Advertisement

Roles of Mutation and Epimutation in the Development of Lung Disease

  • William B. Coleman
Part of the Molecular Pathology Library book series (MPLB, volume 1)

Abstract

The diseases of the lung reflect a spectrum of pathologies and mechanisms of pathogenesis spanning genetic, infectious, inflammatory, obstructive, and neoplastic processes. Gene mutations and other genetic alterations play a significant role in many lung diseases. Likewise, nongenetic alterations affecting the expression of key genes (epimutations) may also contribute to the genesis of lung disease. In this chapter, the molecular bases of the major lung diseases are reviewed. This review is not intended to be comprehensive. Rather, the current state of understanding related to the genes and molecular mechanisms (genetic and epigenetic) that contribute to major forms of lung disease (such as lung cancer) is discussed. For the interested reader, more complete reviews of specific topics are cited in the text.

Keywords

Lung Cancer Chronic Obstructive Pulmonary Disease Small Cell Lung Cancer Human Lung Cancer Lung Cancer Risk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maziak W. The asthma epidemic and our artificial habitats. BMC Pulm Med 2005;5:5.PubMedCrossRefGoogle Scholar
  2. 2.
    Walusiak J. Occupational upper airway disease. Curr Opin Allergy Clin Immunol 2006;6:1–6.PubMedGoogle Scholar
  3. 3.
    Wong GW, von Mutius E, Douwes J, Pearce N. Environmental determinants associated with the development of asthma in childhood. Int J Tuberc Lung Dis 2006;10:242–251.PubMedGoogle Scholar
  4. 4.
    Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2006. CA Cancer J Clin 2006;56:106–130.PubMedCrossRefGoogle Scholar
  5. 5.
    Coleman WB, Rivenbark AG. Quantitative DNA methylation analysis: the promise of high-throughput epigenomic diagnostic testing in human neoplastic disease. J Mol Diagn 2006;8:152–156.PubMedCrossRefGoogle Scholar
  6. 6.
    Murrell A, Rakyan VK, Beck S. From genome to epigenome. Hum Mol Genet 2005;14 Spec No 1:R3–R10.PubMedCrossRefGoogle Scholar
  7. 7.
    Fuks F. DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev 2005;15:490–495.PubMedCrossRefGoogle Scholar
  8. 8.
    Landis SH, Murray T, Bolden S, Wingo PA. Cancer statistics, 1999. CA Cancer J Clin 1999;49:8–31.PubMedCrossRefGoogle Scholar
  9. 9.
    Giaccone G, Smit E. Lung cancer. Cancer Chemother Biol Response Modif 2003;21:445–483.PubMedGoogle Scholar
  10. 10.
    Shopland DR, Eyre HJ, Pechacek TF. Smoking-attributable cancer mortality in 1991: is lung cancer now the leading cause of death among smokers in the United States? J Natl Cancer Inst 1991;83:1142–1148.PubMedCrossRefGoogle Scholar
  11. 11.
    Garfinkel L, Silverberg E. Lung cancer and smoking trends in the United States over the past 25 years. CA Cancer J Clin 1991;41:137–145.PubMedCrossRefGoogle Scholar
  12. 12.
    Smith CJ, Livingston SD, Doolittle DJ. An international literature survey of “IARC Group I carcinogens” reported in mainstream cigarette smoke. Food Chem Toxicol 1997;35:1107–1130.PubMedCrossRefGoogle Scholar
  13. 13.
    Smith CJ, Perfetti TA, Mullens MA, et al. “IARC group 2B Carcinogens” reported in cigarette mainstream smoke. Food Chem Toxicol 2000;38:825–848.PubMedCrossRefGoogle Scholar
  14. 14.
    Smith CJ, Perfetti TA, Rumple MA, et al. “IARC group 2A Carcinogens” reported in cigarette mainstream smoke. Food Chem Toxicol 2000;38:371–383.PubMedCrossRefGoogle Scholar
  15. 15.
    Haenszel W, Loveland DB, Sirken MG. Lung-cancer mortality as related to residence and smoking histories. I. White males. J Natl Cancer Inst 1962;28:947–1001.PubMedGoogle Scholar
  16. 16.
