Inhalational Anesthetics

  • Gary R. Haynes


General anesthesia with inhalational anesthetic agents is the most common method of surgical anesthesia. Although regional and neuroaxial anesthetics are preferred in some circumstances, the use of general anesthesia with inhalational agents remains widespread. Total intravenous anesthesia has greater acceptance in Europe where it accounts for approximately 40% of general anesthesia cases. However, only a small portion of general anesthesia cases in the United States use this technique.


Nitrous Oxide Anesthetic Agent Minimal Alveolar Concentration Anesthetic Drug Inhalational Anesthetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Luntz SP, Janitz E, Motsch J, Bach A, Martin E, Böttiger BW. Cost effectiveness and high patient satisfaction in the elderly: sevoflurane versus propofol anesthesia. Eur J Anesthesiol 2004;21:115–122.CrossRefGoogle Scholar
  2. 2.
    Carpenter RL, Eger EI II, Johnson BH, et al. A new concept in inhaled anesthetic pharmacokinetics [abstract]. Anesth Analg 1984;64:197.Google Scholar
  3. 3.
    Carpenter RL, Eger EI II, Johnson BH, et al. Pharmacokinetics of inhaled anesthetics in humans: measurements during and after simultaneous administration of enflurane, halothane, isoflurane, methoxyflurane, and nitrous oxide. Anesth Analg 1984;65:575–582.Google Scholar
  4. 4.
    Weiskopf RB, Eger EI II. Comparing the costs of inhaled anesthetics. Anesthesiology 1993;79:1413–1418.PubMedCrossRefGoogle Scholar
  5. 5.
    Coetzee JF, Stewart LJ. Fresh gas flow is not the only determinant of volatile agent consumption: a multi-centre study of low-flow anesthesia. Br J Anaesth 2002;88:46–55.PubMedCrossRefGoogle Scholar
  6. 6.
    Avramov MN, Griffin JD, White PF. The effect of fresh gas flow and anesthetic technique on the ability to control acute hemodynamic responses during surgery. Anesth Analg 1998; 87:666–670.PubMedCrossRefGoogle Scholar
  7. 7.
    Pump KK. Emphysema and its relation to age. Am Rev Resp Dis 1976;114:5–13.PubMedGoogle Scholar
  8. 8.
    Kitamura H, Sawa T, Ikezono E. Postoperative hypoxemia—the contribution of age to the maldistribution of ventilation. Anesthesiology 1973;36:244–252.CrossRefGoogle Scholar
  9. 9.
    Ward RJ, Tolas AG, Benveniste RJ, Hansen JM, Bonica JJ. Effect of posture on normal arterial blood gas tensions in the aged. Geriatrics 1966;21:139–143.Google Scholar
  10. 10.
    Wahba WM. Influence of aging on lung function-clinical significance of changes from age twenty. Anesth Analg 1983;62:764–776.PubMedCrossRefGoogle Scholar
  11. 11.
    Pontoppdan H, Geffin B, Lowenstein E. Acute respiratory failure in the adult. N Engl J Med 1972;287:690–698.Google Scholar
  12. 12.
    Crapo RO, Morris AH, Clayton PD, Nixon CR. Lung volumes in healthy nonsmoking adults. Bull Eur Physiopathol Respir 1982;18:419–425.PubMedGoogle Scholar
  13. 13.
    Turner J, Mead J, Wohl M. Elasticity of human lungs in relation to age. J Appl Physiol 1968;25:644–671.Google Scholar
  14. 14.
    Niewoehner DE, Kleinerman J. Morphologic basis of pulmonary resistance in the human lung and effects of aging. J Appl Physiol 1974;36:412–418.PubMedGoogle Scholar
  15. 15.
    Cerveri I, Zoia MC, Fanfulla F, et al. Reference values of arterial oxygen tension in the middle-aged and elderly. Am J Respir Crit Care Med 1995;152:934–941.PubMedGoogle Scholar
  16. 16.
