Advertisement

A Draw-Over Vaporizer with a Nonrebreathing Circuit

You are the only anesthesiologist who is part of a medical team to visit an outlying village in Columbia, South America. Unfortunately, all your anesthetic equipment has not arrived and today is the day for operations on 12 orthopedic patients. You are presented with an Ohmeda Cyprane PAC (portable anesthesia complete) isoflurane draw-over circuit as the only available anesthesia delivery system (Fig 37.1).The anesthesia nurse, who is a Columbian and works in the hospital, says she had been recommended this equipment by an overseas anesthesiologist some years ago. She has used it with great success both for spontaneously breathing patients and those she had to paralyze. In the latter case, she used an Ambu bag attached to the draw-over circuit. She tells you that she was recommended to use the Penlon Oxford Ventilator (which was also left behind) instead of the Ambu bag. However, she has not used it yet. She is very keen for you to show her how to use the Penlon Ventilator. You are not so sure, but ask for any information she may have on this equipment. She hands you a paper (1) describing the use of the draw-over vaporizer and the Penlon Oxford Ventilator (the latter is to be placed at F in Fig. 37.1). You read the text and study the diagram below. The vaporizer D is fitted with a 900-ml corrugated anesthetic tubing (B) with a dust filter at the inlet (A). Oxygen can be given through inlet C. Air is drawn in and through the vaporizer by the patient during inspiration. B acts as a reservoir of oxygen between inspirations if oxygen is used. However, in a healthy patient you may elect not to use oxygen. The outlet E of the PACU vaporizer incorporates a one-way valve that is connected via a second anesthetic tube to a T-connector (F). This T-connector is the ventilation port to which an Ambu bag or a ventilator can be attached. From the T-connector right exit, another anesthetic tube leads to a one-way Ruben’s valve (G) and the patient’s mask (H), or to an endotracheal tube. An exhaust tube (I) carries expired gases from the patient to a scavenging system or into the air. A side-stream adaptor (J) is used for end-tidal CO2 and/or gas analyzer. Unidirectional flow during ventilation is maintained in the PAC draw-over circuit by the one-way valves at E and G, such that negative pressure at F draws only carrier gas through the vaporizer and into the circuit. Positive pressure applied at F directs the flow only to the patient, as reverse flow is blocked at E. Back flow of exhaust gas into the circuit is also blocked during all phases of respiration by the Ruben’s valve. You also discover that the Penlon Oxford Ventilator is fed by a compressed gas source, and thus provides only a positive-pressure cycle?

Keywords

Scavenge System Orthopedic Patient Anesthetic Equipment Ventilation Port Exhaust Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ezi-Ashi TI, Papworth DP, Nunn JF. Inhalational anesthesia in developing coun-tries. Part 2. Review of existing apparatus. Anaesthesia 1983;38:736-747.CrossRefPubMedGoogle Scholar
  2. 2.
    Ali K, Brock-Utne JG. Performance evaluation of a draw-over vaporizer with a non-rebreathing circuit during stimulated adverse conditions. J. Clin Anesth 1992;4:468-471.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Personalised recommendations