Skip to main content

Pulmonary Arterial Hypertension

  • Chapter
Molecular Pathology of Lung Diseases

Part of the book series: Molecular Pathology Library ((MPLB,volume 1))

  • 2125 Accesses

Abstract

Pulmonary arterial hypertension is and has often been classified into two separate categories: primary pulmonary (arterial) hypertension, presently more often called idiopathic pulmonary arterial hypertension (iPAH), and secondary pulmonary arterial hypertension.1 As in many other diseases, the secondary form was defined by presence of proven causes or risk factors, whereas the diagnosis of the primary form could be made only after excluding other causes of pulmonary arterial hypertension. In 1998, a clinical classification of pulmonary arterial hypertension was put forth, the so-called Evian classification.2 In a recent conference in Venice a revised clinical classification of pulmonary arterial hypertension was proposed (Table 58.1).3 Both the original and the revised classification was based on a clinical subdivision aimed at separating different categories within each category based on pathophysiology, clinical presentation, and therapeutic options. The clinical classifications were more or less based on assumptions that subsets of pulmonary arterial hypertension have a comparable spectrum of pathologic changes.

World Health Organization’s clinical classification of pulmonary hypertension (Venice 2003).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Newman JH. Pulmonary hypertension. Am J Respir Crit Care Med 2005;172:1072–1077.

    Article  PubMed  Google Scholar 

  2. Fishman AP. Clinical classification of pulmonary hypertension. Clin Chest Med 2001;22:385–391.

    Article  CAS  PubMed  Google Scholar 

  3. Simonneau G, Galie N, Rubin LJ, et al. Clinical classification of pulmonary hypertension. J Am Coll Cardiol 2004;43:5S–12S.

    Article  PubMed  Google Scholar 

  4. Pietra GG, Capron F, Stewart S, et al. Pathologic assessment of vasculopathies in pulmonary hypertension. J Am Coll Cardiol 2004;43:25S–32S.

    Article  PubMed  Google Scholar 

  5. Fishman AP. Changing concepts of the pulmonary plexiform lesion. Physiol Res 2000;49:485–492.

    CAS  PubMed  Google Scholar 

  6. Lee SD, Shroyer KR, Markham NE, et al. Monoclonal endothelial cell proliferation is present in primary but not secondary pulmonary hypertension. J Clin Invest 1998;101:927–934.

    Article  CAS  PubMed  Google Scholar 

  7. Cool CD, Rai PR, Yeager ME, et al. Expression of human herpesvirus 8 in primary pulmonary hypertension. N Engl J Med 2003;349:1113–1122.

    Article  CAS  PubMed  Google Scholar 

  8. Katano H, Hogaboam CM. Herpesvirus-associated pulmonary hypertension? Am J Respir Crit Care Med 2005;172:1485–1486.

    Article  PubMed  Google Scholar 

  9. Henke-Gendo C, Mengel M, Hoeper MM, et al. Absence of Kaposi’s sarcoma-associated herpesvirus in patients with pulmonary arterial hypertension. Am J Respir Crit Care Med 2005;172:1581–1585.

    Article  PubMed  Google Scholar 

  10. Humbert M, Trembath RC. Genetics of pulmonary hypertension: from bench to bedside. Eur Respir J 2002;20:741–749.

    Article  CAS  PubMed  Google Scholar 

  11. Newman JH, Trembath RC, Morse JA, et al. Genetic basis of pulmonary arterial hypertension: current understanding and future directions. J Am Coll Cardiol 2004;43:33S–39S.

    Article  CAS  PubMed  Google Scholar 

  12. Machado RD, Koehler R, Glissmeyer E, et al. Genetic association of the serotonin transporter in pulmonary arterial hypertension. Am J Respir Crit Care Med 2006;173:793–797.

    Article  CAS  PubMed  Google Scholar 

  13. Machado RD, James V, Southwood M, et al. Investigation of second genetic hits at the BMPR2 locus as a modulator of disease progression in familial pulmonary arterial hypertension. Circulation 2005;111:607–613.

    Article  CAS  PubMed  Google Scholar 

  14. Eddahibi S, Adnot S. From functional to genetic studies of a candidate gene for pulmonary hypertension: any point? Am J Respir Crit Care Med 2006;173:693–694.

    Article  PubMed  Google Scholar 

  15. Humbert M, Morrell NW, Archer SL, et al. Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol 2004;43:13S–24S.

    Article  CAS  PubMed  Google Scholar 

  16. Machado RD, Pauciulo MW, Thomson JR, et al. BMPR2 haploinsufficiency as the inherited molecular mechanism for primary pulmonary hypertension. Am J Hum Genet 2001;68:92–102.