    Eger EI II. Uptake and distribution. In: Miller RD, ed. Anesthesia. New York: Churchill Livingstone; 1990:85–104.Google Scholar
  17. 17.
    Lu CC, Tsai CS, Ho ST, et al. Pharmacokinetics of sevoflurane uptake into the brain and body. Anaesthesia 2003;58: 951–956.PubMedCrossRefGoogle Scholar
  18. 18.
    Muravchick S. Anesthesia for the elderly. In: Miller RE, ed. Anesthesia. New York: Churchill Livingstone; 1990:1977–1978.Google Scholar
  19. 19.
    Guénard H, Marthan R. Pulmonary gas exchange in elderly subjects. Eur Respir J 1996;9:2573–2577.PubMedCrossRefGoogle Scholar
  20. 20.
    Sorbini CAA, Grassi V, Solinas SE, et al. Arterial oxygen tension in relation to age in healthy subjects. Respiration 1968;25:3–13.PubMedGoogle Scholar
  21. 21.
    Kronenberg R, Hamilton FN, Gabel R, et al. Comparison of three methods for quantitating respiratory response to hypoxia in man. Respir Physiol 1972;16:109–125.PubMedCrossRefGoogle Scholar
  22. 22.
    Eger EI II, Kellogg RH, Mines AH, et al. Influence of CO2 on ventilatory acclimatization to altitude. J Appl Physiol 1968;24:607–615.PubMedGoogle Scholar
  23. 23.
    Kronenberg RS, Drage CW. Attenuation of the ventilatory and heart rate responses to hypoxia and hypercapnia with aging in normal men. J Clin Invest 1973;52:1812–1819.PubMedCrossRefGoogle Scholar
  24. 24.
    Pedersen T, Eliasen K, Henriksen E. A prospective study of mortality associated with anaesthesia and surgery: risk indicators of mortality in hospital. Acta Anaesthesiol Scand 1990;34:176–182.PubMedGoogle Scholar
  25. 25.
    McLeskey CH. Anesthesia for the geriatric patient. In: Barash PG, ed. Clinical Anesthesia. Philadelphia: JB Lippincott; 1992:1353–1387.Google Scholar
  26. 26.
    Schocken DD. Epidemiology and risk factors for heart failure in the elderly. Clin Geriatr Med 2000;16: 407–418.PubMedCrossRefGoogle Scholar
  27. 27.
    Senni M, Redfield MM. Heart failure with preserved systolic function. A different natural history? J Am Coll Cardiol 2001;38:1277–1282.Google Scholar
  28. 28.
    Evans TI. The physiological basis of geriatric general anesthesia. Anaesth Intensive Care 1973;1:319–322.PubMedGoogle Scholar
  29. 29.
    Hurley B, Roth S. Strength training in the elderly: effects on risk factors for age-related diseases. Sports Med 2000; 30:244–268.CrossRefGoogle Scholar
  30. 30.
    Robergs R, Roberts S. Exercise Physiology: Exercise, Performance, and Clinical Applications. 1st ed. St. Louis: Mosby-Yearbook; 1997.Google Scholar
  31. 31.
    Dinenno FA, Seals DR, DeSouza CA, Tanaka H. Agerelated decreases in basal limb blood flow in humans: time course, determinants and habitual exercise effects. J Physiol 2001;531:573–579.PubMedCrossRefGoogle Scholar
  32. 32.
    Hagberg JM, Allen WK, Seals DR, Hurley BF, Ehsani AA, Holloszy JO. A hemodynamic comparison of young and older endurance athletes during exercise. J Appl Physiol 1985;58:2041–2046.PubMedGoogle Scholar
  33. 33.
    Weiskopf RB, Moore MA, Eger EI II, et al. Rapid increase in desflurane concentration is associated with greater transient cardiovascular stimulation than with rapid increase in isoflurane concentration in humans. Anesthesiology 1994;80:1035–1045.PubMedCrossRefGoogle Scholar
  34. 34.
