Advertisement

Asbestosis and Silicosis

  • Philip T. Cagle
  • Timothy Craig Allen
Part of the Molecular Pathology Library book series (MPLB, volume 1)

Abstract

Many of the lung diseases discussed in this book are the result of exposures to environmental substances, including infections, malignancies, immune reactions, and chronic interstitial diseases. Individual sections and chapters discuss lung cancer and mesothelioma (Sections 3 and 4), infections (Section 5), asthma (Chapter 51), and nonneoplastic smoking-related diseases (Chapter 49). This chapter focuses on those exposures that occur in the occupational environment and produce nonneoplastic lung disease. Although occupational exposures may produce asthma, small airways disease, acute lung injury, and hypersensitivity pneumonitis, this chapter discusses the pneumoconioses.

Keywords

Epidermal Growth Factor Receptor Respir Crit Alveolar Epithelial Cell Asbestos Exposure Crystalline Silica 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Churg AM, Green FHY. Occupational lung disease. In Churg AM, Myers JL, Tazelaar HD, Wright JL, eds. Pathology of the Lung, 3rd ed. New York: Thieme Medical Publishers; 2005:769–862.Google Scholar
  2. 2.
    Laga AC, Allen T, Cagle PT. Asbestosis. In Cagle PT, ed. The Color Atlas and Text of Pulmonary Pathology. New York: Lippincott Williams & Wilkins; 2005:393–396.Google Scholar
  3. 3.
    Laga AC, Allen T, Cagle PT. Silicosis. In Cagle PT, ed. The Color Atlas and Text of Pulmonary Pathology. New York: Lippincott Williams & Wilkins; 2005:397–399.Google Scholar
  4. 4.
    Kamp DW, Weitzman SA. The molecular basis of asbestos induced lung injury. Thorax 1999;54(7):638–652.CrossRefPubMedGoogle Scholar
  5. 5.
    Manning CB, Vallyathan V, Mossman BT. Diseases caused by asbestos: mechanisms of injury and disease development. Int Immunopharmacol 2002;2(2–3):191–200.CrossRefPubMedGoogle Scholar
  6. 6.
    Upadhyay D, Kamp DW. Asbestos-induced pulmonary toxicity: role of DNA damage and apoptosis. Exp Biol Med (Maywood) 2003;228(6):650–659.Google Scholar
  7. 7.
    Adamson IYR, Bowden DH. Response of mouse lung to crocidolite asbestos. I. Mineral fibrosis reaction to short fibres. J Pathol 1987;152:99–107.CrossRefPubMedGoogle Scholar
  8. 8.
    Adamson IYR, Bowden DH. Response of mouse lung to crocidolite asbestos. II. Pulmonary fibrosis after long fibres. J Pathol 1987;152:109–117.CrossRefPubMedGoogle Scholar
  9. 9.
    Dixon D, Bowser AD, Badgett A, et al. Incorporation of bromodeoxyuridine (BrdU) in the bronchiolar-alveolar regions of the lungs following two inhalation exposures to chrysotile asbestos in strain A/J mice. J Environ Pathol Toxicol Oncol 1995;14:205–213.PubMedGoogle Scholar
  10. 10.
    BeruBe KA, Quinlan TR, Moulton G, et al. Comparative proliferative and histopathologic changes in rat lungs after inhalation of chrysotile or crocidolite asbestos. Toxicol Appl Pharmacol 1996;137:67–74.CrossRefPubMedGoogle Scholar
  11. 11.
    Weitzman SA, Graceffa P. Asbestos catalyzes hydroxyl and superoxide radical generation from hydrogen peroxide. Arch Biochem Biophys 1984;228:373–376.CrossRefPubMedGoogle Scholar
  12. 12.
    Holley JA, Janssen YMW, Mossman BT, et al. Increased manganese superoxide dismutase protein in type II epithelial cells of rat lungs after inhalation of crocidolite asbestos or cristobalite silica. Am J Pathol 1992;141:475–485.PubMedGoogle Scholar
  13. 13.
    Janssen YMW, Marsh JP, Absher MP, et al. Expression of antioxidant enzymes in rat lungs after inhalation of asbestos or silica. J Biol Chem 1992;267:10625–10630.PubMedGoogle Scholar
