Pulmonary Organogenesis and Developmental Abnormalities

  • Timothy Craig Allen
  • Philip T. Cagle
Part of the Molecular Pathology Library book series (MPLB, volume 1)


Lung organogenesis involves the emergence of the lung anlage from the anterior foregut, laryngeal and tracheoesophageal morphogenesis and septation, tracheal bifurcation, patterning of the major bronchi, lobation of the lungs, branching morphogenesis of approximately 23 generations of airways, and formation of alveoli.1 In the third week of gestation, the lung begins to develop as a ventral outpouching on the floor of the primitive foregut.2 The lung’s development may be divided into five phases: the embryonic, pseudoglandular, acinar or canalicular, saccular, and alveolar phases.2, 3, 4 A variety of factors influence normal lung development, including normal fetal breathing movements, adequate intrathoracic space, appropriate volumes of extra- and intrapulmonary fluid, pulmonary blood flow, as well as maternal factors such as nutrition and smoking.3 The foregut endoderm differentiates into epithelial cell types that line the developing lung and trachea, whereas lungmesenchyme originates from the lateral plate mesoderm and develops into several lung components, including connective tissue, smooth muscle surrounding airways and medium- and small-sized blood vessels, endothelial cell precursors, lymphatics, tracheal cartilage, and pleura.5


Sonic Hedgehog Lung Development Bone Morphogenic Protein Epithelial Growth Factor Lung Morphogenesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Warburton D, Belusci S. The molecular genetics of lung morphogenesis and injury repair. Pediatr Respir Rev 2004;5(Suppl A):S283–S287.CrossRefGoogle Scholar
  2. 2.
    Mendeloff EN. Sequestrations, congenital cystic adenomatoid malformations, and congenital lobar emphysema. Semin Thorac Cardiovasc Surg 2004;16:209–214.CrossRefPubMedGoogle Scholar
  3. 3.
    Kotecha S. Lung growth for beginners. Pediatr Resp Rev 2000;1:308–313.CrossRefGoogle Scholar
  4. 4.
    Barnes NA, Pilling DW. Bronchopulmonary foregut malformations: embryology, radiology and quandary. Eur Radiol 2003;13:2659–2673.CrossRefPubMedGoogle Scholar
  5. 5.
    Cardoso WV, Lu J. Regulation of early lung morphogenesis: questions, facts and controversies. Development 2006;1611–1624.Google Scholar
  6. 6.
    Lammert E, Cleaver O, Melton D. Induction of pancreatic differentiation by signals from blood vessels. Science 2001;294:564–567.CrossRefPubMedGoogle Scholar
  7. 7.
    Matsumoto K, Yoshitomi H, Rossant J, Zaret KS. Liver organogenesis promoted by endothelial cells prior to vascular function. Science 2001;294:559–563.CrossRefPubMedGoogle Scholar
  8. 8.
    Warburton D, Bellusci S, De Langhe S, et al. Molecular mechanisms of early lung specification and branching morphogenesis. Pediatr Res 2005;57:26R–37R.CrossRefPubMedGoogle Scholar
  9. 9.
    Pongracz JE, Stockley RA. Wnt signaling in lung development and diseases. Respir Res 2006;26:15.CrossRefGoogle Scholar
  10. 10.
    Borok Z, Li C, Liebler J, et al. Developmental pathways and specification of intrapulmonary stem cells. Pediatr Res 2006;59:84R–93R.CrossRefPubMedGoogle Scholar
  11. 11.
    Kim N, Vu TH. Parabronchial smooth muscle cells and alveolar myofibroblasts in lung development. Birth Defects Res (Part C) 2006;78:80–89.CrossRefGoogle Scholar
  12. 12.
    Okubo T, Hogan BLM. Hyperactive Wnt signaling changes the developmental potential of embryonic lung endoderm. J Biol 2004;3:11.CrossRefPubMedGoogle Scholar
  13. 13.
    Tebar M, Destree O, de Vree WJ, et al. Expression of Tcf/Lef and sFrp and localization of beta-catenin in the developing mouse lung. Mech Dev 2001;109:437–440.CrossRefPubMedGoogle Scholar
  14. 14.