    Guo SS, Zeller C, Chumlea WC, Siervogel RM. Aging, body composition, and lifestyle: the Fels Longitudinal Study. Am J Clin Nutr 1999;79:405–411.Google Scholar
  35. 35.
    Hughes VA, Frontera WR, Roubenoff R, et al. Longitudinal changes in body composition in older men and women: role of body weight change and physical activity. Am J Clin Nutr 2002;76:473–481.PubMedGoogle Scholar
  36. 36.
    Arner P. Not all fat is alike. Lancet 1998;351:1301–1302.PubMedCrossRefGoogle Scholar
  37. 37.
    Wissing H, Kulin I, Riebrock, Fuhr U. Pharmacokinetics of inhaled anesthetics in a clinical setting: comparison of desflurane, isoflurane and sevoflurane. Br J Anaesth 2000;84:443–449.PubMedGoogle Scholar
  38. 38.
    Stevens WC, Cromwell TH, Halsey MJ, et al. The cardiovascular effects of a new inhalational anesthetic, Forane, in human volunteers at a constant arterial carbon dioxide tension. Anesthesiology 1971;35:8–16.PubMedGoogle Scholar
  39. 39.
    Juvin P, Servin F, Giraud O, Desmonts JM. Emergence of elderly patients from prolonged desflurane, isoflurane, or propofol anesthesia. Anesth Analg 1997;85:647–651.PubMedCrossRefGoogle Scholar
  40. 40.
    Haevner JE, Kaye AE, Lin B-K, King T. Recovery of elderly patients from two or more hours of desflurane or sevoflurane anaesthesia. Br J Anaesth 2003;91:502–506.CrossRefGoogle Scholar
  41. 41.
    Hollenberg NK, Adams DF, Solomon HS, Rashid A, Abrams HL, Merrill JP. Senescence and the renal vasculature in normal man. Circ Res 1974;34:309–316.PubMedGoogle Scholar
  42. 42.
    Lindeman RD, Tobin J, Shock NW. Longitudinal studies on the rate of decline in renal function with age. J Am Geriatr Soc 1985;33:278–285.PubMedGoogle Scholar
  43. 43.
    Beck LH. The aging kidney: defending a delicate balance of fluid and electrolytes. Geriatrics 2000;55:26–28, 31–32.PubMedGoogle Scholar
  44. 44.
    Mazze RJ, Trudell JR, Cousins MJ. Methoxyflurane metabolism and renal dysfunction: clinical correlation in man. Anesthesiology 1971;35:247–260.PubMedCrossRefGoogle Scholar
  45. 45.
    Aronson S. Renal function monitoring. In: Miller RD, ed. Anesthesia. Philadelphia: Churchill Livingstone; 2005:1489.Google Scholar
  46. 46.
    Crandell WB, Pappas SC, MacDonald A. Nephrotoxicity associated with methoxyflurane anesthesia. Anesthesiology 1966;27:591–607.PubMedCrossRefGoogle Scholar
  47. 47.
    Baden JM, Rice SA. Metabolism and toxicity. In: Miller RD, ed. Anesthesia. New York: Churchill Livingstone; 1990:155–170.Google Scholar
  48. 48.
    FDA Prescribing Information: Sevoflurane. North Chicago, IL: Abbott Laboratories; Ref. 06-9230-RZ. Rev. June, 1995.Google Scholar
  49. 49.
    Cousins MJ, Mazze RI. Methoxyflurane nephrotoxicity: a study of the dose response in man. JAMA 1973;225: 1611–1616.PubMedCrossRefGoogle Scholar
  50. 50.
    Cittanova ML, Lelongt B, Verpont MC, et al. Fluoride ion toxicity in human kidney collecting duct cells. Anesthesiology 1996;84:428–435.PubMedCrossRefGoogle Scholar
  51. 51.
    Kharasch ED, Armstrong AS, Gunn K, Artru A, Cox K, Karol MD. Clinical sevoflurane metabolism and disposition. II. The role of cytochrome P450 2E1 in fluoride and hexafluoroisopropanol formation. Anesthesiology 1995; 82(6):1379–1388.PubMedCrossRefGoogle Scholar
  52. 52.