  14. 14.
    Lund LG, Aust AE. Iron mobilization from crocidolite asbestos greatly enhances crocidolite-dependent formation of DNA single-strand breaks in phi X174 RFI DNA. Carcinogenesis 1992;13:637–642.CrossRefPubMedGoogle Scholar
  15. 15.
    Kamp DW, Israbian VA, Yeldandi AV, et al. Phytic acid, an iron chelator, attenuates pulmonary inflammation and fibrosis in rats after intratracheal instillation of asbestos. Toxicol Pathol 1995;23:689–695.CrossRefPubMedGoogle Scholar
  16. 16.
    Chao CC, Park SH, Aust AE. Participation of nitric oxide and iron in the oxidation of DNA in asbestos-treated human lung epithelial cells. Arch Biochem Biophys 1996;326:152–157.CrossRefPubMedGoogle Scholar
  17. 17.
    Gilmour PS, Brown DM, Beswick PH, et al. Free radical activity of industrial fibers: role of iron in oxidative stress and activation of transcription factors. Environ Health Perspect 1997;105(Suppl 5):1313–1317.CrossRefPubMedGoogle Scholar
  18. 18.
    Park SH, Aust AE. Regulation of nitric oxide synthase induction by iron and glutathione in asbestos-treated human lung epithelial cells. Arch Biochem Biophys 1998;360:47–52.CrossRefPubMedGoogle Scholar
  19. 19.
    Quinlan TR, Hacker MP, Taatjes D, et al. Mechanisms of asbestos-induced nitric oxide production by rat alveolar macrophages in inhalation and in vitro models. Free Radic Biol Med 1998;24:778–788.CrossRefPubMedGoogle Scholar
  20. 20.
    Tanaka S, Choe N, Hemenway DR, et al. Asbestos inhalation induces reactive nitrogen species and nitrotyrosine formation in the lungs and pleura of the rat. J Clin Invest 1998;102:445–454.CrossRefPubMedGoogle Scholar
  21. 21.
    Driscoll KE, Hassenbein DG, Carter JM, et al. TNF-alpha and increased chemokine expression in rat lung after particle exposure. Toxicol Lett 1995;82/83:483–489.CrossRefGoogle Scholar
  22. 22.
    Driscoll KE, Maurer JK, Higgins J, et al. Alveolar macrophage cytokine and growth factor production in a rat model of crocidolite-induced pulmonary inflammation and fibrosis. J Toxicol Environ Health 1995;46:155–169.CrossRefPubMedGoogle Scholar
  23. 23.
    Broser M, Zhang Y, Aston C, et al. Elevated interleukin-8 in the alveolitis of individuals with asbestos exposure. Int Arch Occup Environ Health 1996;68:109–114.CrossRefPubMedGoogle Scholar
  24. 24.
    Lemaire I, Ouellet S. Distinctive profile of alveolar macrophage-derived cytokine release induced by fibrogenic and nonfibrogenic mineral dusts. J Toxicol Environ Health 1996;47:465–478.CrossRefPubMedGoogle Scholar
  25. 25.
    Dai J, Gilks B, Price K, et al. Mineral dusts directly induce epithelial and interstitial fibrogenic mediators and matrix components in the airway wall. Am J Respir Crit Care Med 1998;158:1907–1913.PubMedGoogle Scholar
  26. 26.
    Driscoll KE, Carter JM, Howard BW, et al. Crocidolite activates NF-kB and MIP-2 gene expression in rat alveolar epithelial cells. Role of mitochondrial-derived oxidants. Environ Health Perspect 1998;106(Suppl 5):1171–1174.CrossRefPubMedGoogle Scholar
  27. 27.
    Simeonova PP, Luster MI. Iron and reactive oxygen species in the asbestos-induced tumor necrosis factor-alpha response from alveolar macrophages. Am J Respir Cell Mol Biol 1995;12:676–683.PubMedGoogle Scholar
  28. 28.
    Driscoll KE, Carter JM, Hassenbein DG, et al. Cytokines and particle-induced inflammatory cell recruitment. Environ Health Perspect 1997;105(Suppl 5):1159–1164.CrossRefPubMedGoogle Scholar
