Detection of Facial Feature Points Using Anthropometric Face Model

  • Abu Sayeed Md. Sohail
  • Prabir Bhattacharya
Part of the Multimedia Systems and Applications Series book series (MMSA, volume 31)


This chapter describes an automated technique for detecting the eighteen most important facial feature points using a statistically developed anthropometric face model. Most of the important facial feature points are located just about the area of mouth, nose, eyes and eyebrows. After carefully observing the structural symmetry of human face and performing necessary anthropometric measurements, we have been able to construct a model that can be used in isolating the above mentioned facial feature regions. In the proposed model, distance between the two eye centers serves as the principal parameter of measurement for locating the centers of other facial feature regions. Hence, our method works by detecting the two eye centers in every possible situation of eyes and isolating each of the facial feature regions using the proposed anthropometric face model . Combinations of differnt image processing techniques are then applied within the localized regions for detecting the eighteen most important facial feature points. Experimental result shows that the developed system can detect the eighteen feature points successfully in 90.44% cases when applied over the test databases.


Feature Point Face Image Facial Feature Feature Point Detection Facial Feature Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Xhang, L., Lenders, P.: Knowledge-based Eye Detection for Human Face Recognition. In: Fourth IEEE International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies, Vol. 1 (2000) 117-120Google Scholar
  2. 2.
    Rizon, M., Kawaguchi, T.: Automatic Eye Detection Using Intensity and Edge Information. In: Proceedings TENCON, Vol. 2 (2000) 415-420Google Scholar
  3. 3.
    Phimoltares, S., Lursinsap, C., Chamnongthai, K.: Locating Essential Facial Features Using Neural Visual Model. In: First International Conference on Machine Learning and Cybernetics (2002) 1914-1919Google Scholar
  4. 4.
    Yuille, A.L., Hallinan, P.W., Cohen, D.S.: Feature Extraction from Faces Using Deformable Templates. International Journal of Computer Vision, Vol. 8, No. 2, (1992) 99-111CrossRefGoogle Scholar
  5. 5.
    Brunelli, R., Poggio, T.: Face Recognition: Features Versus Templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 15, No. 10 (1993) 1042-1062CrossRefGoogle Scholar
  6. 6.
    Herpers, R., Sommer, G.: An Attentive Processing Strategy for the Analysis of Facial Features. In: Wechsler H. et al. (eds.): Face Recognition: From Theory to Applications, Springer-Verlag, Berlin Heidelberg New York (1998) 457-4687Google Scholar
  7. 7.
    Pardas, M., Losada, M.: Facial Parameter Extraction System Based on Active Contours. In: International Conference on Image Processing, Thessaloniki, (2001) 1058-1061Google Scholar
  8. 8.
    Kawaguchi, T., Hidaka, D., Rizon, M.: Detection of Eyes from Human Faces by Hough Transform and Separability Filter. In: International Conference on Image Processing, Vancouver, Canada (2000) 49-52Google Scholar
  9. 9.
    Spors, S., Rebenstein, R.: A Real-time Face Tracker for Color Video. In: IEEE International Conference on Acoustics, Speech and Signal Processing, Vol. 3 (2001) 1493-1496Google Scholar
  10. 10.
    Perez, C. A., Palma, A., Holzmann C. A., Pena, C.: Face and Eye Tracking Algorithm Based on Digital Image Processing. In: IEEE International Conference on Systems, Man and Cybernetics, Vol. 2 (2001) 1178-1183Google Scholar
  11. 11.
    Hsu, R. L., Abdel-Mottaleb, M., Jain, A. K.: Face Detection in Color Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 5 (2002) 696-706CrossRefGoogle Scholar
  12. 12.
    Xin, Z., Yanjun, X., Limin, D.: Locating Facial Features with Color Information. In: IEEE International Conference on Signal Processing, Vol.2 (1998) 889-892Google Scholar
  13. 13.
    Kim, H.C., Kim, D., Bang, S. Y.: A PCA Mixture Model with an Efficient Model Selection Method. In: IEEE International Joint Conference on Neural Networks, Vol. 1 (2001) 430-435Google Scholar
  14. 14.
    Lee, H. W., Kil, S. K, Han, Y., Hong, S. H.: Automatic Face and Facial Feature Detection. IEEE International Symposium on Industrial Electronics (2001) 254-259Google Scholar
  15. 15.
    Wilson, P. I., Fernandez, J.: Facial Feature Detection Using Haar Classifiers. Journal of Computing Sciences in Colleges, Vol. 21, No. 4 (2006) 127-133Google Scholar
  16. 16.
    Marini, R.: Subpixellic Eyes Detection. In: IEEE International Conference on Image Analysis and Processing (1999) 496-501Google Scholar
  17. 17.
    Chandrasekaran, V., Liu, Z. Q.: Facial Feature Detection Using Compact Vector-field Canonical Templates. In: IEEE International Conference on Systems, Man and Cybernetics, Vol. 3 (1997) 2022-2027Google Scholar
  18. 18.
    Sohail, A. S. M., Bhattacharya, P.: Localization of Facial Feature Regions Using Anthropometric Face Model. In: I International Conference on Multidisciplinary Information Sciences and Technologies, (2006)Google Scholar
  19. 19.
    Farkas, L.: Anthropometry of the Head and Face. Raven Press, New York (1994)Google Scholar
  20. 20.
    Fasel, I., Fortenberry, B., Movellan, J. R.: A Generative Framework for Realtime Object Detection and Classification. Computer Vision and Image Understanding, Vol.98 (2005) 182-210CrossRefGoogle Scholar
  21. 21.
    Efford, N.: Digital Image Processing: A Practical Introduction Using Java. Addison-Wesley, Essex (2000)Google Scholar
  22. 22.
    Ritter, G. X., Wilson, J. N.: Handbook of Computer Vision Algorithms in Image Algebra. CRC Press, Boca Raton, USA (1996)MATHGoogle Scholar
  23. 23.
    Otsu, N.: A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, Vol. 9, No. 1 (1979) 62-66MathSciNetCrossRefGoogle Scholar
  24. 24.
    Marr, D., and Hildreth, E.: Theory of Edge Detection. In: Royal Society of London, Vol. B 207 (1980) 187-217Google Scholar
  25. 25.
    Gonzalez, R.C., and Woods, R.E.: Digital Image Processing. 2nd edn. Prentice Hall, New Jersey (2002)Google Scholar
  26. 26.
    The Caltech Frontal Face Dataset, collected by Markus Weber, California Institute of Technology, USA; available online at: Scholar
  27. 27.
    The BioID Face Database, developed by HumanScan AG, Grundstrasse 1, CH-6060 Sarnen, Switzerland; available online at: Scholar
  28. 28.
    Lyons, J., Akamatsu, S., Kamachi, M., Gyoba, J.: Coding Facial Expressions with Gabor Wavelets. In: Third IEEE International Conference on Automatic Face and Gesture Recognition (1998) 200-205Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Abu Sayeed Md. Sohail
    • 1
  • Prabir Bhattacharya
    • 1
  1. 1.Concordia Institute for Information Systems Engineering (CIISE)Concordia UniversityMontrealCanada

Personalised recommendations