    Kharason ED, Karol MD, Lanni C, Sawchuk R. Clinical sevoflurane metabolism and disposition. I. Sevoflurane and metabolite pharmacokinetics. Anesthesiology 1995;82: 1369–1378.CrossRefGoogle Scholar
  53. 53.
    Gentz BA, Malan TPJ. Renal toxicity with sevoflurane: a storm in a teacup? Drugs 2001;61:2155–2162.PubMedCrossRefGoogle Scholar
  54. 54.
    Frink EJ, Malan TP, Isner J, et al. Renal concentrating function with prolonged sevoflurane or enflurane anesthesia in volunteers. Anesthesiology 1994;80:1019–1025.PubMedCrossRefGoogle Scholar
  55. 55.
    Mazze RI, Sievenpiper TS, Stevenson J. Renal effects of enflurane and halothane in patients with abnormal renal function. Anesthesiology 1984;60:161–163.PubMedCrossRefGoogle Scholar
  56. 56.
    Conzen PF, Nuscheler M, Melotte A, et al. Renal function and serum fluoride concentrations in patients with stable renal insufficiency after anesthesia with sevoflurane or enflurane. Anesth Analg 1995;81:569–575.PubMedCrossRefGoogle Scholar
  57. 57.
    Koblin DD, Eger EI II, Johnson BH, et al. I-653 resists degradation in rats. Anesth Analg 1988;67:534–538.PubMedCrossRefGoogle Scholar
  58. 58.
    Frink EJ Jr, Malan T, Morgan S, et al. Quantification of the degradation products of sevoflurane in two CO2 absorbents during low-flow anesthesia in surgical patients. Anesthesiology 1992;77:1064–1069.PubMedCrossRefGoogle Scholar
  59. 59.
    Eger EI II, Sturm DP. The absorption and degradation of isoflurane and I653 by dry soda lime at various temperatures. Anesth Analg 1987;66:1312–1315.PubMedGoogle Scholar
  60. 60.
    Munday I, Foden N, Ward P, et al. Sevoflurane degradation in a circle system at two different fresh gas flows. Anesthesiology 1994;81:A433.CrossRefGoogle Scholar
  61. 61.
    Bito H, Ikede K. Closed-circuit anesthesia with sevoflurane in humans. Effects on renal and hepatic function and concentrations of breakdown products with soda lime in the circuit. Anesthesiology 1994;80:71–76.PubMedCrossRefGoogle Scholar
  62. 62.
    Bito H, Ikeda K. Degradation products of sevoflurane during low-flow anaesthesia. Br J Anaesth 1995;74:56–59.PubMedCrossRefGoogle Scholar
  63. 63.
    Kharasch ED, Frink EJ, Zager R, Bowdle TA, Artru A, Nogami WM. Assessment of low-flow sevoflurane and isoflurane effects on renal function using sensitive markers of tubular toxicity. Anesthesiology 1997;86:1238–1253.PubMedCrossRefGoogle Scholar
  64. 64.
    Frink EJ Jr, Isner RJ, Malan TP Jr, Morgan SE, Brown EA, Brown BR Jr. Sevoflurane degradation product concentrations with soda lime during prolonged anesthesia. J Clin Anaesth 1994;6:239–242.CrossRefGoogle Scholar
  65. 65.
    Bito H, Ikeda K. Renal and hepatic function in surgical patients after low-flow sevoflurane or isoflurane anesthesia. Anesth Analg 1996;82:173–176.PubMedCrossRefGoogle Scholar
  66. 66.
    Tsukamoto N, Hirabayashi Y, Shimizu R, Mitsuhata H. The effects of sevoflurane and isoflurane anesthesia on renal tubular function in patients with moderately impaired renal function. Anesth Analg 1996;82:909–913.PubMedCrossRefGoogle Scholar
  67. 67.
