Perioperative Thermoregulation

  • Daniel I. Sessler


Perioperative thermal disturbances are common and there is considerable evidence that disturbances are especially frequent in the elderly. The most common perioperative thermal disturbance—hypothermia—is both more likely and more severe in the elderly than in younger patients. Anesthetic drugs impair thermoregulation in all patients, and delayed or insufficient thermoregulatory defenses are the primary causes of hypothermia in most patients. Excessive hypothermia in the elderly results largely because central and efferent thermoregulatory controls are particularly disturbed in these patients.


Skin Temperature Core Temperature Minimum Alveolar Concentration Mild Hypothermia Accidental Hypothermia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cabanac M, Dib B. Behavioural responses to hypothalamic cooling and heating in the rat. Brain Res 1983;264: 79–87.PubMedCrossRefGoogle Scholar
  2. 2.
    Satinoff E, McEwen GN Jr, Williams BA. Behavioral fever in newborn rabbits. Science 1976;193:1139–1140.PubMedCrossRefGoogle Scholar
  3. 3.
    Nadel ER, Pandolf KB, Roberts MF, Stolwijk JAJ. Mechanisms of thermal acclimation to exercise and heat. J Appl Physiol 1974;37:515–520.PubMedGoogle Scholar
  4. 4.
    Nadel ER, Cafarelli E, Roberts MF, Wenger CB. Circulatory regulation during exercise in different ambient temperatures. J Appl Physiol 1979;46:430–437.PubMedGoogle Scholar
  5. 5.
    Hales JRS. Skin arteriovenous anastomoses, their control and role in thermoregulation. In: Johansen K, Burggren W, eds. Cardiovascular Shunts: Phylogenetic, Ontogenetic and Clinical Aspects. Copenhagen: Munksgaard; 1985:433–451.Google Scholar
  6. 6.
    Nedergaard J, Cannon B. The uncoupling protein thermogenin and mitochondrial thermogenesis. New Comp Biochem 1992;23:385–420.Google Scholar
  7. 7.
    Israel DJ, Pozos RS. Synchronized slow-amplitude modulations in the electromyograms of shivering muscles. J Appl Physiol 1989;66:2358–2363.PubMedGoogle Scholar
  8. 8.
    Jessen C, Mayer ET. Spinal cord and hypothalamus as core sensors of temperature in the conscious dog. I. Equivalence of responses. Pflügers Arch 1971;324:189–204.PubMedCrossRefGoogle Scholar
  9. 9.
    Sessler DI. Perianesthetic thermoregulation and heat balance in humans. FASEB J 1993;7:638–644.PubMedGoogle Scholar
  10. 10.
    Satinoff E. Neural organization and evolution of thermal regulation in mammals—several hierarchically arranged integrating systems may have evolved to achieve precise thermoregulation. Science 1978;201:16–22.PubMedCrossRefGoogle Scholar
  11. 11.
    Satinoff E, Rutstein J. Behavioral thermoregulation in rats with anterior hypothalamic lesions. J Comp Physiol Psychol 1970;71:77–82.PubMedCrossRefGoogle Scholar
  12. 12.
    Poulos DA. Central processing of cutaneous temperature information. Fed Proc 1981;40:2825–2829.PubMedGoogle Scholar
  13. 13.
    Kosaka M, Simon E, Walther O-E, Thauer R. Response of respiration to selective heating of the spinal cord below partial transection. Experientia 1969;25:36–37.PubMedCrossRefGoogle Scholar
  14. 14.
    Jessen C. Independent clamps of peripheral and central temperatures and their effects on heat production in the goat. J Physiol (Lond) 1981;311:11–22.Google Scholar
  15. 15.
    Jessen C, Feistkorn G. Some characteristics of core temperature signals in the conscious goat. Am J Physiol 1984; 247:R456–R464.PubMedGoogle Scholar
  16. 16.
    Cheng C, Matsukawa T, Sessler DI, et al. Increasing mean skin temperature linearly reduces the core-temperature thresholds for vasoconstriction and shivering in humans. Anesthesiology 1995;82:1160–1168.PubMedCrossRefGoogle Scholar
  17. 17.
    Wyss CR, Brengelmann GL, Johnson JM, et al. Altered control of skin blood flow at high skin and core temperatures. J Appl Physiol 1975;38:839–845.PubMedGoogle Scholar
  18. 18.
    Nadel ER, Mitchell JW, Stolwijk JAJ. Control of local and total sweating during exercise transients. Int J Biometeorol 1971;15:201–206.PubMedCrossRefGoogle Scholar
  19. 19.
    Tam H-S, Darling RC, Cheh H-Y, Downey JA. The dead zone of thermoregulation in normal and paraplegic man. Can J Physiol Pharmacol 1978;56:976–983.PubMedGoogle Scholar
  20. 20.
    Wenger CB, Roberts MF, Stolwijk JJA, Nadel ER. Forearm blood flow during body temperature transients produced by leg exercise. J Appl Physiol 1975;38:58–63.PubMedGoogle Scholar
  21. 21.
    Mistlberger T, Rusak B. Mechanisms and models of the circadian time keeping system. In: Kryger MH, Dement WC, eds. Principles and Practice of Sleep Medicine. Philadelphia: WB Saunders; 1989:141–152.Google Scholar
  22. 22.
