Usual Interstitial Pneumonia

  • Marco Chilosi
  • Bruno Murer
  • Venerino Poletti
Part of the Molecular Pathology Library book series (MPLB, volume 1)


Idiopathic pulmonary fibrosis (IPF), the most common and severe among idiopathic interstitial pneumonias, has now been definitively recognized as a distinct clinical entity, defined in the American Thoracic Society/European Respiratory Society (ATS/ERS) consensus statement as a specific form of chronic fibrosing interstitial pneumonia limited to the lung and associated with the histologic appearance of usual interstitial pneumonia (UIP) in surgical lung biopsy material.1, 2, 3 Thus, the precise definition of the “UIP” pattern is crucial for the diagnosis of IPF when histology is available and also for the understanding of the specific changes characterizing this devastating disease. The morphologic criteria for defining the UIP pattern have been progressively refined, from the seminal studies of Liebow to the recent ATS/ERS classification. It is worth noting that the different morphologic patterns that characterize the idiopathic interstitial pneumonias—UIP, nonspecific interstitial pneumonia (NSIP), acute interstitial pneumonia (AIP), cryptogenic organizing pneumonia (COP), lymphocytic interstitial pneumonia (LIP), desquamative interstitial pneumonia (DIP), and respiratory bronchiolitis-combined interstitial lung disease (RB-ILD)—have been progressively defined following a process of matching the clinical, radiologic, and morphologic features, using varying terms and criteria, in the absence of a precise knowledge of the etiology and pathogenesis of the different diseases.


Idiopathic Pulmonary Fibrosis Interstitial Pneumonia Respir Crit Hypersensitivity Pneumonitis Usual Interstitial Pneumonia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias. This joint statement of the American Thoracic Society (ATS), and the European Respiratory Society (ERS) was adopted by the ATS board of directors, June 2001 and by the ERS Executive Committee, June 2001. Am J Respir Crit Care Med 2002;165:277–304.Google Scholar
  2. 2.
    Katzenstein AL, Myers JL. Idiopathic pulmonary fibrosis: clinical relevance of pathologic classification. Am J Respir Crit Care Med 1998;157:1301–1315.PubMedGoogle Scholar
  3. 3.
    American Thoracic Society. Idiopathic pulmonary fibrosis: diagnosis and treatment. International consensus statement. American Thoracic Society (ATS), and the European Respiratory Society (ERS). Am J Respir Crit Care Med 2000;161:646–664.Google Scholar
  4. 4.
    Nicholson AG, Addis BJ, Bharucha H, et al. Inter-observer variation between pathologists in diffuse parenchymal lung disease. Thorax 2004;59:500–505.CrossRefPubMedGoogle Scholar
  5. 5.
    Selman M. A dark side of interferon-gamma in the treatment of idiopathic pulmonary fibrosis? Am J Respir Crit Care Med 2003;167:945–946.PubMedGoogle Scholar
  6. 6.
    Selman M, King TE, Pardo A. Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med 2001;134:136–151.PubMedGoogle Scholar
  7. 7.
    Selman M, Pardo A. Idiopathic pulmonary fibrosis: misunderstandings between epithelial cells and fibroblasts? Sarcoidosis Vasc Diffuse Lung Dis 2004;21:165–172.PubMedGoogle Scholar
  8. 8.
    Selman M, Pardo A. The epithelial/fibroblastic pathway in the pathogenesis of idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 2003;29(3 Suppl):S93–S97.PubMedGoogle Scholar
  9. 9.
    Gauldie J, Kolb M, Sime PJ. A new direction in the pathogenesis of idiopathic pulmonary fibrosis? Respir Res 2002;3:1.CrossRefPubMedGoogle Scholar
  10. 10.
    Noble PW, Homer RJ. Back to the future: historical perspective on the pathogenesis of idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 2005;33:113–120.CrossRefPubMedGoogle Scholar
  11. 11.
    King TE Jr. Clinical advances in the diagnosis and therapy of the interstitial lung diseases. Am J Respir Crit Care Med 2005;172:268–279.CrossRefPubMedGoogle Scholar
  12. 12.
    Baumgartner KB, Samet JM, Stidley CA, et al. Cigarette smoking: a risk factor for idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 1997;155:242–248.PubMedGoogle Scholar
  13. 13.
    Aubry MC, Myers JL, Douglas WW, et al. Primary pulmonary carcinoma in patients with idiopathic pulmonary fibrosis. Mayo Clin Proc 2002;77:763–770.CrossRefPubMedGoogle Scholar
  14. 14.