    Higuchi H, Adachi Y, Wada H, Kanno M, Satoh T. The effects of low-flow sevoflurane and isoflurane anesthesia on renal function in patients with stable moderate renal insufficiency. Anesth Analg 2001;92:650–655.PubMedCrossRefGoogle Scholar
  68. 68.
    Vestal RE. Drug use in the elderly: a review of problems and special considerations [review]. Drugs 1978;16:358–382.PubMedCrossRefGoogle Scholar
  69. 69.
    Muravchick S. The aging patient and age related disease. ASA Annual Refresher Course Lecture #151. Park Ridge, IL: American Society of Anesthesiologists; 1987.Google Scholar
  70. 70.
    Carleden CM, Kaye CM, Parsons RL. The effect of age on plasma levels of propranolol and practolol in man. Br J Clin Pharmacol 1975;2:303–306.Google Scholar
  71. 71.
    Woodhouse KW, Mutch E, Williams FM, Rawlins MD, James OE. The effect of age on pathways of drug metabolism in human liver. Age Ageing 1984;13:328–334.PubMedCrossRefGoogle Scholar
  72. 72.
    Rehder K, Forbes J, Alter H, et al. Halothane biotransformation in man: a quantitative study. Anesthesiology 1967; 28:711–715.PubMedCrossRefGoogle Scholar
  73. 73.
    Carpenter RL, Eger EI II, Johnson BH, et al. The extent of metabolism of inhaled anesthetics in humans. Anesthesiology 1986;65:201–205.PubMedCrossRefGoogle Scholar
  74. 74.
    Koblin D, Weiskopf R, Holmes MA, et al. Metabolism of I-653 and isoflurane in swine. Anesth Analg 1989;68:147–149.PubMedGoogle Scholar
  75. 75.
    Yasuda N, Lockhart S, Eger EI II, et al. Kinetics of desflurane, isoflurane, and halothane in humans. Anesthesiology 1991;74:489–498.PubMedCrossRefGoogle Scholar
  76. 76.
    Cascorbi HF, Blake DA, Helrish M. Differences in biotransformation of halothane in man. Anesthesiology 1970; 32:119–123.PubMedCrossRefGoogle Scholar
  77. 77.
    Holaday DA, Fiserova-Bergerova V, Latto IP, et al. Resistance of isoflurane to biotransformation in man. Anesthesiology 1975;43:325–332.PubMedCrossRefGoogle Scholar
  78. 78.
    Koblin DD. Characteristics and implications of desflurane metabolism and toxicity. Anesth Analg 1992;75(4 Suppl): S10–S16.PubMedGoogle Scholar
  79. 79.
    Sutton TS, Koblin DD, Fuenke LD, et al. Fluoride metabolites after prolonged exposure of volunteers and patients to desflurane. Anesth Analg 1991;73:180–185.PubMedCrossRefGoogle Scholar
  80. 80.
    Franks JJ, Kruskal JB, Holaday DA. Immediate depression of fibrinogen, albumin, and transferrin synthesis by halothane, isoflurane, sevoflurane and enflurane. Anesthesiology 1989;71:A238.CrossRefGoogle Scholar
  81. 81.
    Johnes RM. Desflurane and sevoflurane: inhalation anaesthetics for this decade? Br J Anaesth 1990;65:527–536.CrossRefGoogle Scholar
  82. 82.
    Saidman LJ, Eger EI II. Effect of nitrous oxide and of narcotic premedication on the alveolar concentration of halothane required for anesthesia. Anesthesiology 1964;25: 302–306.PubMedCrossRefGoogle Scholar
  83. 83.
    deJong R, Eger EI II. MAC explained: AD50 and AD95 values of common inhalational anesthetics in man. Anesthesiology 1975;42:384–389.CrossRefGoogle Scholar
  84. 84.
    Mapleson WW. Effect of age on MAC in humans: a metaanalysis. Br J Anaesth 1996;76:179–185.PubMedGoogle Scholar
  85. 85.
    Shüttler J, Ihmsen H. Population pharmacokinetics of propofol. A multicenter study. Anesthesiology 2000;92:727–738.CrossRefGoogle Scholar
  86. 86.
