Pulmonary Arterial Hypertension

  • Wim Timens
Part of the Molecular Pathology Library book series (MPLB, volume 1)


Pulmonary arterial hypertension is and has often been classified into two separate categories: primary pulmonary (arterial) hypertension, presently more often called idiopathic pulmonary arterial hypertension (iPAH), and secondary pulmonary arterial hypertension.1 As in many other diseases, the secondary form was defined by presence of proven causes or risk factors, whereas the diagnosis of the primary form could be made only after excluding other causes of pulmonary arterial hypertension. In 1998, a clinical classification of pulmonary arterial hypertension was put forth, the so-called Evian classification.2 In a recent conference in Venice a revised clinical classification of pulmonary arterial hypertension was proposed (Table 58.1).3 Both the original and the revised classification was based on a clinical subdivision aimed at separating different categories within each category based on pathophysiology, clinical presentation, and therapeutic options. The clinical classifications were more or less based on assumptions that subsets of pulmonary arterial hypertension have a comparable spectrum of pathologic changes.
Table 58.1

World Health Organization’s clinical classification of pulmonary hypertension (Venice 2003).


Pulmonary Hypertension Pulmonary Arterial Hypertension Hereditary Hemorrhagic Telangiectasia Primary Pulmonary Hypertension Idiopathic Pulmonary Arterial Hypertension 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Newman JH. Pulmonary hypertension. Am J Respir Crit Care Med 2005;172:1072–1077.CrossRefPubMedGoogle Scholar
  2. 2.
    Fishman AP. Clinical classification of pulmonary hypertension. Clin Chest Med 2001;22:385–391.CrossRefPubMedGoogle Scholar
  3. 3.
    Simonneau G, Galie N, Rubin LJ, et al. Clinical classification of pulmonary hypertension. J Am Coll Cardiol 2004;43:5S–12S.CrossRefPubMedGoogle Scholar
  4. 4.
    Pietra GG, Capron F, Stewart S, et al. Pathologic assessment of vasculopathies in pulmonary hypertension. J Am Coll Cardiol 2004;43:25S–32S.CrossRefPubMedGoogle Scholar
  5. 5.
    Fishman AP. Changing concepts of the pulmonary plexiform lesion. Physiol Res 2000;49:485–492.PubMedGoogle Scholar
  6. 6.
    Lee SD, Shroyer KR, Markham NE, et al. Monoclonal endothelial cell proliferation is present in primary but not secondary pulmonary hypertension. J Clin Invest 1998;101:927–934.CrossRefPubMedGoogle Scholar
  7. 7.
    Cool CD, Rai PR, Yeager ME, et al. Expression of human herpesvirus 8 in primary pulmonary hypertension. N Engl J Med 2003;349:1113–1122.CrossRefPubMedGoogle Scholar
  8. 8.
    Katano H, Hogaboam CM. Herpesvirus-associated pulmonary hypertension? Am J Respir Crit Care Med 2005;172:1485–1486.CrossRefPubMedGoogle Scholar
  9. 9.
    Henke-Gendo C, Mengel M, Hoeper MM, et al. Absence of Kaposi’s sarcoma-associated herpesvirus in patients with pulmonary arterial hypertension. Am J Respir Crit Care Med 2005;172:1581–1585.CrossRefPubMedGoogle Scholar
  10. 10.
    Humbert M, Trembath RC. Genetics of pulmonary hypertension: from bench to bedside. Eur Respir J 2002;20:741–749.CrossRefPubMedGoogle Scholar
  11. 11.
    Newman JH, Trembath RC, Morse JA, et al. Genetic basis of pulmonary arterial hypertension: current understanding and future directions. J Am Coll Cardiol 2004;43:33S–39S.CrossRefPubMedGoogle Scholar
  12. 12.
    Machado RD, Koehler R, Glissmeyer E, et al. Genetic association of the serotonin transporter in pulmonary arterial hypertension. Am J Respir Crit Care Med 2006;173:793–797.CrossRefPubMedGoogle Scholar
  13. 13.
    Machado RD, James V, Southwood M, et al. Investigation of second genetic hits at the BMPR2 locus as a modulator of disease progression in familial pulmonary arterial hypertension. Circulation 2005;111:607–613.CrossRefPubMedGoogle Scholar
  14. 14.
