• David B. Corry
  • Farrah Kheradmand
Part of the Molecular Pathology Library book series (MPLB, volume 1)


Asthma is an inflammatory disease of the airways in which patients suffer from episodic dyspnea, cough, and related symptoms accompanied by characteristic abnormalities of the airways that include the presence of eosinophil-predominant allergic inflammation and airway hyperresponsiveness to provocative challenge. The latter abnormality reflects the exaggerated tendency of the asthmatic airway to constrict in response to a broad range of provocative stimuli. Enhanced constrictive responses to especially histamine and cholinergic agonists are used in the bronchial provocation test as a diagnostic aid where disease status remains uncertain based on clinical grounds alone. Additional highly characteristic histologic features of asthma include a metaplastic response of the airway epithelium involving the appearance of mucous-secreting goblet cells with enhanced secretion into the airway of mucin gene products and subepithelial airway fibrosis (Figure 51.1). Both of these abnormalities contribute to airway obstruction acutely and chronically, with airway mucous impaction strongly linked to asphyxiation and death in severe asthma.1, 2, 3
Figure 51.1

The major immune mechanisms underlying asthma pathogenesis. Two major mechanisms, type I hypersensitivity and type IV hypersensitivity, are thought to contribute to the major structural and physiologic changes associated with asthma, including airway hyperresponsiveness, goblet cell metaplasia with mucous hypersecretion, subepithelial airway fibrosis, and recruitment to the lungs of diverse inflammatory cells. During type I hypersensitivity, immunoglobulin (Ig) E secreted by B cells is captured by high-affinity receptors (FcεRI) present on mast cells and eosinophils. Cross-linking of surface-associated IgE induced by exposure to cognate antigen results in activation of FcεRI-bearing cells and the release of a large number of potentially toxic molecules that together contribute to the asthma phenotype. In contrast, type I hypersensitivity involves predominantly T lymphocytes and is immunoglobulin independent. The cytokines interleukin (IL)-4 and IL-13, secreted predominantly by Th2 cells, act directly on target tissues of the airway to elicit the asthma phenotype. Note that Th2 cells, through the cytokines that they secrete, are critical mediators of both disease mechanisms and provide the factors necessary for the growth and differentiation of asthma-associated inflammatory cells. STAT, signal transducer and activator of transcription.


Allergy Clin Immunol Respir Crit Airway Hyperresponsiveness Atopic Asthma Airway Hyperreactivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aikawa T, Shimura S, Sasaki H, et al. Marked goblet cell hyperplasia with mucus accumulation in the airways of patients who died of severe acute asthma attack. Chest 1992;101(4):916–921.PubMedCrossRefGoogle Scholar
  2. 2.
    Flora GS, Sharma AM, Sharma OP. Asthma mortality in a metropolitan county hospital, a 38-year study. Allergy Proc 1991;12(3):169–179.PubMedCrossRefGoogle Scholar
  3. 3.
    Lange P, Nyboe J, Appleyard M, et al. Relation of ventilatory impairment and of chronic mucus hypersecretion to mortality from obstructive lung disease and from all causes. Thorax 1990;45(8):579–585.PubMedCrossRefGoogle Scholar
  4. 4.
    Ishizaka T, Ishizaka K, Tomioka H. Release of histamine and slow reacting substance of anaphylaxis (SRS-A) by IgE-anti-IgE reactions on monkey mast cells. J Immunol 1972;108(2):513–520.PubMedGoogle Scholar
  5. 5.
    Tomioka H, Ishizaka K. Mechanisms of passive sensitization. II. Presence of receptors for IgE on monkey mast cells. J Immunol 1971;107(4):971–978.PubMedGoogle Scholar
  6. 6.
    Ishizaka T, Tomioka H, Ishizaka K. Degranulation of human basophil leukocytes by anti-gamma E antibody. J Immunol 1971;106(3):705–710.PubMedGoogle Scholar
  7. 7.
    Ishizaka K, Tomioka H, Ishizaka T. Mechanisms of passive sensitization. I. Presence of IgE and IgG molecules on human leukocytes. J Immunol 1970;105(6):1459–1467.PubMedGoogle Scholar
  8. 8.
    Pene J, Rousset F, Briere F, et al. IgE production by normal human lymphocytes is induced by interleukin 4 and suppressed by interferons a, g and prostaglandin E2. Proc Natl Acad Sci USA 1988;85:6880.PubMedCrossRefGoogle Scholar
  9. 9.
    Finkelman FD, Katona IM, Urban JF Jr, et al. IL-4 is required to generate and sustain in vivo IgE responses. J Immunol 1988;141(7):2335–2341.PubMedGoogle Scholar
  10. 10.
    Brown MA, Pierce JH, Watson CJ, et al. B cell stimulatory factor-1/interleukin-4 mRNA is expressed by normal and transformed mast cells. Cell 1987;50(5):809–818.PubMedCrossRefGoogle Scholar
  11. 11.
    Robinson DS, Hamid Q, Ying S, et al. Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N Engl J Med 1992;326(5):298–304.PubMedGoogle Scholar
  12. 12.
    Corry DB, Grunig G, Hadeiba H, et al. Requirements for allergen-induced airway hyperreactivity in T and B celldeficient mice. Mol Med 1998;4(5):344–355.PubMedGoogle Scholar
  13. 13.
    Corry DB, Folkesson HG, Warnock ML, et al. Interleukin 4, but not interleukin 5 or eosinophils, is required in a murine model of acute airway hyperreactivity. J Exp Med 1996;183(1):109–117.PubMedCrossRefGoogle Scholar
  14. 14.
    Watanabe A, Mishima H, Renzi PM, et al. Transfer of allergic airway responses with antigen-primed CD4+ but not CD8+ T cells in brown Norway rats. J Clin Invest 1995;96(3):1303–1310.PubMedCrossRefGoogle Scholar
  15. 15.
    Van Loveren H, Garssen J, Nijkamp FP. T cell-mediated airway hyperreactivity in mice. Eur Respir J 1991;13:16s–26s.Google Scholar
  16. 16.
    MacLean JA, Sauty A, Luster AD, et al. Antigen-induced airway hyperresponsiveness, pulmonary eosinophilia, and chemokine expression in B cell-deficient mice. Am J Respir Cell Mol Biol 1999;20(3):379–387.PubMedGoogle Scholar
  17. 17.
    Grunig G, Warnock M, Wakil AE, et al. Requirement for IL-13 independently of IL-4 in experimental asthma. Science 1998;282(5397):2261–2263.PubMedCrossRefGoogle Scholar
  18. 18.
    Wills-Karp M, Luyimbazi J, Xu X, et al. Interleukin-13: central mediator of allergic asthma. Science 1998;282(5397):2258–2261.PubMedCrossRefGoogle Scholar
  19. 19.
    Kuperman D, Schofield B, Wills-Karp M, et al. Signal transducer and activator of transcription factor 6 (Stat6)-deficient mice are protected from antigen-induced airway hyperresponsiveness and mucus production. J Exp Med 1998;187(6):939–948.PubMedCrossRefGoogle Scholar
  20. 20.
    Akimoto T, Numata F, Tamura M, et al. Abrogation of bronchial eosinophilic inflammation and airway hyperreactivity in signal transducers and activators of transcription (STAT)6-deficient mice. J Exp Med 1998;187:1537–1542.PubMedCrossRefGoogle Scholar
  21. 21.
    Wang HY, Zamorano J, Keegan AD. A role for the insulin-interleukin (IL)-4 receptor motif of the IL-4 receptor alpha-chain in regulating activation of the insulin receptor substrate 2 and signal transducer and activator of transcription 6 pathways. Analysis by mutagenesis. J Biol Chem 1998;273(16):9898–9905.PubMedCrossRefGoogle Scholar
  22. 22.
    Murata T, Noguchi PD, Puri RK. IL-13 induces phosphorylation and activation of JAK2 Janus kinase in human colon carcinoma cell lines: similarities between IL-4 and IL-13 signaling. J Immunol 1996;156(8):2972–2978.PubMedGoogle Scholar
  23. 23.
    Hou J, Schindler U, Henzel WJ, et al. An interleukin-4-induced transcription factor: IL-4 Stat. Science 1994;265(5179):1701–1706.PubMedCrossRefGoogle Scholar
  24. 24.
    Fenghao X, Saxon A, Nguyen A, et al. Interleukin 4 activates a signal transducer and activator of transcription (Stat) protein which interacts with an interferon-gamma activation site-like sequence upstream of the I epsilon exon in a human B cell line. Evidence for the involvement of Janus kinase 3 and interleukin-4 Stat. J Clin Invest 1995;96(2):907–914.PubMedCrossRefGoogle Scholar
  25. 25.
    Corry DB. IL-13 in allergy: home at last. Curr Opin Immunol 1999;11(6):610–614.PubMedCrossRefGoogle Scholar
  26. 26.
    Noguchi E, Shibasaki M, Arinami T, et al. Association of asthma and the interleukin-4 promoter gene in Japanese. Clin Exp Allergy 1998;28(4):449–453.PubMedCrossRefGoogle Scholar
  27. 27.
    Zhu S, Chan-Yeung M, Becker AB, et al. Polymorphisms of the IL-4, TNF-alpha, and Fcepsilon RIbeta genes and the risk of allergic disorders in at-risk infants. Am J Respir Crit Care Med 2000;161(5):1655–1659.PubMedGoogle Scholar
  28. 28.
    Noguchi E, Nukaga-Nishio Y, Jian Z, et al. Haplotypes of the 5′ region of the IL-4 gene and SNPs in the intergene sequence between the IL-4 and IL-13 genes are associated with atopic asthma. Hum Immunol 2001;62(11):1251–1257.PubMedCrossRefGoogle Scholar
  29. 29.
    Beghe B, Barton S, Rorke S, et al. Polymorphisms in the interleukin-4 and interleukin-4 receptor alpha chain genes confer susceptibility to asthma and atopy in a Caucasian population. Clin Exp Allergy 2003;33(8):1111–1117.PubMedCrossRefGoogle Scholar
  30. 30.
    Moissidis I, Chinoy B, Yanamandra K, et al. Association of IL-13, RANTES, and leukotriene C4 synthase gene promoter polymorphisms with asthma and/or atopy in African Americans. Genet Med 2005;7(6):406–410.PubMedCrossRefGoogle Scholar
  31. 31.
    van der Pouw Kraan TC, van Veen A, Boeije LC, et al. An IL-13 promoter polymorphism associated with increased risk of allergic asthma. Genes Immun 1999;1(1):61–65.PubMedCrossRefGoogle Scholar
  32. 32.
    Heinzmann A, Mao XQ, Akaiwa M, et al. Genetic variants of IL-13 signalling and human asthma and atopy. Hum Mol Genet 2000;9(4):549–559.PubMedCrossRefGoogle Scholar
  33. 33.
    DeMeo DL, Lange C, Silverman EK, et al. Univariate and multivariate family-based association analysis of the IL-13 ARG130GLN polymorphism in the Childhood Asthma Management Program. Genet Epidemiol 2002;23(4):335–348.PubMedCrossRefGoogle Scholar
  34. 34.
    Vladich FD, Brazille SM, Stern D, et al. IL-13 R130Q, a common variant associated with allergy and asthma, enhances effector mechanisms essential for human allergic inflammation. J Clin Invest 2005;115(3):747–754.PubMedGoogle Scholar
  35. 35.
    Izuhara K, Shirakawa T. Signal transduction via the interleukin-4 receptor and its correlation with atopy. Int J Mol Med 1999;3(1):3–10.PubMedGoogle Scholar
  36. 36.
    Takabayashi A, Ihara K, Sasaki Y, et al. Childhood atopic asthma: positive association with a polymorphism of IL-4 receptor alpha gene but not with that of IL-4 promoter or Fc epsilon receptor I beta gene. Exp Clin Immunogenet 2000;17(2):63–70.PubMedCrossRefGoogle Scholar
  37. 37.