    Article  CAS  PubMed  Google Scholar 

  17. Thomson JR, Machado RD, Pauciulo MW, et al. Sporadic primary pulmonary hypertension is associated with germline mutations of the gene encoding BMPR-II, a receptor member of the TGF-beta family. J Med Genet 2000;37:741–745.

    Article  CAS  PubMed  Google Scholar 

  18. Eddahibi S, Humbert M, Fadel E, et al. Serotonin transporter overexpression is responsible for pulmonary artery smooth muscle hyperplasia in primary pulmonary hypertension. J Clin Invest 2001;108:1141–1150.

    CAS  PubMed  Google Scholar 

  19. Eddahibi S, Chaouat A, Morrell N, et al. Polymorphism of the serotonin transporter gene and pulmonary hypertension in chronic obstructive pulmonary disease. Circulation 2003;108:1839–1844.

    Article  CAS  PubMed  Google Scholar 

  20. Mandegar M, Fung YC, Huang W, et al. Cellular and molecular mechanisms of pulmonary vascular remodeling: role in the development of pulmonary hypertension. Microvasc Res 2004;68:75–103.

    Article  CAS  PubMed  Google Scholar 

  21. Zandvoort A, Postma DS, Jonker MR, et al. Altered expression of the Smad signalling pathway: implications for COPD pathogenesis. Eur Respir J 2006;8(3):533–541.

    Article  Google Scholar 

  22. Yang X, Long L, Southwood M, et al. Dysfunctional Smad signaling contributes to abnormal smooth muscle cell proliferation in familial pulmonary arterial hypertension. Circ Res 2005;96:1053–1063.

    Article  CAS  PubMed  Google Scholar 

  23. Stewart DJ. Bone morphogenetic protein receptor-2 and pulmonary arterial hypertension: unraveling a riddle inside an enigma? Circ Res 2005;96:1033–1035.

    Article  CAS  PubMed  Google Scholar 

  24. Frank DB, Abtahi A, Yamaguchi DJ, et al. Bone morphogenetic protein 4 promotes pulmonary vascular remodeling in hypoxic pulmonary hypertension. Circ Res 2005;97:496–504.

    Article  CAS  PubMed  Google Scholar 

  25. Michelakis ED. Spatio-temporal diversity of apoptosis within the vascular wall in pulmonary arterial hypertension: heterogeneous BMP signaling may have therapeutic implications. Circ Res 2006;98:172–175.

    Article  CAS  PubMed  Google Scholar 

  26. Teichert-Kuliszewska K, Kutryk MJ, Kuliszewski MA, et al. Bone morphogenetic protein receptor-2 signaling promotes pulmonary arterial endothelial cell survival: implications for loss-of-function mutations in the pathogenesis of pulmonary hypertension. Circ Res 2006;98:209–217.

    Article  CAS  PubMed  Google Scholar 

  27. Sakao S, Taraseviciene-Stewart L, Lee JD, et al. Initial apoptosis is followed by increased proliferation of apoptosis-resistant endothelial cells. FASEB J 2005;19:1178–1180.

    CAS  PubMed  Google Scholar 

  28. Eddahibi S, Morrell N, d’Ortho MP, et al. Pathobiology of pulmonary arterial hypertension. Eur Respir J 2002;20:1559–1572.

    Article  CAS  PubMed  Google Scholar 

  29. Marcos E, Fadel E, Sanchez O, et al. Serotonin-induced smooth muscle hyperplasia in various forms of human pulmonary hypertension. Circ Res 2004;94:1263–1270.

    Article  CAS  PubMed  Google Scholar 

  30. Marcos E, Fadel E, Sanchez O, et al. Serotonin transporter and receptors in various forms of human pulmonary hypertension. Chest 2005;128:552S–553S.

    Article  PubMed  Google Scholar 

  31. Eddahibi S, Adnot S, Frisdal E, et al. Dexfenfluramine-associated changes in 5-hydroxytryptamine transporter expression and development of hypoxic pulmonary hypertension in rats. J Pharmacol Exp Ther 2001;297:148–154.

    CAS  PubMed  Google Scholar 

  32. Eddahibi S, Adnot S. Anorexigen-induced pulmonary hypertension and the serotonin (5-HT) hypothesis: lessons for the future in pathogenesis. Respir Res 2002;3:9.

    Article  PubMed  Google Scholar 

  33. Abenhaim L, Moride Y, Brenot F, et al. Appetite-suppressant drugs and the risk of primary pulmonary hypertension. International Primary Pulmonary Hypertension Study Group. N Engl J Med 1996;335:609–616.

