Intravenous Hypnotic Anesthetics

  • Matthew D. McEvoy
  • J. G. Reves


This chapter discusses the pharmacology of frequently used intravenous hypnotic agents in the geriatric patient. The focus of this chapter is the changes in pharmacokinetics and pharmacodynamics in the geriatric patient specific to propofol, thiopental, midazolam, and etomidate, the four most popular intravenous agents for sedation, induction, and maintenance of general anesthesia.


Chronic Obstructive Pulmonary Disease Mean Arterial Pressure Respiratory Depression Cerebral Perfusion Pressure Geriatric Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Martin G, Glass PS, Breslin DS, et al. A study of anesthetic drug utilization in different age groups. J Clin Anesth 2003; 15(3):194–200.PubMedGoogle Scholar
  2. 2.
    Trifune M, Takarada T, Shimizu Y, et al. Propofol-induced anesthesia in mice is mediated by gamma-aminobutyric acid-A and excitatory amino acid receptors. Anesth Analg 2003;97(2):424–429.Google Scholar
  3. 3.
    Dong XP, Xu TL. The actions of propofol on gammaaminobutyric acid-A and glycine receptors in acutely dissociated spinal dorsal horn neurons of the rat. Anesth Analg 2002;95(4):907–914.PubMedGoogle Scholar
  4. 4.
    Glen JB, Hunter SC. Pharmacology of an emulsion formulation of ICI 35 868. Br J Anaesth 1984;56:617–626.PubMedGoogle Scholar
  5. 5.
    Carr S, Waterman S, Rutherford G, et al. Postsurgical infections associated with an extrinsically contaminated intravenous anesthetic agent: California, Illinois, Maine, and Michigan, 1990. MMWR Morb Mortal Wkly Rep 1990;39: 426–427.Google Scholar
  6. 6.
    Bennett SN, McNeil MM, Bland LA, et al. Postoperative infections traced to contamination of an intravenous anesthetic, propofol. N Engl J Med 1995;333:147–154.PubMedGoogle Scholar
  7. 7.
    Ludbrook GL, Visco E, Lam AM. Propofol: relation between brain concentrations, electro-encephalogram, middle cerebral artery blood flow velocity, and cerebral oxygen extraction during induction of anesthesia. Anesthesiology 2002;97(6):1363–1370.PubMedGoogle Scholar
  8. 8.
    van der Starre PJA, Guta C. Choice of anesthetics. Anesthesiol Clin North Am 2004;22(2):251–264.Google Scholar
  9. 9.
    Kuizenga K, Wierda JM, Kalkman CJ, Biphasic EEG changes in relation to loss of consciousness during induction with thiopental, propofol, etomidate, midazolam or sevoflurane. Br J Anaesth 2001;86(3):354–360.PubMedGoogle Scholar
  10. 10.
    Schultz A, Grouven U, Zander I, Beger FA, Siedenberg M, Schultz B. Age-related effects in the EEG during propofol anaesthesia. Acta Anaesthesiol Scand 2004;48(1):27–34.PubMedGoogle Scholar
  11. 11.
    Ding Z, White PF. Anesthesia for electroconvulsive therapy. Anesth Analg 2002;94(5):1351–1364.PubMedGoogle Scholar
  12. 12.
    Schnider TW, Minto CF, Shafer SL, et al. The influence of age on propofol pharmacodynamics. Anesthesiology 1999;90(6):1502–1516.PubMedGoogle Scholar
  13. 13.
    Brown RH, Greenberg RS, Wagner EM. Efficacy of propofol to prevent bronchoconstriction: effects of preservative. Anesthesiology 2001;94:851–855; discussion 6A.PubMedGoogle Scholar
  14. 14.
    Conti G, Dell’Utri D, Vilardi V, et al. Propofol induces bronchodilation in mechanically ventilated chronic obstructive pulmonary disease (COPD) patients. Acta Anaesthesiol Scand 1993;37:105–109.PubMedGoogle Scholar
  15. 15.
    Streisand JB, Nelson P, Bubbers S, et al. The respiratory effects of propofol with and without fentanyl. Anest Analg 1987;66:S171.Google Scholar
  16. 16.