    Rosa-Rosa L, Zimmermann N, Bernstein JA, et al. The R576 IL-4 receptor alpha allele correlates with asthma severity. J Allergy Clin Immunol 1999;104(5):1008–1014.PubMedCrossRefGoogle Scholar
  38. 38.
    Ober C, Leavitt SA, Tsalenko A, et al. Variation in the interleukin 4-receptor alpha gene confers susceptibility to asthma and atopy in ethnically diverse populations. Am J Hum Genet 2000;66(2):517–526.PubMedCrossRefGoogle Scholar
  39. 39.
    Risma KA, Wang N, Andrews RP, et al. V75R576 IL-4 receptor alpha is associated with allergic asthma and enhanced IL-4 receptor function. J Immunol 2002;169(3):1604–1610.PubMedGoogle Scholar
  40. 40.
    Hytonen AM, Lowhagen O, Arvidsson M, et al. Haplotypes of the interleukin-4 receptor alpha chain gene associate with susceptibility to and severity of atopic asthma. Clin Exp Allergy 2004;34(10):1570–1575.PubMedCrossRefGoogle Scholar
  41. 41.
    Lee SG, Kim BS, Kim JH, et al. Gene-gene interaction between interleukin-4 and interleukin-4 receptor alpha in Korean children with asthma. Clin Exp Allergy 2004;34(8):1202–1208.PubMedCrossRefGoogle Scholar
  42. 42.
    Kabesch M, Schedel M, Carr D, et al. IL-4/IL-13 pathway genetics strongly influence serum IgE levels and childhood asthma. J Allergy Clin Immunol 2006;117(2):269–274.PubMedCrossRefGoogle Scholar
  43. 43.
    Mohrs M, Blankespoor CM, Wang ZE, et al. Deletion of a coordinate regulator of type 2 cytokine expression in mice. Nat Immunol 2001;2(9):842–847.PubMedCrossRefGoogle Scholar
  44. 44.
    Coffman RL, Seymour BW, Hudak S, et al. Antibody to interleukin-5 inhibits helminth-induced eosinophilia in mice. Science 1989;245(4915):308–310.PubMedCrossRefGoogle Scholar
  45. 45.
    Foster PS, Hogan SP, Ramsay AJ, et al. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J Exp Med 1996;183(1):195–201.PubMedCrossRefGoogle Scholar
  46. 46.
    Lee JJ, Dimina D, Macias MP, et al. Defining a link with asthma in mice congenitally deficient in eosinophils. Science 2005;305:1773–1776.CrossRefGoogle Scholar
  47. 47.
    Humbles AA, Lloyd CM, McMillan SJ, et al. A critical role for eosinophils in allergic airways remodeling. Science 2005;305:1776–1779.CrossRefGoogle Scholar
  48. 48.
    Leckie MJ, ten Brinke A, Khan J, et al. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet 2000;356(9248):2144–2148.PubMedCrossRefGoogle Scholar
  49. 49.
    Kips JC, O’Connor BJ, Langley SJ, et al. Effect of SCH55700, a humanized anti-human interleukin-5 antibody, in severe persistent asthma: a pilot study. Am J Respir Crit Care Med 2003;167(12):1655–1659.PubMedCrossRefGoogle Scholar
  50. 50.
    Flood-Page PT, Menzies-Gow AN, Kay AB, et al. Eosinophil’s role remains uncertain as anti-interleukin-5 only partially depletes numbers in asthmatic airway. Am J Respir Crit Care Med 2003;167(2):199–204.PubMedCrossRefGoogle Scholar
  51. 51.
    McMillan SJ, Bishop B, Townsend MJ, et al. The absence of interleukin 9 does not affect the development of allergen-induced pulmonary inflammation nor airway hyperreactivity. J Exp Med 2002;195(1):51–57.PubMedCrossRefGoogle Scholar
  52. 52.
    Cheong HS, Kim LH, Park BL, et al. Association analysis of interleukin 5 receptor alpha subunit (IL5RA) polymorphisms and asthma. J Hum Genet 2005;50(12):628–634.PubMedCrossRefGoogle Scholar
  53. 53.
    Kumar RK, Herbert C, Foster PS. Expression of growth factors by airway epithelial cells in a model of chronic asthma: regulation and relationship to subepithelial fibrosis. Clin Exp Allergy 2004;34(4):567–575.PubMedCrossRefGoogle Scholar
  54. 54.
    McMillan SJ, Lloyd CM. Prolonged allergen challenge in mice leads to persistent airway remodelling. Clin Exp Allergy 2004;34(3):497–507.PubMedCrossRefGoogle Scholar
  55. 55.
    Kenyon NJ, Ward RW, McGrew G, et al. TGF-beta1 causes airway fibrosis and increased collagen I and III mRNA in mice. Thorax 2003;58(9):772–777.PubMedCrossRefGoogle Scholar
  56. 56.
    Chu HW, Halliday JL, Martin RJ, et al. Collagen deposition in large airways may not differentiate severe asthma from milder forms of the disease. Am J Respir Crit Care Med 1998;158(6):1936–1944.PubMedGoogle Scholar
  57. 57.
    Aubert JD, Dalal BI, Bai TR, et al. Transforming growth factor beta 1 gene expression in human airways. Thorax 1994;49(3):225–232.PubMedCrossRefGoogle Scholar
  58. 58.
    Chen W, Jin W, Hardegen N, et al. Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 2003;198(12):1875–1886.PubMedCrossRefGoogle Scholar
  59. 59.
    Hansen G, McIntire JJ, Yeung VP, et al. CD4(+) T helper cells engineered to produce latent TGF-beta1 reverse allergen-induced airway hyperreactivity and inflammation. J Clin Invest 2000;105(1):61–70.PubMedCrossRefGoogle Scholar
  60. 60.
    Pulleyn LJ, Newton R, Adcock IM, et al. TGFbeta1 allele association with asthma severity. Hum Genet 2001;109(6):623–627.PubMedCrossRefGoogle Scholar
  61. 61.
    Silverman ES, Palmer LJ, Subramaniam V, et al. Transforming growth factor-beta1 promoter polymorphism C-509T is associated with asthma. Am J Respir Crit Care Med 2004;169(2):214–219.PubMedCrossRefGoogle Scholar
  62. 62.
    Meng J, Thongngarm T, Nakajima M, et al. Association of transforming growth factor-beta1 single nucleotide polymorphism C-509T with allergy and immunological activities. Int Arch Allergy Immunol 2005;138(2):151–160.PubMedCrossRefGoogle Scholar
  63. 63.
    Heinzmann A, Bauer E, Ganter K, et al. Polymorphisms of the TGF-beta1 gene are not associated with bronchial asthma in Caucasian children. Pediatr Allergy Immunol 2005;16(4):310–314.PubMedGoogle Scholar
  64. 64.
    Mak JCW, Leung HCM, Ho SP, et al. Analysis of TGFbeta(1) gene polymorphisms in Hong Kong Chinese patients with asthma. J Allergy Clin Immunol 2006;117(1):92–96.PubMedCrossRefGoogle Scholar
  65. 65.
    Nakae S, Komiyama Y, Yokoyama H, et al. IL-1 is required for allergen-specific Th2 cell activation and the development of airway hypersensitivity response. Int Immunol 2003;15(4):483–490.PubMedCrossRefGoogle Scholar
  66. 66.
    Schmitz N, Kurrer M, Kopf M. The IL-1 receptor 1 is critical for Th2 cell type airway immune responses in a mild but not in a more severe asthma model. Eur J Immunol 2003;33(4):991–1000.PubMedCrossRefGoogle Scholar
  67. 67.
    Hang LW, Hsia TC, Chen WC, et al. Interleukin-10 gene-627 allele variants, not interleukin-I beta gene and receptor antagonist gene polymorphisms, are associated with atopic bronchial asthma. J Clin Lab Anal 2003;17(5):168–173.PubMedCrossRefGoogle Scholar
  68. 68.
    Karjalainen J, Nieminen MM, Aromaa A, et al. The IL-1beta genotype carries asthma susceptibility only in men. J Allergy Clin Immunol 2002;109(3):514–516.PubMedCrossRefGoogle Scholar
  69. 69.
    Gohlke H, Illig T, Bahnweg M, et al. Association of the interleukin-1 receptor antagonist gene with asthma. Am J Respir Crit Care Med 2004;169(11):1217–23.PubMedCrossRefGoogle Scholar
  70. 70.
    Sanchez-Guerrero IM, Herrero N, Muro M, et al. Co-stimulation of cultured peripheral blood mononuclear cells from intrinsic asthmatics with exogenous recombinant IL-6 produce high levels of IL-4-dependent IgE. Eur Respir J 1997;10(9):2091–2096.PubMedCrossRefGoogle Scholar
  71. 71.
    Rincon M, Anguita J, Nakamura T, et al. Interleukin (IL)-6 directs the differentiation of IL-4-producing CD4+ T cells. J Exp Med 1997;185(3):461–469.PubMedCrossRefGoogle Scholar
  72. 72.
    La Flamme AC, Pearce EJ. The absence of IL-6 does not affect Th2 cell development in vivo, but does lead to impaired proliferation, IL-2 receptor expression, and B cell responses. J Immunol 1999;162(10):5829–5837.PubMedGoogle Scholar
  73. 73.
    Qiu Z, Fujimura M, Kurashima K, et al. Enhanced airway inflammation and decreased subepithelial fibrosis in interleukin 6-deficient mice following chronic exposure to aerosolized antigen. Clin Exp Allergy 2004;34(8):1321–1328.PubMedCrossRefGoogle Scholar
  74. 74.
    Tanaka T, Katada Y, Higa S, et al. Enhancement of T helper2 response in the absence of interleukin (IL-)6; an inhibition of IL-4-mediated T helper2 cell differentiation by IL-6. Cytokine 2001;13(4):193–201.PubMedCrossRefGoogle Scholar
  75. 75.
    Wang J, Homer RJ, Chen Q, et al. Endogenous and exogenous IL-6 inhibit aeroallergen-induced Th2 inflammation. J Immunol 2000;165(7):4051–4061.PubMedGoogle Scholar
  76. 76.
    Kuhn C 3rd, Homer RJ, Zhu Z, et al. Airway hyperresponsiveness and airway obstruction in transgenic mice. Morphologic correlates in mice overexpressing interleukin (IL)-11 and IL-6 in the lung. Am J Respir Cell Mol Biol 2000;22(3):289–295.PubMedGoogle Scholar
  77. 77.
    Ray RJ, Furlonger C, Williams DE, et al. Characterization of thymic stromal-derived lymphopoietin (TSLP) in murine B cell development in vitro. Eur J Immunol 1996;26(1):10–16.PubMedCrossRefGoogle Scholar
  78. 78.
    Ying S, O’Connor B, Ratoff J, et al. Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. J Immunol 2005;174(12):8183–8190.PubMedGoogle Scholar
  79. 79.
    Soumelis V, Reche PA, Kanzler H, et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol 2002;3(7):673–680.PubMedGoogle Scholar
  80. 80.
    Al-Shami A, Spolski R, Kelly J, et al. A role for TSLP in the development of inflammation in an asthma model. J Exp Med 2005;202(6):829–839.PubMedCrossRefGoogle Scholar
  81. 81.
    Zhou B, Comeau MR, De Smedt T, et al. Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nat Immunol 2005;6(10):1047–1053.PubMedCrossRefGoogle Scholar
  82. 82.
    Ito T, Wang YH, Duramad O, et al. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J Exp Med 2005;202(9):1213–1223.PubMedCrossRefGoogle Scholar
  83. 83.