    Guedel AE. Inhalation anesthesia: a fundamental guide. New York: Macmillan; 1937:61–62.Google Scholar
  87. 87.
    Gregory GA, Eger EI II, Munson ES. The relationship between age and halothane requirement in man. Anesthesiology 1969;30:488–491.PubMedCrossRefGoogle Scholar
  88. 88.
    Stevens WC, Nolan WM, Gibbons RT, et al. Minimum alveolar concentrations (MAC) of isoflurane with and without nitrous oxide in patients of various ages. Anesthesiology 1975;42:197–200.PubMedGoogle Scholar
  89. 89.
    Gold MI, Abello D, Herrington C. Minimum alveolar concentration of desflurane in patients older than 65 years. Anesthesiology 1993;79:710–714.PubMedGoogle Scholar
  90. 90.
    Rampil J, Lockart S, Zwass M, et al. Clinical characteristics of desflurane in surgical patients: minimum alveolar concentration. Anesthesiology 1991;74:429–433.PubMedCrossRefGoogle Scholar
  91. 91.
    Nakajima R, Nakajima Y, Ikeda A. Minimum alveolar concentration of sevoflurane in elderly patients. Br J Anesth 1993;70:273–275.CrossRefGoogle Scholar
  92. 92.
    Lerou JGC. Nomogram to estimate age-related MAC. Br J Anaesth 2004;93:288–291.PubMedCrossRefGoogle Scholar
  93. 93.
    Martin G, Glass PSA, Breslin DS, et al. A study of anesthetic drug utilization in different age groups. J Clin Anesth 2003;15:194–200.PubMedCrossRefGoogle Scholar
  94. 94.
    Katoh T, Suguro Y, Kimura T, Ikeda K. Cerebral awakening concentration of sevoflurane and isoflurane predicted during slow and fast alveolar washout. Anesth Analg 1993;77:1012–1017.PubMedCrossRefGoogle Scholar
  95. 95.
    Jones AG, Hunter JM. Anaesthesia in the elderly. Special considerations. Drugs Aging 1996;9:319–331.PubMedGoogle Scholar
  96. 96.
    Avram MJ, Krejcie TC, Henthorn TK. The relationship of age to disposition of thiopental and indocyanine green. Anesthesiology 1990;72:403–411.PubMedCrossRefGoogle Scholar
  97. 97.
    Avram MJ, Sanghvi R, Henthorn TK, et al. Determinants of thiopental induction dose requirements. Anesth Analg 1993;76:10–17.PubMedCrossRefGoogle Scholar
  98. 98.
    Kirkpatrick T, Cockshodt ID, Douglas EH, Nimmo WS. Pharmacokinetics of propofol (Diprivan) in elderly women. Br J Anaesth 1988;60:146–150.PubMedCrossRefGoogle Scholar
  99. 99.
    Schwartz AE, Maustisho FE, Bachus WW, et al. Nimodipine decreases the minimum alveolar concentration of isoflurane in dogs. Can J Anesth 1991;38:239–242.PubMedGoogle Scholar
  100. 100.
    Nagasaka H, Yaksh TL. Pharmacology of intrathecal adrenergic agonists: cardiovascular and nociceptive reflexes in halothane-anesthetized rats. Anesthesiology 1990;73:1198–1207.PubMedCrossRefGoogle Scholar
  101. 101.
    Johnston RR, White PF, Way WL, et al. The effect of levodopa on halothane anesthetic requirements. Anesth Analg 1975;54:178–181.PubMedGoogle Scholar
  102. 102.
    Miller RD, Way WL, Eger EI II. The effects of alphamethyl-dopa, reserpine, guanethidine, and iproniazid on minimum alveolar anesthetic requirement (MAC). Anesthesiology 1968;29:1153–1158.PubMedGoogle Scholar
  103. 103.