  29. 29.
    Miyazaki Y, Araki K, Vesin C, et al. Expression of a tumor necrosis factor-alpha transgene in murine lung causes lymphocytic and fibrosing alveolitis. J Clin Invest 1995;96:250–259.CrossRefPubMedGoogle Scholar
  30. 30.
    Perdue TD, Brody AR. Distribution of transforming growth factor-beta1, fibronectin, and smooth muscle actin in asbestos-induced pulmonary fibrosis in rats. J Histochem Cytochem 1994;42:1061–1070.PubMedGoogle Scholar
  31. 31.
    Liu J-Y, Morris GF, Lei W-H, et al. Up-regulated expression of transforming growth factor-alpha in the bronchiolar-alveolar duct regions of asbestos-exposed rats. Am J Pathol 1996;149:205–217.PubMedGoogle Scholar
  32. 32.
    Jagirdar J, Lee TC, Reibman J, et al. Immunological localization of transforming growth factor beta isoforms in asbestos-related disease. Environ Health Perspect 1997;105(Suppl 5):1197–1203.CrossRefPubMedGoogle Scholar
  33. 33.
    Partanen R, Hemminki K, Koskinen H, et al. The detection of increased amounts of the extracellular domain of the epidermal growth factor receptor in serum during carcinogenesis in asbestosis patients. J Med 1994;36:1324–1328.Google Scholar
  34. 34.
    Lasky JA, Coin PG, Lindroos PM, et al. Chrysotile asbestos stimulates platelet-derived growth factor-AA production by fat lung fibroblasts in vitro: evidence for an autocrine loop. Am J Respir Crit Care 1995;Med 12:162–170.Google Scholar
  35. 35.
    Timblin C, Robledo R, Rincon M, et al. Transgenic mouse models to determine the role of epidermal growth factor receptor in epithelial cell proliferation, apoptosis, and asbestosis. Chest 2001;120(1 Suppl):22S–24S.CrossRefPubMedGoogle Scholar
  36. 36.
    Robledo RF, Buder-Hoffmann SA, Cummins AB, et al. Increased phosphorylated extracellular signal-regulated kinase immunoreactivity associated with proliferative and morphologic lung alterations after chrysotile asbestos inhalation in mice. Am J Pathol 2000;156(4):1307–1316.PubMedGoogle Scholar
  37. 37.
    Cummins AB, Palmer C, Mossman BT, et al. Persistent localization of activated extracellular signal-regulated kinases (ERK1/2) is epithelial cell-specific in an inhalation model of asbestosis. Am J Pathol 2003;162(3):713–720.PubMedGoogle Scholar
  38. 38.
    Janssen YMW, Barchowsky A, Treadwell M, et al. Asbestos induces nuclear factor-kappa B (NF-kB) DNA-binding activity and NF-kB-dependent gene expression in tracheal epithelial cells. Proc Natl Acad Sci USA 1995;92:8458–8462.CrossRefPubMedGoogle Scholar
  39. 39.
    Cheng N, Shi X, Ye J, et al. Role of transcription factor NF-kappaB in asbestos-induced TNFalpha response from macrophages. Exp Mol Pathol 1999;66(3):201–210.CrossRefPubMedGoogle Scholar
  40. 40.
    Janssen YMW, Heintz NH, Mossman BT. Induction of cfos and c-jun protooncogene expression by asbestos is ameliorated by N-acetyl-L-cysteine in mesothelial cells. Cancer Res 1995;55:2065–2089.Google Scholar
  41. 41.
    Mishra A, Liu J-Y, Brody AR, et al. Inhaled asbestos fibers induce p53 expression in the rat lung. Am J Respir Cell Mol Biol 1997;16:479–485.PubMedGoogle Scholar
  42. 42.
    Panduri V, Surapureddi S, Soberanes S, et al. P53 mediates amosite asbestos-induced alveolar epithelial cell mitochondria-regulated apoptosis. Am J Respir Cell Mol Biol 2006;34(4):443–452.CrossRefPubMedGoogle Scholar
  43. 43.
    Virag L. Poly(ADP-ribosyl)ation in asthma and other lung diseases. Pharmacol Res 2005;52(1):83–92CrossRefPubMedGoogle Scholar
  44. 44.
