The Pharmacology of Opioids

  • Steven L. Shafer
  • Pamela Flood


There are a lot of old people. In the 1990 census, patients over the age of 65 comprised 12% of the United States population, or 30,000,000 people. That grew modestly, to 12.5%, by 2000. However, based on the United States population of 301,165,915 as of today, that amounts to 38 million individuals. It should come as no surprise, therefore, that health care for the elderly consumes 5% of the United States gross domestic product.1


Opioid Receptor Elderly Subject Opiate Receptor Anesthesia Information Management System Oral Transmucosal Fentanyl Citrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson GF, Hussey PS. Population aging: a comparison among industrialized countries. Health Aff 2000;19: 191–203.CrossRefGoogle Scholar
  2. 2.
    Ventafridda V, Tamburini M, Caraceni A, De Conno F, Naldi F. A validation study of the WHO method for cancer pain relief. Cancer 1987; 59: 850–856.PubMedCrossRefGoogle Scholar
  3. 3.
    Jacox A, Carr DB, Payne R. New clinical-practice guidelines for the management of pain in patients with cancer. N Engl J Med 1994; 330: 651–655.PubMedCrossRefGoogle Scholar
  4. 4.
    Bafitis H, Sargent F 2nd. Human physiological adaptability through the life sequence. J Gerontol 1977; 32: 402–410.PubMedGoogle Scholar
  5. 5.
    Klein U, Klein M, Sturm H, et al. The frequency of adverse drug reactions as dependent upon age, sex and duration of hospitalization. Int J Clin Pharmacol Biopharm 1976; 13: 187–195.PubMedGoogle Scholar
  6. 6.
    Crooks J. Aging and drug disposition—pharmacodynamics. J Chronic Dis 1983; 36: 85–90.PubMedCrossRefGoogle Scholar
  7. 7.
    Cepeda MS, Farrar JT, Baumgarten M, Boston R, Carr DB, Strom BL. Side effects of opioids during short-term administration: effect of age, gender, and race. Clin Pharmacol Ther 2003; 74: 102–112.PubMedCrossRefGoogle Scholar
  8. 8.
    Junger A, Hartmann B, Benson M, et al. The use of an anesthesia information management system for prediction of antiemetic rescue treatment at the postanesthesia care unit. Anesth Analg 2001; 92(5): 1203–1209.PubMedCrossRefGoogle Scholar
  9. 9.
    Sinclair DR, Chung F, Mezei G. Can postoperative nausea and vomiting be predicted? Anesthesiology 1999; 91: 109–118.PubMedCrossRefGoogle Scholar
  10. 10.
    Pert CB, Snyder SH. Opiate receptor: demonstration in nervous tissue. Science 1973; 179: 1011–1014.PubMedCrossRefGoogle Scholar
  11. 11.
    Simon EJ, Hiller JM, Edelman I. Stereospecific binding of the potent narcotic analgesic (3H) Etorphine to ratbrain homogenate. Proc Natl Acad Sci USA 1973;70: 1947–1949.PubMedCrossRefGoogle Scholar
  12. 12.
    Terenius L. Characteristics of the “receptor” for narcotic analgesics in synaptic plasma membrane fraction from rat brain. Acta Pharmacol Toxicol (Copenh) 1973; 33: 377–384.Google Scholar
  13. 13.
    Hughes J, Smith TW, Kosterlitz HW, Fothergill LA, Morgan BA, Morris HR. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 1975; 258: 577–580.PubMedCrossRefGoogle Scholar
  14. 14.
    Li CH, Chung D. Isolation and structure of an untriakontapeptide with opiate activity from camel pituitary glands. Proc Natl Acad Sci USA 1976; 73: 1145–1148.PubMedCrossRefGoogle Scholar
  15. 15.
    Goldstein A, Tachibana S, Lowney LI, Hunkapiller M, Hood L. Dynorphin-(1-13), an extraordinarily potent opioid peptide. Proc Natl Acad Sci USA 1979; 76: 6666–6670.PubMedCrossRefGoogle Scholar
  16. 16.
    Martin WR, Eades CG, Thompson JA, Huppler RE, Gilbert PE. The effects of morphine-and nalorphine-like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther 1976; 197: 517–532.PubMedGoogle Scholar
  17. 17.
    Chang KJ, Cooper BR, Hazum E, Cuatrecasas P. Multiple opiate receptors: different regional distribution in the brain and differential binding of opiates and opioid peptides. Mol Pharmacol 1979; 16: 91–104.PubMedGoogle Scholar
  18. 18.
    Robson LE, Kosterlitz HW. Specific protection of the binding sites of D-Ala2-D-Leu5-enkephalin (delta-receptors) and dihydromorphine (mu-receptors). Proc R Soc Lond B Biol Sci 1979; 205: 425–432.PubMedCrossRefGoogle Scholar
  19. 19.
    Schulz R, Wuster M, Krenss H, Herz A. Selective development of tolerance without dependence in multiple opiate receptors of mouse vas deferens. Nature 1980; 285: 242–243.PubMedCrossRefGoogle Scholar
  20. 20.