    Hammond EC, Selikoff IJ, Seidman H. Asbestos exposure, cigarette smoking and death rates. Ann NY Acad Sci 1979;330:473–490.PubMedCrossRefGoogle Scholar
  17. 17.
    Cancer IAfRo. An evaluation of chemicals and industrial processes associated with cancer in humans based on human and animal data: IARC Monographs Volumes 1 to 20. Report of an IARC Working Group. Cancer Res 1980;40:1–12.Google Scholar
  18. 18.
    Archer VE, Gillam JD, Wagoner JK. Respiratory disease mortality among uranium miners. Ann NY Acad Sci 1976;271:280–293.PubMedCrossRefGoogle Scholar
  19. 19.
    Harley NH, Harley JH. Potential lung cancer risk from indoor radon exposure. CA Cancer J Clin 1990;40:265–275.PubMedCrossRefGoogle Scholar
  20. 20.
    Berrieman HK, Ashman JN, Cowen ME, Greenman J, Lind MJ, Cawkwell L. Chromosomal analysis of non-small-cell lung cancer by multicolour fluorescent in situ hybridisation. Br J Cancer 2004;90:900–905.PubMedCrossRefGoogle Scholar
  21. 21.
    Balsara BR, Sonoda G, du Manoir S, et al. Comparative genomic hybridization analysis detects frequent, often high-level, overrepresentation of DNA sequences at 3q, 5p, 7p, and 8q in human non-small cell lung carcinomas. Cancer Res 1997;57:2116–2120.PubMedGoogle Scholar
  22. 22.
    Nowell PC, Croce CM. Chromosomal approaches to the molecular basis of neoplasia. Symp Fundam Cancer Res 1986;39:17–29.PubMedGoogle Scholar
  23. 23.
    Grandori C, Eisenman RN. Myc target genes. Trends Biochem Sci 1997;22:177–181.PubMedCrossRefGoogle Scholar
  24. 24.
    Hurlin PJ, Huang J. The MAX-interacting transcription factor network. Semin Cancer Biol 2006;16:265–274.PubMedCrossRefGoogle Scholar
  25. 25.
    Blackwood EM, Eisenman RN. Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 1991;251:1211–1217.PubMedCrossRefGoogle Scholar
  26. 26.
    Blackwood EM, Kretzner L, Eisenman RN. Myc and Max function as a nucleoprotein complex. Curr Opin Genet Dev 1992;2:227–235.PubMedCrossRefGoogle Scholar
  27. 27.
    Blackwood EM, Luscher B, Kretzner L, Eisenman RN. The Myc:Max protein complex and cell growth regulation. Cold Spring Harb Symp Quant Biol 1991;56:109–117.PubMedGoogle Scholar
  28. 28.
    Gazzeri S, Brambilla E, Caron de Fromentel C, et al. p53 genetic abnormalities and myc activation in human lung carcinoma. Int J Cancer 1994;58:24–32.PubMedCrossRefGoogle Scholar
  29. 29.
    Broers JL, Viallet J, Jensen SM, et al. Expression of c-myc in progenitor cells of the bronchopulmonary epithelium and in a large number of non-small cell lung cancers. Am J Respir Cell Mol Biol 1993;9:33–43.PubMedGoogle Scholar
  30. 30.
    Lorenz J, Friedberg T, Paulus R, et al. Oncogene overexpression in non-small-cell lung cancer tissue: prevalence and clinicopathological significance. Clin Invest 1994;72:156–163.CrossRefGoogle Scholar
  31. 31.
    Volm M, Drings P, Wodrich W, van Kaick G. Expression of oncoproteins in primary human non-small cell lung cancer and incidence of metastases. Clin Exp Metastasis 1993;11:325–329.PubMedCrossRefGoogle Scholar
  32. 32.
    Wodrich W, Volm M. Overexpression of oncoproteins in non-small cell lung carcinomas of smokers. Carcinogenesis 1993;14:1121–1124.PubMedCrossRefGoogle Scholar
  33. 33.