    Bluoin RT, Conrad PF, Gross JB. Time course of ventilatory depression following induction doses of propofol and thiopental. Anesthesiology 1991;75:940–944.Google Scholar
  17. 17.
    Tagaito Y, Isono S, Nishino T. Upper airway reflexes during a combination of propofol and fentanyl anesthesia. Anesthesiology 1998;88(6):1459–1466.PubMedGoogle Scholar
  18. 18.
    Van Keer L, Van Aken H, et al. Propofol does not inhibit hypoxic pulmonary vasoconstriction in humans. J Clin Anesth 1989;1:284–288.PubMedGoogle Scholar
  19. 19.
    Abe K, Shimizu T, Takashina M, Shiozaki H, Yoshiya I, et al. The effects of propofol, isoflurane, and sevoflurane on oxygenation and shunt fraction during one-lung ventilation. Anesth Analg 1998;87(5):1164–1169.PubMedGoogle Scholar
  20. 20.
    Blouin RT, Seifert HA, Babenco HD, Conard PF, Gross JB. Propofol depresses the hypoxic ventilatory response during conscious sedation and isohypercapnia. Anesthesiology 1993;79:1177–1182.PubMedGoogle Scholar
  21. 21.
    Chan ED, Welsh CH. Geriatric respiratory medicine. Chest 1998;114(6):1704–1733.PubMedGoogle Scholar
  22. 22.
    Zaugg M, Lucchinetti E. Respiratory function in the elderly. Anesthesiol Clin North Am 2000;18(1):47–58, vi.Google Scholar
  23. 23.
    Kirkbride DA, Parker JL, Williams GD, Buggy DJ. Induction of anesthesia in the elderly ambulatory patient: a double-blinded comparison of propofol and sevoflurane. Anesth Analg 2001;93(5):1185–1187.PubMedGoogle Scholar
  24. 24.
    John AD, Sieber FE. Age associated issues: geriatrics. Anesthesiol Clin North Am 2004;22(1):45–58.Google Scholar
  25. 25.
    Rooke GA. Autonomic and cardiovascular function in the geriatric patient. Anesthesiol Clin North Am 2000;18(1): 31–46, v-vi.Google Scholar
  26. 26.
    Kazama T, Ikeda K, Morita K, et al. Comparison of the effect-site k(eO)s of propofol for blood pressure and EEG bispectral index in elderly and younger patients. Anesthesiology 1999;90(6):1517–1527.PubMedGoogle Scholar
  27. 27.
    Tramer M, Moore A, McQuay H. Propofol anaesthesia and postoperative nausea and vomiting: quantitative systematic review of randomized controlled studies. Br J Anaesth 1997;78(3):247–255.PubMedGoogle Scholar
  28. 28.
    Borgeat A, Wilder-Smith OH, Saiah M, Rifat K. Subhypnotic doses of propofol relieve pruritus induced by epidural and intrathecal morphine. Anesthesiology 1992;76(4):510–512.PubMedGoogle Scholar
  29. 29.
    Schüttler J, Ihmsen H. Population pharmacokinetics of propofol: a multicenter study. Anesthesiology 2000;92: 727–738.PubMedGoogle Scholar
  30. 30.
    Shafer A, Doze VA, Shafer SL, White PF. Pharmacokinetics and pharmacodynamics of propofol infusions during general anesthesia. Anesthesiology 1988;69: 348–356.PubMedGoogle Scholar
  31. 31.
    Schnider TW, Minto CF, Gumbus PL, et al. The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology 1998;88(5):1170–1182.PubMedGoogle Scholar
  32. 32.
    Shafer SL. The pharmacology of anesthetic drugs in elderly patients. Anesthesiol Clin North Am 2000;18(1):1–29, v.Google Scholar
  33. 33.
    Takaono M, Yogosawa T, Okawa-Takatsuji M, Aotsuka S. Effects of intravenous anesthetics on interleukin (IL)-6 and IL-10 production by lipopolysaccharide-stimulated mononuclear cells from healthy volunteers. Acta Anaesthesiol Scand 2002;46(2):176–179.PubMedGoogle Scholar
  34. 34.