    Liu Y-J. Thymic stromal lymphopoietin: master switch for allergic inflammation. J Exp Med 2006;203(2):269–273.PubMedCrossRefGoogle Scholar
  84. 84.
    Jeannin P, Lecoanet S, Delneste Y, et al. IgE versus IgG4 production can be differentially regulated by IL-10. J Immunol 1998;160(7):3555–3561.PubMedGoogle Scholar
  85. 85.
    Grunig G, Corry DB, Leach MW, et al. Interleukin-10 is a natural suppressor of cytokine production and inflammation in a murine model of allergic bronchopulmonary aspergillosis. J Exp Med 1997;185(6):1089–1099.PubMedCrossRefGoogle Scholar
  86. 86.
    Akbari O, DeKruyff RH, Umetsu DT. Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nat Immunol 2001;2(8):725–731.PubMedCrossRefGoogle Scholar
  87. 87.
    Hobbs K, Negri J, Klinnert M, et al. Interleukin-10 and transforming growth factor-beta promoter polymorphisms in allergies and asthma. Am J Respir Crit Care Med 1998;158(6):1958–1962.PubMedGoogle Scholar
  88. 88.
    Lyon H, Lange C, Lake S, et al. IL10 gene polymorphisms are associated with asthma phenotypes in children. Genet Epidemiol 2004;26(2):155–165.PubMedCrossRefGoogle Scholar
  89. 89.
    Chatterjee R, Batra J, Kumar A, et al. Interleukin-10 promoter polymorphisms and atopic asthma in North Indians. Clin Exp Allergy 2005;35(7):914–919.PubMedCrossRefGoogle Scholar
  90. 90.
    Molet S, Hamid Q, Davoine F, et al. IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. J Allergy Clin Immunol 2001;108(3):430–438.PubMedCrossRefGoogle Scholar
  91. 91.
    Kawaguchi M, Onuchic LF, Li XD, et al. Identification of a novel cytokine, ML-1, and its expression in subjects with asthma. J Immunol 2001;167(8):4430–4435.PubMedGoogle Scholar
  92. 92.
    Barczyk A, Pierzchala W, Sozanska E. Interleukin-17 in sputum correlates with airway hyperresponsiveness to methacholine. Respir Med 2003;97(6):726–733.PubMedCrossRefGoogle Scholar
  93. 93.
    Pan G, French D, Mao W, et al. Forced expression of murine IL-17E induces growth retardation, jaundice, a Th2-biased response, and multiorgan inflammation in mice. J Immunol 2001;167(11):6559–6567.PubMedGoogle Scholar
  94. 94.
    Hurst SD, Muchamuel T, Gorman DM, et al. New IL-17 family members promote Th1 or Th2 responses in the lung: in vivo function of the novel cytokine IL-25. J Immunol 2002;169(1):443–453.PubMedGoogle Scholar
  95. 95.
    Kim MR, Manoukian R, Yeh R, et al. Transgenic overexpression of human IL-17E results in eosinophilia, Blymphocyte hyperplasia, and altered antibody production. Blood 2002;100(7):2330–2340.PubMedCrossRefGoogle Scholar
  96. 96.
    Chen Y, Thai P, Zhao YH, et al. Stimulation of airway mucin gene expression by interleukin (IL)-17 through IL-6 paracrine/autocrine loop. J Biol Chem 2003;278(19):17036–1743.PubMedCrossRefGoogle Scholar
  97. 97.
    Ramsey CD, Lazarus R, Camargo CA Jr, et al. Polymorphisms in the interleukin 17F gene (IL17F) and asthma. Genes Immun 2005;6(3):236–241.PubMedCrossRefGoogle Scholar
  98. 98.
    Broide DH, Paine MM, Firestein GS. Eosinophils express interleukin 5 and granulocyte macrophage-colonystimulating factor mRNA at sites of allergic inflammation in asthmatics. J Clin Invest 1992;90(4):1414–1424.PubMedCrossRefGoogle Scholar
  99. 99.
    Woolley KL, Adelroth E, Woolley MJ, et al. Granulocytemacrophage colony-stimulating factor, eosinophils and eosinophil cationic protein in subjects with and without mild, stable, atopic asthma. Eur Respir J 1994;7(9):1576–1584.PubMedCrossRefGoogle Scholar
  100. 100.
    Park CS, Choi YS, Ki SY, et al. Granulocyte macrophage colony-stimulating factor is the main cytokine enhancing survival of eosinophils in asthmatic airways. Eur Respir J 1998;12(4):872–878.PubMedCrossRefGoogle Scholar
  101. 101.
    Adachi T, Motojima S, Hirata A, et al. Eosinophil viabilityenhancing activity in sputum from patients with bronchial asthma, Contributions of interleukin-5 and granulocyte/macrophage colony-stimulating factor. Am J of Respir Crit Care Med 1995;151(3 Pt 1):618–623.Google Scholar
  102. 102.
    Soloperto M, Mattoso VL, Fasoli A, et al. A bronchial epithelial cell-derived facto in asthma that promotes eosinophil activation and survival as GM-CSF. Am J of Physiol 1991;260(6 Pt 1):L530–L538.Google Scholar
  103. 103.
    Lei XF, Ohkawara Y, Stampfli MR, et al. Compartmentalized transgene expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) in mouse lung enhances allergic airways inflammation. Clin Exp Immunol 1998;113(2):157–165.PubMedCrossRefGoogle Scholar
  104. 104.
    Ohta K, Yamashita N, Tajima M, et al. Diesel exhaust particulate induces airway hyperresponsiveness in a murine model: essential role of GM-CSF. J Allergy Clin Immunol 1999;104(5):1024–1030.PubMedCrossRefGoogle Scholar
  105. 105.
    Yamashita N, Tashimo H, Ishida H, et al. Attenuation of airway hyperresponsiveness in a murine asthma model by neutralization of granulocyte-macrophage colonystimulating factor (GM-CSF). Cell Immunol 2002;219(2):92–97.PubMedCrossRefGoogle Scholar
  106. 106.
    Cates EC, Gajewska BU, Goncharova S, et al. Effect of GM-CSF on immune, inflammatory, and clinical responses to ragweed in a novel mouse model of mucosal sensitization. J Allergy Clin Immunol 2003;111(5):1076–1086.PubMedCrossRefGoogle Scholar
  107. 107.
    Amishima M, Munakata M, Nasuhara Y, et al. Expression of epidermal growth factor and epidermal growth factor receptor immunoreactivity in the asthmatic human airway. Am J Respir Crit Care Med 1998;157(6 Pt 1):1907–1912.PubMedGoogle Scholar
  108. 108.
    Puddicombe SM, Polosa R, Richter A, et al. Involvement of the epidermal growth factor receptor in epithelial repair in asthma. FASEB J 2000;14(10):1362–1374.PubMedCrossRefGoogle Scholar
  109. 109.
    Takeyama K, Fahy JV, Nadel JA. Relationship of epidermal growth factor receptors to goblet cell production in human bronchi. Am J Respir Crit Care Med 2001;163(2):511–516.PubMedGoogle Scholar
  110. 110.
    Takeyama K, Dabbagh K, Lee HM, et al. Epidermal growth factor system regulates mucin production in airways. Proc Natl Acad Sci USA 1999;96(6):3081–3086.PubMedCrossRefGoogle Scholar
  111. 111.
    Hoshino M, Takahashi M, Aoike N. Expression of vascular endothelial growth factor, basic fibroblast growth factor, and angiogenin immunoreactivity in asthmatic airways and its relationship to angiogenesis. J Allergy Clin Immunol 2001;107(2):295–301.PubMedCrossRefGoogle Scholar
  112. 112.
    Hoshino M, Nakamura Y, Hamid QA. Gene expression of vascular endothelial growth factor and its receptors and angiogenesis in bronchial asthma. J Allergy Clin Immunol 2001;107(6):1034–1038.PubMedCrossRefGoogle Scholar
  113. 113.
    Kanazawa H, Hirata K, Yoshikawa J. Involvement of vascular endothelial growth factor in exercise induced bronchoconstriction in asthmatic patients. Thorax 2002;57(10):885–888.PubMedCrossRefGoogle Scholar
  114. 114.
    Feltis BN, Wignarajah D, Zheng L, et al. Increased vascular endothelial growth factor and receptors: relationship to angiogenesis in asthma. Am J Respir Crit Care Med 2006;173(11):1201–1207.PubMedCrossRefGoogle Scholar
  115. 115.
    Abdel-Rahman AMO, el-Sahrigy SAF, Bakr SI. A comparative study of two angiogenic factors: vascular endothelial growth factor and angiogenin in induced sputum from asthmatic children in acute attack. Chest 2006;129(2):266–271.PubMedCrossRefGoogle Scholar
  116. 116.
    Lee CG, Link H, Baluk P, et al. Vascular endothelial growth factor (VEGF) induces remodeling and enhances TH2-mediated sensitization and inflammation in the lung. Nat Med 2004;10(10):1095–1103.PubMedCrossRefGoogle Scholar
  117. 117.
    Baluk P, Lee CG, Link H, et al. Regulated angiogenesis and vascular regression in miceoverexpressing vascular endothelial growth factor in airways. Am J Pathol 2004;165(4):1071–1085.PubMedGoogle Scholar
  118. 118.
    Suzaki Y, Hamada K, Sho M, et al. A potent antiangiogenic factor, endostatin prevents the development of asthma in a murine model. J Allergy Clin Immunol 2005;116(6):1220–1227.PubMedCrossRefGoogle Scholar
  119. 119.
    Chalmers GW, Little SA, Patel KR, et al. Endothelin-1-induced bronchoconstriction in asthma. Am J Respir Crit Care Med 1997;156(2 Pt 1):382–388.PubMedGoogle Scholar
  120. 120.
    Springall DR, Howarth PH, Counihan H, et al. Endothelin immunoreactivity of airway epithelium in asthmatic patients. Lancet 1991;337(8743):697–701.PubMedCrossRefGoogle Scholar
  121. 121.
    Goldie RG, Henry PJ, Paterson JW, et al. Contractile effects and receptor distributions for endothelin-1 (ET-1) in human and animal airways. Agents Actions Suppl 1990;31:229–232.PubMedCrossRefGoogle Scholar
  122. 122.
    Mattoli S, Soloperto M, Marini M, et al. Levels of endothelin in the bronchoalveolar lavage fluid of patients with symptomatic asthma and reversible airflow obstruction. J Allergy Clin Immunol 1991;88(3 Pt 1):376–384.PubMedCrossRefGoogle Scholar
  123. 123.
    Aoki T, Kojima T, Ono A, et al. Circulating endothelin-1 levels in patients with bronchial asthma. Ann Allergy 1994;73(4):365–369.PubMedGoogle Scholar
  124. 124.
    Finsnes F, Lyberg T, Christensen G, et al. Effect of endothelin antagonism on the production of cytokines in eosinophilic airway inflammation. Am J Physiol Lung Cell Mol Physiol 2001;280(4):L659–L665.PubMedGoogle Scholar
  125. 125.
    Fujitani Y, Trifilieff A, Tsuyuki S, et al. Endothelin receptor antagonists inhibit antigen-induced lung inflammation in mice. Am J Respir Crit Care Med 1997;155(6):1890–1894.PubMedGoogle Scholar
  126. 126.
    Nagase T, Kurihara H, Kurihara Y, et al. Airway hyperresponsiveness to methacholine in mutant mice deficient in endothelin-1. Am J Respir Crit Care Med 1998;157(2):560–564.PubMedGoogle Scholar
  127. 127.
    Chalmers GW, MacLeod KJ, Thomson LJ, et al. Sputum cellular and cytokine responses to inhaled endothelin-1 in asthma. Clin Exp Allergy 1999;29(11):1526–1531.PubMedCrossRefGoogle Scholar
  128. 128.