    Mori M, Kida H, Morishita H, et al. Microsatellite instability in transforming growth factor-beta 1 type II receptor gene in alveolar lining epithelial cells of idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 2001;24:398–404.PubMedGoogle Scholar
  15. 15.
    Kawasaki H, Ogura T, Yokose T, et al. p53 gene alteration in atypical epithelial lesions and carcinoma in patients with idiopathic pulmonary fibrosis. Hum Pathol 2001;32:1043–1049.CrossRefPubMedGoogle Scholar
  16. 16.
    Kuwano K, Kunitake R, Kawasaki M, et al. P21Waf1/Cip1/Sdi1 and p53 expression in association with DNA strand breaks in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 1996;154:477–483.PubMedGoogle Scholar
  17. 17.
    Selman M, Lin HM, Montano M, et al. Surfactant protein A and B genetic variants predispose to IPF. Hum Genet 2003;113:542–550.CrossRefPubMedGoogle Scholar
  18. 18.
    Chibbar R, Shih F, Baga M, et al. Nonspecific interstitial pneumonia and usual interstitial pneumonia with mutation in surfactant protein C in familial pulmonary fibrosis. Mod Pathol 2004;17:973–980.CrossRefPubMedGoogle Scholar
  19. 19.
    Lawson WE, Grant SW, Ambrosini V, et al. Genetic mutations in surfactant protein C are a rare cause of sporadic cases of IPF. Thorax 2004;59:977–980.CrossRefPubMedGoogle Scholar
  20. 20.
    Tang YW, Johnson JE, Browning PJ, et al. Herpesvirus DNA is consistently detected in lungs of patients with IPF. J Clin Microbiol 2003;41:2633–2640.CrossRefPubMedGoogle Scholar
  21. 21.
    Vergnon JM, Vincent M, de The G, et al. Cryptogenic fibrosing alveolitis and Epstein-Barr virus: an association? Lancet 1984;2:768–771.CrossRefPubMedGoogle Scholar
  22. 22.
    Zamo A, Poletti V, Reghellin D, et al. HHV-8 and EBV are not commonly found in IPF. Sarcoidosis Vasc Diffuse Lung Dis 2005;22:123–128.PubMedGoogle Scholar
  23. 23.
    Zuo F, Kaminski N, Eugui E, et al. Gene expression analysis reveals matrilysin as a key regulator of pulmonary fibrosis in mice and humans. Proc Natl Acad Sci USA 2002;99:6292–6297.CrossRefPubMedGoogle Scholar
  24. 24.
    Selman M, Pardo A, Barrera L, et al. Gene expression profiles distinguish idiopathic pulmonary fibrosis from hypersensitivity pneumonitis. Am J Respir Crit Care Med 2006;173:188–198.CrossRefPubMedGoogle Scholar
  25. 25.
    Pardo A, Gibson K, Cisneros J, et al. Up-regulation and profibrotic role of osteopontin in human IPF. PLoS Med 2005;2:e251.CrossRefPubMedGoogle Scholar
  26. 26.
    Chilosi M, Poletti V, Zamo A, et al. Aberrant Wnt/betacatenin pathway activation in IPF. Am J Pathol 2003;162:1495–1502.PubMedGoogle Scholar
  27. 27.
    Maeyama T, Kuwano K, Kawasaki M, et al. Upregulation of Fas-signalling molecules in lung epithelial cells from patients with idiopathic pulmonary fibrosis. Eur Respir J 2001;17:180–189.CrossRefPubMedGoogle Scholar
  28. 28.
    Kuwano K, Hagimoto N, Maeyama T, et al. Mitochondria-mediated apoptosis of lung epithelial cells in idiopathic interstitial pneumonias. Lab Invest 2002;82:1695–1706.PubMedGoogle Scholar
  29. 29.
    Plataki M, Koutsopoulos AV, Darivianaki K, et al. Expression of apoptotic and antiapoptotic markers in epithelial cells in idiopathic pulmonary fibrosis. Chest 2005;127:266–274.CrossRefPubMedGoogle Scholar
  30. 30.
    Kasai H, Allen JT, Mason RM, et al. TGF-beta1 induces human alveolar epithelial to mesenchymal cell transition (EMT). Respir Res 2005;6:56.CrossRefPubMedGoogle Scholar
  31. 31.