    Mitani S, Kamata H, Fujiwara M, et al. Analysis of c-myc DNA amplification in non-small cell lung carcinoma in comparison with small cell lung carcinoma using polymerase chain reaction. Clin Exp Med 2001;1:105–111.PubMedCrossRefGoogle Scholar
  34. 34.
    Richardson GE, Johnson BE. The biology of lung cancer. Semin Oncol 1993;20:105–127.PubMedGoogle Scholar
  35. 35.
    Krystal G, Birrer M, Way J, et al. Multiple mechanisms for transcriptional regulation of the myc gene family in small-cell lung cancer. Mol Cell Biol 1988;8:3373–3381.PubMedGoogle Scholar
  36. 36.
    Johnson BE, Russell E, Simmons AM, et al. MYC family DNA amplification in 126 tumor cell lines from patients with small cell lung cancer. J Cell Biochem Suppl 1996;24:210–217.PubMedCrossRefGoogle Scholar
  37. 37.
    Levin NA, Brzoska P, Gupta N, et al. Identification of frequent novel genetic alterations in small cell lung carcinoma. Cancer Res 1994;54:5086–5091.PubMedGoogle Scholar
  38. 38.
    Kawanishi M, Kohno T, Otsuka T, et al. Allelotype and replication error phenotype of small cell lung carcinoma. Carcinogenesis 1997;18:2057–2062.PubMedCrossRefGoogle Scholar
  39. 39.
    Shiseki M, Kohno T, Adachi J, et al. Comparative allelotype of early and advanced stage non-small cell lung carcinomas. Genes Chromosomes Cancer 1996;17:71–77.PubMedCrossRefGoogle Scholar
  40. 40.
    Sato S, Nakamura Y, Tsuchiya E. Difference of allelotype between squamous cell carcinoma and adenocarcinoma of the lung. Cancer Res 1994;54:5652–5655.PubMedGoogle Scholar
  41. 41.
    Tsuchiya E, Nakamura Y, Weng SY, et al. Allelotype of non-small cell lung carcinoma—comparison between loss of heterozygosity in squamous cell carcinoma and adenocarcinoma. Cancer Res 1992;52:2478–2481.PubMedGoogle Scholar
  42. 42.
    Luk C, Tsao MS, Bayani J, et al. Molecular cytogenetic analysis of non-small cell lung carcinoma by spectral karyotyping and comparative genomic hybridization. Cancer Genet Cytogenet 2001;125:87–99.PubMedCrossRefGoogle Scholar
  43. 43.
    Lui WO, Tanenbaum DM, Larsson C. High level amplification of 1p32–33 and 2p22–24 in small cell lung carcinomas. Int J Oncol 2001;19:451–457.PubMedGoogle Scholar
  44. 44.
    Hibi K, Takahashi T, Yamakawa K, et al. Three distinct regions involved in 3p deletion in human lung cancer. Oncogene 1992;7:445–449.PubMedGoogle Scholar
  45. 45.
    Brauch H, Tory K, Kotler F, et al. Molecular mapping of deletion sites in the short arm of chromosome 3 in human lung cancer. Genes Chromosomes Cancer 1990;1:240–246.PubMedCrossRefGoogle Scholar
  46. 46.
    Wistuba II, Behrens C, Virmani AK, et al. High resolution chromosome 3p allelotyping of human lung cancer and preneoplastic/preinvasive bronchial epithelium reveals multiple, discontinuous sites of 3p allele loss and three regions of frequent breakpoints. Cancer Res 2000;60:1949–1960.PubMedGoogle Scholar
  47. 47.
    Zochbauer-Muller S, Wistuba II, Minna JD, Gazdar AF. Fragile histidine triad (FHIT) gene abnormalities in lung cancer. Clin Lung Cancer 2000;2:141–145.PubMedCrossRefGoogle Scholar
  48. 48.
    Dammann R, Schagdarsurengin U, Seidel C, et al. The tumor suppressor RASSF1A in human carcinogenesis: an update. Histol Histopathol 2005;20:645–663.PubMedGoogle Scholar
  49. 49.