    Redington AE, Roche WR, Madden J, et al. Basic fibroblast growth factor in asthma: measurement in bronchoalveolar lavage fluid basally and following allergen challenge. J Allergy Clin Immunol 2001;107(2):384–387.PubMedCrossRefGoogle Scholar
  129. 129.
    Ohno I, Nitta Y, Yamauchi K, et al. Eosinophils as a potential source of platelet-derived growth factor B-chain (PDGF-B) in nasal polyposis and bronchial asthma. Am J Respir Cell Mol Biol 1995;13(6):639–647.PubMedGoogle Scholar
  130. 130.
    Gosset P, Tsicopoulos A, Wallaert B, et al. Increased secretion of tumor necrosis factor alpha and interleukin-6 by alveolar macrophages consecutive to the development of the late asthmatic reaction. J Allergy Clin Immunol 1991;88(4):561–571.PubMedCrossRefGoogle Scholar
  131. 131.
    Tonnel AB, Gosset P, Tillie-Leblond I. Characteristics of the inflammatory response in bronchial lavage fluids from patients with status asthmaticus. Int Arch Allergy Immunol 2001;124(1–3):267–271.PubMedCrossRefGoogle Scholar
  132. 132.
    Kim J, McKinley L, Natarajan S, et al. Anti-tumor necrosis factor-alpha antibody treatment reduces pulmonary inflammation and methacholine hyper-responsiveness in a murine asthma model induced by house dust. Clin Exp Allergy 2006;36(1):122–132.PubMedCrossRefGoogle Scholar
  133. 133.
    Choi IW, Sun-Kim, Kim YS, et al. TNF-alpha induces the late-phase airway hyperresponsiveness and airway inflammation through cytosolic phospholipase A(2) activation. J Allergy Clin Immunol 2005;116(3):537–543.PubMedCrossRefGoogle Scholar
  134. 134.
    Zuany-Amorim C, Manlius C, Dalum I, et al. Induction of TNF-alpha autoantibody production by AutoVac TNF106: a novel therapeutic approach for the treatment of allergic diseases. Int Arch Allergy Immunol 2004;133(2):154–163.PubMedCrossRefGoogle Scholar
  135. 135.
    Rouhani FN, Meitin CA, Kaler M, et al. Effect of tumor necrosis factor antagonism on allergen-mediated asthmatic airway inflammation. Respir Med 2005;99(9):1175–1182.PubMedCrossRefGoogle Scholar
  136. 136.
    Berry MA, Hargadon B, Shelley M, et al. Evidence of a role of tumor necrosis factor alpha in refractory asthma. N Engl J Med 2006;354(7):697–708.PubMedCrossRefGoogle Scholar
  137. 137.
    Shin HD, Park BL, Kim LH, et al. Association of tumor necrosis factor polymorphisms with asthma and serum total IgE. Hum Mol Genet 2004;13(4):397–403.PubMedCrossRefGoogle Scholar
  138. 138.
    Winchester EC, Millwood IY, Rand L, et al. Association of the TNF-alpha-308 (G→A) polymorphism with selfreported history of childhood asthma. Hum Genet 2000;107(6):591–596.PubMedCrossRefGoogle Scholar
  139. 139.
    Moffatt MF, Cookson WO. Tumour necrosis factor haplotypes and asthma. Hum Mol Genet 1997;6(4):551–554.PubMedCrossRefGoogle Scholar
  140. 140.
    Lin YC, Lu CC, Su HJ, et al. The association between tumor necrosis factor, HLA-DR alleles, and IgE-mediated asthma in Taiwanese adolescents. Allergy 2002;57(9):831–834.PubMedCrossRefGoogle Scholar
  141. 141.
    Buckova D, Holla LI, Vasku A, et al. Lack of association between atopic asthma and the tumor necrosis factor alpha-308 gene polymorphism in a Czech population. J Invest Allergol Clin Immunol 2002;12(3):192–197.Google Scholar
  142. 142.
    Migita O, Noguchi E, Koga M, et al. Haplotype analysis of a 100 kb region spanning TNF-LTA identifies a polymorphism in the LTA promoter region that is associated with atopic asthma susceptibility in Japan. Clin Exp Allergy 2005;35(6):790–796.PubMedCrossRefGoogle Scholar
  143. 143.
    Randolph AG, Lange C, Silverman EK, et al. Extended haplotype in the tumor necrosis factor gene cluster is associated with asthma and asthma-related phenotypes. Am J Respir Crit Care Med 2005;172(6):687–692.PubMedCrossRefGoogle Scholar
  144. 144.
    Gavett SH, O’Hearn DJ, Li X, et al. Interleukin 12 inhibits antigen-induced airway hyperresponsiveness, inflammation, and Th2 cytokine expression in mice. J Exp Med 1995;182(5):1527–1536.PubMedCrossRefGoogle Scholar
  145. 145.
    Hofstra CL, Van Ark I, Hofman G, et al. Differential effects of endogenous and exogenous interferon-gamma on immunoglobulin E, cellular infiltration, and airway responsiveness in a murine model of allergic asthma. Am J Respir Cell Mol Biol 1998;19(5):826–835.PubMedGoogle Scholar
  146. 146.
    Walter DM, Wong CP, DeKruyff RH, et al. Il-18 gene transfer by adenovirus prevents the development of and reverses established allergen-induced airway hyperreactivity. J Immunol 2001;166:6392–6398.PubMedGoogle Scholar
  147. 147.
    Yoshimoto T, Min B, Sugimoto T, et al. Nonredundant roles for CD1d-restricted natural killer T cells and conventional CD4+ T cells in the induction of immunoglobulin E antibodies in response to interleukin 18 treatment of mice. J Exp Med 2003;197(8):997–1005.PubMedCrossRefGoogle Scholar
  148. 148.
    Yoshimoto T, Mizutani H, Tsutsui H, et al. IL-18 induction of IgE: dependence on CD4+ T cells, IL-4 and STAT6. Nat Immunol 2000;1:132–137.PubMedCrossRefGoogle Scholar
  149. 149.
    Morahan G, Huang D, Wu M, et al. Association of IL12B promoter polymorphism with severity of atopic and nonatopic asthma in children. Lancet 2002;360(9331):455–459.PubMedCrossRefGoogle Scholar
  150. 150.
    Khoo SK, Hayden CM, Roberts M, et al. Associations of the IL12B promoter polymorphism in longitudinal data from asthmatic patients 7 to 42 years of age. J Allergy Clin Immunol 2004;113(3):475–481.PubMedCrossRefGoogle Scholar
  151. 151.
    Hirota T, Suzuki Y, Hasegawa K, et al. Functional haplotypes of IL-12B are associated with childhood atopic asthma. J Allergy Clin Immunol 2005;116(4):789–795.PubMedCrossRefGoogle Scholar
  152. 152.
    Randolph AG, Lange C, Silverman EK, et al. The IL12B gene is associated with asthma. Am J Hum Genet 2004;75(4):709–715.PubMedCrossRefGoogle Scholar
  153. 153.
    Napolitani G, Rinaldi A, Bertoni F, et al. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat Immunol 2005;6(8):769–776.PubMedCrossRefGoogle Scholar
  154. 154.
    Gereda JE, Leung DY, Thatayatikom A, et al. Relation between house-dust endotoxin exposure, type 1 T-cell development, and allergen sensitisation in infants at high risk of asthma. Lancet 2000;355(9216):1680–1683.PubMedCrossRefGoogle Scholar
  155. 155.
    Redecke V, Hacker H, Datta SK, et al. Cutting edge: activation of Toll-like receptor 2 induces a Th2 immune response and promotes experimental asthma. J Immunol 2004;172(5):2739–2743.PubMedGoogle Scholar
  156. 156.
    Eisenbarth SC, Piggott DA, Huleatt JW, et al. Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J Exp Med 2002;196(12):1645–1651.PubMedCrossRefGoogle Scholar
  157. 157.
    Raby BA, Klimecki WT, Laprise C, et al. Polymorphisms in toll-like receptor 4 are not associated with asthma or atopy-related phenotypes. Am J Respir Crit Care Med 2002;166(11):1449–1456.PubMedCrossRefGoogle Scholar
  158. 158.
    Berghofer B, Frommer T, Konig IR, et al. Common human Toll-like receptor 9 polymorphisms and haplotypes: association with atopy and functional relevance. Clin Exp Allergy 2005;35(9):1147–1154.PubMedCrossRefGoogle Scholar
  159. 159.
    Lazarus R, Klimecki WT, Raby BA, et al. Single-nucleotide polymorphisms in the Toll-like receptor 9 gene (TLR9): frequencies, pairwise linkage disequilibrium, and haplotypes in three U.S. ethnic groups and exploratory casecontrol disease association studies. Genomics 2003;81(1):85–91.PubMedCrossRefGoogle Scholar
  160. 160.
    Fageras Bottcher M, Hmani-Aifa M, Lindstrom A, et al. A TLR4 polymorphism is associated with asthma and reduced lipopolysaccharide-induced interleukin-12(p70) responses in Swedish children. J Allergy Clin Immunol 2004;114(3):561–567.PubMedCrossRefGoogle Scholar
  161. 161.
    Eder W, Klimecki W, Yu L, et al. Toll-like receptor 2 as a major gene for asthma in children of European farmers. J Allergy Clin Immunol 2004;113(3):482–488.PubMedCrossRefGoogle Scholar
  162. 162.
    Rossi D, Zlotnik A. The biology of chemokines and their receptors. Annu Rev Immunol 2000;18:217–242.PubMedCrossRefGoogle Scholar
  163. 163.
    Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity 2000;12(2):121–127.PubMedCrossRefGoogle Scholar
  164. 164.
    D’Ambrosio D, Mariani M, Panina-Bordignon P, et al. Chemokines and their receptors guiding T lymphocyte recruitment in lung inflammation. Am J Respir Crit Care Med 2001;164(7):1266–1275.PubMedGoogle Scholar
  165. 165.
    Chensue SW, Lukacs NW, Yang TY, et al. Aberrant in vivo T helper type 2 cell response and impaired eosinophil recruitment in CC chemokine receptor 8 knockout mice. J Exp Med 2001;193(5):573–584.PubMedCrossRefGoogle Scholar
  166. 166.
    Homey B, Zlotnik A. Chemokines in allergy. Curr Opin Immunol 1999;11(6):626–634.PubMedCrossRefGoogle Scholar
  167. 167.
    Teran LM. CCL chemokines and asthma. Immunol Today 2000;21(5):235–242.PubMedCrossRefGoogle Scholar
  168. 168.
    Kawasaki S, Takizawa H, Yoneyama H, et al. Intervention of thymus and activation-regulated chemokine attenuates the development of allergic airway inflammation and hyperresponsiveness in mice. J Immunol 2001;166(3):2055–2062.PubMedGoogle Scholar
  169. 169.
    Yamamoto J, Adachi Y, Onoue Y, et al. Differential expression of the chemokine receptors by the Th1-and Th2-type effector populations within circulating CD4+ T cells. J Leuk Biol 2000;68(4):568–574.Google Scholar
  170. 170.
    Panina-Bordignon P, Papi A, Mariani M, et al. The C-C chemokine receptors CCR4 and CCR8 identify airway T cells of allergen-challenged atopic asthmatics. J Clin Invest 2001;107(11):1357–1364.PubMedCrossRefGoogle Scholar
  171. 171.
    Schuh JM, Power CA, Proudfoot AE, et al. Airway hyperresponsiveness, but not airway remodeling, is attenuated during chronic pulmonary allergic responses to Aspergillus in CCR4−/− mice. FASEB J Online 2002;16(10):1313–1315.Google Scholar
  172. 172.
    Humbles AA, Lu B, Friend DS, et al. The murine CCR3 receptor regulates both the role of eosinophils and mast cells in allergen-induced airway inflammation and hyperresponsiveness. Proc Natl Acad Sci USA 2002;99(3):1479–1484.PubMedCrossRefGoogle Scholar
  173. 173.