    Gustafson Y, Berggren D, Brannstrom B, et al. Acute confusional states in elderly patients treated for femoral neck fracture. J Am Geriatr Soc 1988;36:525–530.PubMedGoogle Scholar
  104. 104.
    Lakatta EG. Diminished beta-adrenergic modulation of cardiovascular function in advanced age. Cardiol Clin 1986;4:185–200.PubMedGoogle Scholar
  105. 105.
    Virtanen K, Janne J, Frick MH. Response of blood pressure and plasma norepinephrine to propranolol, metoprolol and clonidine during isometric and dynamic exercise in hypertensive patients. Eur J Clin Pharmacol 1982;21: 275–279.PubMedCrossRefGoogle Scholar
  106. 106.
    Duncan AK, Vittone J, Fleming KC, Smith HC. Cardiovascular disease in elderly patients. 1996;71:184–196.Google Scholar
  107. 107.
    Elliott HL, Sumner DJ, McLean K, Reid JL. Effect of age on the responsiveness of vascular alpha-adrenoceptors in man. 1982;4:388–392.Google Scholar
  108. 108.
    Rodeheffer RJ, Gersten Glith G, Brecker LC, et al. Exercise cardiac output is maintained with advancing age in healthy human subjects: cardiac dilation and increased stroke volume compensate for diminished heart rate. Circulation 1984;69:203–213.PubMedGoogle Scholar
  109. 109.
    Joris J, Honore P, Lamy M. Changes in oxygen transport and ventilation during laparoscopic cholecystectomy. Anesth Analg 1993;76:1067–1071.PubMedCrossRefGoogle Scholar
  110. 110.
    Dhoste K, Lacoste L, Karayan J, et al. Haemodynamic and ventilatory changes during laparoscopic cholecystectomy in elderly ASA III patients. Can J Anaesth 1996;8: 783–788.Google Scholar
  111. 111.
    Fox LG, Hein HAT, Gawey BJ, et al. Physiologic alterations during laparoscopic cholecystectomy in ASA III and IV patients. Anesthesiology 1993;79:A55.Google Scholar
  112. 112.
    Feig BW, Berger DH, Dupuis JF, et al. Hemodynamic effects of CO2 abdominal insufflation (CAI) during laparoscopy in high-risk patients. Anesth Analg 1994;78:S109.Google Scholar
  113. 113.
    Safran D, Sgambati S, Orlando R III. Laparoscopy in high-risk cardiac patients. Surg Gynecol Obstet 1993;176:548–554.PubMedGoogle Scholar
  114. 114.
    Critchley LAH, Critchley JAJH, Gin T. Haemodynamic changes in patients undergoing laparoscopic cholecystectomy: measurement by transthoracic electrical bioimpedance. Br J Anaesth 1993;70:681–683.PubMedCrossRefGoogle Scholar
  115. 115.
    Cunningham AJ, Turner J, Rosenbaum S, et al. Transoesophageal echocardiographic assessment of haemodynamic function during laparoscopic cholecystectomy. Br J Anaesth 1993;70:621–625.PubMedCrossRefGoogle Scholar
  116. 116.
    Joris JL, Noirot DP, Legrand MJ, et al. Hemodynamic changes during laparoscopic cholecystectomy. Anesth Analg 1993;76:1067–1071.PubMedCrossRefGoogle Scholar
  117. 117.
    McLaughlin JG, Bonnell BW, Scheeres DE, et al. The adverse hemodynamic effects of laparoscopic cholecystectomy. Surg Endosc 1995;9:121–124.PubMedCrossRefGoogle Scholar
  118. 118.
    Roizen MF, Lampe GH, Sheiner LB, et al. Aging increase hemodynamic responses to induction and incision [abstract]. Anesth Analg 1985;64:275.CrossRefGoogle Scholar
  119. 119.
    Hoffman WE, Miletich DJ, Albrecht RF. Cardiovascular and regional blood flow changes during halothane anesthesia in the aged rat. Anesthesiology 1982;56:444–448.PubMedCrossRefGoogle Scholar
  120. 120.