    Hosoe S, Ueno K, Shigedo Y, et al. A frequent deletion of chromosome 5q21 in advanced small cell and non-small cell carcinoma of the lung. Cancer Res 1994;54:1787–1790.PubMedGoogle Scholar
  50. 50.
    Kinzler KW, Nilbert MC, Su LK, et al. Identification of FAP locus genes from chromosome 5q21. Science 1991;253:661–665.PubMedCrossRefGoogle Scholar
  51. 51.
    Kinzler KW, Nilbert MC, Vogelstein B, et al. Identification of a gene located at chromosome 5q21 that is mutated in colorectal cancers. Science 1991;251:1366–1370.PubMedCrossRefGoogle Scholar
  52. 52.
    Groden J, Thliveris A, Samowitz W, et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell 1991;66:589–600.PubMedCrossRefGoogle Scholar
  53. 53.
    Joslyn G, Carlson M, Thliveris A, et al. Identification of deletion mutations and three new genes at the familial polyposis locus. Cell 1991;66:601–613.PubMedCrossRefGoogle Scholar
  54. 54.
    Horii A, Nakatsuru S, Miyoshi Y, et al. Frequent somatic mutations of the APC gene in human pancreatic cancer. Cancer Res 1992;52:6696–6698.PubMedGoogle Scholar
  55. 55.
    Fung YK, Murphree AL, T’Ang A, et al. Structural evidence for the authenticity of the human retinoblastoma gene. Science 1987;236:1657–1661.PubMedCrossRefGoogle Scholar
  56. 56.
    Lee WH, Bookstein R, Hong F, et al. Human retinoblastoma susceptibility gene: cloning, identification, and sequence. Science 1987;235:1394–1399.PubMedCrossRefGoogle Scholar
  57. 57.
    Hensel CH, Hsieh CL, Gazdar AF, et al. Altered structure and expression of the human retinoblastoma susceptibility gene in small cell lung cancer. Cancer Res 1990;50:3067–3072.PubMedGoogle Scholar
  58. 58.
    Xu HJ, Hu SX, Cagle PT, et al. Absence of retinoblastoma protein expression in primary non-small cell lung carcinomas. Cancer Res 1991;51:2735–2739.PubMedGoogle Scholar
  59. 59.
    McBride OW, Merry D, Givol D. The gene for human p53 cellular tumor antigen is located on chromosome 17 short arm (17p13). Proc Natl Acad Sci U S A 1986;83:130–134.PubMedCrossRefGoogle Scholar
  60. 60.
    Yokota J, Wada M, Shimosato Y, et al. Loss of heterozygosity on chromosomes 3, 13, and 17 in small-cell carcinoma and on chromosome 3 in adenocarcinoma of the lung. Proc Natl Acad Sci USA 1987;84:9252–9256.PubMedCrossRefGoogle Scholar
  61. 61.
    Nishioka M, Kohno T, Takahashi M, et al. Identification of a 428-kb homozygously deleted region disrupting the SEZ6L gene at 22q12.1 in a lung cancer cell line. Oncogene 2000;19:6251–6260.PubMedCrossRefGoogle Scholar
  62. 62.
    Sy SM, Fan B, Lee TW, et al. Spectral karyotyping indicates complex rearrangements in lung adenocarcinoma of nonsmokers. Cancer Genet Cytogenet 2004;153:57–59.PubMedCrossRefGoogle Scholar
  63. 63.
    Sy SM, Wong N, Lee TW, et al. Distinct patterns of genetic alterations in adenocarcinoma and squamous cell carcinoma of the lung. Eur J Cancer 2004;40:1082–1094.PubMedCrossRefGoogle Scholar
  64. 64.
    Mills NE, Fishman CL, Rom WN, et al. Increased prevalence of K-ras oncogene mutations in lung adenocarcinoma. Cancer Res 1995;55:1444–1447.PubMedGoogle Scholar
  65. 65.
    Slebos RJ, Kibbelaar RE, Dalesio O, et al. K-ras oncogene activation as a prognostic marker in adenocarcinoma of the lung. N Engl J Med 1990;323:561–565.PubMedCrossRefGoogle Scholar
  66. 66.