    Nakashima N, Kuwano K, Maeyama T, et al. The p53-Mdm2 association in epithelial cells in idiopathic pulmonary fibrosis and non-specific interstitial pneumonia. J Clin Pathol 2005;58:583–589.CrossRefPubMedGoogle Scholar
  32. 32.
    Panduri V, Surapureddi S, Soberanes S, et al. P53 mediates amosite asbestos-induced alveolar epithelial cell mitochondria-regulated apoptosis. Am J Respir Cell Mol Biol 2006;34:443–452.CrossRefPubMedGoogle Scholar
  33. 33.
    Chilosi M, Poletti V, Murer B, et al. Abnormal reepithelialization and lung remodeling in idiopathic pulmonary fibrosis: the role of deltaN-p63. Lab Invest. 2002;82:1335–1345.PubMedGoogle Scholar
  34. 34.
    Kaminski N, Allard JD, Pittet JF, et al. Global analysis of gene expression in pulmonary fibrosis reveals distinct programs regulating lung inflammation and fibrosis. Proc Natl Acad Sci USA 2000;97:1778–1783.CrossRefPubMedGoogle Scholar
  35. 35.
    Mucenski ML, Wert SE, Nation JM, et al. beta-Catenin is required for specification of proximal/distal cell fate during lung morphogenesis. J Biol Chem 2003;278:40231–40238.CrossRefPubMedGoogle Scholar
  36. 36.
    Okubo T, Hogan BL. Hyperactive Wnt signaling changes the developmental potential of embryonic lung endoderm. J Biol 2004;3:11.CrossRefPubMedGoogle Scholar
  37. 37.
    Kim K, Lu Z, Hay ED. Direct evidence for a role of betacatenin/LEF-1 signaling pathway in induction of EMT. Cell Biol Int 2002;26:463–476.CrossRefPubMedGoogle Scholar
  38. 38.
    Willis BC, Liebler JM, Luby-Phelps K, et al. Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-beta1: potential role in idiopathic pulmonary fibrosis. Am J Pathol 2005;166:1321–1332.PubMedGoogle Scholar
  39. 39.
    Yao HW, Xie QM, Chen JQ, et al. TGF-beta1 induces alveolar epithelial to mesenchymal transition in vitro. Life Sci 2004;76:29–37.CrossRefPubMedGoogle Scholar
  40. 40.
    Savagner P, Yamada KM, Thiery JP. The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition. J Cell Biol 1997;137:1403–1419.CrossRefPubMedGoogle Scholar
  41. 41.
    Conacci-Sorrell M, Simcha I, Ben-Yedidia T, et al. Autoregulation of E-cadherin expression by cadherin-cadherin interactions: the roles of beta-catenin signaling, Slug, and MAPK. J Cell Biol. 2003;163:847–857.CrossRefPubMedGoogle Scholar
  42. 42.
    He TC, Sparks AB, Rago C, et al. Identification of c-MYC as a target of the APC pathway. Science 1998;281:1509–1512.CrossRefPubMedGoogle Scholar
  43. 43.
    Donaldson TD, Duronio RJ. Cancer cell biology: Myc wins the competition. Curr Biol 2004;14:R425–R427.CrossRefPubMedGoogle Scholar
  44. 44.
    Lappi-Blanco E, Kaarteenaho-Wiik R, Soini Y, et al. Intraluminal fibromyxoid lesions in bronchiolitis obliterans organizing pneumonia are highly capillarized. Hum Pathol 1999;30:1192–1196.CrossRefPubMedGoogle Scholar
  45. 45.
    Nicholson AG, Fulford LG, Colby TV, et al. The relationship between individual histologic features and disease progression in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2002;166:173–177.CrossRefPubMedGoogle Scholar
  46. 46.
    Selman M, Ruiz V, Cabrera S, et al. TIMP-1,-2,-3, and-4 in idiopathic pulmonary fibrosis. A prevailing nondegradative lung microenvironment? Am J Physiol Lung Cell Mol Physiol 2000;279:L562–L574.PubMedGoogle Scholar
  47. 47.
    Hagood JS, Prabhakaran P, Kumbla P, et al. Loss of fibroblast Thy-1 expression correlates with lung fibrogenesis. Am J Pathol 2005;167:365–379.PubMedGoogle Scholar
  48. 48.
    Moodley YP, Scaffidi AK, Misso NL, et al. Fibroblasts isolated from normal lungs and those with idiopathic pulmonary fibrosis differ in interleukin-6/gp130-mediated cell signaling and proliferation. Am J Pathol 2003;163:345–354.PubMedGoogle Scholar
  49. 49.