    Pasternak GW, Childers SR, Snyder SH. Opiate analgesia: evidence for mediation by a subpopulation of opiate receptors. Science 1980; 208: 514–516.PubMedCrossRefGoogle Scholar
  21. 21.
    Ling GS, Spiegel K, Nishimura SL, Pasternak GW. Dissociation of morphine’s analgesic and respiratory depressant actions. Eur J Pharmacol 1983; 86: 487–488.PubMedCrossRefGoogle Scholar
  22. 22.
    Ling GS, Spiegel K, Lockhart SH, Pasternak GW. Separation of opioid analgesia from respiratory depression: evidence for different receptor mechanisms. J Pharmacol Exp Ther 1985; 232: 149–155.PubMedGoogle Scholar
  23. 23.
    Brown GP, Yang K, King MA, et al. 3-Methoxynaltrexone, a selective heroin/morphine-6beta-glucuronide antagonist. FEBS Lett 1997; 412: 35–38.PubMedCrossRefGoogle Scholar
  24. 24.
    Crews JC, Sweeney NJ, Denson DD. Clinical efficacy of methadone in patients refractory to other mu-opioid receptor agonist analgesics for management of terminal cancer pain. Case presentations and discussion of incomplete cross-tolerance among opioid agonist analgesics. Cancer 1993; 72: 2266–2272.PubMedCrossRefGoogle Scholar
  25. 25.
    Mercadante S. Opioid rotation for cancer pain: rationale and clinical aspects. Cancer 1999; 86: 1856–1866.PubMedCrossRefGoogle Scholar
  26. 26.
    Chang A, Emmel DW, Rossi GC, Pasternak GW. Methadone analgesia in morphine-insensitive CXBK mice. Eur J Pharmacol 1998; 351: 189–191.PubMedCrossRefGoogle Scholar
  27. 27.
    Abbadie C, Rossi GC, Orciuolo A, Zadina JE, Pasternak GW. Anatomical and functional correlation of the endomorphins with mu opioid receptor splice variants. Eur J Neurosci 2002; 16: 1075–1082.PubMedCrossRefGoogle Scholar
  28. 28.
    Cadet P. Mu opiate receptor subtypes. Med Sci Monit 2004; 10: MS28–32.PubMedGoogle Scholar
  29. 29.
    Stefano GB, Hartman A, Bilfinger TV, et al. Presence of the mu3 opiate receptor in endothelial cells. Coupling to nitric oxide production and vasodilation. J Biol Chem 1995; 270: 30290–30293.PubMedCrossRefGoogle Scholar
  30. 30.
    Kozak CA, Filie J, Adamson MC, Chen Y, Yu L. Murine chromosomal location of the mu and kappa opioid receptor genes. Genomics 1994; 21: 659–661.PubMedCrossRefGoogle Scholar
  31. 31.
    Belknap JK, Mogil JS, Helms ML, et al. Localization to chromosome 10 of a locus influencing morphine analgesia in crosses derived from C57BL/6 and DBA/2 strains. Life Sci 1995; 57: PL117–124.PubMedCrossRefGoogle Scholar
  32. 32.
    Lötsch J, Geisslinger G. Are mu-opioid receptor polymorphisms important for clinical opioid therapy? Trends Mol Med. 11: 82–89, 2005.PubMedCrossRefGoogle Scholar
  33. 33.
    Romberg RR, Olofsen E, Bijl H, et al. Polymorphism of mu-opioid receptor gene (OPRM1:c.118A > G) does not protect against opioid-induced respiratory depression despite reduced analgesic response. Anesthesiology 2005; 102: 522–530.PubMedCrossRefGoogle Scholar
  34. 34.
    Pasternak GW. Multiple opiate receptors: deja vu all over again. Neuropharmacology 2004; 47(Suppl 1): 312–323.PubMedCrossRefGoogle Scholar
  35. 35.
    Chen Y, Mestek A, Liu J, Hurley JA, Yu L. Molecular cloning and functional expression of a mu-opioid receptor from rat brain. Mol Pharmacol 1993; 44: 8–12.PubMedGoogle Scholar
  36. 36.
    Wang JB, Imai Y, Eppler CM, Gregor P, Spivak CE, Uhl GR. Mu opiate receptor: cDNA cloning and expression. Proc Natl Acad Sci USA 1993; 90: 10230–10234.PubMedCrossRefGoogle Scholar
  37. 37.
    Pan YX, Xu J, Mahurter L, Xu M, Gilbert AK, Pasternak GW. Identification and characterization of two new human mu opioid receptor splice variants, hMOR-1O and hMOR1X. Biochem Biophys Res Commun 2003; 301: 1057–1061.PubMedCrossRefGoogle Scholar
  38. 38.
    Connor M, Christie MD. Opioid receptor signalling mechanisms. Clin Exp Pharmacol Physiol 1999; 26: 493–499.PubMedCrossRefGoogle Scholar
  39. 39.
    North RA. Opioid actions on membrane ion channels. In: Herz A, ed. Opioids. Handbook of Experimental Pharmacology. Vol 104. Berlin: Springer-Verlag; 1993: 773–797.Google Scholar
  40. 40.