    Alvarez-Ayuso L, Calero P, Granado F, et al. Antioxidant effect of gamma-tocopherol supplied by propofol preparations (Diprivan) during ischemia-reperfusion in experimental lung transplantation. Transpl Int 2004;17(2):71–77.PubMedGoogle Scholar
  35. 35.
    Lombardo A. Inflammation as a possible link between coronary and carotid plaque instability. Circulation 2004; 109(25):3158–3163.PubMedGoogle Scholar
  36. 36.
    Willerson JT. Inflammation as a cardiovascular risk factor. Circulation 2004;109(21 Suppl 1):II2–10.PubMedGoogle Scholar
  37. 37.
    Dundee JW, Hassard TH, McGowan WAW, et al. The “induction” dose of thiopentone: a method of study and preliminary illustrative results. Anaesthesia 1982;37:1176.PubMedGoogle Scholar
  38. 38.
    Ball C, Westhorpe R. The history of intravenous anaesthesia: the barbiturates. Part 1. Anaesth Intensive Care 2001; 29(2):97.PubMedGoogle Scholar
  39. 39.
    Ball C, Westhorpe R. The history of intravenous anaesthesia: the barbiturates. Part 2. Anaesth Intensive Care 2001; 29(3):219.PubMedGoogle Scholar
  40. 40.
    Ball C, Westhorpe R. The history of intravenous anaesthesia: the barbiturates. Part 3. Anaesth Intensive Care 2001; 29(4):323.PubMedGoogle Scholar
  41. 41.
    Dundee JW. Fifty years of thiopentone. Br J Anaesth 1984;56:211.PubMedGoogle Scholar
  42. 42.
    Tanelian DL, Kosek P, Mody I, et al. The role of the GABAA receptor/chloride channel complex in anesthesia. Anesthesiology 1993;78:757.PubMedGoogle Scholar
  43. 43.
    Dundee JW. Molecular structure-activity relationships of barbiturates. In: Halsey MJ, Millar RA, Sutton JA, eds. Molecular Mechanisms in General Anesthesia. New York: Churchill Livingstone; 1974:16.Google Scholar
  44. 44.
    Archer DP, Ewen A, Froelich J, Roth SH, Samanani N. Thiopentone induced enhancement of somatic motor responses to noxious stimulation: influence of GABAA receptor modulation. Can J Anaesth 1996;43(5 Pt 1):503–510.PubMedGoogle Scholar
  45. 45.
    Veselis RA, Reinsel RA, Feshchenko VA, Wroński M. The comparative amnestic effects of midazolam, propofol, thiopental, and fentanyl at equisedative concentrations. Anesthesiology 1997;87(4):749–764.PubMedGoogle Scholar
  46. 46.
    Stulken EH Jr, Milde JH, Michenfelder JD, et al. The nonlinear response of cerebral metabolism to low concentrations of halothane, enflurane, isoflurane and thiopental. Anesthesiology 1977;46:28.Google Scholar
  47. 47.
    Smith AL. Barbiturate protection in cerebral hypoxia. Anesthesiology 1977;47:285.PubMedGoogle Scholar
  48. 48.
    Baughman VL. Brain protection during neurosurgery. Anesthesiol Clin North Am 2002;20(2):315–327, vi.Google Scholar
  49. 49.
    Albrecht RF, Miletich DJ, Rosenberg R, et al. Cerebral blood flow and metabolic changes from induction to onset of anesthesia with halothane or pentobarbital. Anesthesiology 1977;47:252.PubMedGoogle Scholar
  50. 50.
    Cheng MA, Theard MA, Tempelhoff R. Intravenous agents and intraoperative neuroprotection. Beyond barbiturates. Crit Care Clin 1997;13(1):185–199.PubMedGoogle Scholar
  51. 51.
    Stanski DR, Maitre PO. Population pharmacokinetics and pharmacodynamics of thiopental: the effect of age revisited. Anesthesiology 1990;72:412–422.PubMedGoogle Scholar
  52. 52.