    Lopez M, Sessler DI, Walter K, et al. Rate and gender dependence of the sweating, vasoconstriction, and shivering thresholds in humans. Anesthesiology 1994;80: 780–788.PubMedCrossRefGoogle Scholar
  23. 23.
    Stephenson LA, Kolka MA. Menstrual cycle phase and time of day alter reference signal controlling arm blood flow and sweating. Am J Physiol 1985;249:R186–R191.PubMedGoogle Scholar
  24. 24.
    Washington D, Sessler DI, Moayeri A, et al. Thermoregulatory responses to hyperthermia during isoflurane anesthesia in humans. J Appl Physiol 1993;74:82–87.PubMedCrossRefGoogle Scholar
  25. 25.
    Mestyan J, Jarai I, Bata G, Fekete M. The significance of facial skin temperature in the chemical heat regulation of premature infants. Biol Neonat 1964;7:243–254.PubMedGoogle Scholar
  26. 26.
    Jessen K. An assessment of human regulatory nonshivering thermogenesis. Acta Anaesthesiol Scand 1980;24: 138–143.PubMedGoogle Scholar
  27. 27.
    Jessen K, Rabøl A, Winkler K. Total body and splanchnic thermogenesis in curarized man during a short exposure to cold. Acta Anaesthesiol Scand 1980;24:339–344.PubMedGoogle Scholar
  28. 28.
    Joy RJT, Matone JC, Newcomb GW, Bradford WC. Responses of cold-acclimatized men to infused norepinephrine. J Appl Physiol 1963;18:1209–1212.PubMedGoogle Scholar
  29. 29.
    Brück K. Thermoregulation: control mechanisms and neural processes. In: Sinclair JC, ed. Temperature Regulation and Energy Metabolism in the Newborn. New York: Grune & Stratton; 1978:157–185.Google Scholar
  30. 30.
    Fox RH, Hilton SM. Bradykinin formation in human skin as a factor of heat vasodilatation. J Physiol 1958;142: 219–232.PubMedGoogle Scholar
  31. 31.
    Warren JB. Nitric oxide and human skin blood flow responses to acetylcholine and ultraviolet light. FASEB J 1994;8:247–251.PubMedGoogle Scholar
  32. 32.
    Hall DM, Buettner GR, Matthes RD, Gisolfi CV. Hyperthermia stimulates nitric oxide formation: electron paramagnetic resonance detection of. NO-heme in blood. J Appl Physiol 1994;77:548–553.PubMedGoogle Scholar
  33. 33.
    Detry J-MR, Brengelmann GL, Rowell LB, Wyss C. Skin and muscle components of forearm blood flow in directly heated resting man. J Appl Physiol 1972;32:506–511.PubMedGoogle Scholar
  34. 34.
    Giesbrecht GG, Sessler DI, Mekjavic IB, et al. Treatment of immersion hypothermia by direct body-to-body contact. J Appl Physiol 1994;76:2373–2379.PubMedGoogle Scholar
  35. 35.
    Horvath SM, Spurr GB, Hutt BK, Hamilton LH. Metabolic cost of shivering. J Appl Physiol 1956;8:595–602.PubMedGoogle Scholar
  36. 36.
    Danzl DF, Pozos RS. Accidental hypothermia. N Engl J Med 1994;331:1756–1760.PubMedCrossRefGoogle Scholar
  37. 37.
    Lønning PE, Skulberg A, Abyholm F. Accidental hypothermia: review of the literature. Acta Anaesthesiol Scand 1986;30:601–613.PubMedCrossRefGoogle Scholar
  38. 38.
    Kalant H, Le AD. Effects of ethanol on thermoregulation. Pharmacol Ther 1984;23:313–364.CrossRefGoogle Scholar
  39. 39.
    Fellows I, Bennett T, Macdonald IA. Influence of environmental temperature on the thermoregulatory responses to ethanol. In: Hales JRS, ed. Thermal Physiology. New York: Raven Press; 1984:221–223.Google Scholar
  40. 40.
    Fox GR, Hayward JS, Hobson GN. Effect of alcohol on thermal balance of man in cold water. Can J Physiol Pharmacol 1979;57:860–865.PubMedGoogle Scholar
  41. 41.
    Hobson GN, Collis ML. The effects of alcohol upon cooling rates of humans immersed in 7.5° C water. Can J Physiol Pharmacol 1977;55:744–746.PubMedGoogle Scholar
  42. 42.
    MacMillan AL, Corbett JL, Johnson RH, et al. Temperature regulation in survivors of accidental hypothermia of the elderly. Lancet 1967;2:165–169.PubMedCrossRefGoogle Scholar
  43. 43.
    Khan F, Spence VA, Belch JJF. Cutaneous vascular responses and thermoregulation in relation to age. Clin Sci 1992;82:521–528.PubMedGoogle Scholar
  44. 44.
    Wagner JA, Robinson S, Marino RP. Age and temperature regulation of humans in neutral and cold environments. J Appl Physiol 1974;37:562–565.PubMedGoogle Scholar
  45. 45.