    Scarpace PJ, Tumer N, Mader SL. Beta-adrenergic function in aging. Basic mechanisms and clinical implications. Drugs Aging 1991; 1: 116–129.PubMedCrossRefGoogle Scholar
  41. 41.
    Scarpace PJ, Abrass IB. Alpha-and beta-adrenergic receptor function in the brain during senescence. Neurobiol Aging 1988; 9: 53–58.PubMedCrossRefGoogle Scholar
  42. 42.
    Barnhill JG, Greenblatt DJ, Miller LG, Gaver A, Harmatz JS, Shader RI. Kinetic and dynamic components of increased benzodiazepine sensitivity in aging animals. J Pharmacol Exp Ther 1990; 253: 1153–1161.PubMedGoogle Scholar
  43. 43.
    Barnhill JG, Miller LG, Greenblatt DJ, Thompson ML, Ciraulo DA, Shader RI. Benzodiazepine receptor binding response to acute and chronic stress is increased in aging animals. Pharmacology 1991; 42: 181–187.PubMedGoogle Scholar
  44. 44.
    Ueno E, Liu DD, Ho IK, Hoskins B. Opiate receptor characteristics in brains from young, mature and aged mice. Neurobiol Aging 1988; 9: 279–283.PubMedCrossRefGoogle Scholar
  45. 45.
    Hess GD, Joseph JA, Roth GS. Effect of age on sensitivity to pain and brain opiate receptors. Neurobiol Aging 1981; 2: 49–55.PubMedCrossRefGoogle Scholar
  46. 46.
    Petkov VV, Petkov VD, Grahovska T, Konstantinova E. Enkephalin receptor changes in rat brain during aging. Gen Pharmacol 1984; 15: 491–495.PubMedGoogle Scholar
  47. 47.
    Fulop T Jr, Kekessy D, Foris G. Impaired coupling of naloxone sensitive opiate receptors to adenylate cyclase in PMNLs of aged male subjects. Int J Immunopharmacol 1987; 9(6): 651–657.PubMedCrossRefGoogle Scholar
  48. 48.
    Hoskins B, Ho IK. Age-induced differentiation of morphine’s effect on cyclic nucleotide metabolism. Neurobiol Aging 1987; 8: 473–476.PubMedCrossRefGoogle Scholar
  49. 49.
    Smith MA, Gray JD. Age-related differences in sensitivity to the antinociceptive effects of opioids in male rats. Influence of nociceptive intensity and intrinsic efficacy at the mu receptor. Psychopharmacology (Berl) 2001; 156: 445–453.CrossRefGoogle Scholar
  50. 50.
    Van Crugten JT, Somogyi AA, Nation RL, Reynolds G. The effect of old age on the disposition and antinociceptive response of morphine and morphine-6 betaglucuronide in the rat. Pain 1997; 71: 199–205.PubMedCrossRefGoogle Scholar
  51. 51.
    Hoskins B, Burton CK, Ho IK. Differences in morphineinduced antinociception and locomotor activity in mature adult and aged mice. Pharmacol Biochem Behav 1986; 25: 599–605.PubMedCrossRefGoogle Scholar
  52. 52.
    Helme RD, Gibson SJ. Pain in older people. In: Crombie IK, Croft PR, Linton SJ, Le Resche L, Von Korff M, eds. The Epidemiology of Pain. 2nd ed. Seattle: IASP Press; 1999: 103–112.Google Scholar
  53. 53.
    Helme RD, Gibson SJ. The epidemiology of pain in elderly people. Clin Geriatr Med 2001; 17: 417–431.PubMedCrossRefGoogle Scholar
  54. 54.
    Verhaak PF, Kerssens JJ, Dekker J, Sorbi MJ, Bensing JM. Prevalence of chronic benign pain disorder among adults: a review of the literature. Pain 1998; 77: 231–239.PubMedCrossRefGoogle Scholar
  55. 55.
    Sorkin BA, Rudy TE, Hanlon RB, Turk DC, Stieg RL. Chronic pain in old and young patients: differences appear less important than similarities. J Gerontol 1990; 45: P64–P68.PubMedGoogle Scholar
  56. 56.
    Edwards RR, Fillingim RB. Age-associated differences in responses to noxious stimuli. J Gerontol A Biol Sci Med Sci 2001; 56: M180–M185.PubMedGoogle Scholar
  57. 57.
    Edwards RR, Fillingim RB, Ness TJ. Age-related differences in endogenous pain modulation: a comparison of diffuse noxious inhibitory controls in healthy older and younger adults. Pain 2003; 101: 155–165.PubMedCrossRefGoogle Scholar
  58. 58.
    Washington LL, Gibson SJ, Helme RD. Age-related differences in the endogenous analgesic response to repeated cold water immersion in human volunteers. Pain 2000; 89: 89–96.PubMedCrossRefGoogle Scholar
  59. 59.
    Casale G, Pecorini M, Cuzzoni G, de Nicola P. Betaendorphin and cold pressor test in the aged. Gerontology 1985; 31: 101–105.PubMedGoogle Scholar
  60. 60.