    Rodenhuis S, Slebos RJ, Boot AJ, et al. Incidence and possible clinical significance of K-ras oncogene activation in adenocarcinoma of the human lung. Cancer Res 1988;48:5738–5741.PubMedGoogle Scholar
  67. 67.
    Rodenhuis S, Slebos RJ. Clinical significance of ras oncogene activation in human lung cancer. Cancer Res 1992;52:2665s–2669s.PubMedGoogle Scholar
  68. 68.
    Reynolds SH, Anna CK, Brown KC, et al. Activated protooncogenes in human lung tumors from smokers. Proc Natl Acad Sci USA 1991;88:1085–1089.PubMedCrossRefGoogle Scholar
  69. 69.
    Suzuki Y, Orita M, Shiraishi M, et al. Detection of ras gene mutations in human lung cancers by single-strand conformation polymorphism analysis of polymerase chain reaction products. Oncogene 1990;5:1037–1043.PubMedGoogle Scholar
  70. 70.
    Li S, Rosell R, Urban A, et al. K-ras gene point mutation: a stable tumor marker in non-small cell lung carcinoma. Lung Cancer 1994;11:19–27.PubMedCrossRefGoogle Scholar
  71. 71.
    Feng Z, Hu W, Chen JX, et al. Preferential DNA damage and poor repair determine ras gene mutational hotspot in human cancer. J Natl Cancer Inst 2002;94:1527–1536.PubMedGoogle Scholar
  72. 72.
    Hu W, Feng Z, Tang MS. Preferential carcinogen-DNA adduct formation at codons 12 and 14 in the human K-ras gene and their possible mechanisms. Biochemistry 2003;42:10012–10023.PubMedCrossRefGoogle Scholar
  73. 73.
    Ahrendt SA, Decker PA, Alawi EA, et al. Cigarette smoking is strongly associated with mutation of the K-ras gene in patients with primary adenocarcinoma of the lung. Cancer 2001;92:1525–1530.PubMedCrossRefGoogle Scholar
  74. 74.
    Slebos RJ, Hruban RH, Dalesio O, et al. Relationship between K-ras oncogene activation and smoking in adenocarcinoma of the human lung. J Natl Cancer Inst 1991;83:1024–1027.PubMedCrossRefGoogle Scholar
  75. 75.
    Barbacid M. Ras genes. Annu Rev Biochem 1987;56:779–827.PubMedCrossRefGoogle Scholar
  76. 76.
    Barbacid M. Ras oncogenes: their role in neoplasia. Eur J Clin Invest 1990;20:225–235.PubMedCrossRefGoogle Scholar
  77. 77.
    Wittinghofer A, Scheffzek K, Ahmadian MR. The interaction of Ras with GTPase-activating proteins. FEBS Lett 1997;410:63–67.PubMedCrossRefGoogle Scholar
  78. 78.
    Hancock JF. Ras proteins: different signals from different locations. Nat Rev Mol Cell Biol 2003;4:373–384.PubMedCrossRefGoogle Scholar
  79. 79.
    Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science 1991;253:49–53.PubMedCrossRefGoogle Scholar
  80. 80.
    Hollstein M, Shomer B, Greenblatt M, et al. Somatic point mutations in the p53 gene of human tumors and cell lines: updated compilation. Nucleic Acids Res 1996;24:141–146.PubMedCrossRefGoogle Scholar
  81. 81.
    Chiba I, Takahashi T, Nau MM, et al. Mutations in the p53 gene are frequent in primary, resected non-small cell lung cancer. Lung Cancer Study Group. Oncogene 1990;5:1603–1610.PubMedGoogle Scholar
  82. 82.
    Curiel DT, Buchhagen DL, Chiba I, D’Amico D. A chemical mismatch cleavage method useful for the detection of point mutations in the p53 gene in lung cancer. Am J Respir Cell Mol Biol 1990;3:405–411.PubMedGoogle Scholar
  83. 83.