    McDonald RB, Day C, Carlson K, et al. Effect of age and gender on thermoregulation. Am J Physiol 1989;257: R700–R704.PubMedGoogle Scholar
  46. 46.
    Tankersley CG, Smolander J, Kenney WL, Fortney SM. Sweating and skin blood flow during exercise: effects of age and maximal oxygen uptake. J Appl Physiol 1991;71: 236–242.PubMedGoogle Scholar
  47. 47.
    Inoue Y, Nakao M, Araki T, Murakami H. Regional differences in the sweating responses of older and younger men. J Appl Physiol 1991;71:2453–2459.PubMedGoogle Scholar
  48. 48.
    Falk B, Bar-Or O, Macdougall JD, et al. Sweat lactate in exercising children and adolescents of varying physical maturity. J Appl Physiol 1991;71:1735–1740.PubMedGoogle Scholar
  49. 49.
    Yousef MK, Dill DB, Vitez TS, et al. Thermoregulatory responses to desert heat: age, race and sex. J Gerontol 1984;39:406–414.PubMedGoogle Scholar
  50. 50.
    Vassilieff N, Rosencher N, Sessler DI, Conseiller C. The shivering threshold during spinal anesthesia is reduced in the elderly. Anesthesiology 1995;83:1162–1166.PubMedCrossRefGoogle Scholar
  51. 51.
    Clark RE, Orkin LR, Rovenstine EA. Body temperature studies in anesthetized man: effect of environmental temperature, humidity, and anesthesia system. JAMA 1954; 154:311–319.Google Scholar
  52. 52.
    Kurz A, Sessler DI, Annadata R, et al. Midazolam minimally impairs thermoregulatory control. Anesth Analg 1995;81:393–398.PubMedCrossRefGoogle Scholar
  53. 53.
    Mokhtarani M, Mahgob AN, Morioka N, et al. Buspirone and meperidine synergistically reduce the shivering threshold. Anesth Analg 2001;93:1233–1239.PubMedCrossRefGoogle Scholar
  54. 54.
    Matsukawa T, Kurz A, Sessler DI, et al. Propofol linearly reduces the vasoconstriction and shivering thresholds. Anesthesiology 1995;82:1169–1180.PubMedCrossRefGoogle Scholar
  55. 55.
    Kurz A, Go JC, Sessler DI, et al. Alfentanil slightly increases the sweating threshold and markedly reduces the vasoconstriction and shivering thresholds. Anesthesiology 1995;83:293–299.PubMedCrossRefGoogle Scholar
  56. 56.
    Annadata RS, Sessler DI, Tayefeh F, et al. Desflurane slightly increases the sweating threshold, but produces marked, non-linear decreases in the vasoconstriction and shivering thresholds. Anesthesiology 1995;83:1205–1211.PubMedCrossRefGoogle Scholar
  57. 57.
    Talke P, Li J, Jain U, et al. Effects of perioperative dexmedetomidine infusion in patients undergoing vascular surgery. Anesthesiology 1995;82:620–633.PubMedGoogle Scholar
  58. 58.
    Kurz A, Ikeda T, Sessler DI, et al. Meperidine decreases the shivering threshold twice as much as the vasoconstriction threshold. Anesthesiology 1997;86:1046–1054.PubMedCrossRefGoogle Scholar
  59. 59.
    Vaughan MS, Vaughan RW, Cork RC. Postoperative hypothermia in adults: relationship of age, anesthesia, and shivering to rewarming. Anesth Analg 1981;60:746–751.PubMedCrossRefGoogle Scholar
  60. 60.
    Kurz A, Plattner O, Sessler DI, et al. The threshold for thermoregulatory vasoconstriction during nitrous oxide/ isoflurane anesthesia is lower in elderly than young patients. Anesthesiology 1993;79:465–469.PubMedCrossRefGoogle Scholar
  61. 61.
    Frank SM, Beattie C, Christopherson R, et al. Epidural versus general anesthesia, ambient operating room temperature, and patient age as predictors of inadvertent hypothermia. Anesthesiology 1992;77:252–257.PubMedCrossRefGoogle Scholar
  62. 62.
    Roe CF, Goldberg MJ, Blair CS, Kinney JM. The influence of body temperature on early postoperative oxygen consumption. Surgery 1966;60:85–92.Google Scholar
  63. 63.
    Frank SM, Fleisher LA, Olson KF, et al. Multivariate determinants of early postoperative oxygen consumption in elderly patients. Anesthesiology 1995;83: 241–249.PubMedCrossRefGoogle Scholar
  64. 64.
    Nakajima R, Nakajima Y, Ikeda K. Minimum alveolar concentration of sevoflurane in elderly patients. Br J Anaesth 1993;70:273–275.PubMedCrossRefGoogle Scholar
  65. 65.
    Stevens WC, Dolan WM, Gibbons RT, et al. Minimum alveolar concentrations (MAC) of isoflurane with and without nitrous oxide in patients of various ages. Anesthesiology 1975;42:197–200.PubMedGoogle Scholar
  66. 66.
    Jacobs JR, Reves JG, Marty J, et al. Aging increases pharmacodynamic sensitivity to the hypnotic effects of midazolam. Anesth Analg 1995;80:143–148.PubMedCrossRefGoogle Scholar
  67. 67.