    Russo H, Bressolle E. Pharmacodynamics and pharmacokinetics of thiopental. Clin Pharmacokinet 1998;35:95–134.PubMedGoogle Scholar
  53. 53.
    Sonntag H, Hellberg K, Schenk HD, et al. Effects of thiopental (Trapanal) on coronary blood flow and myocardial metabolism in man. Acta Anaesthesiol Scand 1975;19(1): 69–78.PubMedGoogle Scholar
  54. 54.
    Choi SD, Spaulding BC, Gross JB, Apfelbaum JL. Comparison of the ventilatory effects of etomidate and methohexital. Anesthesiology 1985;62(4):442–447.PubMedGoogle Scholar
  55. 55.
    Hung OR, Varvel JR, Shafer SL, Stanski DR. Thiopental pharmacodynamics. II. Quantitation of clinical and electroencephalographic depth of anesthesia. Anesthesiology 1992;77(2):237–244.PubMedGoogle Scholar
  56. 56.
    Gross JB, Zebrowski ME, Carel WD, Gardner S, Smith TC. Time course of ventilatory depression after thiopental and midazolam in normal subjects and in patients with chronic obstructive pulmonary disease. Anesthesiology 1983;58(6):540–544.PubMedGoogle Scholar
  57. 57.
    Wada DR, Bjorkman S, Ebling WF, et al. Computer simulation of the effects of alterations in blood flows and body composition on thiopental pharmacokinetics in humans. Anesthesiology 1997;87:884.PubMedGoogle Scholar
  58. 58.
    Homer TD, Stanski DR. The effect of increasing age on thiopental disposition and anesthetic requirement. Anesthesiology 1985;62:714–724.PubMedGoogle Scholar
  59. 59.
    Avram MJ, Krejcie TC, Henthorn TK. The relationship of age to the pharmacokinetics of early drug distribution: the concurrent disposition of thiopental and indocyanine green. Anesthesiology 1990;72:403–411.PubMedGoogle Scholar
  60. 60.
    Mortier E, Struys M, De Smet T, Versichelen L, Rolly G. Closed-loop controlled administration of propofol using bispectral analysis. Anaesthesia 1998;53(8):749–754.PubMedGoogle Scholar
  61. 61.
    Dundee JW, Wyant GM. Intravenous Anaesthesia. 2nd ed. Edinburgh: Churchill Livingstone; 1988.Google Scholar
  62. 62.
    Reves JG, Glass PSA, Lubarsky DA. Nonbarbiturate intravenous anesthetics. In: Miller RD, ed. Anesthesia. 5th ed. New York: Churchill Livingstone; 2000:228–272.Google Scholar
  63. 63.
    Kawar P, Dundee JW. Frequency of pain on injection and venous sequelae following the I.V. administration of certain anaesthetics and sedatives. Br J Anaesth 1982; 54(9):935–939.PubMedGoogle Scholar
  64. 64.
    Haefely W, Hunkeler W. The story of flumazenil. Eur J Anaesthesiol 1988;2:3.Google Scholar
  65. 65.
    Squires RF, Braestrup C. Benzodiazepine receptors in rat brain. Nature 1977;266:732.PubMedGoogle Scholar
  66. 66.
    Walser A, Benjamin LES, Flynn T, et al. Quinazolines and 1,4-benzodiazepines. 84. Synthesis and reactions of imidazo (1,5)(1,4)-benzodiazepines. J Org Chem 1978;43:936.Google Scholar
  67. 67.
    Reves JG, Fragen RJ, Vinik HR, et al. Midazolam: pharmacology and uses. Anesthesiology 1985;62:310.PubMedGoogle Scholar
  68. 68.
    Greenblatt DJ, Shader RI, Abernethy DR. Medical intelligence drug therapy: current status of benzodiazepines. N Engl J Med 1983;309:354.PubMedGoogle Scholar
  69. 69.
    Arendt RM, Greenblatt DJ, DeJong RH, et al. In vitro correlates of benzodiazepine cerebrospinal fluid uptake, pharmacodynamic action and peripheral distribution. J Pharmacol Exp Ther 1983;227:98.PubMedGoogle Scholar
  70. 70.