    D’Amico D, Carbone D, Mitsudomi T, et al. High frequency of somatically acquired p53 mutations in small-cell lung cancer cell lines and tumors. Oncogene 1992;7:339–346.PubMedGoogle Scholar
  84. 84.
    Robles AI, Linke SP, Harris CC. The p53 network in lung carcinogenesis. Oncogene 2002;21:6898–6907.PubMedCrossRefGoogle Scholar
  85. 85.
    Greenblatt MS, Bennett WP, Hollstein M, Harris CC. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 1994;54:4855–4878.PubMedGoogle Scholar
  86. 86.
    Denissenko MF, Pao A, Tang M, Pfeifer GP. Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science 1996;274:430–432.PubMedCrossRefGoogle Scholar
  87. 87.
    Kastan MB, Onyekwere O, Sidransky D, et al. Participation of p53 protein in the cellular response to DNA damage. Cancer Res 1991;51:6304–6311.PubMedGoogle Scholar
  88. 88.
    Gannon JV, Greaves R, Iggo R, Lane DP. Activating mutations in p53 produce a common conformational effect. A monoclonal antibody specific for the mutant form. EMBO J 1990;9:1595–602.PubMedGoogle Scholar
  89. 89.
    Kern SE, Kinzler KW, Baker SJ, et al. Mutant p53 proteins bind DNA abnormally in vitro. Oncogene 1991;6:131–136.PubMedGoogle Scholar
  90. 90.
    Kern SE, Kinzler KW, Bruskin A, et al. Identification of p53 as a sequence-specific DNA-binding protein. Science 1991;252:1708–1711.PubMedCrossRefGoogle Scholar
  91. 91.
    Kern SE, Pietenpol JA, Thiagalingam S, et al. Oncogenic forms of p53 inhibit p53-regulated gene expression. Science 1992;256:827–830.PubMedCrossRefGoogle Scholar
  92. 92.
    Kramer A, Neben K, Ho AD. Centrosome replication, genomic instability and cancer. Leukemia 2002;16:767–775.PubMedCrossRefGoogle Scholar
  93. 93.
    Wahl GM, Linke SP, Paulson TG, Huang LC. Maintaining genetic stability through TP53 mediated checkpoint control. Cancer Surv 1997;29:183–219.PubMedGoogle Scholar
  94. 94.
    Gazzeri S, Gouyer V, Vour’ch C, et al. Mechanisms of p16INK4A inactivation in non small-cell lung cancers. Oncogene 1998;16:497–504.PubMedCrossRefGoogle Scholar
  95. 95.
    Tanaka R, Wang D, Morishita Y, et al. Loss of function of p16 gene and prognosis of pulmonary adenocarcinoma. Cancer 2005;103:608–615.PubMedCrossRefGoogle Scholar
  96. 96.
    Shapiro GI, Park JE, Edwards CD, et al. Multiple mechanisms of p16INK4A inactivation in non-small cell lung cancer cell lines. Cancer Res 1995;55:6200–6209.PubMedGoogle Scholar
  97. 97.
    Chin L, Pomerantz J, DePinho RA. The INK4a/ARF tumor suppressor: one gene—two products—two pathways. Trends Biochem Sci 1998;23:291–296.PubMedCrossRefGoogle Scholar
  98. 98.
    Toyooka S, Toyooka KO, Maruyama R, et al. DNA methylation profiles of lung tumors. Mol Cancer Ther 2001;1:61–67.PubMedGoogle Scholar
  99. 99.
    Sanchez-Cespedes M, Decker PA, Doffek KM, et al. Increased loss of chromosome 9p21 but not p16 inactivation in primary non-small cell lung cancer from smokers. Cancer Res 2001;61:2092–2096.PubMedGoogle Scholar
  100. 100.
    Liu Y, Lan Q, Siegfried JM, et al. Aberrant promoter methylation of p16 and MGMT genes in lung tumors from smoking and never-smoking lung cancer patients. Neoplasia 2006;8:46–51.PubMedCrossRefGoogle Scholar
  101. 101.