    Zheng Z, Gibson SJ, Khalil Z, Helme RD, McMeeken JM. Age-related differences in the time course of capsaicininduced hyperalgesia. Pain 2000; 85: 51–58.PubMedCrossRefGoogle Scholar
  61. 61.
    Chakour MC, Gibson SJ, Bradbeer M, Helme RD. The effect of age on A deltaand C-fibre thermal pain perception. Pain 1996; 64: 143–152.PubMedCrossRefGoogle Scholar
  62. 62.
    Scott JC, Stanski DR. Decreased fentanyl/alfentanil dose requirement with increasing age: a pharmacodynamic basis. J Pharmacol Exp Ther 1987; 240: 159–166.PubMedGoogle Scholar
  63. 63.
    Hudson RJ, Bergstrom RG, Thomson IR, Sabourin MA, Rosenbloom M, Strunin L. Pharmacokinetics of sufentanil in patients undergoing abdominal aortic surgery. Anesthesiology 1989; 70: 426–431.PubMedCrossRefGoogle Scholar
  64. 64.
    Minto CF, Schnider TW, Egan T, et al. The influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil. I. Model development. Anesthesiology 1997; 86: 10–23.PubMedCrossRefGoogle Scholar
  65. 65.
    Lotsch J, Skarke C, Schmidt H, Liefhold J, Geisslinger G. Pharmacokinetic modeling to predict morphine and morphine-6-glucuronide plasma concentrations in healthy young volunteers. Clin Pharmacol Ther 2002; 72: 151–162.PubMedCrossRefGoogle Scholar
  66. 66.
    Inturrisi CE, Colburn WA, Kaiko RF, Houde RW, Foley KM. Pharmacokinetics and pharmacodynamics of methadone in patients with chronic pain. Clin Pharmacol Ther 1987; 41: 392–401.PubMedGoogle Scholar
  67. 67.
    Bjorkman S. Reduction and lumping of physiologically based pharmacokinetic models: prediction of the disposition of fentanyl and pethidine in humans by successively simplified models. J Pharmacokinet Pharmacodyn 2003; 30: 285–307.PubMedCrossRefGoogle Scholar
  68. 68.
    Drover DR, Angst MS, Valle M, et al. Input characteristics and bioavailability after administration of immediate and a new extended-release formulation of hydromorphone in healthy volunteers. Anesthesiology 2002; 97: 827–836.PubMedCrossRefGoogle Scholar
  69. 69.
    Scott JC, Cooke JE, Stanski DR. Electroencephalographic quantitation of opioid effect: comparative pharmacodynamics of fentanyl and sufentanil. Anesthesiology 1991; 74: 34–42.PubMedCrossRefGoogle Scholar
  70. 70.
    Inturrisi CE, Portenoy RK, Max MB, Colburn WA, Foley KM. Pharmacokinetic-pharmacodynamic relationships of methadone infusions in patients with cancer pain. Clin Pharmacol Ther 1990; 47: 565–577.PubMedGoogle Scholar
  71. 71.
    Qiao GL, Fung KF. Pharmacokinetic-pharmacodynamic modelling of meperidine in goats (II): modelling. J Vet Pharmacol Ther 1994; 17: 127–134.PubMedGoogle Scholar
  72. 72.
    Hill JL, Zacny JP. Comparing the subjective, psychomotor, and physiological effects of intravenous hydromorphone and morphine in healthy volunteers. Psychopharmacology (Berl) 2000; 152: 31–39.CrossRefGoogle Scholar
  73. 73.
    Shafer SL, Varvel JR. Pharmacokinetics, pharmacodynamics, and rational opioid selection. Anesthesiology 1991; 74: 53–63.PubMedGoogle Scholar
  74. 74.
    Shafer SL, Gregg KM. Algorithms to rapidly achieve and maintain stable drug concentrations at the site of drug effect with a computer-controlled infusion pump. J Pharmacokinet Biopharm 1992; 20: 147–169.PubMedCrossRefGoogle Scholar
  75. 75.
    Henthorn TK, Krejcie TC, Shanks CA, Avram MJ. Time-dependent distribution volume and kinetics of the pharmacodynamic effector site. J Pharm Sci 1992; 81: 1136–1138.PubMedCrossRefGoogle Scholar
  76. 76.
    Wada DR, Drover DR, Lemmens HJ. Determination of the distribution volume that can be used to calculate the intravenous loading dose. Clin Pharmacokinet 1998; 35: 1–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Gourlay GK, Kowalski SR, Plummer JL, Cousins MJ, Armstrong PJ. Fentanyl blood concentration-analgesic response relationship in the treatment of postoperative pain. Anesth Analg 1988; 67: 329–337.PubMedCrossRefGoogle Scholar
  78. 78.
    Lehmann KA, Ribbert N, Horrichs-Haermeyer G. Postoperative patient-controlled analgesia with alfentanil: analgesic efficacy and minimum effective concentrations. J Pain Symptom Manage 1990; 5: 249–258.PubMedCrossRefGoogle Scholar
  79. 79.