    Article  CAS  PubMed  Google Scholar 

  34. Coers W, Timens W, Kempinga C, et al. Specificity of antibodies to nitric oxide synthase isoforms in human, guinea pig, rat, and mouse tissues. J Histochem Cytochem 1998;46:1385–1392.

    CAS  PubMed  Google Scholar 

  35. Wolf G. Nitric oxide and nitric oxide synthase: biology, pathology, localization. Histol Histopathol 1997;12:251–261.

    CAS  PubMed  Google Scholar 

  36. Giaid A, Saleh D. Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med 1995;333:214–221.

    Article  CAS  PubMed  Google Scholar 

  37. Goldie RG, Henry PJ, Rigby PJ, et al. Influence of respiratory tract viral infection on endothelin-1-induced modulation of cholinergic nerve-mediated contractions in murine airway smooth muscle. J Cardiovasc Pharmacol 1998;31(Suppl 1):S219–S221.

    Article  CAS  PubMed  Google Scholar 

  38. Davie N, Haleen SJ, Upton PD, et al. ET(A) and ET(B) receptors modulate the proliferation of human pulmonary artery smooth muscle cells. Am J Respir Crit Care Med 2002;165:398–405.

    PubMed  Google Scholar 

  39. Tuder RM, Flook BE, Voelkel NF. Increased gene expression for VEGF and the VEGF receptors KDR/Flk and Flt in lungs exposed to acute or to chronic hypoxia. Modulation of gene expression by nitric oxide. J Clin Invest 1995;95:1798–1807.

    Article  CAS  PubMed  Google Scholar 

  40. Cowan KN, Jones PL, Rabinovitch M. Elastase and matrix metalloproteinase inhibitors induce regression, and tenascin-C antisense prevents progression, of vascular disease. J Clin Invest 2000;105:21–34.

    Article  CAS  PubMed  Google Scholar 

  41. Hassoun PM. Deciphering the “matrix” in pulmonary vascular remodelling. Eur Respir J 2005;25:778–779.

    Article  CAS  PubMed  Google Scholar 

  42. Lepetit H, Eddahibi S, Fadel E, et al. Smooth muscle cell matrix metalloproteinases in idiopathic pulmonary arterial hypertension. Eur Respir J 2005;25:834–842.

    Article  CAS  PubMed  Google Scholar 

  43. Herve P, Humbert M, Sitbon O, et al. Pathobiology of pulmonary hypertension. The role of platelets and thrombosis. Clin Chest Med 2001;22:451–458.

    Article  CAS  PubMed  Google Scholar 

  44. BelAiba RS, Djordjevic T, Bonello S, et al. The serum-and glucocorticoid-inducible kinase Sgk-1 is involved in pulmonary vascular remodeling: role in redox-sensitive regulation of tissue factor by thrombin. Circ Res 2006;98:828–836.

    Article  CAS  PubMed  Google Scholar 

  45. Balabanian K, Foussat A, Dorfmuller P, et al. CX(3)C chemokine fractalkine in pulmonary arterial hypertension. Am J Respir Crit Care Med 2002;165:1419–1425.

    Article  PubMed  Google Scholar 

  46. Dorfmuller P, Zarka V, Durand-Gasselin I, et al. Chemokine RANTES in severe pulmonary arterial hypertension. Am J Respir Crit Care Med 2002;165:534–539.

    PubMed  Google Scholar 

  47. Dorfmuller P, Perros F, Balabanian K, et al. Inflammation in pulmonary arterial hypertension. Eur Respir J 2003;22:358–363.

    Article  CAS  PubMed  Google Scholar 

  48. Rubin LJ. Pulmonary arterial hypertension. Proc Am Thorac Soc 2006;3:111–115.

    Article  CAS  PubMed  Google Scholar 

  49. Martin KB, Klinger JR, Rounds SIS. Pulmonary arterial hypertension: new insights and new hope. Respirology 2006;11:6–17.

    Article  PubMed  Google Scholar 

  50. Dandel M, Lehmkuhl HB, Hetzer R. Advances in the medical treatment of pulmonary hypertension. Kidney Blood Press Res 2005;28:311–324.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC.

About this chapter

Cite this chapter

Timens, W. (2008). Pulmonary Arterial Hypertension. In: Zander, D.S., Popper, H.H., Jagirdar, J., Haque, A.K., Cagle, P.T., Barrios, R. (eds) Molecular Pathology of Lung Diseases. Molecular Pathology Library, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-0-387-72430-0_58

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-72430-0_58

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-72429-4

  • Online ISBN: 978-0-387-72430-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics