system in semisolid processing of magnesium alloys. International Journal of Cast Metals Research 16(4):389–396Google Scholar
  2. 2.
    Agnion E et al (2003) Newly developed magnesium alloys for powertrain applications. Journal of Metals 54(11):30Google Scholar
  3. 3.
    Anrade END (1914) Proceedings of Royal Society A 90:329–342CrossRefGoogle Scholar
  4. 4.
    Garofalo F (1960) Properties of Crystalline Solids. ASTM Special Technical Publication vol. 283. p 82Google Scholar
  5. 5.
    Dieter, GE (1976) Mechanical Metallurgy. McGraw-Hill, New YorkGoogle Scholar
  6. 6.
    Langdon TG (2002) Creep at low stresses: An evaluation of diffusion creep and Harper–Dorn creep as viable creep mechanism. Metallurgical and Materials Transactions A 33(2):249–259CrossRefGoogle Scholar
  7. 7.
    Wadsworth J, Ruano OA, Sherby O (2002) Denuded zones, diffusional creep, and grain boundary sliding. Metallurgical and Materials Transactions A 33(2):219–229CrossRefGoogle Scholar
  8. 8.
    Nabarro FRN (2002) Creep at very low rates. Metallurgical and Materials Transactions A 33(2):213–220CrossRefGoogle Scholar
  9. 9.
    Mordike BL, Lukac P (1997) In Proceedings of the 3rd International Magnesium Conference, The Institute of Materials, London, p 419Google Scholar
  10. 10.
    Crossland IG, Jones RB (1972) Met. Sci. J. 6:162Google Scholar
  11. 11.
    Frost HJ, Ashby MF (1982) Deformation mechanisms maps. Pergamon, OxfordGoogle Scholar
  12. 12.
    Tegar, WJM (1961) Acta Metallurgica 9:614CrossRefGoogle Scholar
  13. 13.
    Agnew SR et al (2000) Tensile and compressive creep behavior of die cast magnesium alloy AM60B. In HI Kaplan et al (eds) Magnesium technology 2000, TMS, Warrendale, PA, USA, pp 285–289Google Scholar
  14. 14.
    Svoboda M et al (2002) The role of matrix microstructure in the creep behaviour of discontinuous fiber-reinforced AZ91 magnesium alloy. Materials Science and Engineering A 324:151–156CrossRefGoogle Scholar
  15. 15.
    Sklenicka V et al (2000) Key Engineering Materials 593:171–174Google Scholar
  16. 16.
    Mordike BL (2002) Creep-resistant magnesium alloys. Materials Science and Engineering A 324:103–112CrossRefGoogle Scholar
  17. 17.
    King JF (2000) In KU Kainer (ed) Magnesium Alloys and their Application. Wiley, VCH, New YorkGoogle Scholar
  18. 18.
    Luo AA (2004) Recent magnesium alloy development for elevated temperature applications. International Materials Review 49(1):13–30CrossRefGoogle Scholar
  19. 19.
    Anyanwu IA et al (2004) Effect of substituting cerium-rich mischmetal with lantanum on high temperature properties of die-cast Mg-Zn-Al-Ca-RE alloys. Materials Science and Engineering A 380(1–2):93–99CrossRefGoogle Scholar
  20. 20.
    Suzuki A et al (2005) Solidification paths and eutectic intermetallic phases in Mg-Al-Ca ternary systems. Acta Materialia 53:2823–2834CrossRefGoogle Scholar
  21. 21.
    Hollrigl-rosta F et al (1980) Light Metal Age, March 1980:22–29Google Scholar
  22. 22.
    Tang B et al (2005) Effect of Ca/Sr composite addition into AZ91D alloy on hot-crack mechanism. Scripta Materialia 53:1077–1082CrossRefGoogle Scholar
  23. 23.
    Hirai K, Somekawa H, Tagikawa Y, and K, H (2005) Effects of Ca and Sr addition on mechanical properties of a cast AZ91 magnesium alloy at room and elevated temperatures, Materials Science and Engineering A 403:276–280CrossRefGoogle Scholar
  24. 24.
    Sohn KY, JW, J, and Allison JE (2000) The effect of calcium on creep and bolt retention behaviour of die cast AM50 alloy, in Magnesium Technology 2000, H Kaplan, J Hryn, and |B Clow H Kaplan, J Hryn, and B Clow, TMS, Warrendale, PA, USA, pp 271–279Google Scholar
  25. 25.
    Suzuki A, Saddock ND, Jones JW, and Pollock TM (2005) Phase transformation and creep of Mg-Al-Ca based die-cast alloy, in Magnesium Technology 2005, NR Neelameggham, HI Kaplan, and BR Powell NR Neelameggham, HI Kaplan, and BR Powell, TMS, Warrendale, PA, USA, pp 111–116Google Scholar
  26. 26.
    Pekguleryuz M, Labelle P, Argo D, and Baril E (2003) Magnesium diecasting alloy AJ62X with superiour creep resistance, ductility and diecastability, in Magnesium Technology 2003, H Kaplan H Kaplan, TMS, Warrendale, PA, USA, 201Google Scholar
  27. 27.
    Regev M, Botstein O, Bamberger M, and Rosen A (2001) Continuous versus interrupted creep in AZ91D magnesium alloy, Materials Science and Engineering A 302(1):51–55CrossRefGoogle Scholar
  28. 28.
    Dargusch M, Hisa M, Caceres CH, and Dunlop GL, (1997) in Proceedings 3-rd International Magnesium Conference, The Institute of Materials, London, UK, 153Google Scholar
  29. 29.
    Vogel M, Kraft O, and Arzt E, (2003) Creep behaviour of magnesium die cast alloy ZA85, Scripta Materialia 48(8):985–990CrossRefGoogle Scholar
  30. 30.
    Chartrand P and Pelton AD (1994 ) Journal of Phase Equilibria 15:591CrossRefGoogle Scholar
  31. 31.
    Alcock CB and Itkin VP (1989) Bulletin of Alloy Phase Diagrams 10:624CrossRefGoogle Scholar
  32. 32.
    Nayeb-Hashemi AA and Clark JB (1986) Bulletin of Alloy Phase Diagrams 10:624Google Scholar
  33. 33.
    Nowotny H and Wesenberg H (1939) Zeitung von Metallkunde 31:363Google Scholar
  34. 34.
    Polmear JS (1994) Materials Science and Technology 10:1CrossRefGoogle Scholar
  35. 35.
    Czerwinski F (2003) Size evolution of the unmelted phase during injection molding of semisolid magnesium alloys, Scripta Materialia 48(4):327–331CrossRefGoogle Scholar
  36. 36.
    Chen TJ, Hao Y, Sun J, and Li YD (2003) Science and Technology of Advanced Materials 4:495CrossRefGoogle Scholar
  37. 37.
    Czerwinski F and Zielinska-Lipiec A (2005) The microstructure evolution during semisolid molding of a creep resistant Mg–5Al–2Sr alloy, Acta Materialia 53(12):3433–3444CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Frank Czerwinski
    • 1
  1. 1.Development EngineeringHusky Injection Molding Systems Ltd.Bolton, OntarioCanada

Personalised recommendations