    Sessler DI. Perioperative hypothermia. N Engl J Med 1997;336:1730–1737.PubMedCrossRefGoogle Scholar
  68. 68.
    Kurz A, Sessler DI, Christensen R, Dechert M. Heat balance and distribution during the core-temperature plateau in anesthetized humans. Anesthesiology 1995;83: 491–499.PubMedCrossRefGoogle Scholar
  69. 69.
    English MJM, Farmer C, Scott WAC. Heat loss in exposed volunteers. J Trauma 1990;30:422–425.PubMedGoogle Scholar
  70. 70.
    Robins HI, Grossman J, Davis TE, et al. Preclinical trial of a radiant heat device for whole-body hyperthermia using a porcine model. Cancer Res 1983;43:2018–2022.PubMedGoogle Scholar
  71. 71.
    Hardy JD, Milhorat AT, DuBois EF. Basalmetabolism and heat loss of young women at temperatures from 22 degrees C to 35 degrees C. J Nutr 1941;21:383–403.Google Scholar
  72. 72.
    Baumgart S. Radiant energy and insensible water loss in the premature newborn infant nursed under a radiant warmer. Clin Perinatol 1982;9:483–503.PubMedGoogle Scholar
  73. 73.
    Hammarlund K, Sedin G. Transepidermal water loss in newborn infants. III. Relation to gestational age. Acta Paediatr Scand 1979;68:795–801.PubMedCrossRefGoogle Scholar
  74. 74.
    Sessler DI, Sessler AM, Hudson S, Moayeri A. Heat loss during surgical skin preparation. Anesthesiology 1993;78: 1055–1064.PubMedCrossRefGoogle Scholar
  75. 75.
    Hynson J, Sessler DI. Intraoperative warming therapies: a comparison of three devices. J Clin Anesth 1992;4: 194–199.PubMedCrossRefGoogle Scholar
  76. 76.
    Deriaz H, Fiez N, Lienhart A. Influence d’un filtre hygrophobe ou d’un humidificateur-réchauffeur sur l’hypothermie periopératoire. Ann Fr Anesth Réanim 1992;11:145–149.PubMedGoogle Scholar
  77. 77.
    Hendrickx HHL, Trahey GE, Argentieri MP. Paradoxical inhibition of decreases in body temperature by use of heated and humidified gases [letter]. Anesth Analg 1982; 61:393–394.PubMedCrossRefGoogle Scholar
  78. 78.
    Ip Yam PC, Carli F. Maintenance of body temperature in elderly patients who have joint replacement surgery. Anesthesia 1990;45:563–565.CrossRefGoogle Scholar
  79. 79.
    Goldberg MI, Epstein R, Rosenblum F, et al. Do heated humidifiers or heat and moisture exchangers prevent temperature drop during lower abdominal surgery? J Clin Anesth 1992;4:16–20.PubMedCrossRefGoogle Scholar
  80. 80.
    Stone DR, Downs JB, Paul WL, Perkins HM. Adult body temperature and heated humidification of anesthetic gases during general anesthesia. Anesth Analg 1981;60: 736–741.PubMedCrossRefGoogle Scholar
  81. 81.
    Bissonnette B, Sessler DI. Passive or active inspired gas humidification in infants and children. Anesthesiology 1989;71:381–384.CrossRefGoogle Scholar
  82. 82.
    Bissonnette B, Sessler DI. Passive or active inspired gas humidification increases thermal steady-state temperatures in anesthetized infants. Anesth Analg 1989;69:783–787.PubMedGoogle Scholar
  83. 83.
    Roe CF. Effect of bowel exposure on body temperature during surgical operations. Am J Surg 1971;122:13–15.PubMedCrossRefGoogle Scholar
  84. 84.
    Matsukawa T, Sessler DI, Sessler AM, et al. Heat flow and distribution during induction of general anesthesia. Anesthesiology 1995;82:662–673.PubMedCrossRefGoogle Scholar
  85. 85.
    Kurz A, Sessler DI, Narzt E, Lenhart R. Morphometric influences on intraoperative core temperature changes. Anesth Analg 1995;80:562–567.PubMedCrossRefGoogle Scholar
  86. 86.
    Sessler DI, McGuire J, Moayeri A, Hynson J. Isofluraneinduced vasodilation minimally increases cutaneous heat loss. Anesthesiology 1991;74:226–232.PubMedGoogle Scholar
  87. 87.
    Matsukawa T, Sessler DI, Christensen R, et al. Heat flow and distribution during epidural anesthesia. Anesthesiology 1995;83:961–967.PubMedCrossRefGoogle Scholar
  88. 88.
    Stevens WC, Cromwell TH, Halsey MJ, et al. The cardiovascular effects of a new inhalation anesthetic, Forane, in human volunteers at constant arterial carbon dioxide tension. Anesthesiology 1971;35:8–16.PubMedGoogle Scholar
  89. 89.
    Sessler DI. Perioperative heat balance. Anesthesiology 2000;92:578–596.PubMedCrossRefGoogle Scholar
  90. 90.