    Dahlstrom B, Tamsen A, Paalzow L, Hartvig P. Patientcontrolled analgesic therapy. Part IV. Pharmacokinetics and analgesic plasma concentrations of morphine. Clin Pharmacokinet 1982; 7: 266–279.PubMedGoogle Scholar
  80. 80.
    Gourlay GK, Willis RJ, Wilson PR. Postoperative pain control with methadone: influence of supplementary methadone doses and blood concentration-response relationships. Anesthesiology 1984; 61: 19–26.PubMedCrossRefGoogle Scholar
  81. 81.
    Mather LE, Glynn CJ. The minimum effective analgetic blood concentration of pethidine in patients with intractable pain. Br J Clin Pharmacol 1982; 14: 385–390.PubMedGoogle Scholar
  82. 82.
    Coda B, Tanaka A, Jacobson RC, Donaldson G, Chapman CR. Hydromorphone analgesia after intravenous bolus administration. Pain 1997; 71: 41–48.PubMedCrossRefGoogle Scholar
  83. 83.
    Hill JL, Zacny JP. Comparing the subjective, psychomotor, and physiological effects of intravenous hydromorphone and morphine in healthy volunteers. Psychopharmacology (Berl) 2000; 152: 31–39.CrossRefGoogle Scholar
  84. 84.
    Hughes MA, Glass PS, Jacobs JR. Context-sensitive half-time in multicompartment pharmacokinetic models for intravenous anesthetic drugs. Anesthesiology 1992; 76: 334–341.PubMedCrossRefGoogle Scholar
  85. 85.
    Youngs EJ, Shafer SL. Pharmacokinetic parameters relevant to recovery from opioids. Anesthesiology 1994; 81: 833–842.PubMedCrossRefGoogle Scholar
  86. 86.
    Gintzler AR, Gershon MD, Spector S. A nonpeptide morphine-like compound: immunocytochemical localization in the mouse brain. Science 1978; 199: 447–448.PubMedCrossRefGoogle Scholar
  87. 87.
    Goldstein A, Barrett RW, James IF, et al. Morphine and other opiates from beef brain and adrenal. Proc Natl Acad Sci USA 1985; 82: 5203–5207.PubMedCrossRefGoogle Scholar
  88. 88.
    Donnerer J, Oka K, Brossi A, Rice KC, Spector S. Presence and formation of codeine and morphine in the rat. Proc Natl Acad Sci USA 1986; 83: 4566–4567.PubMedCrossRefGoogle Scholar
  89. 89.
    Cardinale GJ, Donnerer J, Finck AD, Kantrowitz JD, Oka K, Spector S. Morphine and codeine are endogenous components of human cerebrospinal fluid. Life Sci 1987; 40: 301–306.PubMedCrossRefGoogle Scholar
  90. 90.
    Lotsch J, Geisslinger G. Morphine-6-glucuronide: an analgesic of the future? Clin Pharmacokinet 2001; 40: 485–499.PubMedCrossRefGoogle Scholar
  91. 91.
    Paul D, Standifer KM, Inturrisi CE, Pasternak GW. Pharmacological characterization of morphine-6 beta-glucuronide, a very potent morphine metabolite. J Pharmacol Exp Ther 1989; 251: 477–483.PubMedGoogle Scholar
  92. 92.
    Lotsch J, Kobal G, Stockmann A, Brune K, Geisslinger G. Lack of analgesic activity of morphine-6-glucuronide after short-term intravenous administration in healthy volunteers. Anesthesiology 1997; 87(6): 1348–1358.PubMedCrossRefGoogle Scholar
  93. 93.
    Lotsch J, Kobal G, Geisslinger G. No contribution of morphine-6-glucuronide to clinical morphine effects after short-term administration. Clin Neuropharmacol 1998; 21: 351–354.PubMedGoogle Scholar
  94. 94.
    Wolff T, Samuelsson H, Hedner T. Morphine and morphine metabolite concentrations in cerebrospinal fluid and plasma in cancer pain patients after slow-release oral morphine administration. Pain 1995; 62: 147–154.PubMedCrossRefGoogle Scholar
  95. 95.
    Portenoy RK, Foley KM, Stulman J, et al. Plasma morphine and morphine-6-glucuronide during chronic morphine therapy for cancer pain: plasma profiles, steady-state concentrations and the consequences of renal failure. Pain 1991; 47: 13–19.PubMedCrossRefGoogle Scholar
  96. 96.
    Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 1976; 16: 31–41.PubMedCrossRefGoogle Scholar
  97. 97.
    Lotsch J, Skarke C, Schmidt H, Grosch S, Geisslinger G. The transfer half-life of morphine-6-glucuronide from plasma to effect site assessed by pupil size measurement in healthy volunteers. Anesthesiology 2001; 95: 1329–1338.PubMedCrossRefGoogle Scholar
  98. 98.
    Skarke C, Jarrar M, Erb K, Schmidt H, Geisslinger G, Lotsch J. Respiratory and miotic effects of morphine in healthy volunteers when P-glycoprotein is blocked by quinidine. Clin Pharmacol Ther 2003; 74: 303–311.PubMedCrossRefGoogle Scholar
  99. 99.