    Ma W, Bryce PJ, Humbles AA, et al. CCR3 is essential for skin eosinophilia and airway hyperresponsiveness in a murine model of allergic skin inflammation. J Clin Invest 2002;109(5):621–628.PubMedGoogle Scholar
  174. 174.
    Shin HD, Kim LH, Park BL, et al. Association of eotaxin gene family with asthma and serum total IgE. Hum Mol Genet 2003;12(11):1279–1285.PubMedCrossRefGoogle Scholar
  175. 175.
    Fukunaga K, Asano K, Mao XQ, et al. Genetic polymorphisms of CC chemokine receptor 3 in Japanese and British asthmatics. Eur Respir J 2001;17(1):59–63.PubMedCrossRefGoogle Scholar
  176. 176.
    Fryer AA, Spiteri MA, Bianco A, et al. The-403 G→A promoter polymorphism in the RANTES gene is associated with atopy and asthma. Genes Immun 2000;1(8):509–514.PubMedCrossRefGoogle Scholar
  177. 177.
    Stemmler S, Arinir U, Klein W, et al. Association of interleukin-8 receptor alpha polymorphisms with chronic obstructive pulmonary disease and asthma. Genes Immun 2005;6(3):225–230.PubMedCrossRefGoogle Scholar
  178. 178.
    Milne AA, Piper PJ. Role of the VLA-4 integrin in leucocyte recruitment and bronchial hyperresponsiveness in the guinea-pig. Eur J Pharmacol 1995;282(1–3):243–249.PubMedCrossRefGoogle Scholar
  179. 179.
    Borchers MT, Crosby J, Farmer S, et al. Blockade of CD49d inhibits allergic airway pathologies independent of effects on leukocyte recruitment. Am J Physiol Lung Cell Mol Physiol 2001;280(4):L813–L821.PubMedGoogle Scholar
  180. 180.
    Lobb RR, Abraham WM, Burkly LC, et al. Pathophysiologic role of alpha 4 integrins in the lung. Ann NY Acad Sci 1996;796:113–123.PubMedCrossRefGoogle Scholar
  181. 181.
    Henderson WR Jr, Chi EY, Albert RK, et al. Blockade of CD49d (alpha4 integrin) on intrapulmonary but not circulating leukocytes inhibits airway inflammation and hyperresponsiveness in a mouse model of asthma. J Clin Invest 1997;100(12):3083–3092.PubMedCrossRefGoogle Scholar
  182. 182.
    Kanehiro A, Takeda K, Joetham A, et al. Timing of administration of anti-VLA-4 differentiates airway hyperresponsiveness in the central and peripheral airways in mice. Am J Respir Crit Care Med 2000;162(3 Pt 1):1132–1139.PubMedGoogle Scholar
  183. 183.
    Wegner CD, Gundel RH, Reilly P, et al. Intercellular adhesion molecule-1 (ICAM-1) in the pathogenesis of asthma. Science 1990;247(4941):456–459.PubMedCrossRefGoogle Scholar
  184. 184.
    Buckley TL, Bloemen PG, Henricks PA, et al. LFA-1 and ICAM-1 are crucial for the induction of hyperreactivity in the mouse airways. Ann NY Acad Sci 1996;796:149–161.PubMedCrossRefGoogle Scholar
  185. 185.
    Gerwin N, Gonzalo JA, Lloyd C, et al. Prolonged eosinophil accumulation in allergic lung interstitium of ICAM-2 deficient mice results in extended hyperresponsiveness. Immunity 1999;10(1):9–19.PubMedCrossRefGoogle Scholar
  186. 186.
    Lee SH, Prince JE, Rais M, et al. Differential requirement for CD18 in T helper effector homing. Nat Med 2003;9(10):1281–1286.PubMedCrossRefGoogle Scholar
  187. 187.
    Puthothu B, Krueger M, Bernhardt M, et al. ICAM1 amino-acid variant K469E is associated with paediatric bronchial asthma and elevated sICAM1 levels. Genes Immun 2006;7(4):322–326.PubMedCrossRefGoogle Scholar
  188. 188.
    Mathew A, MacLean JA, DeHaan E, et al. Signal transducer and activator of transcription 6 controls chemokine production and T helper cell type 2 cell trafficking in allergic pulmonary inflammation. J Exp Med 2001;193(9):1087–1096.PubMedCrossRefGoogle Scholar
  189. 189.
    Sampath D, Castro M, Look DC, et al. Constitutive activation of an epithelial signal transducer and activator of transcription (STAT) pathway in asthma. J Clin Invest 1999;103(9):1353–1361.PubMedCrossRefGoogle Scholar
  190. 190.
    Shi ZOQ, Fischer MJ, De Sanctis GT, et al. IFN-gamma, but not Fas, mediates reduction of allergen-induced mucous cell metaplasia by inducing apoptosis. J Immunol 2002;168(9):4764–4771.PubMedGoogle Scholar
  191. 191.
    Wang IM, Lin H, Goldman SJ, et al. STAT-1 is activated by IL-4 and IL-13 in multiple cell types. Mol Immunol 2004;41(9):873–884.PubMedCrossRefGoogle Scholar
  192. 192.
    Venkayya R, Lam M, Willkom M, et al. The Th2 lymphocyte products IL-4 and IL-13 rapidly induce airway hyperresponsiveness through direct effects on resident airway cells. Am J Respir Cell Mol Biol 2002;26(2):202–208.PubMedGoogle Scholar
  193. 193.
    Kuperman DA, Huang X, Koth LL, et al. Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nat Med 2002;8(8):885–889.PubMedGoogle Scholar
  194. 194.
    Zheng W, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 1997;89(4):587–596.PubMedCrossRefGoogle Scholar
  195. 195.
    Zhang DH, Cohn L, Ray P, et al. Transcription factor GATA-3 is differentially expressed in murine Th1 and Th2 cells and controls Th2-specific expression of the interleukin-5 gene. J Biol Chem 1997;272(34):21597–21603.PubMedCrossRefGoogle Scholar
  196. 196.
    Ouyang W, Lohning M, Gao Z, et al. Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment. Immunity 2000;12(1):27–37.PubMedCrossRefGoogle Scholar
  197. 197.
    Das J, Chen CH, Yang L, et al. A critical role for NFkappa B in GATA3 expression and TH2 differentiation in allergic airway inflammation. Nat Immunol 2001;2(1):45–50.PubMedCrossRefGoogle Scholar
  198. 198.
    Szabo SJ, Kim ST, Costa GL, et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 2000;100(6):655–669.PubMedCrossRefGoogle Scholar
  199. 199.
    Finotto S, Neurath MF, Glickman JN, et al. Development of spontaneous airway changes consistent with human asthma in mice lacking T-bet. Science 2002;295(5553):336–338.PubMedCrossRefGoogle Scholar
  200. 200.
    Finotto S, Hausding M, Doganci A, et al. Asthmatic changes in mice lacking T-bet are mediated by IL-13. Int Immunol 2005;17(8):993–1007.PubMedCrossRefGoogle Scholar
  201. 201.
    Tantisira KG, Hwang ES, Raby BA, et al. TBX21: a functional variant predicts improvement in asthma with the use of inhaled corticosteroids. Proc Natl Acad Sci USA 2004;101(52):18099–18104.PubMedCrossRefGoogle Scholar
  202. 202.
    Raby BA, Hwang ES, Van Steen K, et al. T-bet polymorphisms are associated with asthma and airway hyperresponsiveness. Am J Respir Crit Care Med 2006;173(1):64–70.PubMedCrossRefGoogle Scholar
  203. 203.
    Deurloo DT, van Berkel MAT, van Esch BCAM, et al. CD28/CTLA4 double deficient mice demonstrate crucial role for B7 co-stimulation in the induction of allergic lower airways disease. Clin Exp Allergy 2003;33(9):1297–304.PubMedCrossRefGoogle Scholar
  204. 204.
    Mathur M, Herrmann K, Qin Y, et al. CD28 interactions with either CD80 or CD86 are sufficient to induce allergic airway inflammation in mice. Am J Respir Cell Mol Biol 1999;21(4):498–509.PubMedGoogle Scholar
  205. 205.
    Padrid PA, Mathur M, Li X, et al. CTLA4Ig inhibits airway eosinophilia and hyperresponsiveness by regulating the development of Th1/Th2 subsets in a murine model of asthma. Am J Respir Cell Mol Biol 1998;18(4):453–462.PubMedGoogle Scholar
  206. 206.
    Keane-Myers A, Gause WC, Linsley PS, et al. B7-CD28/CTLA-4 costimulatory pathways are required for the development of T helper cell 2-mediated allergic airway responses to inhaled antigens. J Immunol 1997;158(5):2042–2049.PubMedGoogle Scholar
  207. 207.
    Krinzman SJ, De Sanctis GT, Cernadas M, et al. Inhibition of T cell costimulation abrogates airway hyperresponsiveness in a murine model. J Clin Invest 1996;98(12):2693–2699.PubMedCrossRefGoogle Scholar
  208. 208.
    Salek-Ardakani S, Song J, Halteman BS, et al. OX40 (CD134) controls memory T helper 2 cells that drive lung inflammation. J Exp Med 2003;198(2):315–324.PubMedCrossRefGoogle Scholar
  209. 209.
    Hoshino A, Tanaka Y, Akiba H, et al. Critical role for OX40 ligand in the development of pathogenic Th2 cells in a murine model of asthma. Eur J Immunol 2003;33(4):861–869.PubMedCrossRefGoogle Scholar
  210. 210.
    Arestides RSS, He H, Westlake RM, et al. Costimulatory molecule OX40L is critical for both Th1 and Th2 responses in allergic inflammation. Eur J Immunol 2002;32(10):2874–2880.PubMedCrossRefGoogle Scholar
  211. 211.
    Jember AG, Zuberi R, Liu FT, et al. Development of allergic inflammation in a murine model of asthma is dependent on the costimulatory receptor OX40. J Exp Med 2001;193(3):387–392.PubMedCrossRefGoogle Scholar
  212. 212.
    Deurloo DT, van Esch BC, Hofstra CL, et al. CTLA4-IgG reverses asthma manifestations in a mild but not in a more “severe“ ongoing murine model. Am J Respir Cell Mol Biol 2001;25(6):751–760.PubMedGoogle Scholar
  213. 213.
    Tivol EA, Borriello F, Schweitzer AN, et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 1995;3(5):541–547.PubMedCrossRefGoogle Scholar
  214. 214.
    Howard TD, Postma DS, Hawkins GA, et al. Fine mapping of an IgE-controlling gene on chromosome 2q: Analysis of CTLA4 and CD28. J Allergy Clin Immunol 2002;110(5):743–751.PubMedCrossRefGoogle Scholar
  215. 215.
    Jaffar ZH, Stanciu L, Pandit A, et al. Essential role for both CD80 and CD86 costimulation, but not CD40 interactions, in allergen-induced Th2 cytokine production from asthmatic bronchial tissue: role for alphabeta, but not gammadelta, T cells. J Immunol 1999;163(11):6283–6291.PubMedGoogle Scholar
  216. 216.
    Hogan SP, Mould A, Kikutani H, et al. Aeroallergen-induced eosinophilic inflammation, lung damage, and airways hyperreactivity in mice can occur independently of IL-4 and allergen-specific immunoglobulins. J Clin Invest 1997;99(6):1329–1339.PubMedCrossRefGoogle Scholar
  217. 217.
    McIntire JJ, Umetsu SE, Akbari O, et al. Identification of Tapr (an airway hyperreactivity regulatory locus) and the linked Tim gene family. Nat Immunol 2001;2(12):1109–1116.PubMedCrossRefGoogle Scholar
  218. 218.
    de Souza AJ, Oriss TB, O’Malley KJ, et al. T cell Ig and mucin 1 (TIM-1) is expressed on in vivo-activated T cells and provides a costimulatory signal for T cell activation. Proc Natl Acad Sci USA 2005;102(47):17113–17118.PubMedCrossRefGoogle Scholar
  219. 219.