    Eddahibi S, Adnot S. From functional to genetic studies of a candidate gene for pulmonary hypertension: any point? Am J Respir Crit Care Med 2006;173:693–694.CrossRefPubMedGoogle Scholar
  15. 15.
    Humbert M, Morrell NW, Archer SL, et al. Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol 2004;43:13S–24S.CrossRefPubMedGoogle Scholar
  16. 16.
    Machado RD, Pauciulo MW, Thomson JR, et al. BMPR2 haploinsufficiency as the inherited molecular mechanism for primary pulmonary hypertension. Am J Hum Genet 2001;68:92–102.CrossRefPubMedGoogle Scholar
  17. 17.
    Thomson JR, Machado RD, Pauciulo MW, et al. Sporadic primary pulmonary hypertension is associated with germline mutations of the gene encoding BMPR-II, a receptor member of the TGF-beta family. J Med Genet 2000;37:741–745.CrossRefPubMedGoogle Scholar
  18. 18.
    Eddahibi S, Humbert M, Fadel E, et al. Serotonin transporter overexpression is responsible for pulmonary artery smooth muscle hyperplasia in primary pulmonary hypertension. J Clin Invest 2001;108:1141–1150.PubMedGoogle Scholar
  19. 19.
    Eddahibi S, Chaouat A, Morrell N, et al. Polymorphism of the serotonin transporter gene and pulmonary hypertension in chronic obstructive pulmonary disease. Circulation 2003;108:1839–1844.CrossRefPubMedGoogle Scholar
  20. 20.
    Mandegar M, Fung YC, Huang W, et al. Cellular and molecular mechanisms of pulmonary vascular remodeling: role in the development of pulmonary hypertension. Microvasc Res 2004;68:75–103.CrossRefPubMedGoogle Scholar
  21. 21.
    Zandvoort A, Postma DS, Jonker MR, et al. Altered expression of the Smad signalling pathway: implications for COPD pathogenesis. Eur Respir J 2006;8(3):533–541.CrossRefGoogle Scholar
  22. 22.
    Yang X, Long L, Southwood M, et al. Dysfunctional Smad signaling contributes to abnormal smooth muscle cell proliferation in familial pulmonary arterial hypertension. Circ Res 2005;96:1053–1063.CrossRefPubMedGoogle Scholar
  23. 23.
    Stewart DJ. Bone morphogenetic protein receptor-2 and pulmonary arterial hypertension: unraveling a riddle inside an enigma? Circ Res 2005;96:1033–1035.CrossRefPubMedGoogle Scholar
  24. 24.
    Frank DB, Abtahi A, Yamaguchi DJ, et al. Bone morphogenetic protein 4 promotes pulmonary vascular remodeling in hypoxic pulmonary hypertension. Circ Res 2005;97:496–504.CrossRefPubMedGoogle Scholar
  25. 25.
    Michelakis ED. Spatio-temporal diversity of apoptosis within the vascular wall in pulmonary arterial hypertension: heterogeneous BMP signaling may have therapeutic implications. Circ Res 2006;98:172–175.CrossRefPubMedGoogle Scholar
  26. 26.
    Teichert-Kuliszewska K, Kutryk MJ, Kuliszewski MA, et al. Bone morphogenetic protein receptor-2 signaling promotes pulmonary arterial endothelial cell survival: implications for loss-of-function mutations in the pathogenesis of pulmonary hypertension. Circ Res 2006;98:209–217.CrossRefPubMedGoogle Scholar
  27. 27.
    Sakao S, Taraseviciene-Stewart L, Lee JD, et al. Initial apoptosis is followed by increased proliferation of apoptosis-resistant endothelial cells. FASEB J 2005;19:1178–1180.PubMedGoogle Scholar
  28. 28.
    Eddahibi S, Morrell N, d’Ortho MP, et al. Pathobiology of pulmonary arterial hypertension. Eur Respir J 2002;20:1559–1572.CrossRefPubMedGoogle Scholar
  29. 29.
    Marcos E, Fadel E, Sanchez O, et al. Serotonin-induced smooth muscle hyperplasia in various forms of human pulmonary hypertension. Circ Res 2004;94:1263–1270.CrossRefPubMedGoogle Scholar
  30. 30.
    Marcos E, Fadel E, Sanchez O, et al. Serotonin transporter and receptors in various forms of human pulmonary hypertension. Chest 2005;128:552S–553S.CrossRefPubMedGoogle Scholar
  31. 31.
    Eddahibi S, Adnot S, Frisdal E, et al. Dexfenfluramine-associated changes in 5-hydroxytryptamine transporter expression and development of hypoxic pulmonary hypertension in rats. J Pharmacol Exp Ther 2001;297:148–154.PubMedGoogle Scholar
  32. 32.