    Skarke C, Darimont J, Schmidt H, Geisslinger G, Lotsch J. Analgesic effects of morphine and morphine-6-glucuronide in a transcutaneous electrical pain model in healthy volunteers. Clin Pharmacol Ther 2003; 73: 107–121.PubMedCrossRefGoogle Scholar
  100. 100.
    Letrent SP, Polli JW, Humphreys JE, Pollack GM, Brouwer KR, Brouwer KL. P-glycoprotein-mediated transport of morphine in brain capillary endothelial cells. Biochem Pharmacol 1999; 58: 951–957.PubMedCrossRefGoogle Scholar
  101. 101.
    Dahan A, Romberg R, Teppema L, Sarton E, Bijl H, Olofsen E. Simultaneous measurement and integrated analysis of analgesia and respiration after an intravenous morphine infusion. Anesthesiology 2004; 101: 1201–1209.PubMedCrossRefGoogle Scholar
  102. 102.
    Aubrun F, Monsel S, Langeron O, Coriat P, Riou B. Postoperative titration of intravenous morphine in the elderly patient. Anesthesiology 2002; 96: 17–23.PubMedCrossRefGoogle Scholar
  103. 103.
    AubrunF, Bunge D, Langeron O, Saillant G, Coriat P, Riou B. Postoperative morphine consumption in the elderly patient. Anesthesiology 2003; 99: 160–165.PubMedCrossRefGoogle Scholar
  104. 104.
    Wagner LE 2nd, Eaton M, Sabnis SS, Gingrich KJ. Meperidine and lidocaine block of recombinant voltagedependent Na+ channels: evidence that meperidine is a local anesthetic. Anesthesiology 1999; 91: 1481–1490.PubMedCrossRefGoogle Scholar
  105. 105.
    Wolff M, Olschewski A, Vogel W, Hempelmann G. Meperidine suppresses the excitability of spinal dorsal horn neurons. Anesthesiology 2004; 100: 947–955.PubMedCrossRefGoogle Scholar
  106. 106.
    Holmberg L, Odar-Cederlof I, Boreus LO, Heyner L, Ehrnebo M. Comparative disposition of pethidine and norpethidine in old and young patients. Eur J Clin Pharmacol 1982; 22: 175–179.PubMedCrossRefGoogle Scholar
  107. 107.
    Seifert CF, Kennedy S. Meperidine is alive and well in the new millennium: evaluation of meperidine usage patterns and frequency of adverse drug reactions. Pharmacotherapy 2004; 24: 776–783.PubMedCrossRefGoogle Scholar
  108. 108.
    Odar-Cederlof I, Boreus LO, Bondesson U, Holmberg L, Heyner L. Comparison of renal excretion of pethidine (meperidine) and its metabolites in old and young patients. Eur J Clin Pharmacol 1985; 28: 171–175.PubMedCrossRefGoogle Scholar
  109. 109.
    Huang YF, Upton RN, Rutten AJ, Mather LE. The hemodynamic effects of intravenous bolus doses of meperidine in conscious sheep. Anesth Analg 1994; 78: 442–449.PubMedCrossRefGoogle Scholar
  110. 110.
    Zornberg GL, Bodkin JA, Cohen BM. Severe adverse interaction between pethidine and selegiline. Lancet 1991; 337: 246.PubMedCrossRefGoogle Scholar
  111. 111.
    Keeri-Szanto M. Anaesthesia time/dose curves IX: the use of hydromorphone in surgical anaesthesia and postoperative pain relief in comparison to morphine. Can Anaesth Soc J 1976; 23: 587–595.PubMedGoogle Scholar
  112. 112.
    Kopp A, Wachauer D, Hoerauf KH, Zulus E, Reiter WJ, Steltzer H. Effect of preemptive hydromorphone administration on postoperative pain relief—a randomized controlled trial. Wien Klin Wochenschr 2000; 112: 1002–1006.PubMedGoogle Scholar
  113. 113.
    Rapp SE, Egan KJ, Ross BK, Wild LM, Terman GW, Ching JM. A multidimensional comparison of morphine and hydromorphone patient-controlled analgesia. Anesth Analg 1996; 82: 1043–1048.PubMedCrossRefGoogle Scholar
  114. 114.
    Liu S, Carpenter RL, Mulroy MF, et al. Intravenous versus epidural administration of hydromorphone. Effects on analgesia and recovery after radical retropubic prostatectomy. Anesthesiology 1995; 82: 682–688.PubMedGoogle Scholar
  115. 115.
    Brose WG, Tanelian DL, Brodsky JB, Mark JB, Cousins MJ. CSF and blood pharmacokinetics of hydromorphone and morphine following lumbar epidural administration. Pain 1991; 45: 11–15.PubMedCrossRefGoogle Scholar
  116. 116.
    Halpern SH, Arellano R, Preston R, et al. Epidural morphine vs hydromorphone in post-caesarean section patients. Can J Anaesth 1996; 43: 595–598.PubMedGoogle Scholar
  117. 117.
    Bentley JB, Borel JD, Nenad RE Jr, Gillespie TJ. Age and fentanyl pharmacokinetics. Anesth Analg 1982; 61: 968–971.PubMedCrossRefGoogle Scholar
  118. 118.