    Meyers JH, Chakravarti S, Schlesinger D, et al. TIM-4 is the ligand for TIM-1, and the TIM-1-TIM-4 interaction regulates T cell proliferation. Nat Immunol 2005;6(5):455–464.PubMedCrossRefGoogle Scholar
  220. 220.
    Chae SC, Song JH, Heo JC, et al. Molecular variations in the promoter and coding regions of human Tim-1 gene and their association in Koreans with asthma. Hum Immunol 2003;64(12):1177–1182.PubMedCrossRefGoogle Scholar
  221. 221.
    Gao PS, Mathias RA, Plunkett B, et al. Genetic variants of the T-cell immunoglobulin mucin 1 but not the T-cell immunoglobulin mucin 3 gene are associated with asthma in an African American population. J Allergy Clin Immunol 2005;115(5):982–988.PubMedCrossRefGoogle Scholar
  222. 222.
    Monney L, Sabatos CA, Gaglia JL, et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature 2002;415(6871):536–541.PubMedCrossRefGoogle Scholar
  223. 223.
    Drouin SM, Corry DB, Hollman TJ, et al. Absence of the complement anaphylatoxin C3a receptor suppresses Th2 effector functions in a murine model of pulmonary allergy. J Immunol 2002;169(10):5926–5933.PubMedGoogle Scholar
  224. 224.
    Drouin SM, Corry DB, Kildsgaard J, et al. Cutting edge: the absence of C3 demonstrates a role for complement in Th2 effector functions in a murine model of pulmonary allergy. J Immunol 2001;167(8):4141–4145.PubMedGoogle Scholar
  225. 225.
    Humbles AA, Lu B, Nilsson CA, et al. A role for the C3a anaphylatoxin receptor in the effector phase of asthma. Nature 2000;406(6799):998–1001.PubMedCrossRefGoogle Scholar
  226. 226.
    Kozel TR, Wilson MA, Farrell TP, et al. Activation of C3 and binding to Aspergillus fumigatus conidia and hyphae. Infect Immun 1989;57(11):3412–3417.PubMedGoogle Scholar
  227. 227.
    Drouin SM, Kildsgaard J, Haviland J, et al. Expression of the complement anaphylatoxin C3a and C5a receptors on bronchial epithelial and smooth muscle cells in models of sepsis and asthma. J Immunol 2001;166(3):2025–2032.PubMedGoogle Scholar
  228. 228.
    Abe M, Shibata K, Akatsu H, et al. Contribution of anaphylatoxin C5a to late airway responses after repeated exposure of antigen to allergic rats. J Immunol 2001;167(8):4651–4660.PubMedGoogle Scholar
  229. 229.
    Peng T, Hao L, Madri JA, et al. Role of C5 in the development of airway inflammation, airway hyperresponsiveness, and ongoing airway response. J Clin Invest 2005;115(6):1590–1600.PubMedCrossRefGoogle Scholar
  230. 230.
    Hasegawa K, Tamari M, Shao C, et al. Variations in the C3, C3a receptor, and C5 genes affect susceptibility to bronchial asthma. Hum Genet 2004;115(4):295–301.PubMedCrossRefGoogle Scholar
  231. 231.
    Heise CE, O’Dowd BF, Figueroa DJ, et al. Characterization of the human cysteinyl leukotriene 2 receptor. J Biol Chem 2000;275(39):30531–30536.PubMedCrossRefGoogle Scholar
  232. 232.
    Lynch KR, O’Neill GP, Liu Q, et al. Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature 1999;399(6738):789–793.PubMedCrossRefGoogle Scholar
  233. 233.
    Hui Y, Yang G, Galczenski H, et al. The murine cysteinyl leukotriene 2 (CysLT2) receptor. cDNA and genomic cloning, alternative splicing, and in vitro characterization. J Biol Chem 2001;276(50):47489–47495.PubMedCrossRefGoogle Scholar
  234. 234.
    Fukai H, Ogasawara Y, Migita O, et al. Association between a polymorphism in cysteinyl leukotriene receptor 2 on chromosome 13q14 and atopic asthma. Pharmacogenetics 2004;14(10):683–690.PubMedCrossRefGoogle Scholar
  235. 235.
    Park JS, Chang HS, Park CS, et al. Association analysis of cysteinyl-leukotriene receptor 2 (CYSLTR2) polymorphisms with aspirin intolerance in asthmatics. Pharmacogenet Genomics 2005;15(7):483–492.PubMedCrossRefGoogle Scholar
  236. 236.
    Kawagishi Y, Mita H, Taniguchi M, et al. Leukotriene C4 synthase promoter polymorphism in Japanese patients with aspirin-induced asthma. J Allergy Clin Immunol 2002;109(6):936–942.PubMedCrossRefGoogle Scholar
  237. 237.
    Van Sambeek R, Stevenson DD, Baldasaro M, et al. 5′ Flanking region polymorphism of the gene encoding leukotriene C4 synthase does not correlate with the aspirinintolerant asthma phenotype in the United States. J Allergy Clin Immunol 2000;106(1 Pt 1):72–76.PubMedCrossRefGoogle Scholar
  238. 238.
    Sanak M, Pierzchalska M, Bazan-Socha S, et al. Enhanced expression of the leukotriene C(4) synthase due to overactive transcription of an allelic variant associated with aspirin-intolerant asthma. Am J Respir Cell Mol Biol 2000;23(3):290–296.PubMedGoogle Scholar
  239. 239.
    Sanak M, Simon HU, Szczeklik A. Leukotriene C4 synthase promoter polymorphism and risk of aspirin-induced asthma. Lancet 1997;350(9091):1599–1600.PubMedCrossRefGoogle Scholar
  240. 240.
    Jones GL, Saroea HG, Watson RM, et al. Effect of an inhaled thromboxane mimetic (U46619) on airway function in human subjects. Am Rev Respir Dis 1992;145(6):1270–1274.PubMedGoogle Scholar
  241. 241.
    Fujimura M, Saito M, Kurashima K, et al. Bronchoconstrictive properties and potentiating effect on bronchial responsiveness of inhaled thromboxane A2 analogue (STA2) in guinea pigs. J Asthma 1989;26(4):237–242.PubMedCrossRefGoogle Scholar
  242. 242.
    Fujimura M, Sasaki F, Nakatsumi Y, et al. Effects of a thromboxane synthetase inhibitor (OKY-046) and a lipoxygenase inhibitor (AA-861) on bronchial responsiveness to acetylcholine in asthmatic subjects. Thorax 1986;41(12):955–959.PubMedCrossRefGoogle Scholar
  243. 243.
    Arimura A, Asanuma F, Kurosawa A, et al. Antiasthmatic activity of a novel thromboxane A2 antagonist, S-1452, in guinea pigs. Int Arch Allergy Appl Immunol 1992;98(3):239–246.CrossRefGoogle Scholar
  244. 244.
    Nagai H, Yakuo I, Togawa M, et al. Effect of OKY-046, a new thromboxane A2 synthetase inhibitor, on experimental asthma in guinea pigs. Prostaglandins Leukot Med 1987;30(2–3):111–121.PubMedCrossRefGoogle Scholar
  245. 245.
    Beasley RC, Featherstone RL, Church MK, et al. Effect of a thromboxane receptor antagonist on PGD2-and allergen-induced bronchoconstriction. J Appl Physiol 1989;66(4):1685–1693.PubMedGoogle Scholar
  246. 246.
    Finnerty JP, Twentyman OP, Harris A, et al. Effect of GR32191, a potent thromboxane receptor antagonist, on exercise induced bronchoconstriction in asthma. Thorax 1991;46(3):190–192.PubMedCrossRefGoogle Scholar
  247. 247.
    Manning PJ, Stevens WH, Cockcroft DW, et al. The role of thromboxane in allergen-induced asthmatic responses. Eur Respir J 1991;4(6):667–672.PubMedGoogle Scholar
  248. 248.
    Stenton SC, Young CA, Harris A, et al. The effect of GR32191 (a thromboxane receptor antagonist) on airway responsiveness in asthma. Pulm Pharmacol 1992;5(3):199–202.PubMedCrossRefGoogle Scholar
  249. 249.
    Gardiner PV, Young CL, Holmes K, et al. Lack of short-term effect of the thromboxane synthetase inhibitor UK-38,485 on airway reactivity to methacholine in asthmatic subjects. Eur Respir J 1993;6(7):1027–1030.PubMedGoogle Scholar
  250. 250.
    Leung TF, Tang NLS, Lam CWK, et al. Thromboxane A2 receptor gene polymorphism is associated with the serum concentration of cat-specific immunoglobulin E as well as the development and severity of asthma in Chinese children. Pediatr Allergy Immunol 2002;13(1):10–17.PubMedCrossRefGoogle Scholar
  251. 251.
    Unoki M, Furuta S, Onouchi Y, et al. Association studies of 33 single nucleotide polymorphisms (SNPs) in 29 candidate genes for bronchial asthma: positive association a T924C polymorphism in the thromboxane A2 receptor gene. Hum Genet 2000;106(4):440–446.PubMedCrossRefGoogle Scholar
  252. 252.
    Hardy CC, Robinson C, Tattersfield AE, et al. The bronchoconstrictor effect of inhaled prostaglandin D2 in normal and asthmatic men. N Engl J Med 1984;311(4):209–213.PubMedCrossRefGoogle Scholar
  253. 253.
    Fuller RW, Dixon CM, Dollery CT, et al. Prostaglandin D2 potentiates airway responsiveness to histamine and methacholine. Am Rev Respir Dis 1986;133(2):252–254.PubMedGoogle Scholar
  254. 254.
    Matsuoka T, Hirata M, Tanaka H, et al. Prostaglandin D2 as a mediator of allergic asthma. Science 2000;287(5460):2013–2017.PubMedCrossRefGoogle Scholar
  255. 255.
    Hirai H, Tanaka K, Yoshie O, et al. Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J Exp Med 2001;193(2):255–261.PubMedCrossRefGoogle Scholar
  256. 256.
    Spik I, Brenuchon C, Angeli V, et al. Activation of the prostaglandin D2 receptor DP2/CRTH2 increases allergic inflammation in mouse. J Immunol 2005;174(6):3703–3708.PubMedGoogle Scholar
  257. 257.
    Smith AP, Cuthbert MF, Dunlop LS. Effects of inhaled prostaglandins E1, E2, and F2alpha on the airway resistance of healthy and asthmatic man. Clin Sci Mol Med 1975;48(5):421–430.PubMedGoogle Scholar
  258. 258.
    Mathe AA, Hedqvist P. Effect of prostaglandins F2 alpha and E2 on airway conductance in healthy subjects and asthmatic patients. Am Rev Respir Dis 1975;111(3):313–320.PubMedGoogle Scholar
  259. 259.
    Nagao K, Tanaka H, Komai M, et al. Role of prostaglandin I2 in airway remodeling induced by repeated allergen challenge in mice. Am Respir Cell Mol Biol 2003;29(3 Pt 1):314–320.CrossRefGoogle Scholar
  260. 260.
    Takahashi Y, Tokuoka S, Masuda T, et al. Augmentation of allergic inflammation in prostanoid IP receptor deficient mice. Br J Pharmacol 2002;137(3):315–322.PubMedCrossRefGoogle Scholar
  261. 261.
    Bianco S, Robuschi M, Ceserani R, et al. Prevention of a specifically induced bronchoconstriction by PGI2 and 20-methyl-PGI2 in asthmatic patients. Pharmacol Res Commun 1978;10(7):657–674.PubMedCrossRefGoogle Scholar
  262. 262.