    Todd MM, Warner DS. A comfortable hypothesis reevaluated: cerebral metabolic depression and brain protection during ischemia [editorial]. Anesthesiology 1992;76: 161–164.PubMedGoogle Scholar
  91. 91.
    Hagerdal M, Harp JR, Nilsson L, Siesjo BK. The effect of induced hypothermia upon oxygen consumption in the rat brain. J Neurochem 1975;24:311–316.PubMedCrossRefGoogle Scholar
  92. 92.
    Busto R, Globus MY-T, Dietrich WD, et al. Effect of mild hypothermia on ischemia-induced release of neurotransmitters and free fatty acids in rat brain. Stroke 1989; 20:904–910.PubMedGoogle Scholar
  93. 93.
    Illievich UM, Zornow MH, Choi KT, et al. Effects of hypothermia or anesthetics on hippocampal glutamate and glycine concentrations after repeated transient global cerebral ischemia. Anesthesiology 1994;80:177–186.PubMedCrossRefGoogle Scholar
  94. 94.
    Churn SB, Taft WC, Billingsley MS, et al. Temperature modulation of ischemic neuronal death and inhibition of calcium/calmodulin-dependent protein kinase II in gerbils. Stroke 1990;21:1715–1721.PubMedGoogle Scholar
  95. 95.
    Dietrich WD, Busto R, Halley M, Valdes I. The importance of brain temperature in alterations of the blood-brain barrier following cerebral ischemia. J Neuropathol Exp Neurol 1990;49:486–497.PubMedGoogle Scholar
  96. 96.
    Jurkovich GJ, Pitt RM, Curreri PW, Granger DN. Hypothermia prevents increased capillary permeability following ischemia-reperfusion injury. J Surg Res 1988;44:514–521.PubMedCrossRefGoogle Scholar
  97. 97.
    Kader A, Frazzini VI, Baker CJ, et al. Effect of mild hypothermia on nitric oxide synthesis during focal cerebral ischemia. Neurosurgery 1994;35:272–277.PubMedCrossRefGoogle Scholar
  98. 98.
    Yamashita I, Eguchi Y, Kajiwara K, Ito H. Mild hypothermia ameliorates ubiquitin synthesis and prevents delayed neuronal death in the gerbil hippocampus. Stroke 1991;22: 1574–1581.PubMedGoogle Scholar
  99. 99.
    Busto R, Dietrich WD, Globus MY-T, Ginsberg MD. Postischemic moderate hypothermia inhibits CA1 hippocampal ischemic neuronal injury. Neurosci Lett 1989;101: 299–304.PubMedCrossRefGoogle Scholar
  100. 100.
    Minamisawa H, Smith M-L, Siesjo BK. The effect of mild hyperthermia and hypothermia on brain damage following 5, 10, and 15 minutes of forebrain ischemia. Ann Neurol 1990;28:26–33.PubMedCrossRefGoogle Scholar
  101. 101.
    Sakai F, Amaha K. The effects of hypothermia on a cloned human brain glutamate transporter (hGLT-1) expressed in Chinese hamster ovary cells:-[3H]L-glutamate uptake study. Anesth Analg 1999;89:1546–1550.PubMedCrossRefGoogle Scholar
  102. 102.
    Popovic R, Liniger R, Bickler PE. Anesthetics and mild hypothermia similarly prevent hippocampal neuron death in an in vitro model of cerebral ischemia. Anesthesiology 2000;92:1343–1349.PubMedCrossRefGoogle Scholar
  103. 103.
    Vacanti RX, Ames A III. Mild hypothermia and Mg++ protect against irreversible damage during CNS ischemia. Stroke 1984;15:695–698.PubMedGoogle Scholar
  104. 104.
    Pontius RG, Brockman HL, Hardy EG, et al. The use of hypothermia in the prevention of paraplegia following temporary aortic occlusion: experimental observations. Surgery 1954;36:33–38.PubMedGoogle Scholar
  105. 105.
    Bernard SA, Gray TW, Buist MD, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 2002;346:557–563.PubMedCrossRefGoogle Scholar
  106. 106.
    Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 2002;346: 549–556.CrossRefGoogle Scholar
  107. 107.
    Todd MM, Hindman BJ, Clarke WR, Torner JC. Mild intraoperative hypothermia during surgery for intracranial aneurysm. N Engl J Med 2005;352:135–145.PubMedCrossRefGoogle Scholar
  108. 108.
    Frank SM, Beattie C, Christopherson R, et al. Unintentional hypothermia is associated with postoperative myocardial ischemia. Anesthesiology 1993;78:468–476.PubMedCrossRefGoogle Scholar
  109. 109.
    Frank SM, Higgins MS, Breslow MJ, et al. The catecholamine, cortisol, and hemodynamic responses to mild perioperative hypothermia. Anesthesiology 1995;82:83–93.PubMedCrossRefGoogle Scholar
  110. 110.
    Frank SM, Fleisher LA, Breslow MJ, et al. Perioperative maintenance of normothermia reduces the incidence of morbid cardiac events: a randomized clinical trial. JAMA 1997;277:1127–1134.PubMedCrossRefGoogle Scholar
  111. 111.