    Mould DR, DeFeo TM, Reele S, et al. Simultaneous modeling of the pharmacokinetics and pharmacodynamics of midazolam and diazepam. Clin Pharmacol Ther 1995; 58:35.PubMedGoogle Scholar
  71. 71.
    Mohler H, Richards JG. The benzodiazepine receptor: a pharmacological control element of brain function. Eur J Anaesthesiol 1988;2:15.Google Scholar
  72. 72.
    Amrein R, Hetzel W. Pharmacology of Dormicum (midazolam) and Anexate (flumazenil). Acta Anaesthsiol Scand 1990;92:6.Google Scholar
  73. 73.
    Mohler H, Fritschy JM, Rudolph U. A new benzodiazepine pharmacology. J Pharmacol Exp Ther 2002;300:2.PubMedGoogle Scholar
  74. 74.
    Amrein R, Hetzel W, Harmann D, et al. Clinical pharmacology of flumazenil. Eur J Anaesthesiol 1988;2:65.Google Scholar
  75. 75.
    Haefely W. The preclinical pharmacology of flumazenil. Eur J Anaesthesiol 1988;2:25.Google Scholar
  76. 76.
    Breimer LTM, Burm AGL, Danhof M, et al. Pharmacokinetic-pharmacodynamic modelling on the interaction between flumazenil and midazolam in volunteers by aperiodic EEG analysis. Clin Pharmacokinet 1991;20:497.PubMedGoogle Scholar
  77. 77.
    White PF, Negus JB. Sedative infusions during local and regional anesthesia: a comparison of midazolam and propofol. J Clin Anesth 1991;3(1):32–39.PubMedGoogle Scholar
  78. 78.
    Burnakis TG, Berman DE. Hostility and hallucinations as a consequence of midazolam administration. DICP 1989; 23(9):671–672.PubMedGoogle Scholar
  79. 79.
    Christe C, Janssens JP, Armenian B, Herrmann F, Vogt N. Midazolam sedation for upper gastrointestinal endoscopy in older persons: a randomized, double-blind, placebocontrolled study. J Am Geriatr Soc 2000;48(11):1398–1403.PubMedGoogle Scholar
  80. 80.
    Forster A, Gardaz JP, Suter PM, et al. Respiratory depression by midazolam and diazepam. Anesthesiology 1980; 53:494.PubMedGoogle Scholar
  81. 81.
    Brodgen RN, Goa KL. Flumazenil. Drugs 1991;42:1061.Google Scholar
  82. 82.
    Lebowitz PW, Core ME, Daniels AL, et al. Comparative cardiovascular effects of midazolam and thiopental in healthy patients. Anesth Analg 1982;61:771.PubMedGoogle Scholar
  83. 83.
    Sunzel M, Paalzow L, Berggren L, et al. Respiratory and cardiovascular effects in relations to plasma levels of midazolam and diazepam. Br J Clin Pharmacol 1988;25: 561.PubMedGoogle Scholar
  84. 84.
    Samuelson PN, Reves JG, Kouchoukos NT, et al. Hemodynamic responses to anesthetic induction with midazolam or diazepam in patients with ischemic heart disease. Anesth Analg 1981;60:802.PubMedGoogle Scholar
  85. 85.
    Ruff R, Reves JG. Hemodynamic effects of a lorazepamfentanyl anesthetic induction for coronary artery bypass surgery. J Cardiothorac Anesth 1990;4:314.PubMedGoogle Scholar
  86. 86.
    Heikkila H, Jalonen J, Arola M, et al. Midazolam as adj unct to high-dose fentanyl anaesthesia for coronary artery bypass grafting operation. Acta Anaesthesiol Scand 1984; 28:683.PubMedGoogle Scholar
  87. 87.
    Benson KT, Tomlinson DL, Goto H, et al. Cardiovascular effects of lorazepam during sufentanil anesthesia. Anesth Analg 1988;67:966.Google Scholar
  88. 88.