    Fedyk ER, Phipps RP. Prostaglandin E2 receptors of the EP2 and EP4 subtypes regulate activation and differentiation of mouse B lymphocytes to IgE-secreting cells. Proc Natl Acad Sci USA 1996;93(20):10978–10983.PubMedCrossRefGoogle Scholar
  263. 263.
    Profita M, Sala A, Bonanno A, et al. Increased prostaglandin E2 concentrations and cyclooxygenase-2 expression in asthmatic subjects with sputum eosinophilia. J Allergy Clin Immunol 2003;112(4):709–716.PubMedCrossRefGoogle Scholar
  264. 264.
    Tilley SL, Hartney JM, Erikson CJ, et al. Receptors and pathways mediating the effects of prostaglandin E2 on airway tone. Am J Physiol Lung Cell Mol Physiol 2003;284(4):L599–L606.PubMedGoogle Scholar
  265. 265.
    Martin JG, Suzuki M, Maghni K, et al. The immunomodulatory actions of prostaglandin E2 on allergic airway responses in the rat. J Immunol 2002;169(7):3963–3969.PubMedGoogle Scholar
  266. 266.
    Kunikata T, Yamane H, Segi E, et al. Suppression of allergic inflammation by the prostaglandin E receptor subtype EP3. Nat Immunol 2005;6(5):524–531.PubMedCrossRefGoogle Scholar
  267. 267.
    Cushley MJ, Tattersfield AE, Holgate ST. Inhaled adenosine and guanosine on airway resistance in normal and asthmatic subjects. Br J Clin Pharmacol 1983;15(2):161–165.PubMedGoogle Scholar
  268. 268.
    Chunn JL, Young HW, Banerjee SK, et al. Adenosine-dependent airway inflammation and hyperresponsiveness in partially adenosine deaminase-deficient mice. J Immunol 2001;167:4676–4685.PubMedGoogle Scholar
  269. 269.
    Zhong H, Shlykov SG, Molina JG, et al. Activation of murine lung mast cells by the adenosine A3 receptor. J Immunol 2003;171(1):338–345.PubMedGoogle Scholar
  270. 270.
    Tilley SL, Tsai M, Williams CM, et al. Identification of A3 receptor-and mast cell-dependent and-independent components of adenosine-mediated airway responsiveness in mice. J Immunol 2003;171(1):331–337.PubMedGoogle Scholar
  271. 271.
    Blackburn MR, Lee CG, Young HW, et al. Adenosine mediates IL-13-induced inflammation and remodeling in the lung and interacts in an IL-13-adenosine amplification pathway. J Clin Invest 2003;112(3):332–344.PubMedGoogle Scholar
  272. 272.
    Callaerts-Vegh Z, Evans KLJ, Dudekula N, et al. Effects of acute and chronic administration of beta-adrenoceptor ligands on airway function in a murine model of asthma. Proc Natl Acad Sci USA 2004;101(14):4948–4953.PubMedCrossRefGoogle Scholar
  273. 273.
    Holloway JW, Dunbar PR, Riley GA, et al. Association of beta2-adrenergic receptor polymorphisms with severe asthma. Clin Exp Allergy 2000;30(8):1097–1103.PubMedCrossRefGoogle Scholar
  274. 274.
    Turki J, Pak J, Green SA, et al. Genetic polymorphisms of the beta 2-adrenergic receptor in nocturnal and nonnocturnal asthma. Evidence that Gly16 correlates with the nocturnal phenotype. J Clin Invest 1995;95(4):1635–1641.PubMedCrossRefGoogle Scholar
  275. 275.
    Roux E, Molimard M, Savineau JP, et al. Muscarinic stimulation of airway smooth muscle cells. Gen Pharmacol 1998;31(3):349–356.PubMedCrossRefGoogle Scholar
  276. 276.
    Fenech AG, Ebejer MJ, Felice AE, et al. Mutation screening of the muscarinic M(2) and M(3) receptor genes in normal and asthmatic subjects. Br J Pharmacol 2001;133(1):43–48.PubMedCrossRefGoogle Scholar
  277. 277.
    Denjean A, Arnoux B, Benveniste J, et al. Bronchoconstriction induced by intratracheal administration of platelet-activating factor (PAF-acether) in baboons. Agents Actions 1981;11(6–7):567–568.PubMedCrossRefGoogle Scholar
  278. 278.
    Ishii S, Nagase T, Shindou H, et al. Platelet-activating factor receptor develops airway hyperresponsiveness independently of airway inflammation in a murine asthma model. J Immunol 2004;172(11):7095–7102.PubMedGoogle Scholar
  279. 279.
    Stafforini DM, Numao T, Tsodikov A, et al. Deficiency of platelet-activating factor acetylhydrolase is a severity factor for asthma. J Clin Invest 1999;103(7):989–997.PubMedCrossRefGoogle Scholar
  280. 280.
    Kruse S, Mao XQ, Heinzmann A, et al. The Ile198Thr and Ala379Val variants of plasmatic PAF-acetylhydrolase impair catalytical activities and are associated with atopy and asthma. Am J Hum Genet 2000;66(5):1522–1530.PubMedCrossRefGoogle Scholar
  281. 281.
    Campbell KA, Lees A, Finkelman FD, et al. Co-crosslinking Fc epsilon RII/CD23 and B cell surface immunoglobulin modulates B cell activation. Eur J Immunol 1992;22(8):2107–2112.PubMedCrossRefGoogle Scholar
  282. 282.
    Squire CM, Studer EJ, Lees A, et al. Antigen presentation is enhanced by targeting antigen to the Fc epsilon RII by antigen-anti-Fc epsilon RII conjugates. J Immunol 1994;152(9):4388–4396.PubMedGoogle Scholar
  283. 283.
    Fujiwara H, Kikutani H, Suematsu S, et al. The absence of IgE antibody-mediated augmentation of immune responses in CD23-deficient mice. Proc Natl Acad Sci USA 1994;91(15):6835–6839.PubMedCrossRefGoogle Scholar
  284. 284.
    Gustavsson S, Hjulstrom S, Liu T, et al. CD23/IgE-mediated regulation of the specific antibody response in vivo. J Immunol 1994;152(10):4793–4800.PubMedGoogle Scholar
  285. 285.
    Stief A, Texido G, Sansig G, et al. Mice deficient in CD23 reveal its modulatory role in IgE production but no role in T and B cell development. J Immunol 1994;152(7):3378–3390.PubMedGoogle Scholar
  286. 286.
    Yu P, Kosco-Vilbois M, Richards M, et al. Negative feedback regulation of IgE synthesis by murine CD23. Nature 1994;369(6483):753–756.PubMedCrossRefGoogle Scholar
  287. 287.
    Tsao CH, Chen LC, Yeh KW, et al. Concomitant chronic sinusitis treatment in children with mild asthma: the effect on bronchial hyperresponsiveness. Chest 2003;123(3):757–764.PubMedCrossRefGoogle Scholar
  288. 288.
    Guerra S, Sherrill DL, Martinez FD, et al. Rhinitis as an independent risk factor for adult-onset asthma. J Allergy Clin Immunol 2002;109(3):419–425.PubMedCrossRefGoogle Scholar
  289. 289.
    Hill MR, Cookson WO. A new variant of the beta subunit of the high-affinity receptor for immunoglobulin E (Fc epsilon RI-beta E237G): associations with measures of atopy and bronchial hyper-responsiveness. Hum Mol Genet 1996;5(7):959–962.PubMedCrossRefGoogle Scholar
  290. 290.
    van Herwerden L, Harrap SB, Wong ZY, et al. Linkage of high-affinity IgE receptor gene with bronchial hyperreactivity, even in absence of atopy. Lancet 1995;346(8985):1262–1265.PubMedCrossRefGoogle Scholar
  291. 291.
    Burrows B, Martinez FD, Halonen M, et al. Association of asthma with serum IgE levels and skin-test reactivity to allergens. N Engl J Med 1989;320(5):271–277.PubMedCrossRefGoogle Scholar
  292. 292.
    Postma DS, Bleecker ER, Amelung PJ, et al. Genetic susceptibility to asthma—bronchial hyperresponsiveness coinherited with a major gene for atopy. N Engl J Med 1995;333(14):894–900.PubMedCrossRefGoogle Scholar
  293. 293.
    Amelung PJ, Postma D, Panhuysen CI, et al. Susceptibility loci regulating total serum IgE levels, bronchial hyperresponsiveness, and clinical asthma map to chromosome 5q. Chest 1997;111(6 Suppl):77S–78S.PubMedCrossRefGoogle Scholar
  294. 294.
    Noguchi E, Shibasaki M, Arinami T, et al. Evidence for linkage between asthma/atopy in childhood and chromosome 5q31-q33 in a Japanese population. Am J Respir Crit Care Med 1997;156(5):1390–1393.PubMedGoogle Scholar
  295. 295.
    Palmer LJ, Daniels SE, Rye PJ, et al. Linkage of chromosome 5q and 11q gene markers to asthma-associated quantitative traits in Australian children. Am J Respir Crit Care Med 1998;158(6):1825–1830.PubMedGoogle Scholar
  296. 296.
    Lonjou C, Barnes K, Chen H, et al. A first trial of retrospective collaboration for positional cloning in complex inheritance: assay of the cytokine region on chromosome 5 by the consortium on asthma genetics (COAG). Proc Natl Acad Sci USA 2000;97(20):10942–10947.PubMedCrossRefGoogle Scholar
  297. 297.
    Donfack J, Schneider DH, Tan Z, et al. Variation in conserved non-coding sequences on chromosome 5q and susceptibility to asthma and atopy. Respir Res 2005;6(1):145.PubMedCrossRefGoogle Scholar
  298. 298.
    Kamitani A, Wong ZY, Dickson P, et al. Absence of genetic linkage of chromosome 5q31 with asthma and atopy in the general population. Thorax 1997;52(9):816–817.PubMedCrossRefGoogle Scholar
  299. 299.
    Laitinen T, Kauppi P, Ignatius J, et al. Genetic control of serum IgE levels and asthma: linkage and linkage disequilibrium studies in an isolated population. Hum Mol Genet 1997;6(12):2069–2076.PubMedCrossRefGoogle Scholar
  300. 300.
    Mansur AH, Bishop DT, Markham AF, et al. Association study of asthma and atopy traits and chromosome 5q cytokine cluster markers. Clin Exp Allergy 1998;28(2):141–150.PubMedCrossRefGoogle Scholar
  301. 301.
    Jacobs KB, Burton PR, Iyengar SK, et al. Pooling data and linkage analysis in the chromosome 5q candidate region for asthma. Genet Epidemiol 2001;21(Suppl 1):S103–S108.PubMedGoogle Scholar
  302. 302.
    Noguchi E, Yokouchi Y, Zhang J, et al. Positional identification of an asthma susceptibility gene on human chromosome 5q33. Am J Respir Crit Care Med 2005;172(2):183–188.PubMedCrossRefGoogle Scholar
  303. 303.
    Corry DB, Kiss A, Song LZ, et al. Overlapping and independent contributions of MMP2 and MMP9 to lung allergic inflammatory cell egression through decreased CC chemokines. FASEB J 2004;18(9):995–997.PubMedGoogle Scholar
  304. 304.
    Corry DB, Rishi K, Kanellis J, et al. Decreased allergic lung inflammatory cell egression and increased susceptibility to asphyxiation in MMP2-deficiency. Nat Immunol 2002;3(4):347–353.PubMedCrossRefGoogle Scholar
  305. 305.
    Cocks TM, Fong B, Chow JM, et al. A protective role for protease-activated receptors in the airways. Nature 1999;398(6723):156–160.PubMedCrossRefGoogle Scholar
  306. 306.