    Duan D, Yue Y, Zhou W, et al. Submucosal gland development in the airway is controlled by lymphoid enhancer binding factor 1 (LEF1). Development 1999;126:4441–4453.PubMedGoogle Scholar
  15. 15.
    Mucenski ML, Wert SE, Nation JM, et al. Beta-catenin is required for specification of proximal/distal cell fate during lung morphogenesis. J Biol Chem 2003;278:40231–40238.CrossRefPubMedGoogle Scholar
  16. 16.
    Wang Z, Shu W, Lu MM, et al. Wnt7b activates canonical signaling in epithelial and vascular smooth muscle cells through interactions with Fzd1, Fzd10, and LRPS. Mol Cell Biol 2005;25(12):5022–5030.CrossRefPubMedGoogle Scholar
  17. 17.
    Monkley SJ, Delaney SJ, Pennisi DJ, et al. Targeted disruption of the Wnt2 gene results in placentation defects. Development 1996;122:3343–3353.PubMedGoogle Scholar
  18. 18.
    Lako M, Strachan T, Bullen P, et al. Isolation, characterization and embryonic expression of WNTII, a gene which maps to IIq13.5 and has possible roles in the development of skeleton, kidney and lung. Gene 1998;219:101–110.CrossRefPubMedGoogle Scholar
  19. 19.
    Weidenfeld J, Shu W, Zhang I, et al. The Wnt7b promoter is regulated by TTF-1, GATA6, and Foxa2 in lung epithelium. J Biol Chem 2002;277:21061–21070.CrossRefPubMedGoogle Scholar
  20. 20.
    Minoo P, Hamdan H, Bu D, et al. TTF-1 regulates lung epithelial morphogenesis. Dev Biol 1995;172:694–68.CrossRefPubMedGoogle Scholar
  21. 21.
    Dean CH, Miller LA, Smith AN, et al. Canonical Wnt signaling negatively regulates branching morphogenesis of the lung and lacrimal gland. Dev Biol 2005;286:270–286.CrossRefPubMedGoogle Scholar
  22. 22.
    De Langhe SP, Sala FG, Del Moral PM, et al. Dickkopf-1 (DKK-1) reveals that fibronectin is a major target of Wnt signaling in branching morphogenesis of the mouse embryonic lung. Dev Biol 2005;277:316–331.CrossRefPubMedGoogle Scholar
  23. 23.
    Driskell RR, Liu X, Luo M, et al. Wnt-responsive element controls Lef-1 promoter expression during submucosal gland morphogenesis. Am J Physiol Lung Cell Mol Physiol 2004;287:L752–L763.CrossRefPubMedGoogle Scholar
  24. 24.
    Filali M, Cheng N, Abbott D, et al. Wnt-3A/beta-catenin signaling induces transcription from the LEF-1 promoter. J Biol Chem 2002;277:33398–33410.CrossRefPubMedGoogle Scholar
  25. 25.
    Whitsett JA, Wert SE, Trapnell BC. Genetic disorders influencing lung formation and function at birth. Hum Mol Genet 2004;13:R207–R215.CrossRefPubMedGoogle Scholar
  26. 26.
    Li Y, Zhang H, Choi SC, et al. Sonic hedgehog signaling regulates Gli3 processing, mesenchymal proliferation, and differentiation during mouse lung organogenesis. Dev Biol 2004;270:214–231.CrossRefPubMedGoogle Scholar
  27. 27.
    Bellusci S, Furuta Y, Rush MG, et al. Involvement of Sonic hedgehog (Shh) in mouse embryonic lung growth and morphogenesis. Development 1997;124:53–63.PubMedGoogle Scholar
  28. 28.
    McMahon AP. More surprises in the Hedgehog signaling pathway. Cell 2000;100:185–188.CrossRefPubMedGoogle Scholar
  29. 29.
    Okdak M, Grzela T, Lazarczyk M, et al. Clinical aspects of disrupted hedgehog signaling. Int J Mol Med 2001;8:445–452.Google Scholar
  30. 30.
    Ming JE, Roessler E, Muenke M. Human developmental disorders and the sonic hedgehog pathway. Mol Med Today 1998;4:343–349.CrossRefPubMedGoogle Scholar
  31. 31.