    Tsou JA, Shen LY, Siegmund KD, et al. Distinct DNA methylation profiles in malignant mesothelioma, lung adenocarcinoma, and non-tumor lung. Lung Cancer 2005;47:193–204.PubMedCrossRefGoogle Scholar
  102. 102.
    Zhu WG, Srinivasan K, Dai Z, et al. Methylation of adjacent CpG sites affects Sp1/Sp3 binding and activity in the p21(Cip1) promoter. Mol Cell Biol 2003;23:4056–4065.PubMedCrossRefGoogle Scholar
  103. 103.
    Soria JC, Rodriguez M, Liu DD, et al. Aberrant promoter methylation of multiple genes in bronchial brush samples from former cigarette smokers. Cancer Res 2002;62:351–355.PubMedGoogle Scholar
  104. 104.
    Lai JC, Cheng YW, Chiou HL, et al. Gender difference in estrogen receptor alpha promoter hypermethylation and its prognostic value in non-small cell lung cancer. Int J Cancer 2005;117:974–980.PubMedCrossRefGoogle Scholar
  105. 105.
    Chen Y, Huhn D, Knosel T, et al. Downregulation of connexin 26 in human lung cancer is related to promoter methylation. Int J Cancer 2005;113:14–21.PubMedCrossRefGoogle Scholar
  106. 106.
    Wistuba II, Gazdar AF, Minna JD. Molecular genetics of small cell lung carcinoma. Semin Oncol 2001;28:3–13.PubMedCrossRefGoogle Scholar
  107. 107.
    Miyamoto K, Asada K, Fukutomi T, et al. Methylationassociated silencing of heparan sulfate D-glucosaminyl 3-O-sulfotransferase-2 (3-OST-2) in human breast, colon, lung and pancreatic cancers. Oncogene 2003;22:274–280.PubMedCrossRefGoogle Scholar
  108. 108.
    Du Y, Carling T, Fang W, et al. Hypermethylation in human cancers of the RIZ1 tumor suppressor gene, a member of a histone/protein methyltransferase superfamily. Cancer Res 2001;61:8094–8099.PubMedGoogle Scholar
  109. 109.
    Xu XL, Wu LC, Du F, et al. Inactivation of human SRBC, located within the 11p15.5-p15.4 tumor suppressor region, in breast and lung cancers. Cancer Res 2001;61:7943–7949.PubMedGoogle Scholar
  110. 110.
    Dammann R, Takahashi T, Pfeifer GP. The CpG island of the novel tumor suppressor gene RASSF1A is intensely methylated in primary small cell lung carcinomas. Oncogene 2001;20:3563–3567.PubMedCrossRefGoogle Scholar
  111. 111.
    Osada H, Tatematsu Y, Yatabe Y, et al. Frequent and histological type-specific inactivation of 14-3-3sigma in human lung cancers. Oncogene 2002;21:2418–2424.PubMedCrossRefGoogle Scholar
  112. 112.
    Fukasawa M, Kimura M, Morita S, et al. Microarray analysis of promoter methylation in lung cancers. J Hum Genet 2006;51:368–374.PubMedCrossRefGoogle Scholar
  113. 113.
    Wright JL, Churg A. Advances in the pathology of COPD. Histopathology 2006;49:1–9.PubMedCrossRefGoogle Scholar
  114. 114.
    Janoff A. Elastases and emphysema. Current assessment of the protease-antiprotease hypothesis. Am Rev Respir Dis 1985;132:417–433.PubMedGoogle Scholar
  115. 115.
    Stoller JK, Aboussouan LS. Alpha1-antitrypsin deficiency. Lancet 2005;365:2225–2236.PubMedCrossRefGoogle Scholar
  116. 116.
    Tomashefski JF Jr, Crystal RG, Wiedemann HP, et al. The bronchopulmonary pathology of alpha-1 antitrypsin (AAT) deficiency: findings of the Death Review Committee of the national registry for individuals with Severe Deficiency of Alpha-1 Antitrypsin. Hum Pathol 2004;35:1452–1461.PubMedCrossRefGoogle Scholar
  117. 117.