    Singleton MA, Rosen JI, Fisher DM. Pharmacokinetics of fentanyl in the elderly. Br J Anaesth 1988; 60: 619–622.PubMedCrossRefGoogle Scholar
  119. 119.
    Scott JC, Ponganis KV, Stanski DR. EEG quantitation of narcotic effect: the comparative pharmacodynamics of fentanyl and alfentanil. Anesthesiology 1985; 62: 234–241.PubMedGoogle Scholar
  120. 120.
    Martin G, Glass PS, Breslin DS, et al. A study of anesthetic drug utilization in different age groups. J Clin Anesth 2003; 15: 194–200.PubMedCrossRefGoogle Scholar
  121. 121.
    Holdsworth MT, Forman WB, Killilea TA, et al. Transdermal fentanyl disposition in elderly subjects. Gerontology 1994; 40: 32–37.PubMedGoogle Scholar
  122. 122.
    Davis MP, Srivastava M. Demographics, assessment and management of pain in the elderly. Drugs Aging 2003; 20: 23–57.PubMedCrossRefGoogle Scholar
  123. 123.
    Kharasch ED, Hoffer C, Whittington D. Influence of age on the pharmacokinetics and pharmacodynamics of oral transmucosal fentanyl citrate. Anesthesiology 2004; 101: 738–743.PubMedCrossRefGoogle Scholar
  124. 124.
    Shafer A, Sung ML, White PF. Pharmacokinetics and pharmacodynamics of alfentanil infusions during general anesthesia. Anesth Analg 1986; 65: 1021–1028.PubMedCrossRefGoogle Scholar
  125. 125.
    Sitar DS, Duke PC, Benthuysen JL, Sanford TJ, Smith NT. Aging and alfentanil disposition in healthy volunteers and surgical patients. Can J Anaesth 1989; 36: 149–154.PubMedGoogle Scholar
  126. 126.
    Kent AP, Dodson ME, Bower S. The pharmacokinetics and clinical effects of a low dose of alfentanil in elderly patients. Acta Anaesthesiol Belg 1988; 39: 25–33.PubMedGoogle Scholar
  127. 127.
    Lemmens HJ, Burm AG, Hennis PJ, Gladines MP, Bovill JG. Influence of age on the pharmacokinetics of alfentanil. Gender dependence. Clin Pharmacokinet 1990; 19: 416–422.PubMedCrossRefGoogle Scholar
  128. 128.
    Maitre PO, Vozeh S, Heykants J, Thomson DA, Stanski DR. Population pharmacokinetics of alfentanil: the average dose-plasma concentration relationship and interindividual variability in patients. Anesthesiology 1987; 68: 59–67.Google Scholar
  129. 129.
    Raemer DB, Buschman A, Varvel JR, et al. The prospective use of population pharmacokinetics in a computerdriven system for alfentanil. Anesthesiology 1990; 73: 66–72.PubMedCrossRefGoogle Scholar
  130. 130.
    Lemmens HJ, Burm AG, Bovill JG, Hennis PJ. Pharmacodynamics of alfentanil as a supplement to nitrous oxide anaesthesia in the elderly patient. Br J Anaesth 1988; 61: 173–179.PubMedCrossRefGoogle Scholar
  131. 131.
    Lemmens HJ, Bovill JG, Hennis PJ, Burm AG. Age has no effect on the pharmacodynamics of alfentanil. Anesth Analg 1988; 67: 956–960.PubMedCrossRefGoogle Scholar
  132. 132.
    Lemmens HJ, Burm AG, Bovill JG, Hennis PJ, Gladines MP. Pharmacodynamics of alfentanil. The role of plasma protein binding. Anesthesiology 1992; 76: 65–70.PubMedCrossRefGoogle Scholar
  133. 133.
    Lemmens HJ, Bovill JG, Burm AG, Hennis PJ. Alfentanil infusion in the elderly. Prolonged computer-assisted infusion of alfentanil in the elderly surgical patient. Anaesthesia 1988; 43: 850–856.PubMedCrossRefGoogle Scholar
  134. 134.
    Scott JC, Cooke JE, Stanski DR. Electroencephalographic quantitation of opioid effect: comparative pharmacodynamics of fentanyl and sufentanil. Anesthesiology 1991; 74: 34–42.PubMedCrossRefGoogle Scholar
  135. 135.
    Helmers JH, van Leeuwen L, Zuurmond WW. Sufentanil pharmacokinetics in young adult and elderly surgical patients. Eur J Anaesthesiol 1994; 11: 181–185.PubMedGoogle Scholar
  136. 136.
    Gepts E, Shafer SL, Camu F, et al. Linearity of pharmacokinetics and model estimation of sufentanil. Anesthesiology 1995; 83: 1194–1204.PubMedCrossRefGoogle Scholar
  137. 137.
    Matteo RS, Schwartz AE, Ornstein E, Young WL, Chang WJ. Pharmacokinetics of sufentanil in the elderly surgical patient. Can J Anaesth 1990; 37: 852–856.PubMedGoogle Scholar
  138. 138.