    Bitgood MJ, McMahon AP. Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev Biol 1995;172:126–138.CrossRefPubMedGoogle Scholar
  32. 32.
    Urase K, Mukasa T, Igarashi H, et al. Spatial expression of Sonic hedgehog in the lung epithelium during branching morphogenesis. Biochem Biophys Res Commun 1996;225:161–166.CrossRefPubMedGoogle Scholar
  33. 33.
    Pepicelli CV, Lewis PM, McMahon AP. Sonic hedgehog regulates branching morphogenesis in mammalian lung. Curr Biol 1998;8:1083–1086.CrossRefPubMedGoogle Scholar
  34. 34.
    Chuang PT, McMahon AP. Branching morphogenesis of the lung: new molecular insights into an old problem. Trends Cell Biol 2003;13:86–91.CrossRefPubMedGoogle Scholar
  35. 35.
    Watkins DN, Berman DM, Burkholder SG, et al. Hedgehog signaling within airway epithelial progenitors and in small-cell lung cancer. Nature 2003;422:313–317.CrossRefPubMedGoogle Scholar
  36. 36.
    Min H, Danilenko DM, Scully SA, et al. Fgf-10 is required for both limb and lung development and exhibits striking functional similarity to Drosophila branchless. Genes Dev 1998;12:3156–3161.CrossRefPubMedGoogle Scholar
  37. 37.
    Sekine K, Ohuchi H, Fujiwara M, et al. Fgf10 is essential for limb and lung formation. Nat Genet 1999;21:138–141.CrossRefPubMedGoogle Scholar
  38. 38.
    Weaver M, Dunn NR, Hogan BL. Bmp4 and Fgf10 play opposing roles during lung bud morphogenesis. Development 2000;127:2695–2704.PubMedGoogle Scholar
  39. 39.
    Perl AK, Hokuto I, Impagnatiello MA, et al. Temporal effects of sprouty on lung morphogenesis. Dev Biol 2003;258:154–168.CrossRefPubMedGoogle Scholar
  40. 40.
    Hokuto I, Perl AK, Whitsett JA. Prenatal, but not postnatal, inhibition of fibroblast growth factor receptor signaling causes emphysema. J Biol Chem 2003;278:415–421.CrossRefPubMedGoogle Scholar
  41. 41.
    Mailleux AA, Kelly R, Veltmaat JM, et al. Fgf10 expression identifies parabronchial smooth muscle cell progenitors and is required for their entry into the smooth muscle cell lineage. Development 2005;132:2157–2166.CrossRefPubMedGoogle Scholar
  42. 42.
    Colvin JS, White AC, Pratt SJ, et al. Lung hypoplasia and neonatal death in Fgf9-null mice identify this gene as an essential regulator of lung mesenchyme. Development 2001;128:2095–2106.PubMedGoogle Scholar
  43. 43.
    Mendelsohn C, Lohnes D, Decimo D, et al. Function of the retinoic acid receptors (RARs) during development (II). Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development 1994;120:2749–2771.PubMedGoogle Scholar
  44. 44.
    Kong V, Glickman J, Subramaniam M, et al. Functional diversity of notch family genes in fetal lung development. Am J Physiol Lung Cell Mol Physiol 2004;286:L1075–L1083.CrossRefPubMedGoogle Scholar
  45. 45.
    Villanueva D, McCants D, Nielsen HC. Effects of epidermal growth factor (EGF) on the development of EGF-receptor (EGF-R) binding in fetal rabbit lung organ culture. Pediatr Pulmonol 2000;29:27–33.CrossRefPubMedGoogle Scholar
  46. 46.
    Shannon JM, Hyatt BA. Epithelial-mesenchymal interactions in the developing lung. Annu Rev Physiol 2004;66:625–645.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Timothy Craig Allen
    • 1
  • Philip T. Cagle
    • 2
    • 3
  1. 1.Department of PathologyUniversity of Texas Health Center at TylerTylerUSA
  2. 2.Pathology and Laboratory MedicineWeill Medical College of Cornell UniversityNew York
  3. 3.The Methodist HospitalHoustonUSA

Personalised recommendations