    Michelson AD, MacGregor H, Barnard MR, et al. Reversible inhibition of human platelet activation by hypothermia in vivo and in vitro. Thromb Haemost 1994;71: 633–640.PubMedGoogle Scholar
  112. 112.
    Valeri CR, Khabbaz K, Khuri SF, et al. Effect of skin temperature on platelet function in patients undergoing extracorporeal bypass. J Thorac Cardiovasc Surg 1992;104: 108–116.PubMedGoogle Scholar
  113. 113.
    Reed L, Johnston TD, Hudson JD, Fischer RP. The disparity between hypothermic coagulopathy and clotting studies. J Trauma 1992;33:465–470.PubMedGoogle Scholar
  114. 114.
    Rohrer M, Natale A. Effect of hypothermia on the coagulation cascade. Crit Care Med 1992;20:1402–1405.PubMedCrossRefGoogle Scholar
  115. 115.
    Schmied H, Kurz A, Sessler DI, et al. Mild intraoperative hypothermia increases blood loss and allogeneic transfusion requirements during total hip arthroplasty. Lancet 1996;347:289–292.PubMedCrossRefGoogle Scholar
  116. 116.
    Winkler M, Akça O, Birkenberg B, et al. Aggressive warming reduces blood loss during hip arthroplasty. Anesth Analg 2000;91:978–984.PubMedCrossRefGoogle Scholar
  117. 117.
    Johansson T, Lisander B, Ivarsson I. Mild hypothermia does not increase blood loss during total hip arthroplasty. Acta Anaesthesiol Scand 1999;43:1005–1010.PubMedCrossRefGoogle Scholar
  118. 118.
    Culver DH, Horan TC, Gaynes RP, et al. Surgical wound infection rates by wound class, operative procedure, and patient risk index. National Nosocomial Infections Surveillance System. Am J Med 1991;91:152S–157S.PubMedCrossRefGoogle Scholar
  119. 119.
    Bremmelgaard A, Raahave D, Beir-Holgersen R, et al. Computer-aided surveillance of surgical infections and identification of risk factors. J Hosp Infect 1989;13: 1–18.PubMedCrossRefGoogle Scholar
  120. 120.
    Haley RW, Culver DH, Morgan WM, et al. Identifying patients at high risk of surgical wound infection: a simple multivariate index of patient susceptibility and wound contamination. Am J Epidemiol 1985;121:206–215.PubMedGoogle Scholar
  121. 121.
    Leslie K, Sessler DI, Bjorksten A, et al. Propofol causes a dose-dependent decrease in the thermoregulatory threshold for vasoconstriction, but has little effect on sweating. Anesthesiology 1994;81:353–360.PubMedCrossRefGoogle Scholar
  122. 122.
    Sessler DI, Rubinstein EH, Moayeri A. Physiological responses to mild perianesthetic hypothermia in humans. Anesthesiology 1991;75:594–610.PubMedCrossRefGoogle Scholar
  123. 123.
    Chang N, Mathes SJ. Comparison of the effect of bacterial inoculation in musculocutaneous and random-pattern flaps. Plast Reconstr Surg 1982;70:1–10.PubMedGoogle Scholar
  124. 124.
    Jonsson K, Hunt TK, Mathes SJ. Oxygen as an isolated variable influences resistance to infection. Ann Surg 1988; 208:783–787.PubMedGoogle Scholar
  125. 125.
    vanOss CJ, Absolom DR, Moore LL, et al. Effect of temperature on the chemotaxis, phagocytic engulfment, digestion and O2 consumption of human polymorphonuclear leukocytes. J Reticuloendothel Soc 1980;27:561–565.PubMedGoogle Scholar
  126. 126.
    Leijh CJ, Van denBarselaar MT, VanZwet TL, et al. Kinetics of phagocytosis of Staphylococcus aureus and Escherichia coli by human granulocytes. Immunology 1979;37:453–465.PubMedGoogle Scholar
  127. 127.
    Prockop DJ, Kivirikko KI, Tuderman L, Guzman NA. The biosynthesis of collagen and its disorders: part one. N Engl J Med 1979;301:13–23.PubMedGoogle Scholar
  128. 128.
    DeJong L, Kemp A. Stoichiometry and kinetics of the prolyl 4-hydroxylase partial reaction. Biochim Biophys Acta 1984;787:105–111.PubMedGoogle Scholar
  129. 129.
    Hunt TK, Pai MP. Effect of varying ambient oxygen tensions on wound metabolism and collagen synthesis. Surg Gynecol Obstet 1972;135:257–260.PubMedGoogle Scholar
  130. 130.
    Jönsson K, Jensen JA, Goodson WH, et al. Tissue oxygenation, anemia, and perfusion in relation to wound healing in surgical patients. Ann Surg 1991;214:605–613.PubMedCrossRefGoogle Scholar
  131. 131.
    Sheffield CW, Sessler DI, Hunt TK. Mild hypothermia during isoflurane anesthesia decreases resistance to E. coli dermal infection in guinea pigs. Acta Anaesthesiol Scand 1994;38:201–205.PubMedGoogle Scholar
  132. 132.
    Sheffield CW, Sessler DI, Hunt TK, Scheuenstuhl H. Mild hypothermia during halothane anesthesia decreases resistance to S. aureus dermal infection in guinea pigs. Wound Repair Regen 1994;2:48–56.PubMedCrossRefGoogle Scholar
  133. 133.