    Hofbauer R, Tesinsky P, Hammerschmidt V, et al. No reduction in the sufentanil requirement of elderly patients undergoing ventilatory support in the medical intensive care unit. Eur J Anaesthesiol 1999; 16: 702–707.PubMedCrossRefGoogle Scholar
  139. 139.
    Minto CF, Schnider TW, Shafer SL. The influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil. II. Model application. Anesthesiology 1997; 86: 24–33.PubMedCrossRefGoogle Scholar
  140. 140.
    Shimoyama N, Shimoyama M, Elliott KJ, Inturrisi CE. d-Methadone is antinociceptive in the rat formalin test. J Pharmacol Exp Ther 1997; 283: 648–652.PubMedGoogle Scholar
  141. 141.
    Davis AM, Inturrisi CE. d-Methadone blocks morphine tolerance and N-methyl-D-aspartate-induced hyperalgesia. J Pharmacol Exp Ther 1999; 289: 1048–1053.PubMedGoogle Scholar
  142. 142.
    Callahan RJ, Au JD, Paul M, Liu C, Yost CS. Functional inhibition by methadone of N-methyl-D-aspartate receptors expressed in Xenopus oocytes: stereospecific and subunit effects. Anesth Analg 2004; 98: 653–659.PubMedCrossRefGoogle Scholar
  143. 143.
    Lavand’Homme P, De Kock M. Practical guidelines on the postoperative use of patient-controlled analgesia in the elderly. Drugs Aging 1998; 13: 9–16.PubMedCrossRefGoogle Scholar
  144. 144.
    Macintyre PE, Jarvis DA. Age is the best predictor of postoperative morphine requirements. Pain 1996; 64: 357–364.PubMedCrossRefGoogle Scholar
  145. 145.
    Woodhouse A, Mather LE. The influence of age upon opioid analgesic use in the patient-controlled analgesia environment. Anaesthesia 1997; 52: 949–955.PubMedCrossRefGoogle Scholar
  146. 146.
    Gagliese L, Jackson M, Ritvo P, Wowk A, Katz J. Age is not an impediment to effective use of patient-controlled analgesia by surgical patients. Anesthesiology 2000; 93: 601–610.PubMedCrossRefGoogle Scholar
  147. 147.
    Ready LB. PCA is effective for older patients, but are there limits? Anesthesiology 2000; 93: 597–598.PubMedCrossRefGoogle Scholar
  148. 148.
    Beattie WS, Warriner CB, Etches R, et al. The addition of continuous intravenous infusion of ketorolac to a patientcontrolled analgetic morphine regime reduced postoperative myocardial ischemia in patients undergoing elective total hip or knee arthroplasty. Anesth Analg 1997; 84: 715–722.PubMedCrossRefGoogle Scholar
  149. 149.
    Malmberg AB, Yaksh TL. Pharmacology of the spinal action of ketorolac, morphine, ST-91, U50488H, and L-PIA on the formalin test and an isobolographic analysis of the NSAID interaction. Anesthesiology 1993; 79: 270–281.PubMedCrossRefGoogle Scholar
  150. 150.
    Lashbrook JM, Ossipov MH, Hunter JC, Raffa RB, Tallarida RJ, Porreca F. Synergistic antiallodynic effects of spinal morphine with ketorolac and selective COX1-and COX2-inhibitors in nerve-injured rats. Pain 1999; 82: 65–72.PubMedCrossRefGoogle Scholar
  151. 151.
    Gloth FM 3rd. Pain management in older adults: prevention and treatment. J Am Geriatr Soc 2001; 49: 188–199.PubMedCrossRefGoogle Scholar
  152. 152.
    Wilder-Smith OH. Opioid use in the elderly. Eur J Pain 2005; 9: 137–140.PubMedCrossRefGoogle Scholar
  153. 153.
    Nikolaus T, Zeyfang A. Pharmacological treatments for persistent non-malignant pain in older persons. Drugs Aging 2004; 21: 19–41.PubMedCrossRefGoogle Scholar
  154. 154.
    Taguchi A, Sharma N, Saleem RM, et al. Selective postoperative inhibition of gastrointestinal opioid receptors. N Engl J Med 2001; 345: 935–940.PubMedCrossRefGoogle Scholar
  155. 155.
    Kurz A, Sessler DI. Opioid-induced bowel dysfunction: pathophysiology and potential new therapies. Drugs 2003; 63: 649–671.PubMedCrossRefGoogle Scholar
  156. 156.
    Nieuwenhuijs DJ, Olofsen E, Romberg RR, et al. Response surface modeling of remifentanil-propofol interaction on cardiorespiratory control and bispectral index. Anesthesiology 2003; 98: 312–322.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Steven L. Shafer
    • 1
    • 2
  • Pamela Flood
    • 3
  1. 1.Department of AnesthesiaStanford UniversityPalo Alto
  2. 2.Department of Biopharmaceutical Sciences and AnesthesiaUniversity of California San FranciscoSan FranciscoUSA
  3. 3.Department of AnesthesiologyColumbia UniversityNew YorkUSA

Personalised recommendations