    Ebeling C, Forsythe P, Ng J, et al. Proteinase-activated receptor 2 activation in the airways enhances antigenmediated airway inflammation and airway hyperresponsiveness through different pathways. J Allergy Clin Immunol 2005;115(3):623–630.PubMedCrossRefGoogle Scholar
  307. 307.
    Schmidlin F, Amadesi S, Dabbagh K, et al. Proteaseactivated receptor 2 mediates eosinophil infiltration and hyperreactivity in allergic inflammation of the airway. J Immunol 2002;169(9):5315–5321.PubMedGoogle Scholar
  308. 308.
    Oh SW, Pae CI, Lee DK, et al. Tryptase inhibition blocks airway inflammation in a mouse asthma model. J Immunol 2002;168(4):1992–2000.PubMedGoogle Scholar
  309. 309.
    Krishna MT, Chauhan A, Little L, et al. Inhibition of mast cell tryptase by inhaled APC 366 attenuates allergeninduced late-phase airway obstruction in asthma. J Allergy Clin Immunol 2001;107(6):1039–1045.PubMedCrossRefGoogle Scholar
  310. 310.
    Wright CD, Havill AM, Middleton SC, et al. Inhibition of allergen-induced pulmonary responses by the selective tryptase inhibitor 1,5-bis-[4-[(3-carbamimidoylbenzenesulfonylamino)-methyl]-phenoxy]-pentane (AMG-126737). Biochem Pharmacol 1999;58(12):1989–1996.PubMedCrossRefGoogle Scholar
  311. 311.
    Elrod KC, Moore WR, Abraham WM, et al. Lactoferrin, a potent tryptase inhibitor, abolishes late-phase airway responses in allergic sheep. Am J Respir Crit Care Med 1997;156(2 Pt 1):375–381.PubMedGoogle Scholar
  312. 312.
    Fiorucci L, Ascoli F. Mast cell tryptase, a still enigmatic enzyme. Cell Mol Life Sci 2004;61(11):1278–1295.PubMedCrossRefGoogle Scholar
  313. 313.
    Nadel JA, Takeyama K, Agusti C. Role of neutrophil elastase in hypersecretion in asthma. Eur Respir J 1999;13(1):190–196.PubMedCrossRefGoogle Scholar
  314. 314.
    Werner M, Herbon N, Gohlke H, et al. Asthma is associated with single-nucleotide polymorphisms in ADAM33. Clin Exp Allergy 2004;34(1):26–31.PubMedCrossRefGoogle Scholar
  315. 315.
    Jongepier H, Boezen HM, Dijkstra A, et al. Polymorphisms of the ADAM33 gene are associated with accelerated lung function decline in asthma. Clin Exp Allergy 2004;34(5):757–760.PubMedCrossRefGoogle Scholar
  316. 316.
    Lind DL, Choudhry S, Ung N, et al. ADAM33 is not associated with asthma in Puerto Rican or Mexican populations. Am J Respir Crit Care Med 2003;168(11):1312–1316.PubMedCrossRefGoogle Scholar
  317. 317.
    Van Eerdewegh P, Little RD, Dupuis J, et al. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 2002;418(6896):426–430.PubMedCrossRefGoogle Scholar
  318. 318.
    Kheradmand F, Kiss A, Xu J, et al. A protease-activated pathway underlying Th cell type 2 activation and allergic lung disease. J Immunol 2002;169(10):5904–5911.PubMedGoogle Scholar
  319. 319.
    Comoy EE, Pestel J, Duez C, et al. The house dust mite allergen, Dermatophagoides pteronyssinus, promotes type 2 responses by modulating the balance between IL-4 and IFN-gamma. J Immunol 1998;160(5):2456–2462.PubMedGoogle Scholar
  320. 320.
    Wan H, Winton HL, Soeller C, et al. Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions. J Clin Invest 1999;104(1):123–133.PubMedCrossRefGoogle Scholar
  321. 321.
    Hewitt CR, Brown AP, Hart BJ, et al. A major house dust mite allergen disrupts the immunoglobulin E network by selectively cleaving CD23: innate protection by antiproteases. J Exp Med 1995;182(5):1537–1544.PubMedCrossRefGoogle Scholar
  322. 322.
    Pepys J, Longbottom JL, Hargreave FE, et al. Allergic reactions of the lungs to enzymes of Bacillus subtilis. Lancet 1969;1(7607):1181–1184.PubMedCrossRefGoogle Scholar
  323. 323.
    Cullinan P, Harris JM, Newman Taylor AJ, et al. An outbreak of asthma in a modern detergent factory. Lancet 2000;356(9245):1899–1900.PubMedCrossRefGoogle Scholar
  324. 324.
    Xu J, Park PW, Kheradmand F, et al. Endogenous attenuation of allergic lung inflammation by syndecan-1. J Immunol 2005;174(9):5758–5765.PubMedGoogle Scholar
  325. 325.
    Diamant Z, Timmers MC, van der Veen H, et al. Effect of inhaled heparin on allergen-induced early and late asthmatic responses in patients with atopic asthma. Am J Respir Crit Care Med 1996;153(6 Pt 1):1790–1795.PubMedGoogle Scholar
  326. 326.
    Ahmed T, Garrigo J, Danta I. Preventing bronchoconstriction in exercise-induced asthma with inhaled heparin. N Engl J Med 1993;329(2):90–95.PubMedCrossRefGoogle Scholar
  327. 327.
    Hoshino M, Morita S, Iwashita H, et al. Increased expression of the human Ca2+-activated Cl channel 1 (CaCC1) gene in the asthmatic airway. Am J Respir Crit Care Med 2002;165(8):1132–1136.PubMedGoogle Scholar
  328. 328.
    Komiya T, Tanigawa Y, Hirohashi S. Cloning and identification of the gene gob-5, which is expressed in intestinal goblet cells in mice. Biochem Biophys Res Commun 1999;255(2):347–351.PubMedCrossRefGoogle Scholar
  329. 329.
    Nakanishi A, Morita S, Iwashita H, et al. Role of gob-5 in mucus overproduction and airway hyperresponsiveness in asthma. Proc Natl Acad Sci USA 2001;98(9):5175–5180.PubMedCrossRefGoogle Scholar
  330. 330.
    Robichaud A, Tuck SA, Kargman S, et al. Gob-5 is not essential for mucus overproduction in preclinical murine models of allergic asthma. Am J Respir Cell Mol Biol 2005;33(3):303–314.PubMedCrossRefGoogle Scholar
  331. 331.
    Gibson A, Lewis AP, Affleck K, et al. hCLCA1 and mCLCA3 are secreted non-integral membrane proteins and therefore are not ion channels. J Biol Chem 2005;280(29):27205–27212.PubMedCrossRefGoogle Scholar
  332. 332.
    Kamada F, Suzuki Y, Shao C, et al. Association of the hCLCA1 gene with childhood and adult asthma. Genes Immun 2004;5(7):540–547.PubMedCrossRefGoogle Scholar
  333. 333.
    Nicolae D, Cox NJ, Lester LA, et al. Fine mapping and positional candidate studies identify HLA-G as an asthma susceptibility gene on chromosome 6p21. Am J Hum Genet 2005;76(2):349–357.PubMedCrossRefGoogle Scholar
  334. 334.
    Soriano JB, Ercilla G, Sunyer J, et al. HLA class II genes in soybean epidemic asthma patients. Am J Respir Crit Care Med 1997;156(5):1394–1398.PubMedGoogle Scholar
  335. 335.
    Woszczek G, Kowalski ML, Borowiec M. Association of asthma and total IgE levels with human leucocyte antigen-DR in patients with grass allergy. Eur Respir J 2002;20(1):79–85.PubMedCrossRefGoogle Scholar
  336. 336.
    Kim SH, Oh HB, Lee KW, et al. HLA DRB 1*15-DPB1*05 haplotype: a susceptible gene marker for isocyanate-induced occupational asthma? Allergy 2006;61(7):891–894.PubMedCrossRefGoogle Scholar
  337. 337.
    Torio A, Sanchez-Guerrero I, Muro M, et al. HLA class II genotypic frequencies in atopic asthma: association of DRB1*01-DQB1*0501 genotype with Artemisia vulgaris allergic asthma. Hum Immunol 2003;64(8):811–815.PubMedCrossRefGoogle Scholar
  338. 338.
    Mapp CE, Beghe B, Balboni A, et al. Association between HLA genes and susceptibility to toluene diisocyanateinduced asthma. Clin Exp Allergy 2000;30(5):651–656.PubMedCrossRefGoogle Scholar
  339. 339.
    Kharitonov SA, O’Connor BJ, Evans DJ, et al. Allergeninduced late asthmatic reactions are associated with elevation of exhaled nitric oxide. Am J Respir Crit Care Med 1995;151(6):1894–1899.PubMedGoogle Scholar
  340. 340.
    Xiong Y, Karupiah G, Hogan SP, et al. Inhibition of allergic airway inflammation in mice lacking nitric oxide synthase 2. J Immunol 1999;162(1):445–452.PubMedGoogle Scholar
  341. 341.
    De Sanctis GT, MacLean JA, Hamada K, et al. Contribution of nitric oxide synthases 1, 2, and 3 to airway hyperresponsiveness and inflammation in a murine model of asthma. J Exp Med 1999;189(10):1621–1630.PubMedCrossRefGoogle Scholar
  342. 342.
    Que LG, Liu L, Yan Y, et al. Protection from experimental asthma by an endogenous bronchodilator. Science 2005;308(5728):1618–1621.PubMedCrossRefGoogle Scholar
  343. 343.
    Grasemann H, Yandava CN, Drazen JM. Neuronal NO synthase (NOS1) is a major candidate gene for asthma. Clin Exp Allergy 1999;29(Suppl 4):39–41.PubMedGoogle Scholar
  344. 344.
    Lee YC, Cheon KT, Lee HB, et al. Gene polymorphisms of endothelial nitric oxide synthase and angiotensin-converting enzyme in patients with asthma. Allergy 2000;55(10):959–963.PubMedCrossRefGoogle Scholar
  345. 345.
    Tamaoki J, Nakata J, Takeyama K, et al. Histamine H2 receptor-mediated airway goblet cell secretion and its modulation by histamine-degrading enzymes. J Allergy Clin Immunol 1997;99(2):233–238.PubMedCrossRefGoogle Scholar
  346. 346.
    Jutel M, Watanabe T, Klunker S, et al. Histamine regulates T-cell and antibody responses by differential expression of H1 and H2 receptors. Nature 2001;413(6854):420–425.PubMedCrossRefGoogle Scholar
  347. 347.
    Boot RG, Blommaart EF, Swart E, et al. Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. J Biol Chem 2001;276(9):6770–6778.PubMedCrossRefGoogle Scholar
  348. 348.
    Jin HM, Copeland NG, Gilbert DJ, et al. Genetic characterization of the murine Ym1 gene and identification of a cluster of highly homologous genes. Genomics 1998;54(2):316–322.PubMedCrossRefGoogle Scholar
  349. 349.
    Hu B, Trinh K, Figueira WF, et al. Isolation and sequence of a novel human chondrocyte protein related to mammalian members of the chitinase protein family. J Biol Chem 1996;271(32):19415–19420.PubMedCrossRefGoogle Scholar
  350. 350.
    Webb DC, McKenzie AN, Foster PS. Expression of the Ym2 lectin-binding protein is dependent on interleukin (IL)-4 and IL-13 signal transduction: identification of a novel allergy-associated protein. J Biol Chem 2001;276(45):41969–41676.PubMedCrossRefGoogle Scholar
  351. 351.
    Zhu Z, Zheng T, Homer RJ, et al. Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation. Science 2004;304(5677):1678–1682.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • David B. Corry
    • 1
  • Farrah Kheradmand
    • 1
  1. 1.Department of Medicine and ImmunologyBaylor College of MedicineHoustonUSA

Personalised recommendations