    Yun MS, Kim SE, Jeon SH, et al. Both ERK and Wnt/betacatenin pathways are involved in Wnt3a-induced proliferation. J Cell Sci 2005;118:313–322.CrossRefPubMedGoogle Scholar
  50. 50.
    Marchand-Adam S, Marchal J, Cohen M, et al. Defect of hepatocyte growth factor secretion by fibroblasts in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2003;168:1156–1161.CrossRefPubMedGoogle Scholar
  51. 51.
    Chilosi M, Poletti V, Murer B, et al. Bronchiolar epithelium in idiopathic pulmonary fibrosis/usual interstitial pneumonia. In Lynch JPI, ed. Lung Biology in Health and Disease. New York: Marcel Dekker; 2004:631–664.Google Scholar
  52. 52.
    Hong KU, Reynolds SD, Watkins S, et al. Basal cells are a multipotent progenitor capable of renewing the bronchial epithelium. Am J Pathol 2004;164:577–588.PubMedGoogle Scholar
  53. 53.
    Chilosi M, Doglioni C. Constitutive p63 expression in airway basal cells. A molecular target in diffuse lung diseases. Sarcoidosis Vasc Diffuse Lung Dis 2001;18:23–26.PubMedGoogle Scholar
  54. 54.
    Hibi K, Trink B, Patturajan M, et al. AIS is an oncogene amplified in squamous cell carcinoma. Proc Natl Acad Sci USA 2000;97:5462–5467.CrossRefPubMedGoogle Scholar
  55. 55.
    Massion PP, Taflan PM, Jamshedur Rahman SM, et al. Significance of p63 amplification and overexpression in lung cancer development and prognosis. Cancer Res 2003;63:7113–7121.PubMedGoogle Scholar
  56. 56.
    Chilosi M, Zamò A, Doglioni C, et al. Migratory marker expression in fibroblast foci of idiopathic pulmonary fibrosis. Respir Res 2006;7:95.CrossRefPubMedGoogle Scholar
  57. 57.
    Charette SJ, Landry J. The interaction of HSP27 with Daxx identifies a potential regulatory role of HSP27 in Fasinduced apoptosis. Ann NY Acad Sci 2000;926:126–131.PubMedCrossRefGoogle Scholar
  58. 58.
    Niessen CM, Hogervorst F, Jaspars LH, et al. The alpha 6 beta 4 integrin is a receptor for both laminin and kalinin. Exp Cell Res 1994;211:360–367.CrossRefPubMedGoogle Scholar
  59. 59.
    Hintermann E, Quaranta V. Epithelial cell motility on laminin-5: regulation by matrix assembly, proteolysis, integrins and erbB receptors. Matrix Biol 2004;23:75–85.CrossRefPubMedGoogle Scholar
  60. 60.
    Coraux C, Meneguzzi G, Rousselle P, et al. Distribution of laminin 5, integrin receptors, and branching morphogenesis during human fetal lung development. Dev Dyn 2002;225:176–185.CrossRefPubMedGoogle Scholar
  61. 61.
    Kariya Y, Miyazaki K. The basement membrane protein laminin-5 acts as a soluble cell motility factor. Exp Cell Res 2004;297:508–520.CrossRefPubMedGoogle Scholar
  62. 62.
    Hlubek F, Jung A, Kotzor N, et al. Expression of the invasion factor laminin gamma2 in colorectal carcinomas is regulated by beta-catenin. Cancer Res 2001;61:8089–8093.PubMedGoogle Scholar
  63. 63.
    Pyke C, Romer J, Kallunki P, et al. The gamma 2 chain of kalinin/laminin 5 is preferentially expressed in invading malignant cells in human cancers. Am J Pathol 1994;145:782–791.PubMedGoogle Scholar
  64. 64.
    Lappi-Blanco E, Kaarteenaho-Wiik R, Salo S, et al. Laminin-5 gamma2 chain in cryptogenic organizing pneumonia and idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2004;169:27–33.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Marco Chilosi
    • 1
  • Bruno Murer
    • 2
  • Venerino Poletti
    • 3
  1. 1.Department of PathologyUniversity of VeronaVeronaItaly
  2. 2.Department of Anatomic PathologyRegional HospitalMestre-VeniceItaly
  3. 3.Department of Diseases of the ThoraxOspedale GB MorgagniForliItaly

Personalised recommendations