    Eddahibi S, Adnot S. Anorexigen-induced pulmonary hypertension and the serotonin (5-HT) hypothesis: lessons for the future in pathogenesis. Respir Res 2002;3:9.CrossRefPubMedGoogle Scholar
  33. 33.
    Abenhaim L, Moride Y, Brenot F, et al. Appetite-suppressant drugs and the risk of primary pulmonary hypertension. International Primary Pulmonary Hypertension Study Group. N Engl J Med 1996;335:609–616.CrossRefPubMedGoogle Scholar
  34. 34.
    Coers W, Timens W, Kempinga C, et al. Specificity of antibodies to nitric oxide synthase isoforms in human, guinea pig, rat, and mouse tissues. J Histochem Cytochem 1998;46:1385–1392.PubMedGoogle Scholar
  35. 35.
    Wolf G. Nitric oxide and nitric oxide synthase: biology, pathology, localization. Histol Histopathol 1997;12:251–261.PubMedGoogle Scholar
  36. 36.
    Giaid A, Saleh D. Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med 1995;333:214–221.CrossRefPubMedGoogle Scholar
  37. 37.
    Goldie RG, Henry PJ, Rigby PJ, et al. Influence of respiratory tract viral infection on endothelin-1-induced modulation of cholinergic nerve-mediated contractions in murine airway smooth muscle. J Cardiovasc Pharmacol 1998;31(Suppl 1):S219–S221.CrossRefPubMedGoogle Scholar
  38. 38.
    Davie N, Haleen SJ, Upton PD, et al. ET(A) and ET(B) receptors modulate the proliferation of human pulmonary artery smooth muscle cells. Am J Respir Crit Care Med 2002;165:398–405.PubMedGoogle Scholar
  39. 39.
    Tuder RM, Flook BE, Voelkel NF. Increased gene expression for VEGF and the VEGF receptors KDR/Flk and Flt in lungs exposed to acute or to chronic hypoxia. Modulation of gene expression by nitric oxide. J Clin Invest 1995;95:1798–1807.CrossRefPubMedGoogle Scholar
  40. 40.
    Cowan KN, Jones PL, Rabinovitch M. Elastase and matrix metalloproteinase inhibitors induce regression, and tenascin-C antisense prevents progression, of vascular disease. J Clin Invest 2000;105:21–34.CrossRefPubMedGoogle Scholar
  41. 41.
    Hassoun PM. Deciphering the “matrix” in pulmonary vascular remodelling. Eur Respir J 2005;25:778–779.CrossRefPubMedGoogle Scholar
  42. 42.
    Lepetit H, Eddahibi S, Fadel E, et al. Smooth muscle cell matrix metalloproteinases in idiopathic pulmonary arterial hypertension. Eur Respir J 2005;25:834–842.CrossRefPubMedGoogle Scholar
  43. 43.
    Herve P, Humbert M, Sitbon O, et al. Pathobiology of pulmonary hypertension. The role of platelets and thrombosis. Clin Chest Med 2001;22:451–458.CrossRefPubMedGoogle Scholar
  44. 44.
    BelAiba RS, Djordjevic T, Bonello S, et al. The serum-and glucocorticoid-inducible kinase Sgk-1 is involved in pulmonary vascular remodeling: role in redox-sensitive regulation of tissue factor by thrombin. Circ Res 2006;98:828–836.CrossRefPubMedGoogle Scholar
  45. 45.
    Balabanian K, Foussat A, Dorfmuller P, et al. CX(3)C chemokine fractalkine in pulmonary arterial hypertension. Am J Respir Crit Care Med 2002;165:1419–1425.CrossRefPubMedGoogle Scholar
  46. 46.
    Dorfmuller P, Zarka V, Durand-Gasselin I, et al. Chemokine RANTES in severe pulmonary arterial hypertension. Am J Respir Crit Care Med 2002;165:534–539.PubMedGoogle Scholar
  47. 47.
    Dorfmuller P, Perros F, Balabanian K, et al. Inflammation in pulmonary arterial hypertension. Eur Respir J 2003;22:358–363.CrossRefPubMedGoogle Scholar
  48. 48.
    Rubin LJ. Pulmonary arterial hypertension. Proc Am Thorac Soc 2006;3:111–115.CrossRefPubMedGoogle Scholar
  49. 49.
    Martin KB, Klinger JR, Rounds SIS. Pulmonary arterial hypertension: new insights and new hope. Respirology 2006;11:6–17.CrossRefPubMedGoogle Scholar
  50. 50.
    Dandel M, Lehmkuhl HB, Hetzer R. Advances in the medical treatment of pulmonary hypertension. Kidney Blood Press Res 2005;28:311–324.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Wim Timens
    • 1
  1. 1.Department of PathologyUniversity Medical Center GroningenGroningenThe Netherlands

Personalised recommendations