    Windsor JW, Sherry K, Feneck RO, et al. Sufentanil and nitrous oxide anaesthesia for cardiac surgery. Br J Anaesth 1988;61:662.PubMedGoogle Scholar
  89. 89.
    Reves JG, Croughwell N. Valium-fentanyl interaction. In: Reves JG, Hall K, eds. Common Problems in Cardiac Anaesthesia. Chicago: Year Book; 1987:356.Google Scholar
  90. 90.
    Greenblatt DL, Shader RI. Benzodiazepines in Clinical Practice. New York: Raven Press; 1974.Google Scholar
  91. 91.
    Elliott HW. Metabolism of lorazepam. Br J Anaesth 1976; 48:1017.PubMedGoogle Scholar
  92. 92.
    Blitt CD. Clinical pharmacology of lorazepam. In: Brown BRJ, ed. New Pharmacologic Vistas in Anesthesia. Philadelphia: FA Davis; 1983:135.Google Scholar
  93. 93.
    Kronbach T, Mathys D, Umeno M, Gonzalez FJ, Meyer UA. Oxidation of midazolam and triazolam by human liver cytochrome P450IIIA4. Mol Pharmacol 1989;36:89–96.PubMedGoogle Scholar
  94. 94.
    Reves JG. Benzodiazepines. In: Prys-Roberts C, Hugg CC, eds. Pharmacokinetics of Anesthesia. Boston: Blackwell Scientific Publications; 1984:157.Google Scholar
  95. 95.
    Kassai A, Eichelbaum M, Klotz U. No evidence of a genetic polymorphism in the oxidative metabolism of midazolam. Clin Pharmacokinet 1988;15:319.PubMedGoogle Scholar
  96. 96.
    Barr J, Donner A. Optimal intravenous dosing strategies for sedatives and analgesics in the intensive care unit. Crit Care Clin 1995;11:827.PubMedGoogle Scholar
  97. 97.
    Mandema JW, Tuk B, van Steveninck AL, et al. Pharmacokinetic-pharmacodynamic modeling of the central nervous system effects of midazolam and its main metabolite ß-hydroxymidazolam in healthy volunteers. Clin Pharmacol Ther 1992;51:715.PubMedGoogle Scholar
  98. 98.
    Bauer TM, Ritz R, Haberthur C, et al. Prolonged sedation due to accumulation of conjugated metabolites of midazolam. Lancet 1995;346:145.PubMedGoogle Scholar
  99. 99.
    Greenblatt DJ, Abernethy DR, Loeniskar A, et al. Effect of age, gender, and obesity on midazolam kinetics. Anesthesiology 1984;61:27.PubMedGoogle Scholar
  100. 100.
    Weese H, Scharpf W. Evipanein neuartiges Einschlafmittel. Dtsch Med Wochenschr 1932;58:1205.Google Scholar
  101. 101.
    Tabern TW, Volwiler EH. Sulfur-containing barbiturate hypnotics. J Am Chem Soc 1935;57:1961.Google Scholar
  102. 102.
    Halford FJ. A critique of intravenous anaesthesia in war surgery. Anaesthesiology 1943;4:67–69.Google Scholar
  103. 103.
    Sanchez-Izquierdo-Riera JA, Caballero-Cubedo RE, Perez-Vela JL, Ambros-Checa A, Cantalapiedra-Santiago JA, Alted-Lopez E. Propofol versus midazolam: safety and efficacy for sedating the severe trauma patient. Anesth Analg 1998;86:1219.PubMedGoogle Scholar
  104. 104.
    Vargo JJ, Zuccaro G Jr, Dumot JA, et al. Gastroenterologistadministered propofol versus meperidine and midazolam for advanced upper endoscopy: a prospective, randomized trial. Gastroenterology 2002;123:8.PubMedGoogle Scholar
  105. 105.
    Gauthier RA, Dyck B, Chung R, et al. Respiratory interaction after spinal anesthesia sedation with midazolam. Anesthesiology 1992;77:909.PubMedGoogle Scholar
  106. 106.