    McKinney MS, Fee JP, Clarke RS. Cardiovascular effects of isoflurane and halothane in young and elderly patients. Br J Anaesth 1993;71:696–701.PubMedCrossRefGoogle Scholar
  121. 121.
    Haldermann G, Schmid E, Frey P, et al. Wirkung von ethrane auf die kreislaufgrossen geriatrischer patienten. Anaesthesist 1975;24:343–346.Google Scholar
  122. 122.
    Martin WE, Freund FG, Hornbein RF, et al. Cardiovascular effects of halothane and halothane-nitrous oxide anesthesia during controlled ventilation. Anesthesiology 1969; 30:346.CrossRefGoogle Scholar
  123. 123.
    McKinney MS, Fee JPH. Cardiovascular effects of 50% nitrous oxide in older adult patients anesthetized with isoflurane or halothane. Br J Anaesth 1998;80:169–173.PubMedGoogle Scholar
  124. 124.
    Houltz E, Caidahl K, Adin C, et al. Effects of halothane and isoflurane on left ventricular diastolic function during surgical stress in patients with coronary artery disease. Acta Anaesthesiol Scand 1997;41:931–938.PubMedGoogle Scholar
  125. 125.
    Yamaguchi S, Ikeda T, Wake K, et al. A sevoflurane induction of anesthesia with gradual reduction of concentration is well tolerated in elderly patients. Can J Anesth 2003; 50:26–31.PubMedCrossRefGoogle Scholar
  126. 126.
    Kemmotsu O, Hashimoto Y, Shimosato S. Inotropic effects of isoflurane on mechanics of contraction in isolated cat papillary muscles from normal and failing hearts. Anesthesiology 1973;39:470–477.PubMedCrossRefGoogle Scholar
  127. 127.
    Urzua J, Serra M, Lema G, et al. Comparison of isoflurane, halothane and fentanyl in patients with decreased ejection fraction undergoing coronary surgery. Anaesth Intensive Care 1996;24:579–584.PubMedGoogle Scholar
  128. 128.
    Malan TP, DiNardo JA, Isner RJ, et al. Cardiovascular effects of sevoflurane compared with those of isoflurane in volunteers. Anesthesiology 1995;83:918–928.PubMedCrossRefGoogle Scholar
  129. 129.
    Walpole R, Logan M. Effect of sevoflurane concentration on inhalational induction of anesthesia in the elderly. Br J Anaesth 1999;82:20–24.PubMedGoogle Scholar
  130. 130.
    Hilgenberg JC. Inhalation and intravenous drugs in the elderly. Semin Anesth 1986;5:44–53.Google Scholar
  131. 131.
    Linde HW, Oh SO, Homi J, et al. Cardiovascular effects of isoflurane and halothane during controlled ventilation in older patients. Anesth Analg 1975;54:70–104.CrossRefGoogle Scholar
  132. 132.
    Weiskopf RB, Eger EI II, Noorani M, Daniel M. Repetitive rapid increases in desflurane concentration blunt transient cardiovascular stimulation in humans. Anesthesiology 1994;81:843–849.PubMedCrossRefGoogle Scholar
  133. 133.
    Weiskopf RB, Eger EI II, Noorani M, Daniel M. Fentanyl, esmolol, and clonidine blunt the transient cardiovascular stimulation induced by desflurane in humans. Anesthesiology 1994;81:1350–1355.PubMedCrossRefGoogle Scholar
  134. 134.
    Mutch WAC, White IWC, Donen N, et al. Haemodynamic instability and myocardial ischaemia during carotid endarterectomy: a comparison of propofol and isoflurane. Can J Anaesth 1995;42:577–587.PubMedGoogle Scholar
  135. 135.
    Dwyer R, Howe J. Peripheral blood flow in the elderly during inhalational anesthesia. Acta Anesthesiol Scand 1995;39:939–944.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Gary R. Haynes
    • 1
  1. 1.Department of Anesthesia and Perioperative MedicineMedical University of South CarolinaCharlestonUSA

Personalised recommendations