    Iakhiaev A, Idell S. Asbestos induces tissue factor in Beas-2B cells via PI3 kinase-PKC-mediated signaling. J Toxicol Environ Health A 2004;67(19):1537–1547.CrossRefPubMedGoogle Scholar
  45. 45.
    Shi X, Mao Y, Daniel LN. Generation of reactive oxygen species by quartz particles and its implication for cellular damage. Appl Occup Environ Hyg 1995;10:1138–1144.Google Scholar
  46. 46.
    Mossman BT, Churg A. Mechanisms in the pathogenesis of asbestosis and silicosis. Am J Respir Crit Care Med 1998;157:1666–1680.PubMedGoogle Scholar
  47. 47.
    Fubini B, Hubbard A. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radic Biol Med 2003;34:1507–1516.CrossRefPubMedGoogle Scholar
  48. 48.
    Rimal B, Greenberg AK, Rom WN. Basic pathogenetic mechanisms in silicosis: current understanding. Curr Opin Pulm Med 2005;11(2):169–173.CrossRefPubMedGoogle Scholar
  49. 49.
    Piguet PF, Collart MA, Grau GE, et al. Requirement of tumour necrosis factor for development of silica-induced pulmonary fibrosis. Nature 1990;344:245–247.CrossRefPubMedGoogle Scholar
  50. 50.
    Gossart S, Cambon C, Orfila C, et al. Reactive oxygen intermediates as regulators of TNF production in rat lung inflammation induced by silica. J Immunol 1996;156:1540–1548.PubMedGoogle Scholar
  51. 51.
    Davis GS, Pfeiffer LM, Hemenway D. Persistent overexpression of interleukin-1beta and tumor necrosis factoralpha in murine silicosis. J Environ Pathol Toxicol Oncol 1998;17:99–114.PubMedGoogle Scholar
  52. 52.
    Barbarin V, Arras M, Huax F. Characterization of the effect of Interleukin 10 on silica induced lung fibrosis in mice. Am J Respir Crit Care Med 2004;31:78–85.Google Scholar
  53. 53.
    Barbarin V, Xing Z, Delos M, et al. Pulmonary overexpression of IL-10 augments lung fibrosis and Th2 responses induced by silica particles. Am J Physiol Lung Cell Mol Physiol 2005;288(5):L841–L848.CrossRefPubMedGoogle Scholar
  54. 54.
    Ding M, Chen F, Shi X, et al. Diseases caused by silica: mechanisms of injury and disease development. Int Immunopharmacol 2002;2(2–3):173–182.CrossRefPubMedGoogle Scholar
  55. 55.
    Dosreis GA, Borges VM, Zin WA. The central role of Fasligand cell signaling in inflammatory lung diseases. J Cell Mol Med 2004;8(3):285–293.CrossRefPubMedGoogle Scholar
  56. 56.
    Takata-Tomokuni A, Ueki A, Shiwa M, et al. Detection, epitope-mapping and function of anti-Fas autoantibody in patients with silicosis. Immunology 2005;116(1):21–29.CrossRefPubMedGoogle Scholar
  57. 57.
    Otsuki T, Miura Y, Nishimura Y, et al. Alterations of Fas and Fas-related molecules in patients with silicosis. Exp Biol Med (Maywood) 2006;231(5):522–533.Google Scholar
  58. 58.
    Ueki A, Isozaki Y, Kusaka M. Anti-caspase-8 autoantibody response in silicosis patients is associated with HLA-DRB1, DQB1 and DPB1 alleles. J Occup Health 2005;47(1):61–67.CrossRefPubMedGoogle Scholar
  59. 59.
    Delgado L, Parra ER, Capelozzi VL. Apoptosis and extracellular matrix remodeling in human silicosis. Histopathology 2006;49:283–289.CrossRefPubMedGoogle Scholar
  60. 60.
    Wang L, Bowman L, Lu Y, et al. Essential role of p53 in silica-induced apoptosis. Am J Physiol Lung Cell Mol Physiol 2005;288(3):L488–L496.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Philip T. Cagle
    • 1
    • 2
  • Timothy Craig Allen
    • 3
  1. 1.Pathology and Laboratory MedicineWeill Medical College of Cornell UniversityNew York
  2. 2.The Methodist HospitalHoustonUSA
  3. 3.Department of PathologyUniversity of Texas Health Center at TylerTylerUSA

Personalised recommendations