    Kurz A, Sessler DI, Lenhardt RA. Study of wound infections and temperature group. Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. N Engl J Med 1996;334: 1209–1215.PubMedCrossRefGoogle Scholar
  134. 134.
    Flacke JW, Flacke WE. Inadvertent hypothermia: frequent, insidious, and often serious. Semin Anesth 1983;2:183–196.Google Scholar
  135. 135.
    Flacke W. Temperature regulation and anesthesia. Int Anesthesiol Clin 1963;2:43–54.CrossRefGoogle Scholar
  136. 136.
    Guffin A, Girard D, Kaplan JA. Shivering following cardiac surgery: hemodynamic changes and reversal. J Cardiothorac Vasc Anesth 1987;1:24–28.CrossRefGoogle Scholar
  137. 137.
    Just B, Delva E, Camus Y, Lienhart A. Oxygen uptake during recovery following naloxone. Anesthesiology 1992; 76:60–64.PubMedCrossRefGoogle Scholar
  138. 138.
    Just B, Trévien V, Delva E, Lienhart A. Prevention of intraoperative hypothermia by preoperative skin-surface warming. Anesthesiology 1993;79:214–218.PubMedCrossRefGoogle Scholar
  139. 139.
    Horn E-P, Sessler DI, Standl T, et al. Nonthermoregulatory shivering in patients recovering from isoflurane or desflurane anesthesia. Anesthesiology 1998; 89:878–886.PubMedCrossRefGoogle Scholar
  140. 140.
    Horn E-P, Schroeder F, Wilhelm S, et al. Postoperative pain facilitates non-thermoregulatory tremor. Anesthesiology 1999;91:979–984.PubMedCrossRefGoogle Scholar
  141. 141.
    Panzer O, Ghazanfari N, Sessler DI, et al. Shivering and shivering-like tremor during labor with and without epidural analgesia. Anesthesiology 1999;90:1609–1616.PubMedCrossRefGoogle Scholar
  142. 142.
    Sharkey A, Lipton JM, Murphy MT, Giesecke AH. Inhibition of postanesthetic shivering with radiant heat. Anesthesiology 1987;66:249–252.PubMedCrossRefGoogle Scholar
  143. 143.
    Ikeda T, Sessler DI, Tayefeh F, et al. Meperidine and alfentanil do not reduce the gain or maximum intensity of shivering. Anesthesiology 1998;88:858–865.PubMedCrossRefGoogle Scholar
  144. 144.
    Kurz M, Belani K, Sessler DI, et al. Naloxone, meperidine, and shivering. Anesthesiology 1993;79:1193–1201.PubMedGoogle Scholar
  145. 145.
    Greif R, Laciny S, Rajek AM, et al. Neither nalbuphine nor atropine possess special antishivering activity. Anesth Analg 2001;93:620–627.PubMedCrossRefGoogle Scholar
  146. 146.
    Delaunay L, Bonnet F, Duvaldestin P. Clonidine decreases postoperative oxygen consumption in patients recovering from general anaesthesia. Br J Anaesth 1991; 67:397–401.PubMedCrossRefGoogle Scholar
  147. 147.
    Delaunay L, Bonnet F, Liu N, et al. Clonidine comparably decreases the thermoregulatory thresholds for vasoconstriction and shivering in humans. Anesthesiology 1993; 79:470–474.PubMedCrossRefGoogle Scholar
  148. 148.
    Joris J, Banache M, Bonnet F, et al. Clonidine and ketanserin both are effective treatments for postanesthetic shivering. Anesthesiology 1993;79:532–539.PubMedCrossRefGoogle Scholar
  149. 149.
    Kizilirmak S, Karakas SE, Akça O, et al. Magnesium sulfate stops postanesthetic shivering. Ann NY Acad Sci 1997; 813:799–806.PubMedCrossRefGoogle Scholar
  150. 150.
    Singh P, Dimitriou V, Mahajan RP, Crossley AW. Doubleblind comparison between doxapram and pethidine in the treatment of postanaesthetic shivering. Br J Anaesth 1993; 71:685–688.PubMedCrossRefGoogle Scholar
  151. 151.
    Gautier H. Doxapram and shivering. Anaesthesia 1991; 46:1092–1093.PubMedCrossRefGoogle Scholar
  152. 152.
    Sarma V, Fry EN. Doxapram after general anaesthesia. Its role in stopping shivering during recovery. Anaesthesia 1991;46:460–461.PubMedCrossRefGoogle Scholar
  153. 153.
    Kranke P, Eberhart LH, Roewer N, Tramer MR. Pharmacological treatment of postoperative shivering: a quantitative systematic review of randomized controlled trials. Anesth Analg 2002;94:453–460.PubMedCrossRefGoogle Scholar
  154. 154.
    DeWitte J, Sessler DI. Perioperative shivering: physiology and pharmacology. Anesthesiology 2002;96:467–484.PubMedCrossRefGoogle Scholar
  155. 155.