    Kanto J, Sjoval S, Vuori A. Effect of different kinds of premedication on the induction properties of midazolam. Br J Anaesth 1982;54:507.PubMedGoogle Scholar
  107. 107.
    Norton AC, Dundas CR. Induction agents for day-case anaesthesia. Anaesthesia 1990;45:198.PubMedGoogle Scholar
  108. 108.
    Liu J, Singh H, White PF. Electroencephalogram bispectral analysis predicts the depth of midazolam-induced sedation. Anesthesiology 1996;84:64–69.PubMedGoogle Scholar
  109. 109.
    Melvin MA, Johnson BH, Quasha AL, et al. Induction of anesthesia with midazolam decreases halothane MAC in humans. Anesthesiology 1982;57:238.PubMedGoogle Scholar
  110. 110.
    Theil DR, Stanley TE, White WD, et al. Continuous intravenous anesthesia for cardiac surgery: a comparison of two infusion systems. J Thorac Cardiovasc Anesth 1993; 7:300.Google Scholar
  111. 111.
    Gamble JAS, Kawar P, Dundee JW, et al. Evaluation of midazolam as an intravenous induction agent. Anaesthesia 1981;36:868.PubMedGoogle Scholar
  112. 112.
    Jacobs JR, Reves JG, Marty J, et al. Aging increases pharmacodynamic sensitivity to the hypnotic effects of midazolam. Anesth Analg 1995;80:143.PubMedGoogle Scholar
  113. 113.
    Brown CR, Sarnquist FH, Canup CA, et al. Clinical electroencephalographic and pharmacokinetic studies of water-soluble benzodiazepine, midazolam maleate. Anesthesiology 1979;50:467.PubMedGoogle Scholar
  114. 114.
    Nilsson A, Persson MP, Hartvig P, et al. Effect of total intravenous anaesthesia with midazolam/alfentanil on the adrenocortical and hyperglycaemic response to abdominal surgery. Acta Anaesthesiol Scand 1988;32: 379.PubMedGoogle Scholar
  115. 115.
    Doenicke AW, Roizen MF, Kugler J, Kroll H, Foss J, Ostwald P. Reducing myoclonus after etomidate. Anesthesiology 1999;90(1):113–119.PubMedGoogle Scholar
  116. 116.
    Watcha MF, White PF. Postoperative nausea and vomiting. Its etiology, treatment, and prevention. Anesthesiology 1992;77:162–184.PubMedGoogle Scholar
  117. 117.
    Kettler D, Sonntag H, Donath U, Regensburger D, Schenk HD. Haemodynamics, myocardial mechanics, oxygen requirement and oxygenation of the human heart during induction of anaesthesia with etomidate. Anaesthesist 1974;23:116.PubMedGoogle Scholar
  118. 118.
    Choi SD, Spaulding BC, et al. Comparison of the ventilatory effects of etomidate and methohexital. Anesthesiology 1985;62:442.PubMedGoogle Scholar
  119. 119.
    Allolio B, Dörr H, Stuttmann R, Knorr D, Engelhardt D, Winkelmann W. Effect of a single bolus dose of etomidate upon eight major corticosteroid hormones and plasma ACTH. Clin Endocrinol (Oxf) 1985;22:281.Google Scholar
  120. 120.
    Wagner RL, White PF. Etomidate inhibits adrenocortical function in surgical patients. Anesthesiology 1984;61: 647–651.PubMedGoogle Scholar
  121. 121.
    Arden JR, Holley OF, Stanski DR. Increased sensitivity to etomidate in the elderly: initial distribution versus altered brain response. Anesthesiology 1986;65:19–27.PubMedGoogle Scholar
  122. 122.
    Korttila K, Aromaa U. Venous complications after intravenous injection of diazepam, flunitrazepam, thiopentone and etomidate. Acta Anaesthesiol Scand 1980;24:227.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Matthew D. McEvoy
    • 1
  • J. G. Reves
    • 2
  1. 1.Department of Anesthesia and Perioperative MedicineMedical University of South CarolinaCharlestonUSA
  2. 2.Department of Anesthesiology/College of MedicineMedical University of South CarolinaCharlestonUSA

Personalised recommendations