    Lieberman J, Winter B, Sastre A. Alpha 1-antitrypsin Pitypes in 965 COPD patients. Chest 1986;89:370–373.PubMedCrossRefGoogle Scholar
  118. 118.
    Lomas DA, Mahadeva R. Alpha1-antitrypsin polymerization and the serpinopathies: pathobiology and prospects for therapy. J Clin Invest 2002;110:1585–1590.PubMedGoogle Scholar
  119. 119.
    DeMeo DL, Silverman EK. Alpha1-antitrypsin deficiency. 2: genetic aspects of alpha(1)-antitrypsin deficiency: phenotypes and genetic modifiers of emphysema risk. Thorax 2004;59:259–264.PubMedCrossRefGoogle Scholar
  120. 120.
    Lomas DA, Evans DL, Finch JT, Carrell RW. The mechanism of Z alpha 1-antitrypsin accumulation in the liver. Nature 1992;357:605–607.PubMedCrossRefGoogle Scholar
  121. 121.
    Ogushi F, Fells GA, Hubbard RC, et al. Z-type alpha 1-antitrypsin is less competent than M1-type alpha 1-antitrypsin as an inhibitor of neutrophil elastase. J Clin Invest 1987;80:1366–1374.PubMedCrossRefGoogle Scholar
  122. 122.
    Lewis MJ, Lewis EH 3rd, Amos JA, Tsongalis GJ. Cystic fibrosis. Am J Clin Pathol 2003;120Suppl:S3–S13.PubMedGoogle Scholar
  123. 123.
    Robinson P. Cystic fibrosis. Thorax 2001;56:237–241.PubMedCrossRefGoogle Scholar
  124. 124.
    Riordan JR, Rommens JM, Kerem B, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 1989;245:1066–1073.PubMedCrossRefGoogle Scholar
  125. 125.
    Gadsby DC, Vergani P, Csanady L. The ABC protein turned chloride channel whose failure causes cystic fibrosis. Nature 2006;440:477–483.PubMedCrossRefGoogle Scholar
  126. 126.
    Zielenski J, Tsui LC. Cystic fibrosis: genotypic and phenotypic variations. Annu Rev Genet 1995;29:777–807.PubMedCrossRefGoogle Scholar
  127. 127.
    Mickle JE, Cutting GR. Genotype-phenotype relationships in cystic fibrosis. Med Clin North Am 2000;84:597–607.PubMedCrossRefGoogle Scholar
  128. 128.
    Zielenski J. Genotype and phenotype in cystic fibrosis. Respiration 2000;67:117–133.PubMedCrossRefGoogle Scholar
  129. 129.
    Quinton PM. Chloride impermeability in cystic fibrosis. Nature 1983;301:421–422.PubMedCrossRefGoogle Scholar
  130. 130.
    Du K, Sharma M, Lukacs GL. The DeltaF508 cystic fibrosis mutation impairs domain-domain interactions and arrests post-translational folding of CFTR. Nat Struct Mol Biol 2005;12:17–25.PubMedCrossRefGoogle Scholar
  131. 131.
    Chou JL, Rozmahel R, Tsui LC. Characterization of the promoter region of the cystic fibrosis transmembrane conductance regulator gene. J Biol Chem 1991;266:24471–2446.PubMedGoogle Scholar
  132. 132.
    Yoshimura K, Nakamura H, Trapnell BC, et al. The cystic fibrosis gene has a “housekeeping”-type promoter and is expressed at low levels in cells of epithelial origin. J Biol Chem 1991;266:9140–9144.PubMedGoogle Scholar
  133. 133.
    Denamur E, Chehab FF. Methylation status of CpG sites in the mouse and human CFTR promoters. DNA Cell Biol 1995;14:811–815.PubMedCrossRefGoogle Scholar
  134. 134.
    Koh J, Sferra TJ, Collins FS. Characterization of the cystic fibrosis transmembrane conductance regulator promoter region. Chromatin context and tissue-specificity. J Biol Chem 1993;268:15912–15921.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • William B. Coleman
    • 1
  1. 1.Department of Pathology and Laboratory MedicineUniversity of North Carolina School of MedicineChapel HillUSA

Personalised recommendations