    Heier T, Caldwell JE, Sessler DI, Miller RD. Mild intraoperative hypothermia increases duration of action and spontaneous recovery of vecuronium blockade during nitrous oxide-isoflurane anesthesia in humans. Anesthesiology 1991;74:815–819.PubMedCrossRefGoogle Scholar
  156. 156.
    Leslie K, Sessler DI, Bjorksten AR, Moayeri A. Mild hypothermia alters propofol pharmacokinetics and increases the duration of action of atracurium. Anesth Analg 1995;80:1007–1014.PubMedCrossRefGoogle Scholar
  157. 157.
    Sessler DI. Complications and treatment of mild hypothermia. Anesthesiology 2001;95:531–543.PubMedCrossRefGoogle Scholar
  158. 158.
    Roizen MF, Sohn YJ, L’Hommedieu CS, et al. Operating room temperature prior to surgical draping: effect on patient temperature in recovery room. Anesth Analg 1980;59:852–855.PubMedCrossRefGoogle Scholar
  159. 159.
    Sessler DI, McGuire J, Sessler AM. Perioperative thermal insulation. Anesthesiology 1991;74:875–879.PubMedCrossRefGoogle Scholar
  160. 160.
    Sessler DI, Schroeder M. Heat loss in humans covered with cotton hospital blankets. Anesth Analg 1993;77: 73–77.PubMedCrossRefGoogle Scholar
  161. 161.
    Kurz A, Kurz M, Poeschl G, et al. Forced-air warming maintains intraoperative normothermia better than circulating-water mattresses. Anesth Analg 1993;77:89–95.PubMedGoogle Scholar
  162. 162.
    Gendron F. “Burns” occurring during lengthy surgical procedures. J Clin Eng 1980;5:20–26.Google Scholar
  163. 163.
    Gendron FG. Unexplained Patient Burns: Investigating Iatrogenic Injuries. Brea, CA: Quest Publishing; 1988.Google Scholar
  164. 164.
    Nesher N, Zisman E, Wolf T, et al. Strict thermoregulation attenuates myocardial injury during coronary artery bypass graft surgery as reflected by reduced levels of cardiacspecific troponin I. Anesth Analg 2003;96:328–335.PubMedCrossRefGoogle Scholar
  165. 165.
    Hofer CK, Worn M, Tavakoli R, et al. Influence of body core temperature on blood loss and transfusion requirements during off-pump coronary artery bypass grafting: a comparison of 3 warming systems. J Thorac Cardiovasc Surg 2005;129:838–843.PubMedCrossRefGoogle Scholar
  166. 166.
    Motta P, Mossad E, Toscana D, et al. Effectiveness of a circulating-water warming garment in rewarming after pediatric cardiac surgery using hypothermic cardiopulmonary bypass. J Cardiothorac Vasc Anesth 2004;18: 148–151.PubMedCrossRefGoogle Scholar
  167. 167.
    Taguchi A, Ratnaraj J, Kabon B, et al. Effects of a circulating-water garment and forced-air warming on body heat content and core temperature. Anesthesiology 2004;100: 1058–1064.PubMedCrossRefGoogle Scholar
  168. 168.
    Sessler DI. Consequences and treatment of perioperative hypothermia. Anesth Clin North Am 1994;12:425–456.Google Scholar
  169. 169.
    Presson RGJ, Bezruczko AP, Hillier SC, McNiece WL. Evaluation of a new fluid warmer effective at low to moderate flow rates. Anesthesiology 1993;78:974–980.PubMedCrossRefGoogle Scholar
  170. 170.
    Vassilieff N, Rosencher N, Deriaz H, et al. Effect of premedication by nifedipine on intraoperative hypothermia. Ann Fr Anesth Réanim 1992;11:484–487.PubMedGoogle Scholar
  171. 171.
    Ikeda T, Ozaki M, Sessler DI, et al. Intraoperative phenylephrine infusion decreases the magnitude of redistribution hypothermia. Anesth Analg 1999;89:462–465.PubMedCrossRefGoogle Scholar
  172. 172.
    Ikeda T, Kazama T, Sessler DI, et al. Induction of anesthesia with ketamine reduces the magnitude of redistribution hypothermia. Anesth Analg 2001;93:934–938.PubMedCrossRefGoogle Scholar
  173. 173.
    Sessler DI, Schroeder M, Merrifield B, et al. Optimal duration and temperature of pre-warming. Anesthesiology 1995;82:674–681.PubMedGoogle Scholar
  174. 174.
    Hynson JM, Sessler DI, Moayeri A, et al. The effects of pre-induction warming on temperature and blood pressure during propofol/nitrous oxide anesthesia. Anesthesiology 1993;79:219–228.PubMedCrossRefGoogle Scholar
  175. 175.
    Camus Y, Celva E, Sessler DI, Lienhart A. Pre-induction skin-surface warming minimizes intraoperative core hypothermia. J Clin Anesth 1995;7:384–388.PubMedCrossRefGoogle Scholar
  176. 176.
    Horn EP, Schroeder F, Gottschalk A, et al. Active warming during cesarean delivery. Anesth Analg 2002;94: 409–414.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Daniel I. Sessler
    • 1
  1. 1.Department of Outcomes ResearchThe Cleveland ClinicClevelandUSA

Personalised recommendations